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Introduction

Units and class group. Let us first recall some basic definitions.
An algebraic number field K is a finite extension of rationals O, an
algebraic integer is a root of a monic polynomial over the ring of
integers 7Z. Although the ring R of all algebraic integers of the field
K is a natural generalization of Z it need not be a unique factoriza-
tion domain (nor principal ideal domain). On the other hand, every
nonzero ideal of R can be uniquely written as a product of prime
ideals.

Any mapping sending an element a of R to the principal ideal
aR defines a homomorphism from the multiplicative semigroup R*
into multiplicative semigroup of nonzero ideals [*. Let K* denote
the multiplicative group of the field K and Iy the group of fractional
ideals of R. Then I; is a free abelian group over prime ideals of R
and we have the following exact sequence:

l1-E—-K'=-I;=>Cl—1

with F being the group of units of R, and C¥ is the class group of R.
E is finitely generated (by Dirichlet theorem) and CZ is finite. The
size of the class group is given by the class number (the order of Cf),
while the magnitude of E can be measured by the regulator.

For the understanding of the arithmetic of R we would like to
know

e explicit generators of
e a structure of Cf (or at least the class number h = |CZ|).

Relations between h and arithmetic of R. Let us now formu-
late a few results demonstrating the connection between class number
of K and arithmetic of R:

e h =1 if and only if R is a unique factorization domain

e h = 2 iff factorization in R is not unique in general but any
two factorizations of a given element of R have the same
number of factors.

Even a partial information on A can be valuable: it is well known
that if a product of two relatively prime rational integers is a square
of a rational integer then each of them has to be a square, up to
a sign. And the same holds true for any powers. The reason for
this is that Z is unique factorization domain. Nevertheless for any
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INTRODUCTION 3

positive integer m we have the following generalization to the ring R
of algebraic integers of a general field K: h is relatively prime to m
if and only if for any two relatively prime integers we have: if their
product is the mth power of an integer then each of them is a unit
multiple of the mth power of an integer.

(h,m) =1 <:>Va,bER:((E|c,:1:,yER: az +by=1Aab=c")
— (Jec EIdE R: a=ed™))

Now, we will consider abelian fields, i.e. finite Galois extensions of
Q with abelian Galois group. There is an analytic class number
formula which can be used for the calculation of the product of A and
the regulator but for the determination of the regulator we still need
to explicitly know the generators of E. The best known algorithms
for this task are of sub-exponential time complexity and therefore can
be used only for fields of small degree (or discriminant).

Due to the Kronecker-Weber theorem the abelian fields can be
characterized as subfields of cyclotomic fields. Let us first begin with
cyclotomic fields.

Circular units of cyclotomic fields. Let m > 1 be a rational
integer, m # 2 (mod 4). The mth cyclotomic field K,, = Q({,) is
obtained by adjoining the primitive mth root of unity ¢, = e*™/™
to Q. The group of circular units C,, of the mth cyclotomic field
K,, is defined as the intersection of the group of all units E,, of K,,
and the subgroup of the multiplicative group generated by all circular
numbers 1 — ¢,

Crn=E,0{{1-(,;a€Z,0<a<m}.

It is easy to find a finite set of explicit generators of C,,. This point
is one of the important properties of C,, (recall that to find explicit
generators of the full group of units is usually out of our possibilities).
Another important fact is that C,, is of finite index in E,, and that
there is a connection between this index and the class number A™
of the maximal real subfield R N K,, of the mth cyclotomic field.
Namely, we have the following Sinnott formula:

(B : C] = 2° - AT,

where s is determined by the number n of primes dividing m as
follows

|0, if n=1,
7Y on24r1-n, ifn>o2

It is easy to see that for any odd prime p this formula implies that
p|ht if and only if there is a noncircular unit € such that e? is circular:

plht <— Je € E,\C,, : P € C,.
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But it is not easy at all to construct such a unit. Another question is
how to show that it is not circular. Here a useful tool could be a basis
of C,,, i.e. an independent system of generators (modulo torsion).
Such a basis of the group of circular units of the mth cyclotomic field
was found independently by Gold, Kim and Kucera.

