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ABSTRACT. In this paper we show that the class number of the field Q (\/;TJ, Va
VT, /S, \/f) is even for p,q,r,s,t being different primes either equal to 2 or
congruent to 1 modulo 4. This result is based on our previous results about
the parity of the class number in the case of the field Q (\/137 Vv, \/77)

1. Introduction

Here we formulate the main result of this paper:

THEOREM 1. Letp,q,r,s,t be different primes either equal to 2 or congruent to

1 modulo 4. Then the class number of the field Q (\/]3, VTS, \/f) is an even
number.

REMARK. In the following whenever we talk about primes without further
specification we will implicitly assume that p =2 or p =1 (mod 4).

1.1. Notation. In this section we introduce the notation we shall use through-
out this paper.

S ... a finite nonempty set of distinct positive primes not congruent to 3 modulo 4
ns = HleS l, ms = HleS myys where myoy = S,m{l} =1 for [ 75 2

(p/q) . .. Kronecker symbol

Xp (p an odd prime, resp. p = 2)... Dirichlet character of order 4 mod p (resp.
mod 16)

Ks=Q(ypip€S)

QS — Q(Cmg)v where Cn — e?m’/n’ fn _ em‘/n

07 ... unique automorphism for [ € S determined by Gal (KS/KS\{Z}) ={1,01}
Frob(l, K) ... the Frobenius automorphism of prime [ on a field K

Es ... the group of units in Kg

Cs ... the group generated by —1 and all conjugates of €,,,., where T'C S, and

1 if T =0,
‘C:VLT = %NQT/KT(l — CmT) lf T = {l},
Nor/wr(1=Cup)  if #T > 1
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1.2. The index of C. In the paper [4] Kucera proves the following result:
PROPOSITION 1. {1} U{ey,;0 #T C S} form a basis of Cs, moreover
[Es:Cs]=2""""hg,
where hg is the class number of Kg and s = #5S.

The index of Cg plays the key role in our considerations. In the papers [3], [1]
it has been proved that ,,, and €,4, are squares in Eg. We will need a similar
result for e,4rs5, and €pqrst but we can prove even more general statement. First,
we formulate one auxiliary definition:

DEFINITION. For any prime [ congruent to 1 modulo 4 let b;, ¢; be such integers
that [ — 1 = 2%¢;, where 2 ¢;, and b; > 2. For this prime [ fix a Dirichlet character
modulo [ of order 2%, and denote it by ;. Let

Ri={p] |0<j<2"?} and R) = (y - Ry
where p; = em™/(=1) (= (,;,_1) is a primitive 2% ~'th root of unity.

REMARK. It is easy to see that #R; = #R; = (I — 1) /4¢.

Now we can state and proof the promised result.

PROPOSITION 2. If #5 > 1 then €, is a square in Kg.

PRrROOF. Consider sets P, M; defined by
P={acZ|0<a<msg, (a/l)=1 forany | € S},

and
My=Pn{a€Z|0<a<ms, Pa) € R} forany odd I € S.
For any a € P and any odd [ € S we have either a € M; or mg —a € M;. Therefore

ens = [[(0—=¢h) = T] 0 =G =Gt

acP aeM,
= [T -0 -2 = ] €2 — &) (Ehy — &%)
a€M; a€eM;
Since 2 | #M;, we can write e, = (2, where
Bus = T s —&02)-
aeM;

Now we have to show that 3,, € Kg. We will distinguish two cases — either 2 ¢ S
or 2 € S: In the first case, let o be an element of the Galois group Gal (Q%/Kg).
Then there exists an integer k such that o((pm) = (% .. We have k € P, and

o = H (€% — €07 = B, - (—1)#{aEM [ Vi(al)ER )
acM;
and since for any d € M; the number of elements a of the set M;, such that
Yi(a) = ti(d), is equal to ¢ [];cq gy (t — 1)/2 which is an even integer, we have
ZS = ﬁns, i.e. ﬁns € Kg.
Let now 2 € S. First, write €, in a slightly modified way:
Ens = H(l - ’I?’Ls) :é—%sa. H( ’;7,2‘ - gns)

