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1. Introduction

In the paper [1] R. Kuéera determines the parity of the class number of any biquadratic field
Q (\/]3, \/q_), where p and ¢ are different primes, p = ¢ = 1 (mod 4). In this paper we extend methods
used in [1] to compute the parity of the class number of the field Q (\/g_), V4 \/F), where p,q and r are

different primes, all congruent to 1 modulo 4.
We now state our result precisely.

Theorem. Let p,q and r be different primes such that p,q,r = 1 (mod 4). Let h denote the class

number of Q (/B /7, /7).

1. 1If (21) = (8) = (%) = —1, fiX upq, up,, uy € 7 satisfying u?, = pq (mod r), w2, = pr (mod q),
ugr = gr (mod p). Then h is even if and only if (urﬂ) (uqﬁ) (%) = —1.

2. If (g—’) =1, (";—7) = (g) = —1, then the parity of h is the same as the parity of the class number of the

r

biquadratic field ) (\/1_7, \/5)
3. If (g) = (%) =1, (2) = —1, then h is even.

4, If (él) = () = (%) = 1, then h is even. (Moreover, if we denote by vyq, Upr, Vgr, Upgr the highest

r T

exponents of 2 dividing the class number of (\/_, \/6), Q (\/_, \/F), Q (\/ﬁ, \/F), Q (\/_, NGE \/F),

respectively, then vpg, > 1+ vpg + Vpr + Vgr J)

The author was financially supported by the Grant Agency of the Czech Republic, grant “Algebraic
and Analytic Methods in Number Theory”, No. 201/97/0433
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2. Cyclotomic units

From here on fix three different primes p, ¢ and r, all congruent to 1 modulo 4. Let E be the group
of units in QQ (\/1_), Va1, \/F) Let us denote ¢, = 2™/ for any positive integer n, and &, = C,(-Ll+n)/2 for
any positive odd integer n. By Frob(/, K') we mean the Frobenius automorphism of prime ! on a field
K. For any prime [ congruent to 1 modulo 4 let b;,¢; be such integers that I — 1 = 2% ¢;, where 2 1 ¢,
and b; > 2. For this prime [ fix a Dirichlet character modulo I of order 2% and denote it by ;. Let
R = {p{ | 0<si< 'Zbl_Z}, and R} = (o» Ry, where py = ghmici/(1=1) (= Cop—1) is a primitive 22~ 1th root
of unity. Then #R; = #R; = (I — 1)/(4¢;) (where #S denotes the number of elements of the set S).
Further, let x; be a fixed Dirichlet character modulo [ of order 4. Note that for any integer a satisfying
(%) =1 the value y;(a) does not depend on the choice of the character y;.

Let J = {l € Z |l is a positive prime congruent to 1 modulo 4}. For any finite subset S of J let (by
convention, an empty product is 1)

ns =1, ¢s =€, Q°=Q((s), Ks=Q ({\/7” € 5}) :
les
By o0y, where [ € S, we denote the automorphism determined by Gal (Ks/Kg\(3) = {1,01}. Let us

further define
1 if S =0,

Ens = ﬁN@S/KS(l —(s) ifS={l},

Ngs/ks(1 = s) if #5 > 1.
It is easy to see that €, are units in Kg. Let C' be the group generated by —1 and by all conjugates
of e, where S C {p,q,r}. Theorem 1 of [2] states that {—1,e,,eq,&r,Epq, Eprs Eqr; Epgr} 18 a basis of C,
and that [E : C| = 2* - h, where h is the class number of the field Q (\/ﬁ, V4, V).

In [1]it is proved that €54, €pr, €4r are squares in Q (\/_, V4, \/17), L.e. there are such units Byq, Bpr, Bgr
in Q (\/}_), NE \/1_“) that g,, = ﬂgq;‘;pr = ﬂ;r, and €4, = [)’5,. The unit 3,4 is defined by the relation
Bog = HaeM,,q (&pg — &pg")y Where My = {a € Z |0 < a < pg, (%) =1,4,(a) € R,}, and the units G, fgr
are defined analogously.