Circular units of abelian fields. The notion of circular units
can be generalized to any abelian field, we will mention two (probably
most important) possible ways. Having an abelian field £ we can take
the smallest cyclotomic field K,, containing k.

e We can consider all circular units of X,,, which are in our field
k, i.e. the intersection Cy = k N C,,. Since this approach
is mentioned in the Washington’s monograph on cyclotomic
fields ([7]) we shall call it Washington’s group of circular
units of k.

e For each cyclotomic field K, C K,, we can take the norm
Nk, vk, from K, to its intersection with & to map the group
C,, of circular units of K,, to our field k. Sinnott’s group Cs
of circular units of k is then generated by all these norms of
circular units (together with —1):

Cs = <{NKn/kﬂKn(77); K, C Kn,n€ Cn} U {_1}>

Although the Washington’s group contains the Sinnott’s one, so at
first glance it looks better, it is difficult to work with. It can be seen
immediately that we have a finite set of explicit generators of Cs —
which we usually do not have for Cy,. Moreover there is the Sinnott
formula for the index [E : Cs] of Cs in the full group E of units of
k giving a connection with the class number A" of the maximal real
subfield R N k of k — which is not the case of Cy,. Unfortunately
the mentioned formula is not as easy as we have seen in the case of
cyclotomic field:

. _ pt lem[kP:Q]
[E:Cs]=h"Q k- Q)

Here @ is the Hasse unit index of k, which is 1 or 2, the product
is taken over the rational primes p dividing m and [k, : Q] is the
degree of the maximal subfield k, of k ramified only at p. In our
case this subfield is the intersection of k£ and a suitable cyclotomic
field, so the whole fraction is easy to compute. A rational integer g is
little bit more difficult — if k is real then ¢ = 1 — [k : Q], but if & is
imaginary then we know only that g is between the number of primes
p|m with k, imaginary and the number of them with [k, : Q] even.
Nevertheless Kucera has found that this problem can be overcome if
we enlarge the set of generators of Cs by adding a generator ,/p for
each p|m such that ./p € k. Then this little bit larger group is still
generated by a finite set of explicit generators but the corresponding

2 9(e"Z[G] : et V).
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formula is of the same shape with g being the number of primes p|m
with [k, : Q] even. The most complicated factor in the formula is
the index (eTZ[G] : e™U) of Sinnott module in the integral group
ring of the Galois group. This factor has been computed explicitly
by Sinnott in the following cases:

e m is divisible by at most two primes;

e the Galois group G of k is cyclic;

e the Galois group G of k is the direct product of its inertia
groups;

e some very special subfields of the fields from the previous
item;

e compositum of any number of quadratic fields (due to Kucera,
see [6]).

Applications. Let us finally discuss those cases when the group
of circular units can be used to get some divisibility relations for the
class number of a given abelian field k.

To get it we need to know the index of this group in the full
group of units, which can be done either using Sinnott’s formula (if
the index of the Sinnott module is known for k) or constructing a
basis of this group and computing its regulator. This index is then
obtained as a product of some known factor and the class number A"
of the maximal real subfield of k.

Then there is a more difficult task: for a given prime p find a
unit outside of the group of circular units whose pth power is in this
group or to prove that such a unit does not exist. The problem is
that although we are able to work explicitely (and easily enough) with
circular units, we do not have any tool to work with the noncircular
ones. In fact, there are only two possibilities:

e either to work in the group of circular units of the smallest
cyclotomic field containing k£, which means to search for this
unit inside the Washington'’s group of circular units of k,

e or to construct a number in k, e.g. by some procedure based
on Hilbert theorem 90, and to show that the obtained number
is a noncircular unit.

Let us mention several examples where the suggested approach
really works.

In the book [4] Conner and Hurrelbrink determine the parity of
the class number of any biquadratic field up to the cases Q(,/p, \/q)
where p, g are different primes p = ¢ = 1 (mod 4) satisfying (p/q) =
1, and Q(,/p, v/2) where a prime p is congruent to 1 mod 8. Using
the described way Kucera has obtained the criterion for the parity
of the class number of these fields in terms of biquadratic characters
(see [5], or slightly modified version in Proposition 1.11).
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I have extended this technique to determine the class number of
the field Q(,/p, \/q, /), where again p, g, r are primes congruent to 1
mod 4 in the paper [2] to get the exact characterization of the fields of
this type of an odd class number (see Chapter 1 of this thesis). In the
paper [3] (Chapter 2) I have completed the octic case by considering
p=2.

In this thesis I have tried to find n such that any compositum of
n quadratic fields has to have an even class number. I was able to
prove that this is really true for n = 5 (Theorem 3 of Chapter 3). I
have not been successful in the solving the same question for n = 4
yet as there still remain some unanswered questions in this case (see
Chapter 4).



CHAPTER 1

On the Parity of the Class Number of the Field
Q(vP) /2 V'7)

1. Introduction

In the paper [5] R. Kucera determines the parity of the class num-
ber of any biquadratic field Q(,/p, ,/q), where p and ¢ are different
primes, p = ¢ = 1 (mod 4). In this chapter we extend methods
used in [5] to compute the parity of the class number of the field
Q(y/p, /4, +/T), where p,q and r are different primes, all congruent
to 1 modulo 4.

We now state our result precisely.