a€P acP
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where the sum is taken over a € P. This sum is easily seen to be divisible by mg,
therefore

ams=%+ ] &A= J[ &4 -)n

0<a<2mg 0<a<2mg
a=+1 (16) a=1 (16)
vteS:(a/t)=1 vteS:(a/t)=1

Let us now define 7,4 by

'Vns = H ( 777,2 - ’gls)'
0<a<2mg
a=1 (16)
vteS:(a/t)=1

Then ey = +77,. We prove 5 € Kg. Let us take any 7 € Gal (Q (ms) /Ks).
Then there is ¢ € Z satisfying (t/l) = 1 for each I € S such that &, =&, .. So
t =41 (mod 8). We will show that 7], = v,4. This fact is easy to see in the case
t=1 (mod 16). If t =9 (mod 16), then t’ = ¢t + mg =1 (mod 16), f,;s =&
and

B l_ o
Tre = [Jen2 —gat) = (~DHesv VT2 — €)= s
a

a

In the remaining case t = —1 (mod 8) let ' = —t. Then ¢’ = 1 (mod 8) and
the same equation as above yields again 7). = 7y, therefore indeed v,y € Ks.
Moreover, as €, is a positive real number (it is a norm from an imaginary abelian
field to a real one), we have e, = +772_.

Finally, we have also e, = 32_, therefore 3, = +7,, which yields 3, € Kg

ns?

too. O

For later reference we state the definition of 5 once again:

DEFINITION. For any T'C S, #T > 1 we define

Bz = [ (€ = &n2),

a€eM,;

where M, is defined as in the beginning of the proof of Proposition 2.

REMARK. Although (3, is defined in the way depending on the choice of [ € T'
and on the particular selection of the character 1); it is easy to see that these choices
can influence only the sign of §,,,.. As we are not interested in this sign we do not
specify the choice of | and ; precisely.

Putting last result together with Proposition 1 we obtain the following asser-
tion:

PROPOSITION 3. Let
Co={-1yU{er; TC S, #T =1} U{Br; T C S, #T > 1}).

Then
[ES : C{g] = hS.

As an easy consequence of this proposition we get the following

COROLLARY. hg is even if and only if C5 N (E2\ CZ) #0.
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Thus there is a square in Q which is not a square in Cj% if and only if the
class number hg of Kg is even. The conditions of existence of such a unit were
succesfully found for the fields Kg, where the set S has up to 3 elements. The
results are quoted below.

In the theorems of [1] and [2] it has been shown that whenever there are primes
p,q,r where at least 2 of the Kronecker symbols (p/q), (p/7), (¢/r) are equal to 1
then the class number of the field Q (\/;B, NGE \/77) is even. As we will use this result
later together with the main result (concerning the biquadratic case) of the paper
[3] it is useful to formulate them here:

THEOREM 2. Let p and q be different primes such that p = 1 (mod 4) and
either g =2 or ¢ =1 (mod 4). Let h be the class number of Q (\/ﬁ, \/a)

(1) If (p/q) = —1, then h is odd.
(2) If (p/q) =1, then h is even if and only if xq(p) = xp(q)-

THEOREM 3. Let p,q and r be different primes either congruent to 1 modulo 4
or equal to 2. Let h denote the class number of Q (\/137 Va ﬁ)

(1) If (p/q) = (p/r) = (¢/r) = —1, then h is even if and only if xp(qr) -
Xq(pr) - xr(pg) = —1.

(2) If (p/q) =1, (p/r) = (q/r) = —1, then the parity of h is the same as the
parity of the class number of the biquadratic field Q (\/f), \/ﬁ)

(3) If (p/q) = (q/r) =1, (p/r) = —1, then h is even.

4) If (p/q) = (p/r) = (¢/r) =1, then h is even. (Moreover, if we denote by
Upg, Vpr; Vgr, Upgr the highest exponents of 2 dividing the class number of
S P, QB vP): QG VP QB v V), respectivly, then

Vpgr = 1+ Upg + Vpr + Vgr.

