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1. Introduction

In the paper [2] R. Kucera determines the parity of the class number of any
biquadratic field Q (v/p, v/q) and Q(+/p, v/2), where p and g are different primes,
p =¢q =1 (mod4). In the paper [1] we applied his method and computed the
parity of the class number of the field Q (v/p, v/q, /7), where p, ¢ and r are different
primes, all congruent to 1 modulo 4.

Here we present that result together with the case p = 2.

Theorem. Let p,q and r be different primes either congruent to 1 modulo 4 or
equal to 2. Let us denote by (a/b) the Kronecker symbol. Further, denote for any
prime [ =1 (mod 4) by x; one of the Dirichlet characters modulo | of order 4 and
by x2 one of the Dirichlet characters modulo 16 of order 4. Let h denote the class
number of Q (v/p,Vq,VT).

1. If (p/q) = (p/r) = (¢/r) = —1, then h is even if and only if x,(gr) - x4(pr) -

Xr(pg) = —1.
2. If (p/q) =1, (p/r) = (¢/r) = =1, then the parity of h is the same as the parity

of the class number of the biquadratic field Q (v/p,vq)-

3. If (p/q) = (g/r) =1, (p/r) = —1, then h is even.

4. If (p/q) = (p/r) = (¢/r) =1, then h is even. (Moreover, if we denote by vpq, Upr,
Ugr, Upqr the highest exponents of 2 dividing the class number of Q (\/E, \/L}),
Q(\/I_’: \/'F); Q(\/aa \/;): Q(\/ﬁ’_’a V4, \/F)7 respectively, then vpg, > 1 + vpg +

Upr + Vgr-)

The proof of the theorem in the case p,¢,r =1 (mod 4) can be found in [1]. In
this paper we prove the theorem in the case when exactly one of primes p,q,r is
equal to 2.

®

The author was financially supported by the Grant Agency of the Czech Repub-
lic, grant “Algebraic and Analytic Methods in Number Theory”, No. 201/97/0433

Typeset by AMS-TEX



2. Cyclotomic units

We now fix for the rest of this paper two different primes p, ¢, both congruent to
1 modulo 4. We denote by E the group of units in the field Q(v/2,v/p,v/q). Let

us denote G, = €27i/™ for any positive integer n, and &, = ¢$"7™/? for any positive

odd integer n. By Frob(l, K) we mean the Frobenius automorphism of prime [ on
a field K. For any prime [ congruent to 1 modulo 4 let b;,¢; be such integers that
1—1=2n ¢, where 2 4 ¢, and b; > 2. For this prime [ fix a Dirichlet character
modulo [ of order 2%, and denote it by 4. Let B, = {p} | 0<j< 2% 2}, and
R} = (ob, Ry, where p; = ef™ict/U=1) (= (,,, 1) is a primitive 2% ~'th root of unity.
Then #R; = #R; = (I — 1)/(4¢;) (where #S denotes the number of elements of
the set S). Further, for each I, where [ = 1 (mod 4) or | = 2, we fix one of the
characters x; as defined in the theorem. Note that for any integer a satisfying
(a/l) = 1 the value x;(a) does not depend on the choice of the character x;.

Let J = {2} U {a € Z | ais a prime congruent to 1 modulo 4}. We let ns; =8
and nyy = [ for any other element of J. For any finite subset S of J we let (by
convention, an empty product is 1)

ns=[Ing, ="/, @ =0Q(s), Ks=Q({Vilies}).

es

For any | € S we denote by o; the nontrivial automorphism in the group
Gal (Ks/Kg\(1})- Let us further define

1 if S =0,
67"5 = %NQS/Ks(l - CS) lfS = {l},
NQS/KS(]-_CS) if #5 > 1,

where 75 = [],cgl. Tt is easy to see that e, are units in K5 (in particular, g5 =
—1++/2). Let C be the group generated by —1 and by all conjugates of £, where
S C {2,p,q}- It can be shown (see [3]) that units {—1,e2,€p,&q,E2q,E2q, Epgs E2pq t
form a basis of C, and that [E : C] = 2* - h, where h is the class number of

Q(V2,vp,Va)-

We shall study the structure of C' in order to find the subgroup of E of the
sufficiently low index in E. Then we will be able to discuss the parity of h. We know
from the results in [2] that for units €9y, €24, and €4 there exist units Bop, f2q, and

Bpq in Q(v/2,+/p,/q) respectively, such that ea, = 85,69, = 53, and e = S2,,
where

Bap = H (Ciep — Clop) and  fBpg = H (€pg = &pg)

0<a<l6p 0<a<pq
a=1 (mod 16) Yp(a)ER,
(a/p)=1 (a/g)=1

and the definition of 3, is analogical to the definition of 8,,. Here we show that for
€2pq there also exists a unit Sap, in E, such that eop, = 83,,. When we show this, we
will have the subgroup of E generated by the units {—1, &2, &p, &4, B2p, 8245 Bpqs B2pq +
of the index h.



