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Abstract. Circular units emerge in many occasions in algebraic number theory as they have
tight connection (first discovered by E. Kummer) to the class group of the respective number
field.

For example, E. Kummer has shown that in the case of cyclotomic field with prime conductor
the index of the group of circular units in the full group of units is equal to the class number of
the maximal real subfield of that field. His result was later generalized so we are now able to
obtain information about class groups by the study of circular units.

In contrast to the case of cyclotomic field it is not clear how to define the group of circular

units of a general abelian number field K. In the literature there eventually turned up several
possible definitions of a group of circular units.

One of these definitions (which appeared in the Washington’s book Introduction to cyclotomic
fields – [7]) constructs the group of circular units to be as large as possible — it considers all
circular units of the respective cyclotomic superfield which are lying already in the field K.

This definition has some nice properties but also serious difficulties: generally we do not
know neither explicit generators of the group nor the index of the group in the full group of
units.

In this paper we present results about this index for some classes of abelian fields — namely
for composita of quadratic fields satisfying an additional condition — obtained by the study of
the relation between Washington group of circular units and the well-known Sinnott’s group of
circular units. Methods of this paper use and slightly extend approach appeared in [4].

1. Introduction

For the understanding of the arithmetic of any algebraic number field K it is necessary to be
able to work with its group of units E(K). Unfortunately it is not feasible to find a basis of the non-
torsion part of E(K) (so called fundamental units) in the general case. We are therefore trying
to approximate the group E(K) by an appropriate subgroup with a known set of independent
generators. In the case of abelian extension of rational numbers this role is usually played by
so-called circular units which are defined in the next section.

Throughout the whole paper we shall assume the field K to be an abelian field, i.e. a finite
Galois extension of Q with commutative Galois group. Often we will also work with cyclotomic
fields; by the nth cyclotomic field we understand the field Q(n) = Q(ζn), where ζn = e2πi/n is a
primitive nth root of unity.

2. Circular units in abelian fields

Let us first consider the case of a cyclotomic field K = Q(n). Although we do not know explicit
system of independent generators of E(Q(n)) we are able to construct a subgroup of E(Q(n)) of
sufficiently low finite index – namely the group of circular units C(Q(n)) formed by the units of
the form 1 − ζa

n:

C(Q(n)) = 〈1 − ζa
n; a ∈ Z, n - a〉 ∩ E(Q(n)).

A natural question arises — how to generalize this definition to the case of a general abelian
number field? Unfortunately there is no unique way of definition of circular units in this case
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(for the review and comparison of several possible definitions see [4]). Probably the best known
definition of circular units is the one due to Sinnott (see [6]):

CS(K) = 〈±NQ(r)/Q(r)∩K(1 − ζa
r ); 1 < r | n, (a, r) = 1〉 ∩ E(K).

Another possible definition appeared in the book [7]:

CW (K) = K ∩ C(Q(n)).

Trivially CS(K) ⊆ CW (K).
Let us now discuss the construction of the basis for the group of circular units and the index

in the full group of units. W. Sinnott has proved in [5] that

[E(Q(n)) : C(Q(n))] = 2c · h+
Q(n) ,

where h+
Q(n) is the class number of the maximal real subfield of Q(n) and c is given by an explicit

function of the number of primes ramified in Q(n). In [6], Sinnott has also stated the formula
for the index [E(K) : CS(K)] in the case of a general abelian field – in this case the formula
unfortunately contains a non-explicit factor which has been calculated only in some special cases
so far, e.g. when K is a compositum of quadratic fields (see [3, Proposition 1] and Proposition 2).
In the case of the alternative definition CW (K) we are not aware of any explicit formula for the
index.

Construction of a basis of the group of circular units is generally even more complicated than
the calculation of the index described above. The easiest case is that of cyclotomic field of a prime
power conductor, K = Q(n), where n = pl, p being a prime, l any positive integer. In this case, a
basis is the set

{

1 − ζa
n

1 − ζn
; 1 < a <

n

2
, (a, n) = 1

}

.