2. Possible cases

First, let us state an easy consequence of class field theory (cf. e.g. Theorem
10.1 in [5]):

LEMMA 1. Let S, T be sets of primes as above, and S C T. If the class number
of Kg is even then also the class number of Kt is an even number.

From the previous lemma it follows that we can limit ourselves only to those
cases where the class number of any subfield K;, J C S is an odd number. The
following lemma easily follows from Theorem 3 and Lemma 1.

LEMMA 2. If the class number of the field Q (\/p,\/q, /T, /5, V1) is odd then
the following must be satisfied: There exist four distinct primes p1,p2, p3,ps from

the set {p,q,r,s,t} such that either
o for any distinct i,j € {1,2,3,4}, (pi/pj) = —1, or
e czactly one pair i, jo € {1,2,3,4} of distinct indices satisfies (p;/p;) = 1;
any other pair of indices i, j yields (p;/pj) = —1.

PROOF. Assume that for any four distinct primes pi,ps2,p3,ps from the set
{p,q,r,s,t} there are at least two pairs of indices yielding quadratic residues. It
can be easily seen that there must be three primes ¢1, g2, g3 from the set {p, ¢, r, s, t}
such that (¢1/g2) = (¢1/g3) = 1. By Theorem 3 it means that the class number of
the field Q (\/61, Vs \/ﬁd) is even and by Lemma 1 we get a contradiction. [
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According to Lemma 2 and thanks to the symmetry we can now investigate
the class number of Q (y/p, /g, /7, v/s) only in the following cases:

(1) all pairs are mutual non-residues.
(2) (p/q) =1, all the other pairs form quadratic non-residues

We will be able to prove that in both cases there is an additional square in
the subgroup C§ and therefore (thanks to Corollary following Proposition 3) the
class number of the field Q (\/;57 VT, \/5) and thus also the class number of the

original field is an even number.

2.1. Search for an additional square. In the following paragraphs we will
consider the two cases individually to prove that in each of them we can find a unit

of the form
n=T1=w - T o2

kes JCS
#T>2

which is a square in E. We will need the following Proposition 3.3 of [1] which
provides us with the necessary tools. Recall that the field Kg is abelian and that
its Galois group can be viewed as a (multiplicative) vector space over Fy with basis
{o/|l € S}.

PROPOSITION 4. If there exists a function g : {o;|1l € S} — K{, which satisfies
el=9 = g(07)? for any | € S and conditions

(1) vies: g(al)1+”l -1
) ¥p1.p2 €52 gl0)' "7 = (o)~
then € or —e is a square in Kg.

From this proposition it is evident that it will be necessary to know the action
of homomorphisms o; on the generators of Cg, and Cg. As this task was already
considered in [3] and [1], we will only cite those results here:

PROPOSITION 5. Let T'C S be arbitrary (nonempty), and l € T, then

(Ene) 70 = (1) e PR e T Ry £ R,
1—Frob(l,K .
Enpugy TV if #T > 2.

Let us now define an auxiliary function « using notation introduced in the
previous section. We define

ou(s) :(71)#{ 0<a<l|vi(as)ERr, $i(a)€R; }

(—1y#{o<estv2 1 @emuR] }

for any prime [ = 1 (mod 4) and any integer s, which is a nonresidue modulo .
We also define the function « in the case I = 2 and s =5 (mod 8) by the formula

an(s) = -1 ifs=5 (mod 16),
7] 1 if s=13 (mod 16).

We need the following statement for the calculations in the next section:
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LEMMA 3. If p is a prime such that either p =2 or p =1 (mod 4) and m,n
are integers satisfying m,n £ 3 (mod 8), (m/p) = (n/p) = —1, then

ap(m) - ap(n) = —xp(mn).
Proor. This is Proposition 6 of [2]. O
The next proposition is in fact a stronger variant of Proposition 5.
PROPOSITION 6. Let T C S be arbitrary, #T > 1, andl € T. Then

Xk (1) if T={k1},(k/l)=1
Batr = S aw(ber if T=Ak1},(k/l) =—1
1—Frob(l, K, .
U, ( T\{l}) Zf #T > 9.
We now