In this paragraph we show that ¢, is also a square in (\/g_), V1, \/7_“) Let us define M = { a€Z |
0 < a< pgr, (%) = (%) =1,¢(a) € R}, where ¢y = 9, and R = R,,. For any a € 7 satisfying 0 < a < pgr

and (%) = (9) = (5) — 1 we have either a € M or pqr — a € M. Therefore

q r
Epgr = H (1_ ;qr): H(l_ ;qr)(l_clzl(:) -
0<a<pgr aeM

B=(5)=()=1
= [Ta=-ga—gan = T G — G )& — &)

aeM aeEM

Since 2 | #M, we can write gpgr = ﬁsqr, where

ﬂpqr - H ( ;qr - gp_q(:')

aeM
Now we have to show that 8, € O (\/1_), Va1 \/7_“) For, let ¢ be an element of the Galois group

Gal (Q (Cpgr) /Q (/P,/7,\/7)). Then there is an integer k such that o((pgr) = C;fq,. We have (%) =

& = (&) =1, and p

BE = H ( g(llvr — ;q?k) = Bogr - (_1)#{a€M|¢(ak)¢R},
aeM

and since for any d € M the number of elements a of the set M, such that ¢(a) — ¥(d), is equal to
c¢(q — 1)(r — 1)/4, which is an even integer, we have 37, = Bpqr, i.6. Bpgr € Q (VP /T, VT).

Thus we have a subgroup of E generated by {—1,ep,¢q,¢r, Bpqg, Bpr, Pgrs Ppgr } of index h, which
implies that A is even if and only if there are xp, x4, &, pq, Tpr, Zgr, Tpgr € {0, 1}, such that

1= legregier Bprt Bk Bt Bk 71

is a square in E.

In this paragraph we show that such 5 can exist only if at least one of xpq, xpr, 2gr, Tpgr is nonzero.
We will use the next statement taken from [2]:
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Lemma 2.1. In the notation of the beginning of this section let S C J finite and [ € S. Then

-1 if S ={l},
1—Frob(l, K .
NKS/KS\{I}(E"”S) = (é) “Cg o) if S={l,k},1+#F,

1—Frob({,K ¢ .
ns\{zo} ( q\{1}) if #S > 2.

Remark. This lemma implies that
(i5p)1+op = (iEq)Haq = (£e,)' 77 = —1,
hence none of +¢,,+¢,, L&, could be a square in Q (\/ﬁ, NE \/7_“) Since

(teqer)tTo0 = —¢2

T

(£epeq) 77 = —¢5

q’ (xeper)'or = —2

T

none of +¢,¢,, k6,6, 2ege, could be asquare, and finally nor ¢,¢4¢, could be asquare in Q (\/ﬁ, V4 \/17),
because

(£epeqer)! TP = —e2el.

2
q
3. Preliminaries

Using previous notation let G = Gal(Ks/Q). We say that a function f : G — Kg is a crossed
homomorphism if for all o, 7 € G,

flor) = f(o) f(1)7.
Let us further denote by Es the group of units of the field Kg. The following proposition is taken from
[2].

Proposition 3.1. Let ¢ € Eg be such that there is a crossed homomorphism f : G — Kg satisfying
e1=% = f(o)? for any o € G. Then ¢ or —¢ is a square in Kg.

On the other hand, it is easy to see that if &¢ = +n? for suitable n € Kg, then there is a crossed
homomorphism f : G — K satisfying ¢17% = f(o)? (put f(o) = n'=9).

We now want to formulate a weaker condition, which will be useful in testing whether given n € Eg
is a square in Fg. The following proposition is our first step. Let us notice that G = Gal (Kg/Q) can
be considered as a (multiplicative) vector space over Fy with basis {o; |l € S}.

Proposition 3.2. Let a function g : {0y |l € S} — Ks satisfies the following conditions:

vies: g(a)t =1 (1)
Vpi,p2€ St g(op,) == g(op,) (2)

For any positive integer t let Sy = {k € S|k < t}. Let us define a function f : G — K& by

Tk

[1
(I o) = Mateems

SEV SEV

where V' is any subset of S. Then f is a crossed homomorphism.
Remarks.

1) flioi1iesy = 9-
2) Tt is easy to see that if such g satisfying (1), (2), exists, then these conditions are also satisfied by
any function gy, such that g;(o)/g(cs) € {—1,1} for each s € S.

We postpone the proof of Proposition 3.2 until we prove some auxiliary lemmas.