THEOREM 1. Let p,q and r be different primes such thatp,q,r =
1 (mod 4). Let h denote the class number of Q(\/p,/q,/T).
1. If (p/q) = (p/r) = (a/r) = =1, fit Upqg, Upr, Ugr € Z satisfying
us, = pq (mod ), u2, = pr (mod q), u2, = ¢gr (mod p). Then h is
even if and only if (Upe/T)(Upr/q)(Ugr/P) = —1.
2. If (p/q) =1, (p/r) = (g/r) = —1, then the parity of h is the
same as the parity of the class number of the biquadratic field
/P, va).
3. If (p/q) = (qg/r) =1, (p/r) = —1, then h s even.
4. If (p/q) = (p/r) = (g/r) = 1, then h is even. (Moreover, if we
denote by vVpg, Upr, Ugr, Upgr the highest exponents of 2 dividing the

class number of Q(,/p, /7), Qly/p; v7), Q(v/T,v/T7), Ql\/D, /T, /T),

respectively, then Vpg > 1+ Upg + Vpp + Ugr.)

2. Cyclotomic units

From here on fix three different primes p,q and r, all congruent
to 1 modulo 4. Let E be the group of units in Q(,/p, \/q, /7). Let
us denote ¢, = e>™/™ for any positive integer n, and &, = ((1T7)/2
for any positive odd integer n. By Frob(l, K') we mean the Frobenius
automorphism of prime [ on a field K. For any prime [ congruent to 1
modulo 4 let b;, ¢; be such integers that [ — 1 = 2%¢;, where 2 { ¢, and
b, > 2. For this prime [ fix a Dirichlet character modulo ! of order 2%,
and denote it by 9. Let R, = {] \ 0<j <242}, and R, = (u Ry,

where p; = e*™@/(71) (= (1) is a primitive 2%~'th root of unity.

Then #R; = #R;, = (I — 1)/(4c;) (where #S denotes the number of
elements of the set .S). Further, let x; be a fixed Dirichlet character

7



1. CLASS NUMBER OF Q(./p, /3, V) 8

modulo ! of order 4. Note that for any integer a satisfying (a/l) =1
the value of x;(a) does not depend on the choice of the character x;.

Let J = {l € Z|l is a positive prime congruent to 1 modulo 4}.
For any finite subset S of J let (by convention, an empty product is

1)
Ng = H l) CS - e27r7,'/n5’ QS = @(CS)) Ks = Q({\/ZH S S})

les
By o,, where [ € S, we denote the automorphism determined by
Gal (KS/KS\{Z}) = {1,0,}. Let us further define

1 if S =0,
8715 = %NQS/KS(]- — Cs) 1fS = {l},
Nos/ks(1—¢s) i #S>1

It is easy to see that €, are units in Ks. Let C be the group generated
by —1 and by all conjugates of ¢,,, where S C {p,q,7}. Theorem
1 of [6] states that {—1,e,,€q,€,€pq Epry Eqrr Epgry 18 @ basis of C,
and that [E : C] = 2* - h, where h is the class number of the field
/P, /3, V7).

In [5] it is proved that €,q,€pr, €qr are squares in Q(,/p, \/q, /7),

i.e. there are such units B, B, Ber in Q(/p,/q,v/7) that €, =

2 Epr = B2, and g, = (2, (see also Proposition 3.2). The unit
Bpq 1s defined by the relation By = [lacs,, (§pq — &pq’)s Where My, =
{a €Z|0<a<pg (a/qg) =1,v%,(a) € Ry}, and the units 5,,, B, are
defined analogously.

In this paragraph we show that ¢,,, is also a square in the group
of units of Q(y/p, /@,+/7). Let us define M = {a € Z \ 0<ac<
par,(a/q) = (a/r) = 1,9(a) € R}, where ¢ = 9, and R = R,. For
any a € Z satisfying 0 < a < pgr and (a/p) = (a/q) = (a/r) = 1 we
have either a € M or pgr — a € M. Therefore

Epgr = H (1 - ;qr) - H (1 - Zq‘r)(l - C;;]i) =
0<a<pgr acM
(a/p)=(a/q)=(a/r)=1
= H (1 - }%g‘r)(l - gp_qzra) = H ( };;:’ - ;qr)( ;q‘r - 6;;:')
acM acM

. . _ 2
Since 2 | #M, we can write g4, = 3., Where

,qu'r' = H ( ;q'r' - E;;qar")

aEM

Now we have to show that B,, € Q(,/p,+/q, /). For, let o be

an element of the Galois group Gal (Q(Cpq,)/(@(\/;_o, V4, \/F)) Then
there is an integer k such that o((per) = ¢%,. We have (k/p) =

par’
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(k/q) = (k/r) =1, and

gqr - H ( ;t;cr o E;qik) = ﬁpqr : (_1)#{GEM|¢(ak)¢R}7

acEM
and since for any d € M the number of elements a of the set M, such
that 9¥(a) = ¥(d), is equal to c,(¢ — 1)(r — 1)/4, which is an even
integer, we have 87, = Bpqr, i.6. Bpgr € Q(v/D, /T VT)-