PROOF. For the proofs of the first two assertions see [3], and [2].
present a proof of the third case which is in fact an easy variation of the proof of

the same statement for the case #7 = 3 in [1].
Let ¢ € T, ¢ # 1 odd, and put ¢ = ¢4, R = R4. Then

gitrr= I @ -&9=¢. [ 0-¢29,

0<a<mr 0<a<mr
Y(a)ER, lfa Y(a)ER, lfa
Vi#£l:(a/t)=1 Vi#£l:(a/t)=1

where s = ) a with a running through the same set as in the previous products

It is easy to see that my;, | s, and that

s = p(myy) Z a (mod mq\ (),
O<(L<’mT\{L}
Y(a)ER,
Vt#£l:(a/t)=1

where ¢ is the usual Euler function.
Hence (a in the following products runs through the same set as in the previous

sum)

—1
—1

gLter = (Hgmma)lFmb(l’@(EmT\{z})) H(l — Gl

a

)17Frob(l,@(CmT\{l}))

- 1— Frob(l KT\{Z}) !

M emmina 1-Frob(10(mry 1))
= H - = Bz
since 5%\“) € Kp\(13- ([
Having the relations from the last section handy, we can try to find units

satisfying Proposition 4.
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2.2. All pairs non-residues. At first, we will calculate ﬂp,;f;".
_ _ _ _ 040,
ﬂ;l);rro;p ﬂ;rsaqgrgs = 6;7"50(1 : (6;7"3(”) : ( ;rsas) !

= a5 - (—ap(s)a ( ) S Zl>
(B - (—ag(s)as(g)ey e )™
(Bars - (—ag(r)a, Tl))wr

= ( qm)““””"“ .< ar<s>as< Jei'erh)
(ag(8)as(@)eqes )
(—ag(r)ar(g)eqer)
= =055 - Xr(48)Xs (rg)xq(rs)-

As we suppose that the class number of the field Q (,/g, v/, /s) is an odd number,
which is by the Theorem 3 equivalent to x4(rs)xr(¢s)xs(gr) = 1, then we finally
have

ﬂzln;? = ﬂqu
Now, if we put
glop) = ﬁpqrsﬁq_rlsgp
glog) = 5pqm/5};}sgq
9(01) = BpgrsBpgser
9(05) = BparsBpgrtss

we can see that the unit n = |epe e,650pqrs| s the required additional square in E
by verification of conditions (1) and (2) of Proposition 4. Thanks to the perfect
symmetry we can always verify only one instance of these conditions:

g(o’ )1+Up 6;;?5;) ! (;gpfl : (_1) = grs ’ qri =1
g(ap)lioq = Xp(rs)Xr ps)xs(pr) 'ﬁ&«iﬁ;«igrgs “(—ar(s)as(r)) 'ﬁgqrs
9(0q)' ™7 = xq(rs)xr(as)xs (ar) - B aBgraeres - (—an(s)as(r) - Bpgrss
which implies g(0,)' =% = g(o,)' =77, using the assumption about the class number

of the octic subfields Q (\/}3, T, \/E), and Q (\/67 VT, \/5), and the derived equality
Xp(r8)xr(P3)Xs(Pr) = Xq(rs)xr(gs)xs(qr) = 1.

(
(

2.3. One residual pair. Let us suppose that (p/q) = 1 and all other pairs
form non-residues. Further, from the condition that Q (\/p,/q), Q (v/P V7, V/5),
and Q (\/g, v/7, v/s) have all an odd class number we may use the following relations
1 our reasoning:

* Xp(q)  Xq(p) = -1
o Xp(rs)xr(ps)xs(pr) =1
* Xq(rs)xr(gs)xs(qr) =1

LEMMA 4. x,(rs)xq(r8)xr(pq)xs(pq) = 1.