Preliminaries 4

Lemma 3.1. If the conditions in Proposition 3.2 hold for g, and f is defined in the same way as In
Proposition 3.2, then for any automorphism v € GG and primel € S

f(T)l—ol _ f(O'l)l_T-
Proof. Let 7' C S be such that 7 =[], 0. Then

(1—01) H o
f(T)l—oz _ H f(O't) s€TNS,

teT

Now from the condition (2)

(1=o) [[ o Y (a-e0 T )
f(T)l_"‘ _ H flor) €TSS — f(oy)'€T seTNS, _ f(O'l)l_T.

teT
|

Lemma 3.2. If the conditions in Proposition 3.2 hold for g, and f is defined in the same way as in
Proposition 3.2, then for any automorphism v € GG and primel € S

flor) = fla) f()*.

Proof. Let T'C S be such that 7 = HteT 0. Further, let p = HteTnS; Or aw = HteT\(Slu{l}) o;. From
the definition of f we have

P

Flpows) = F@) F@ ) Fwy™ — F ) - (Fonfe) =) .
Lemma 3.1 implies that
Fporw) = fpe) - (Flo0) fe)*™")" = Fp)f(on).
If 1 ¢ T then 7 = pw, and using Lemma 3.1 we get
Flor) = f() (o) = F(0) (@) f(r)" ™" = Flo) f(r)"".

Let us consider the second case [ € T, i.e. 7= poyw. Then f(r) = f(ro1)f(oy)"°". From the condition
(1) follows that f(oy)~%" = f(o1), hence

Flor) = F(r)f(o0) 777 = F(r)f(o)" = F(r)f(o) f(1)7 1 = Flo) f(r)™

with one more application of Lemma 3.1 O

We are now ready to prove Proposition 3.2.
Proof of Proposition 3.2. Let 0,7 € G, and let V C S be determined by o = []
V = 0 is trivial. Let us suppose that V # (§, and that for every T' ; V holds

A(Te)) - (TTe) s

\{m} @s- Then o = o,,w, and from the definition of f we have flo) =

sev Os- The case

s

Let m = minV,w = [[,cv
f(0m)f(w)?™. Lemma 3.2 now yields

flor) = fomwr) = f(om) flwr)"™,
and the induction hypothesis for V' \ {m} gives

For) = Flom) (F@)f(r)*)7 = F@)f(r)“7 = f(o) (7).

Proposition follows. O
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We shall now combine Propositions 3.1 and 3.2 into one criterion which will be often useful in the
next section.

Proposition 3.3. If there exists a function g : {o; |l € S} — K, which satisfies ¢' =" = g(0y)? for any
!l € S and conditions

Vies: glo)ttor=1 (1)
Vp1,p2 €5 : (apl)l Tpy — g(ap2)1_0P1 (2)

then is ¢ or —¢ the square in Kg.

Proof. We must only prove that the crossed homomorphism f induced by the function g satisfies
e!=7 = f(0)? for any o € G.

For, let ¢ € G be any automorphism, and let us write it as o = [],cp ¢, where 7' C S'is determined
by o. We prove our assertion by induction on #7'. The case T' = 0 is trivial. In the case #7T = 1 we
use the assumption and the remark after Proposition 3.2. Otherwise, let P and @ be proper subsets of
T such that PONR =0 and o = [[;cp oy - [lepon. Let 7 =[l;cpoj aw = [Iiegor. Then o = 7w,
and the induction hypothesis gives e'=7 = f(7)? a ¢! =% = f(w)?. Hence

61—0 :El—rw 61 ‘r( ) _f(T) ( ( ) )T :f(Tw)2-

The proposition is proved. O

We want to apply this proposition to the case S = {p, q, 7}, i.e. to the octic field Kg = Q (\/—, NGE \/F)
In this case the Galois group G = Gal (Ks/Q) is generated by the automorphisms o, 04, 0, so we have
to compute how act these automorphisms on arbitrary unit 5 from the subgroup of E generated by

{_1;EpaEqagraﬂpqaﬂphﬂqhﬁqu} )
In [1] it is proved that if (Z) =1 then fpq Foa (E)J where v € Z is such that v? = ¢ (mod p). This
fact we formulate in the following proposition using the notation introduced in the previous section.