In the case of a general cyclotomic field the situation is much more complicated — similar bases
were found independently by R. Gold and J. Kim (see [1]) and by R. Kučera ([2]). As we shall
need this basis for our purpose later we present here the construction described in [2, Theorem
6.1]. In our description we limit ourselves to the case where the conductor of K is a product of
disctinct primes.

Proposition 1. Let n = p1 · p2 · · · pl be the conductor of K (p1 < p2 < · · · < pl being primes).
Further let X = {a ∈ Z; 0 < a < n} and M be the set defined by

M = X \
(

{

a ∈ X ; ∃i ∈ {1, . . . , l} : pi - a ∧ a

(a, n)
≡ −1 (mod pi)

}

∪
{

a ∈ X ; a | n ∧ 2 - #
{

i ∈ {1, . . . , l}; pi - a
}

}

∪
l
⋃

k=1

{

a ∈ X ; pk - a ∧
〈 a

(a, n) · pk

〉

>
1

2
∧ ∀i ∈ {k + 1, . . . , l} : a ≡ (a, n) (mod pi)

}

)

Then the set
{

1 − ζa
n; a ∈ M ∧ ∀i ∈ {1, . . . , l} :

n

pi
- a

}

∪
{

1 − ζ
api
n

pi

1 − ζpi

; a ∈ M ∧ n

pi
| a , i = 1, . . . , l

}

forms a system of independent generators of the non-torsion part of the group C(Q(n)).

Proof. See [2, Theorem 6.1]. �

3. Compositum of real quadratic fields

Now let K be a compositum of real quadratic fields, such that K = Q(
√

p; p ∈ J), where J is a
set of positive primes p ≡ 1 (mod 4) satisfying for any distinct p, q ∈ J the relation (p/q) = 1 (p
is a quadratic residue modulo q – and vice-versa).
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For any ∅ 6= T ⊆ J we now define nT =
∏

p∈T p, KT = Q(
√

p ; p ∈ T ), and QT = Q(ζT ), where

ζT = e2πi/nT . Further, for any p ∈ J let σp be a generator of Gal
(

QJ/QJ\{p}
)

.
In the case of a compositum of quadratic field we are able to calculate the required index:

Proposition 2. Let K = Q(
√

p; p ∈ J), where J is as above. Then

[E(K) : CS(K)] = 22#J−1 · hK ,

where hK is the class number of K.

Proof. See [3, Theorem 1], especially Remark following the proof of Theorem 1. Considering our

restrictions put on the field K we obtain the formula [E(K) : C] = 22#J−#J−1 · hK where the
group C considered in [3] is slightly enlarged group CS(K). From the discussions on pages 148–149
we finally obtain [C : CS(K)] = 2#J . �

From the previous section we know that the group CS(K) of circular units of K (in Sinnott’s
sense) is generated by −1 and all conjugates of ηT , ∅ 6= T ⊆ J , where

ηT =

{

NQT /KT
(1 − ζT )1−σp =

∏p−2
i=0 (1 − ζp)

(−σp)i

, if T = {p}
NQT /KT

(1 − ζT ), if #T > 1

For our calculations we shall need the following well-known norm relation:

Lemma 3. Let m and n be positive integers, m 6≡ 2 (mod 4), n 6≡ 2 (mod 4), and m | n. Then

NQ(n)/Q(m)(1 − ζn) = (1 − ζm)
Q

p(1−Frob(p)−1),

where p is running through prime factors of n not dividing m and Frob(p) is the Frobenius auto-
morphism of p on Q(m).

Corollary 4. For any nonempty set T ⊆ J and any prime p ∈ T

η
1+σp

T = 1.