We have directly from the definition

€2pq = H(]- - Cgpq) = Cprq : H(Cl_(i[;)q - Cprq):

a

where s = ) a with a in the products and the sum running through the set of
all positive integers a < 8pq satisfying a = +1 (mod 8) and (a/p) = (a/q) = 1. It
is easy to see that 8pq | >, a. Further if a = +9 (mod 16), then a + 8pg = +1
(mod 16), therefore

€2pq = + H (Cl_Gaz;q - C1a6pq) == H (Cl_()’(;)q - Cf(ipq)2'

0<a<16pq 0<a<16pq
a==+1 (mod 16) a=1 (mod 16)
(a/p)=(a/q)=1 (a/p)=(a/q)=1

Now, if we define 33,4 by the formula

Papg = H (Cfa?;q - Cilﬁpq)a

0<a<16pq
a=1 (mod 16)
(a/p)=(a/q)=1

we get e2pg = +033,,. We will prove that 82,4 € Q(v2,v/p,/q). Let us take any
7 € Gal (Q(Ci6pq) /Q(v/2, VP, V4)). Then thereis t € Z satisfying t = +1 (mod 8)
and (t/p) = (t/q) = 1 such that (s, = (l6p,- We will show that 83, = Bapq-
This fact is easy to see in the case t = 1 (mod 16). If ¢ = 9 (mod 16), then
t'=t+8pg =1 (mod 16), Cprq = —(l6pq> and

ﬂ;pq H(Cl(ipq Clﬁpq) ( )(p Dia=1)/4 H C 6pq Claé;q) = /321)11'

In the remaining case ¢ = —1 (mod 8) let ' = —t. Then # = 1 (mod 8) and
the same equation as above yields again (], = 3y, therefore indeed Bsp, €
Q(v2,v/p;V4). Finally, as €554 is a positive real number (it is a norm from an
imaginary abelian field to a real one), we have 3,9 = +£33,,-

Now we can conclude that the class number h of the field Q (1/2, v/, v/q) is even
if and only if there are z3,x,, T4, Tap, T2y, Tpg> T2pg € {0, 1}, such that

n= |egegres 05 45 B3y Byt | # 1
a square in E. The set of all such possible 5 can be restricted using the next
statement, which is taken from [3]:
Proposition 1. Let S C J finite and | € S arbitrary. Then
-1 it §={i},
Nico /oy Bns) = 4 U/R) - KO i S = (kYU k,

1—Frob(l,K .
5#3\;} ( s\{13) if #5 > 2.



From this proposition it follows that
(o)t = () 47 = () o0 = 1,
hence none of +ey, +¢,, ¢, could be a square in E. Since

(£eaep)' T2 = —€2

2, (Feagg)'T7? = ¢

2, (fepeg)'t7r = —¢2

q’
none of teyep, keaey, epe, could be a square, and finally nor +e5e,€, could be a
square in F, because

(feaepey)' T2 = —elel.

3. Crossed homomorphisms and units

Let us preserve the terminology of the previous section and put G = Gal (K5/Q).
By a crossed homomorphism we mean a function f : G — Kg such that for all
o, T € G,

flor) = f(o)f(7)°.

The following proposition, which is taken from [3], represents the essential con-
dition which will be used to test whether given unit is a square in Kg.

Proposition 2. Let ¢ € Eg be such that there is a crossed homomorphism
f : G = Kg satisfying €'~ = f(0)? for any 0 € G. Then € or —¢ is a square in
K.

On the other hand, it is easy to see that if ¢ = 4n? for suitable 7 € Kg, then
there is a crossed homomorphism f : G — K satisfying e! =7 = f(0)? (we can put
flo) =n'"7).