Proposition 3.4. If p,q are primes congruent to 1 modulo 4, and (21) =1, then

ﬂ;;aq = Xp(9)-

In this paragraph we prove a similar formula for ﬂp—m‘] in the case (2—’) = —1. To the end of this
section let us assume that ¢ = 4,, R = Rp,, and R' = p. Then

1+o, a _ ¢—ay _ ¢s _ s-a

P; B H (g;vq qu )= 5pq H (1 Cpq ),
0<a<pg 0<a<pg
dta,y(a)ER ata,y(a)ER

where s = > a with a running through the same set of integers as in the previous products. It is easy
to see that ¢ | s, and that s = (¢ — 1)), a (mod p), where the last sum is taken over all integers a
satisfying 0 < a < p, ¥(a) € R. Thus we have (in all following products a runs over the same set as in
the last sum)

ﬂ1+0q B (H g;)l—F‘rob(%@(C}’))_l H(l _Cp—a)l—FI‘Ob(%@(Cp))_l :

a

_ H {_:a . 1 Frob(g,Q(¢s)) ™" ]._.[(51(71 _E )H(&aq _6 GQ) 1’

a

where ¢’ € 7 is an inverse of ¢ modulo p. Now multiply both sides of this equation by

II -9

0<a<p
()=
P(a)g R’
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and an easy calculation yields (in all following products we assume also 0 < a < p)

i I @ -7 11 @ -6 -

()1 w(oen
Y(a)¢ R’
= I @-¢ II -9 =
vimen (3)=-1
P(a)¢ R’
- I G- [TE - -
Y(a)ERUR' (%):1
7—Zaa. —a _ ¢ay-—1 _oray
— 5P H (51, Ep) H (1 Cp) -
Y(a)E RUR! (%):1
= II & =&y -voe,
Y(a)ERUR!

where a in the sum is running over all quadratic residues modulo p satisfying 0 < a < p. Now, we define
a(l,s) = (_1)#{ 0<a<l|¢z(a5)€Ru¢z(G)€Rf} ) (_1)#{ 0<GS1_TII¢1(G)€RIUR§} for any prime [ = 1 (mod 4)
and any integer s, which is nonresidue modulo [.

Remark. Although we have defined a(l,s) by means of some fixed character i, from the following
proposition it is clear that o does not depend on the choice of this character.

If we recall that v/ = Hgl;ll)/z(éjl_a — &) for any prime [ congruent to 1 modulo 4, we can finish
our calculations.

itoe g, (—1y#locesrlvener p@er' } | ya{ocacit pagnun'} _
=&, -a(p, q).

We have proved the following proposition.

Proposition 3.5. If p,q are primes congruent to 1 modulo 4, and (él) — —1, then
Brg 7" = alp,q) p.
Proposition 3.6. If m,n are quadratic nonresidues modulo p, then

alp,m) - a(p,n) = —xp(mn).

Proof. Let us denote #{0 < a < p|¢(am) € R, ¥(a) € R'} by 7,(p,m) (it is the exponent of one of
the factors in a(p, m)). Let b, ¢ be such integers that p — 1 = 2%, where ¢ is odd, and b > 2. Let g be a
primitive root modulo p satisfying 1/(g) = (s». Then m = ¢g* (mod p), where 0 < k < p — 1. Write k in
the form k = kq - 2° + ks, where 0 <ks < 2% and ks is an odd integer. Now

Tw(P,m)#{0<a<p‘¢(am)eR, 'x/)(a)eR’}

k 1
*#{‘E26+y‘0<$<Cs0<y<26_1a2+ya<y; ><_}*

_ b1 y+ ko 1
C'#{y‘0<y<2 ;ny;<2—b><§ :
Let us first consider the case 0 < ko < 2°~1. Then the conditions on y are equivalent to 0 < (y —1)/2 <

2072 — (ko + 1)/2, where y is odd. Hence ry(p,m) = ¢+ (2°72 — (ko + 1)/2). If 271 < ko < 2°, then
the above conditions are equivalent to 2°=2 > (y — 1)/2 > 2! — (ks + 1)/2, where again y is odd. We
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obtain 7y (p,m) =c- ((k2 +1)/2 — 2°=2). Thus in both cases we have (note that the result still depends
on the choice of )

(1) M) =1 = { ks =1 (mod 4) if8t(p—1)

ko =3 (mod 4) if8|(p—1)
If we now put xy = wzb_z, then x is a Dirichlet character modulo p of order 4. We can reformulate the

previous statement as (—1)7v@™) = (=1)(P=1)/% . jy(m). From this equation and from the fact that
(_1)#{ 0<ag 25t | y(a)¢ RUR } (

the second factor in a(p, m)) does not depend on m we have

a(p,m) - a(p,n) = (=17 - ix(m)) (=1)"F - ix(n)) = —x(mn).