Proof. If #T > 1 Lemma 3 gives

η
1+σp

T = NKT /KT\{p}
(NQT /KT

(1 − ζT )) = NQT /KT\{p}
(1 − ζT ) =

= NQT\{p}/KT\{p}
(NQT /QT\{p}(1 − ζT )) = NQT\{p}/KT\{p}

(1 − ζT\{p})
1−Frob(p)−1

= 1,

since the restriction of Frob(p) to KT\{p} is trivial as (p/q) = 1 for any q ∈ T \ {p}. The proof of
the assertion in the situation when #T = 1 is very similar. �

Proposition 5. If K = Q(
√

p; p ∈ J), where J is a set of positive primes p ≡ 1 (mod 4) such
that for any distinct p, q ∈ J we have (p/q) = 1, then

CS(K) = 〈−1, ηT ; ∅ 6= T ⊆ J〉.
Proof. We have to show that by omitting conjugates of ηT we do not lose anything. But for any
p ∈ T we have η

σp

T = η−1
T by the previous corollary. �

Lemma 6. For any nonempty set T ⊆ J the unit ηT is a square in the appropriate field KT .

Proof. For T = {p} we have

η{p} =

p−2
∏

i=0

(1 − ζp)
(−σp)i

=

(p−3)/2
∏

i=0

(

−ζ−1
p (1 − ζp)

2
)(−σp)i

= ε2
{p},

where ε{p} =

(p−3)/2
∏

i=0

(ζ(p−1)/2
p (1 − ζp))

(−σp)i

is clearly an element of Q{p}.
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For T = {p1, p2, . . . , pt} ⊆ J (where t ≥ 2, p1 = min T ) we have (index i in all subscripts
running over the set {1, . . . , t}).

ηT =
∏

1≤a≤nT

∀ i:(a/pi)=1

(

1 − ζa
T

)

=
∏

1≤a≤nT

∀ i:(a/pi)=1

〈 a
p1
〉< 1

2

(

1 − ζa
T

)(

1 − ζ−a
T

)

=
∏

1≤a≤nT

∀ i:(a/pi)=1

〈 a
p1
〉< 1

2

(

−ζ−a
T ·

(

1 − ζa
T

)2
)

= ε2
T

where again

εT =
∏

1≤a≤nT

∀ i:(a/pi)=1

〈 a
p1
〉< 1

2

ζ
nT −1

2 a

T

(

1 − ζa
T

)

is an element of QT (by 〈x〉 = x − [x] we denote the fractional part of a real number x).
It remains to show that for every nonempty T ⊆ J the unit εT is an element of KT . As

Gal
(

QT /KT

)

= 〈σ2
p; p ∈ T 〉 it is sufficient to prove that ε

σ2
p

T = εT for any p ∈ T . But from the

above corollary we obtain (ε2
T )1+σp = η

1+σp

T = 1, hence ε
σp

T = ±ε−1
T , and ε

σ2
p

T = εT . �

As the unit εT is clearly also circular in QT , we obtain that εT ∈ CW (KT ) ⊆ CW (K) for any
nonempty T ⊆ J . Let us now form a subgroup D of CW (K) generated by these εT ’s:

D = 〈−1, εT ; ∅ 6= T ⊆ J〉.

Our present goal is to show that D is in fact equal to CW (K) (i.e. we are going to prove the
inclusion CW (K) ⊆ D). As the conductor of K is nJ we have to consider a basis of the group
C(Q(nJ )). Due to the special form of the conductor nJ (it is a product of distinct primes) we can
describe this basis in a more compact form. In fact we shall describe only a subset of the basis in
the following as it is fully sufficient for our purposes.

Let as usually T be any nonempty subset of J . We have to distinguish two cases. If #T > 1
let us define

BT =

{

1 − ζa
T ; 1 ≤ a ≤ nT , (a, nT ) = 1,

〈

a

min T

〉

<
1

2
, ∀p ∈ T : a 6≡ ±1 (mod p)

}

and if T = {p}, let

B{p} =

{

1 − ζj
p

1 − ζp
; 2 ≤ j ≤ p − 1

2

}

From the description of the basis of C(Q(n)) in Proposition 1 it is easy to see that the union

⋃

∅6=T⊆J

BT

is a subset of the basis of C(Q(nJ )) and that the sets BT are clearly pairwise disjoint. We are
going to show (separately for the two mentioned cases) that for any nonempty T the element εT

is an element of QT generated by BT (modulo torsion).
Keeping the notation T = {p1, p2, . . . , pt} ⊆ J, t ≥ 2, p1 = min T , we have