The proof of this proposition (which can be found in [3]) leads to Hilbert the-
orem 90. In the paper [1] we formulated a weaker condition, which will be more
appropriate for our purposes than one of the Proposition 2. This weaker condition
is stated in the following proposition.

Proposition 3. If there exists a function g : {o;|l € S} — K, which satisfies
el=9 = g(0;)? for any | € S and conditions

VieS: g(o)ttor=1 (1)
Vp1,p2 € S: glop,)' "7r2=g(0p,)! T (2)

then € or —¢ is a square in Kg.

In the next section we shall discuss whether a given unit n € C'is a square in E or
not. For this purpose we shall use Proposition 3. We have in our case S = {2, p, ¢}
and thus we want to know how automorphisms o2, 0, and o, act on arbitrary unit 5
which can be generated by {—1,2,&p,&q, B2p, 8245 Bpqs B2pq }- First, we recall result
of this type proved in [2].



Proposition 4. If p,q are distinct primes either even or congruent to 1 modulo
4, and (p/q) =1, then
Bpa 7 = x»(a)-

In the paper [1] there is proved an analogy to Proposition 4 in the case where
p and ¢ are primes, p,g =1 (mod 4) and (p/q) = —1. We will present that result
together with the case when one of primes is equal to 2. For the presentation of
that result we should first define an auxiliary function « (in the same way as in [1])
using notation introduced in the previous section. We define

a(l, s) :(_1)#{ 0<a<l|¥i(as)ER, ¥1(a)ER; }
 (—1y# 0<e<a-02 [ @R |

for any prime [ = 1 (mod 4) and any integer s, which is a nonresidue modulo I.
We also define the function « in the case I =2 and s =5 (mod 8) by the formula

-1 if s=5 (mod 16),
(2,8) = .
1 if s =13 (mod 16).
The result mentioned above is stated in the following proposition.
Proposition 5. If p and q are distinct primes either even or congruent to 1

modulo 4, and (p/q) = —1, then

BH_% = a(p,q) Ep

Proof. The case when both primes are odd is proved in [1], here we assume that
q = 2 and p is an odd prime congruent to 1 modulo 4. From here on to the end of
this section we let ¢ =4,, R = R,, and R' = R,,.

First, we prove the formula ﬂ1+"2 = a(p, 2)e,. We have

b= Il (Gep=Clo) =0 I (G — o)

0<a<16p 0<a<l6p
(a/p)=1 a==+1 (mod 16)
a=1 (mod 16) Y(a)ER
= iC;(i; : H (1 - Cgp)a
0<a<8p
a==%1 (mod 8)
Y(a)ER

where r = ) a with a running through the same set as in the last product. It is
easy to see that 8 | r (hence (Jg, € Q((p)), and that

r=2 Z (mod p).

0<a<p
Y(a)ER

5



Let ¢t be an integer satisfying ¢ = 1 (mod p), and t = 3 (mod 16), and 7 €
Gal (Q((16p) /Q) be the automorphism determined by (7, = (fs,. Then o3 is the
restriction of 7 on the field Q(v/2,v/p). Then

(CI—GZ))H-T — C]._62pT — H (CI(Jl—P)/‘i)—a_

0<a<p
Y(a)ER

Hence

B =(Gep)™™ I -t

0<a<8p

a==+1 (mod 8)

Y(a)ER
= II 2= I -6
0<a<p 0<a<8p
Y(a)ER 2ta,¥(a)ER

As it can be easily seen, we have for a fixed integer b

1

[ a-¢)=a-cyreeEeve),

0<a<8p
2fa, a=b (mod p)

and therefore we can continue our calculations as follows:

-1

/81+(72 — H (CI(Jl—P)/‘l)_a(]_ — C}L)l)l—Frob(Q,Q(\/E))

2p

0<a<p
Y(a)ER

_ H (gp—a_gz)l—}i‘rob(ZQ(gp))_l
0<a<p
Y(a)ER

= II & -¢) I[ & -9,
0<a<p 0<a<p
Y(a)ER P(a)ER

where ¢’ € Z is an inverse of 2 modulo p. Now multiply both sides of this equation
by

I &-¢9,
0<a<p
(a/p)=—1
Y(a)¢R'



and an easy calculation yields (in all following products we assume also 0 < a < p)

g I @ -9 I & -6 =

(a/p)=—1 Y(a)ER

Y(a)¢R'
=] ¢-¢v I ©-59"=
Y(a)ER (a/p)=—1

Y(a)¢R'
= II -9 11 ¢-4v=
Y(a)¢ RUR/ (a/p)=1
= J] & - [ & -¢=
¥(a)ERUR’ (a/p)=1
== I G-t [ a-¢=
¥(a)ERUR! (a/p)=1