Since mn is a quadratic residue modulo p, we have x(mn) = x,(mn), and the proposition is proved. O

Proposition 3.7. If p,q,r are primes congruent to 1 modulo 4, then

flioe _ ﬂ;,« Frob(q,Q(y/F.\/T))

pqr
Proof.
1404 a _ ¢F—ay __ ¢s _
ﬁpqr o H ( pPqr 51"17) - Spgr H (1 Cpqr)
0<a<pqr 0<a<pqr
P(a)eR P(a)eR
q+a7 (%):1 q}fa7 (%):1

where s = >, a with @ running through the same set as in the previous products. It is easy to see that
q|s,r|s, and that s = (¢ — 1) >, a (mod pr), where the last sum is taken over integers a satisfying
0 < a<pr ¢(a) €R, (%) = 1. Hence (in all following products runs a through the same set as in the
previous sum)

~Frob(q,Q(¢pr)) ™" -1
o= (M) ™ TI0 - groytoreranenr™ -

a

- H 13 g~0a)1-Trob(.0(Gor)) ™ — gL-Frob(a, 0™

Since B, € Q (/p, V/7), we have ﬁ;r_ﬁc’b(q’@(c”))_l = [;’;,,_Fmb(q’@(\/ﬁﬁ)), and the proposition is proved.
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4. Proof of the theorem

In this section we prove the theorem stated in the introduction. First, we state the main result from
[1], which will be useful in our considerations.

Proposition 4.1. Let p and q be different primes such that p = ¢ = 1 (mod 4). Let h be the class

number of Q) (\/_, \/6)
1. If (‘;—’) = —1, then h is odd.

2. If (%) =1, then h is even, if and only if x4(p) = xp(q).

Remark. 1In [1] it is shown that if (21) = —1, then in the group of units of the biquadratic field
Q (\/_, \/q_) does not exist any unit of the form |e,7e5?Bpd?| £ 1, where xp, 24, 2pq € {0,1}, which is a
square of another unit (here ﬁgq = &pq). In the case (21) = 1 it is proved that such unit exists if and
only if x4(p) = xp(¢), and that this unit is equal to [3,4], if x4(p) = Xxp(q) = 1, and to |epeqfpql, if
Xq(P) = Xp(9) = —1.
Consider now a unit n = |e5"cq e Bpa Bor” B Bpai™| # 1, where zp, g, Tr, Tpg, Tpr, Tgr, Tpgr €
0,1}. We have proved earlier that, in order to n be a square in F, at least one of z,,,, 2, ., £,4» should
) p 3 n q ) Pgrprytgrs pg
be nonzero, and there should exist a function g : {¢,,04,0,} - Q (\/1_7; V1, \/F) satisfying n' =7 = g(0)?
for any o € {0, 04, 0,} and conditions (1), (2).
Let us now consider four cases separately:

SORICRCES
B @@
ORI CEINCE

n
—~
)
SN—
I
N
S
S—r
I
N
S -
SN—
I
—_

At first, let us suppose that (g) =B =@ =1

T
By Proposition 3.7 we have [)’;&tf”’ = ;qtoq = ﬁ;;;"r = 1. Let g(op) = g(oq) = g(or) = Bpgr. Tt is
now easy to see that the conditions of Proposition 3.3 are satisfied, therefore n = |34, | is the required
square in . We have proved that in this case the class number h of the field Q (\/—, Vi \/F) is an even
number. Moreover, if we denote by v, vp,, vgr the dyadic valuation of the class number of (\/1_), \/q_),

Q (\/_, \/F), Q (ﬁ, \/F), respectively, we show that 21 tveatvertver | b For different j k € {p,q,r} let
E;1 denote group of units of the biquadratic field Q (\/J_, \/E) If [Ejp o (=1,e5,en, Bijr)| = 2V7* -1,
where 2 {1, then it is easy to see that there exists a unit Aj; € E, for which [ Ejr : (—1,¢5,€x, Ajr) | =
[, where )\JQ-,:Jk = |ﬁjk6;j62k|, for suitable ¢j,cx € Z. Then [E : (=1,¢p,eq,r, Apg, Apry Agr, Bpgr) | =
h/(2vpatvertvar) Since we have proved that |B,qr| is a square in E, we have 21Tvratvertvar | p,