η
σp1 ···σpt

T =
∏

1≤a≤nT

∀ i:(a/pi)=−1

(

1 − ζa
T

)

=
∏

1≤a≤nT

∀ i:(a/pi)=−1

〈 a
p1
〉< 1

2

(

−ζ−a
T

(

1 − ζa
T

)2
)
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Using Corollary 4 we obtain η
σp1 ···σpt

T = η
(−1)t

T . Combining these two formulas we obtain another
expression for εT , namely

εT = ±
∏

1≤a≤nT

∀ i:(a/pi)=−1

〈 a
p1
〉< 1

2

(

ζ
nT −1

2 a

T

(

1 − ζa
T

)

)(−1)t

.

From this expression it can be easily seen (as −1 is a quadratic residue modulo every p ∈ T ) that
εT is generated by BT modulo roots of unity.

Now, let T = {p}. We have

ε{p} =

(p−3)/2
∏

i=0

(ζ(p−1)/2
p (1 − ζp))

(−σp)i

= ξ ·
(p−3)/2
∏

i=0

(1 − ζp)
(σi

p−1)·(−1)i

for a suitable root of unity ξ. For a given i (0 ≤ i ≤ (p− 3)/2) let 1 ≤ j < p satisfies (1− ζp)
σi

p =

1 − ζj
p. For 2 ≤ j ≤ (p − 1)/2 the unit (1 − ζp)

σi
p−1 clearly belongs to B{p}. If j = 1, then

(1− ζp)
σi

p−1 = 1, and if j = p− 1, then (1− ζp)
σi

p−1 =
1−ζ−1

p

1−ζp
= −ζ−1

p , i.e. a root of unity. Finally,

for (p + 1)/2 ≤ j ≤ p − 2 we obtain

(1 − ζp)
σi

p−1 =
1 − ζj

p

1 − ζp
= −ζj

p · 1 − ζp−j
p

1 − ζp
.

Since 2 ≤ p − j ≤ (p − 1)/2, the last fraction belongs to B{p} and we have proved that ε{p} is
again generated by the elements of B{p} modulo roots of unity.

Lemma 7. [CW (K) : D] is finite.

Proof. From Proposition 5 and the definition of D we know that rankCS(K) = rankD. Moreover,
as CS(K) ⊆ CW (K) ⊆ E(K), and rankCS(K) = rankE(K) by Proposition 2 we obtain rankD =
rankCW (K).

�

Proposition 8. Let K = Q(
√

p; p ∈ J), where J is a set of positive primes p ≡ 1 (mod 4) such
that for any distinct p, q ∈ J we have (p/q) = 1. Then

CW (K) = 〈−1, εT ; ∅ 6= T ⊆ J〉.
Proof. Denote as above the set 〈−1, εT ; ∅ 6= T ⊆ J〉 by D. From the previous lemma we know
that there is a positive integer f such that for any w ∈ CW (K) we have wf ∈ D, i.e.

wf = ±
∏

∅6=T⊆J

εfT

T

for suitable fT ∈ Z. From the expression of w and εT in basis of C(Q(nJ )) we obtain (as the sets
BT are pairwise disjoint and each εT is a multiplicative combination of some elements of BT with
exponents ±1) that f | fT for any T , hence w ∈ D. �

Theorem. Let K = Q(
√

p; p ∈ J), where J is a set of positive primes p ≡ 1 (mod 4) such that
for any distinct p, q ∈ J we have (p/q) = 1.

Then the Washington group of circular units of K is of finite index in the full group of units
and

[E(K) : CW (K)] = hK ,

where hK is the class number of K.

Proof. From Proposition 2 we know that the Sinnott group CS(K) is of finite index in E(K) and
that in our case

[E(K) : CS(K)] = 22#J−1 · hK .
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As CW (K) = 〈−1, εT ; ∅ 6= T ⊆ J〉, CS(K) = 〈−1, ε2
T ; ∅ 6= T ⊆ J〉, and rankCW (K) =

rankCS(K) = 2#J − 1, we have

[CW (K) : CS(K)] = 22#J−1,

and therefore [E(K) : CW (K)] = hK . �
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