= J] &= Ve
¥(a)ERUR’

where a in the sum is running over all quadratic residues modulo p satisfying
0 < a < p. If we recall that for any prime [ congruent to 1 modulo 4

(I-1)/2

Vi= ] & -¢b,
a=1

we finally get
/B;;_az =¢&p- a(p, 2)

Now we prove the second assertion of the proposition, namely B;:J" = a(2,p)es.
We have
1+ _ _
by = Il Gp—Cep) =G I Q=G
0<a<l6p 0<a<l16p
pfa=1 (mod 16) pta=1 (mod 16)

where s = ) a with a running through the same set as in the previous products.
Again, it is easy to see that p | s and that s =p —1 (mod 16). Therefore

1-+/2 if p=5 (mod 16),

1+op — (¢=1 _ 1—Frob(p,Q(¢16)) ™! —
Bap (Gig = Gie) { —1+4+/2 if p=13 (mod 16),

which is by the definition equal to —e5 in the former case and to g5 in the latter
one. The proposition is proved. O

Now we present a relation between function « defined above and Dirichlet char-
acters.



Proposition 6. Ifp is a prime such that either p =2 or p = 1 (mod 4) and m,n
are integers satisfying m,n #Z 3 (mod 8), (m/p) = (n/p) = —1, then

a(p,m) - a(p,n) = —xp(mn).

Proof. The proposition is proved in [1] if p is an odd prime. If p = 2 then the
assertion is trivial. O

In the paper [1] it is shown how automorphisms from the Galois group of the
field extension Q (v/p,v/q,v/7) /Q act on the unit By, in the case when all primes
are congruent to 1 modulo 4. Here we state this result together with the case when
one of them is equal to 2 and the other are congruent to 1 modulo 4.

Proposition 7. Let p,q, and r are distinct primes either congruent to 1 modulo
4 or equal to 2. Then
1-Frob(p,Q(va,v7
ﬂ;;;-ap /qu ( ( ))
Proof. The case when all primes are odd is proved in [1]. Now we can assume
without loss of generality that p and ¢ are odd primes congruent to 1 modulo 4,
and r = 2. We must prove two equalities:

Lo, _ 1-Frob(pO(v2,V4)) Lios _ gl Frob(2.0(v5Va)).

p 2pq =p 2q and B 2pq ﬂp‘l
Let us prove the first equality:
1+ _ _
ﬂqudp = H (Ciopg — CTopg) = Ciopg - H (1= G8po)s
0<a<16pq 0<a<16pq
pta=1 (mod 16) pta=1 (mod 16)
(a/q)=1 (a/g)=1

where s = ) a with a running through the same set as in the previous products.
By the suitable reorganization of the terms in this sum we can easily see that p | s,
q| s, and that

s=(p-1)- Z a (mod 16q).

0<a<16q
a=1 (mod 16)
(a/g)=1

1+op

Now we can continue our computation of 5, " as follows:

B;;rqap = (log v H -G Frob(p,Q(¢164))~

1 o o
= (Clqua a)lfFrob(P,Q(Clﬁq)) . H(l _ Cézq)l Frob(p,Q(¢164))
a

— —Fr -1 —Frob(p, -1
— H(Cw!; _ Cfeq)l Frob(p,Q(¢16¢)) ™" — /B;q ob(p,Q(¢164))

1— Frob(p, (\/5,\/6))
_B2q 9



where the last equation holds because 2, € Q (\/Q, \/E) All the products and the
sum in the previous paragraph are taken over all positive integers a < 16¢ satisfying
a =1 (mod 16), and (a/q) = 1.

Now, let us consider the second equality (recall that by the convention introduced
earlier we have ¢ = 4, and R = R),). First, we write the unit 8y, in another form:

,B2pq = H (Cl?iznq - Cprq) = (_1)(1)71)((171)/8 ) H (C;Gl;)q - Cfﬁpq)

0<a<16pq 0<a<16pq
a=1 (mod 16) a==%1 (mod 16)
(a/p)=(a/g)=1 ¥(a)ER, (a/q)=1
= gfﬁ?;q : H (1- Cgpq)a
0<a<8pgq

a=+1 (mod 8)
Y(a)€R, (a/q)=1

where r = ) a with a running through the same set as in the last but one product.
It is easy to see that 16 | , that

r=2 z a (mod p),

0<a<pq
¥(a)ER, (a/q)=1

and that the same congruence holds also modulo gq.