Consider now the case (él) = (%) =1, (2) = —1. An easy calculation yields
1- 2 2 e i VO Cage \TT
Ui r= (_Ep) P ( rq Xq(p)> ' ((X(T,p) & pr> ’ (Xq(r) ’ /qu pqr)
1 2 2 e 2 e e
n —0q — (_Eq)xq . (ﬂpq . Xp(q)) . <ﬂqr Xr(q)> . (ﬁpqr) rq
771_0r — (_Ez)zr ' < 57‘ ' Xq(r)) ' <a(p; 7') 6;1 ;r) ' <Xq(p) ' ﬂp_qz ;gr)

From these equations follows that a necessary condition in order to 5 be a square in E is xp, = 0. Let
g(op) =epr - Birs .ﬁq—rl Bpgr
g(o'q) — 5;4 . ;‘54 . ﬂgﬁr . ﬁpqr
g((;'r) — Efr . /Bg';zr . p_q1 . /qur
Conditions (1) and (2) yield after some calculations conditions
L= g(op) 77 = (1) xq(p)™ - B Xa(r) - Bge = (=1)77 - Xq(p)™ - Xq (1)
L= g(og) "7 = (=1)™ - xp(0)™*  xr ()™
L= g(o)" 7 = (1) xg(r)™ - B - Xa(P) - Brg = (= 1)" - Xg(1)** - Xq(p),
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and
Xp(2)77 - Xr(q) = Xq(P)™P - Xq(T)
Xr(2)"  xp(9) = xq(r)™" - Xq(p)

A necessary condition for i being a square in F is therefore

Xa(r) - xr(2) = Xq(P) - Xp(0)-

If xq(7) = xr(q) or xq(p) = Xp(q), the h is even already by the remark after Proposition 4.1. Otherwise
if x4(r) # xr(q) and x4(p) # xp(q), then by the conditions above zpy = x4 = 1, and also z, = 24 = =z,
where (—1)"» = xq(p)xq(r). With these settings are conditions (1),(2) satisfied, and 7 is therefore a
square in C, i.e. the class number A is in this case even.

Let us now suppose (f]—’) =1, (%) = (B) = —1. At first, let zpg, = 0. Then we have again by
Propositions 3.4 and 3.5

Tpg Tpr
' = (—e2)"r ( 2 -Xq(p)> ~ (a(r,p) e §>
Tpq Tqr
) ()
Tpy Tqr
g = (e (a<p, P! ) ~ (a<q,r) oot ) |

Here, n' =9 '~z and ' ~?" must be squares in E. From this condition follows that z,, = z4 = 2, = 0.
Thus we get n € Q (\/_, \/q_) In the case xpq, — 1 we have

nl—op — (—6}2,)% . (ﬂgq 'Xq(p)> : (Oz(r, p) Er_lﬁ;’%r) : (O‘(q’ 1") EQﬁq_TQ ngT)’

which cannot be a square in F (£e4¢; ! is not a square according to the remark after Lemma 2.1). Hence
we have proved that 5 is a square in Q (\/1_), VT \/F) if and only if it is a square in QQ (\/ﬁ, \/q_), which
implies that the parity of the class number h of the field Q (\/1_), NGB \/F) is the same as the parity of the
class number of the field Q (\/_, \/q_)

Let us now consider the last (most difficult) case (fl—’) = (g) = (1—’) = —1. Using Propositions 3.5 and

r r
-0 1 .=
3.7 we get Bpgr © = —a(r,q) - a(q,r) £ lg—t. gq,, and

(a2 (a<q,p) e;lﬁ§q> " (a<r,p) 6:1@?,-) " (—a<r, D) -alg,r)erler! -ﬂgq,)

The relations for ' =72 and '~ we get by the symmetry. At first, let us suppose that z,4 = 0. Again,
from the remark after Lemma 2.1 we get xp4 = xpr = 0, and x, = 0. By the symmetry we finally get
n € Q. Hence x,4 — 1. The same argument as above gives that z,, = z,, = 1, and symmetrically also
x4 — 1. Using Proposition 3.6 we have