PrROOF. By the assumptions made above we have

Xp(r8)Xq(75)xr(P0) X5 (Pg) = (Xp(r8) X (p5)xs(P)) (Xq(r8)xr(g5)xs(qr)) = 1, using
the evident equalities x,(pq) = —x»(ps)xr(gs) and xs(pg) = —xs(pr)xs(qr). [l
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Let us now calculate B;ZF?’, 6;,$‘Q (the other norms we can get by the symme-
try):
1 l-0,0, _ pl—o, 1-0,\"
Bp;rr(;p = qrsg 7= ﬂqrsg ! (6qrsg )

= ﬂgrs ) (—aq(s)as(q)gglggl) : (_ 37"5 : aq(T)QT(Q)sgls;l)ar
= 5355 : (_aq(S)QS(Q)gq_las_l) : (aq(r)ar(Q)Eq_lgr)
= 70‘(](71)047’((])0[(1(5)0[8 (Q)é‘ré"s
By a similar calculation we get
140, _ Ql—oy,040s __ Ql—0o 1—0,\%p 1—05\%P%a
ﬁpqrs - 5pqs e = 51%15 " (ﬁpqs q) ’ ( Pgs )
= (aq(s)gqﬂ(;f ;gqs) ’ (ap(s)sp/@;f qu)ap ’ (XP(Q)Xq(p) gqs)gpgq

:_aq(5>ap(3)Xp(Q)Xq(p)5p5q5§ p_32 1;2 12)qs

25-23-272
= aq(s)ap(s)gpqus ps Mgs Mpgs»
where the last equation follows from our assumption that x,(¢)x4(p) = —1.
Put now n; = Bp_Tl p_slﬂq_rl q_sl Bpqrs- We get

1— — — — _
771 o :XQ(TS)XT(pq)XS(pq)ﬁp'r? p52 122qrs :Xp(rs)ﬁpTQ p32 12)qrs

and
77%_% = XP(TS)XQ(TS)E;2 ;77’2 gsﬂc;? qzeﬂg;zzs 12)qrs
(the equations for n' =9« and '~ we get by the symmetry).
Let z, = xp(7s),xq = Xq(78), Zr = s = Xp(rs)Xq(rs), and
5o {1 ?f o= 1
g ifx=-1
for any [ € {p,q,r, s}. Further, let
n=m [[ &,
le{p,qr,s}
and
g(op) =0y p_rl ;;slﬁpqrs
g(ar) = 5r5;1 I;}ﬁpsﬂ&lﬂqsﬁ‘z;]lsﬂpqrs
and symmetrically for g(o,), g(os). Then n' =71 = g(0y)? for any | € {p,q,r,s}.
We will now verify conditions (1), (2) for the pairs (p, q), (p,r), (r,s), which is
sufficient thanks to the symmetry. We have
9(0p) 7 = 6, g (rs)xr (pa) xs(pg) = 1
9(0n) 77 = 6,17 X (r5)xg (rs) = 1

since x; = 5l1+‘” for any I € {p,q,r, s}.

g(ap>1_aq = _O‘p(r)ap(s)ar(p)as(p> : 5;155_1 gqrs
g(o—q)ligp = 70‘4(7,)0‘4(5)047”((])048((1) ! g;lggl gqrs

and as we can get using the above lemmas

ap(r)ap(s)ar(p)as(p) - aq(r)ag(s)ar(q)as(q) = xp(rs)xq(rs)xr(Pg)xs(pg) = 1,
it follows that g(o,)! =% = g(o,)* .
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In the second case

g(ap)l_oT = _XP(TS)aq(S) : 6;15\9_2 p_'r‘2 25 53/81)_q25 ;qrs

9(0,) 7" = =X (Pa) Xs (PQ) g (1) - £ €52 B2 B Ba s BrasBagrs

which yields similarly as in the previous case that g(o,)!=" = g(o,)! 7.
Finally,

g(JT)ligs = ap(r)ap(s)aq(r)aq(s) : 5;2€;2€;26;2 ;2Jr ;2Js gr gsﬁg;ﬁﬂ;:qi 12)q7"s

g(as)l_m‘ = Oép(T)Oép(S)Oéq(’l“)Oéq(S) : 5;25(1_28;255_2 12)7‘ 12).9 37‘ gsﬁp_q%‘ﬁp_qzs 2qrs
which is trivially equal.

Thus we have shown that n meets conditions (1), (2) of Proposition 4 and

therefore there exists a unit 1; € E which is the additional required square.
Altogether we get Theorem 1 proved.
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