Let ¢ be an integer satisfying ¢ =1 (mod p),t =1 (mod ¢), and t = 3 (mod 16),
and 7 € Gal (Q(Ci6pg) /Q) be the automorphism determined by ({g,, = Cf¢,,- Then
03 is the restriction of 7 on the field Q(1/2,v/p,/q). Hence we have

B = (Crang) I a-@)+

0<a<8pq
a=#1 (mod 8)
Y(a)ER, (a/q)=1

— CS})Z . H (1- Cgpq) — Cgpz . H (1- ng)l—Frob(ZQ(Cpq))_l

0<a<8pq 0<a<pq
2fa, (a/q)=1 Y(a)ER, (a/q)=1
Y(a)ER
1-Frob(2,Q((pq)) " .
= ( H gp—qa> . H (1— ng)l—Frob(lQ(Cpq))_
0<a<pq 0<a<pq
Y(a)ER, (a/q)=1 Y(a)ER, (a/q)=1

-1 « -1
H (é’gq — é’;qa)l_HOb(QO(Cpq)) — ﬂll)q_FTOb(zaQ(Cpq)) X

0<a<pq
Y(a)ER, (a/q)=1

1-Frob(2,Q(vp,v4)) -
prq .

Since 4 € Q(v/p,Vq), we have ,B;q_Fmb@’Q(CPq))_l =8

Now we have all information about units needed to prove the theorem.
®



4. Proof of the theorem

Having all the necessary information about the units from the previous section
we could prove the theorem stated in the beginning of this paper. As we have
already mentioned, the statement of the theorem in the case when all primes p, q,r
are odd (and congruent to 1 modulo 4), is proved in [1]. Now we should consider
the case when exactly one of primes p, ¢, is equal to 2 and the others are congruent
to 1 modulo 4.

However, this proof is rather technical and could be carried out in the very
similar way as in the paper [1]. Instead, we present main ideas of the proof hoping
that an interested reader can fill details using that paper.

First, we state the main result of [2], which will be useful in a further discussion.

Proposition 8. Let p and q be different primes such that p = 1 (m
either g =2 or ¢ =1 (mod 4). Let h be the class number of Q (1/p,/q).
1. If (p/q) = —1, then h is odd.

2. If (p/q) = 1, then h is even if and only if x4(p) = xp(q)-

4) and

As we have already mentioned at the end of the second section, now we shall
discuss whether there exists a unit

n = legregecy Bape B By B | £ 1,

which is a square in E. We have also proved that in order to be n a square in F,
at least one of zp, Tpr, Tqr, and zpe should be nonzero, and there should also
exist a function g : {0p,04,0.} = Q(v/p, V4, V) satisfying n'=7 = g(o)? for any
o € {op,04,0+}, and conditions (1), (2) of Proposition 3.

For this discussion it is necessary to distinguish the following four cases:

e (p/a) = (p/r) =(q/r) =

e (p/a)=(p/7) =1, (Q/T) =-1
e (p/g) =1, (p/r)=(qg/r) = -1
e (p/g) = (p/r) =(g/r) = -1

In the first case we have by Proposition 7 Bpar” = Badr @ = Brtor = 1. Therefore
we can put 7 = |Bpgr|, satisfying conditions of Proposition 3. Hence |Bpq| is the
required square in E and the class number of the field Q(y/p,/g,+/7) is an even
number. Moreover, this special form of the unit n implies the remaining assertion
of the theorem in this case. For the details see [1].

In the second case, (p/q) = (p/r) = 1, (¢/r) = —1, there is always a unit of
the required type, which is a square in E. If x,(q) = xq(p) or xp(r) = xr(p), then
it is easy to see by Proposition 8 that the required unit n exists already in the
corresponding biquadratic subfield of Q(+/p,/q, /7). Otherwise, it can be easily
shown using Proposition 3 that 1 = |e7e7 e} Bpq BprBper|, where (—=1)% = x,(q)xp(7),
is a square in E. Therefore the class number A is even in this case too.