0o = (1) (=) xapr) X (P0) - 257 By B B

Let s, = xr(Pq) - Xq(pT), 8¢ = xr (Pq) - xp(q7), 57 = xq(pr) - Xp(g7). It is clear that necessary conditions for
( being a square in E are (=1)"» = —s,, (=1)%1 = —s,, and (—1)"" = —s,, and that for s,, s, s, holds
true the identity s,s, = s,. From this follows that either s, = s, = s, = 1 or exactly one of s,,s,, s, is
equal to 1, and the others are equal to —1. Let us now consider these two cases separately.
Sp = 8q = Sr = 1

From the conditions above we get z, = x4 = @, = 1. 1t is easy to see that the unique possible
definition of the function g (up to the uninteresting sign) is

—1_.-1
Q(Up):é:p‘?q er BpqPpr Bpgr

1. -1
9(og) = €p €qfyp BpqBar Bpgr

g(ar) - Eglgglgrﬁprﬁqrﬂpqr
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Then we have

oop) 7 = ey et g e gl e

:(—1)~6;2672~( (¢,p)eq) (a(r,p)er) - (—a(r,q) e, - (g, 1) eq) = 5p = 1.

Symmetrically also g(c,)! T4 = g(,)'*7» = 1. The condition (1) from Proposition 3.3 is thus satisfied.

Further,
-1
9(op)' ™70 = (e) (ﬁ;; > (ﬁé&”?) =

- (_Eq_2) . (5;10‘(17; (J) 6;1) ! (_a(pa T)Q(T, p) 5515;1ﬂ§qr) -
=&y eg e Bpg  Xplar) - (rp) - By,
and by the symmetry
9(og)' ~7 = e %e e Br, - xqlpr) - a(rq) - Bl
Then the condition (2) yields that x,(¢7)-a(r, p) = Xq(pr) a(r,q). Since s, = 1, we have x,(qr) = x4(pr),
and this condition can be written as a(r,p) = a(r, q), i.e. by Proposition 3.6 Xr(pq) = -1
This calculation can be carried out symmetrically, and we get by the Proposition 3.3 that n =
lep€qer BpqBpr Bar Bpgr| 1s a square in F if and only if x,r(pq) = xq(pr) = xp(qr) = —1.

Exactly one of s, sq,s, is equal to 1
We can assume that s, = 1,s, =s, = —1. Then 2, = 1,2, = 0,2, = 0, and 5 = |e,Bpq Fpr Bgr Bpqr |-
Again, the unique possible definition of g is

g(op) = Ep q ﬂpqﬁprﬂpqr
9(og) = ¢, r_lﬂpqﬁqrﬁpqr
9(0r) = &5 €7 Bpr Bar Bpar

Note that in this case we have a symmetry between ¢ and 7. Let us first check the condition (1).
As in the above case we have g(0,)'t7» = s, = 1, and from the analogy with the above case we get
g(og) 17 = 54 g4 PRI By the symmetry we have also g(0,)'*t°r = 1. Let us now consider the
condition (2). As before, we have

-2 —2 —1

g(op)l 7= — & ﬂpq Xp(qr) - e(r,p) - ﬂzqra

and also .
. oo
(g(aq)EQ) "= 6}7 25(] 251* 1ﬂ3q ' Xq(pr) ’ CY(T, Q) ’ ﬁgqr'

From these equations we get g(c,,)! =% = g(o,)' =77 if and only if x, (q7)-a(r, p) = x4(pr)-a(r, ¢), which is
equivalent to a(r, p) = —a(r, q). We can write this condition using Proposition 3.6 as x,(pg) = 1. By the
symmetry we have a condition y,(pr) = 1. Now we determine the condition for g(cy)' =7 = g(o,)' 7.

We have .
(9(oq)eq) ~ " =&y e P 2By - Xa(pr) - a(p,q) - By
and

(g(ar)ar)l_aq - 5;1 _2 2ﬂqr XT(pQ) ( ,7“) ' ﬁ}%qr'

Since Eé_"’ —£,7%% = 1, we get the condition xq(pr) - a(p, ¢) = x(pq) - a(p, ). Further, since x,(pr) -
Xxr(pq) = sp = 1, we have a(p, ¢) = a(p,r), and this is by Proposition 3.6 equivalent to x,(¢7) = —1. By
the Proposition 3.3 we have that in this case of s,, s and s, the unit n = |6, 8pqBpr Bgr Bpqr| 1s a square
in £ if and only if xr(pg) = x¢(pr) = 1, and x,(qr) = —1.

Putting this case together with the former one and with its symmetrical analogies, we obtain the
assertion of the remaining part of the theorem.
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