Let us now consider the third case, (p/q) =1, (p/r) = (g¢/r) = —1. Let us first

10



suppose that z,4 = 0. Then we have by Propositions 4 and 5

wr = (e (B ) (el e 8s)
Nt = (—e7)% - (qu . Xp(q))zpq : (a(“ Qe ZT)%

1-o 2\z 152 \*" 12 )\
' = (—ed)r - (alp,r)e, B2) - (alar) e )

If we assume that 7 is a square in E, then also ' ~7#,7' =%« and n'~°r should be
squares in E. From this assumption we easily get zp,, = z4 = z, = 0, hence
n € Q(v/p,V4)- If we suppose that z,,, = 1, then we have

— “ra . i ar
n' = = (=) (B2 @) - (i) e 8% )T (alar) 6By B ),

which should be a square in E. But neither &, nor e,e, ! is a square by Propo-
sition 1, hence n'~°» cannot be a square in E in the case Tpgr = 1.

We have proved that 7 is a square in Q(+/p,/q,v/r) exactly when it is a
square in Q(\/z_), \/E), which means that the parity of the class number of the
field Q(v/p,Vv/q, /) is the same as the parity of the class number of the field

The last case (p/q) = (p/r) = (¢/r) = —1 is the most difficult one. Using
Propositions 4 and 7 we have Bpg’ = —a(r, q) - o, r)eg eyt - Bpgr, and

1-0 2\ —152 )77 —142 7"
n ? :(_Ep) P (a(qap) Eq pq) (Oé('f',p) Er pr)

L Tpgr
X (_a(r7 q) - a(g,r) &q IET t ﬂf’qr) )

The formulas for =« and 7'~ we get by the symmetry.

If we suppose 2,4 = 0, we can easily show using Proposition 1 that z,q = zpr =
0, and z, = 0, hence (again using symmetrical identities) € Q.

Hence 2,4 = 1. One can easily deduce (again using Proposition 1) that 2,4 =
Zpr = Zgr = 1. Using Proposition 6 we get

n' 7 = (=1) - (=e2)" - xq(pr) - Xr(Pq) - €7 7€ > Boy BorBogr

and symmetrical formulas for 7'~ and n'=7~. Now, let s, = x»(pg) - xq(pr),
sq = xr(PQ) - xp(gr), and s, = xq.(pr) - xp(gr) (it follows that the possible values

of sp, 54, and s, are 1, and that s,s,s, = 1). From the formulas for !~ nl=7,
and '~ we see that necessary conditions for n being a square in E are

(_l)zp = —$p, (_l)zq = —Sq, and (—1)$” = —S;.

Now, it is useful to distinguish two cases: either s, = s, = s, = 1, or exactly
one of sp, 54, s, is equal to 1, and the others are equal to —1.

11



Let us first consider the case s, = s = s, = 1. Then we have from the conditions
above z, = x4, = z, = 1, which means that only possible form of 7, such that n can
be a square in FE is

N = |€pqerBpqa BprBarBpar|-

Now it is not very hard to show that a function g : {0}, 04,0.} = Q(V/p, Vg, VT7)
satisfying conditions of Proposition 3 exists if and only if x,(gr) = xq.r) =
xr(pg) = —1.

In the case when exactly one of sp,sq,s, is equal to 1, we can assume by the
symmetry that s, =1, and s, = s, = —1. Again using the above formulas we have
zp =1, zy =2, =0, thus

N = |€pBpaBpr Bar Bpgr|-

It is easy to see that up to signs there is only one possible definition of function
9 {0,000} = Q(Vp, v/, V), such that 71~ = g(0)? for any 7 € {0, 07,00},
Verifying condition (1) of Proposition 3 we get a(r,p) = —a(r,q), and a(q,p) =
—a(g,r), which is by Proposition 6 equivalent to x,(pg) = 1, and x4(pr) = 1. The
condition (2) yields after some calculations condition a(p,q) = a(p,r), which is
equivalent to x,(gr) = —1. We can conclude that the unit 1§ = |ep8pqBprBer Bpgr| is
asquare in E (in the case sp = 1, s, = s, = —1) if and only if x,(pg) = x4(pr) =1,
and x,(¢r) = —1.

As the remaining cases of s;,s,,s, can be carried out symmetrically, we have
proved the assertion of the theorem in the last case (p/q) = (p/r) = (¢/r) = —1.
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