Thus we have a subgroup of E generated by the set of units
{—1,&p,€4,€r, Bog Bor, Bgry Bpgr } Of index h, which implies that A is
even if and only if there are z,, z4, T, Tpq, Tpr, Tgr, Tpgr € {0, 1}, such
that

— |gTpeTqeZr B3Tpq BTpr (3Tqr (3Tpqr
") - |Ep 8q gr Pq pr qr pqr | # 1

is a square in E.

In this paragraph we show that such 7 can exist only if at least
one of Tpg, Tpr, Tgr, Tpgr 1S nonzero. We will use the next statement
taken from [6]:

LEMMA 1.1. In the notation of the beginning of this section let
S CJ finite andl € S. Then

-1 if S =1},
1—Frob(l,K )
NKS/KS\{I} (8715) = (l/k) "€ (hitgm) if S= {l, k}al * k,
Engin ) if #8> 2.

Remark. This lemma implies that
(sep) 777 = () *7 = (e, ) = -1,
hence none of +e,, te,,+¢e, could be a square in Q(,/p,/q,/T).

Since

(:l:epgq)l-i—ap — —82 (:|:€p€r)1+ap — —62 (Itgqﬁr)1+aq — —82

q? ) )

none of +e,€,, t£,€,, £€,4€, could be a square, and finally nor +¢,¢.¢,
could be a square in Q(./?, /4, +/7), because

(Fepeqe,) TP = —£le2.

3. Preliminaries

Using previous notation let G = Gal(Ks/Q). We say that a
function f : G — Kj is a crossed homomorphism if for all o,7 € G,

floT) = f(o)f (7).
Let us further denote by Es the group of units of the field Ks. The

following proposition is taken from [6].

PRoOPOSITION 1.2. Let € € Eg be such that there is a crossed
homomorphism f : G — K satisfying €27 = f(0)? for any o € G.
Then € or —e 15 a square in Kg.
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On the other hand, it is easy to see that if ¢ = 4+n? for suitable
7 € Kg, then there is a crossed homomorphism f : G — K satisfying
e'"7 = f(0)? (put f(o) =n'"°).

We now want to formulate a weaker condition, which will be useful
in testing whether given n € Eg is a square in Eg. The following
proposition is our first step. Let us notice that G = Gal(Ks/Q) can

be considered as a (multiplicative) vector space over F, with basis
{o/|1 € S}.

ProposITION 1.3. Let a function g : {o;|l € S} — Ks satisfy
the following conditions:

VieS:g(o)t =1 (1a)

Vp1,p2 € 81 g(0p,)" 77 = g(0p,)" ™ (1b)
For any positive integer t let S; = {k € S|k < t}. Let us define a
function f: G — K by

k

#(T o) = ooy,

seV seV

where V 1s any subset of S. Then f 1s a crossed homomorphism.

Remarks.

(1) fliojiesy = 9-

(2) It is easy to see that if such g satisfying (1a), (1b), exists,
then these conditions are also satisfied by any function g,
such that g;(o,)/g(0,s) € {—1,1} for each s € S.

We postpone the proof of Proposition 1.3 until we prove some
auxiliary lemmas.

LEMMA 1.4. If the conditions in Proposition 1.3 hold for g,
and f 1s defined in the same way as in Proposition 1.3, then for
any automorphism 7 € G and primel € S

f(,r)l—al — f(O'l)l_T-
ProoF. Let T'C S be such that 7 = [];cp 0. Then

. (1—0y) H Os
f(T) -0 _ H f(o't) sETNS
tcT
Now from the condition (1b)
(1—0t) l_[ s Z((l—at) H as)
f(,r)lfal — H f(Ul) s€ETNS; — f(o.l)te'r sETNSt — f(o.l)lf'r.

teT

g
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LEMMA 1.5. If the conditions in Proposition 1.3 hold for g,
and f 1s defined in the same way as in Proposition 1.3, then for
any automorphism 7 € G and primel € S

floir) = fla) ()™

ProoF. Let T C S be such that 7 = [];cp 0;. Further, let p =
[lierns, 0t @ w = [lier\ (s,uqy) O¢- From the definition of f we have

o) = £(2)f(o0? S = f(o)f(wy - (Fenf@) )"

Lemma 1.4 implies that

Floow) = flow) - (F(ef (@) *) = F(w)F (o).
If ] €T then 7 = pw, and using Lemma 1.4 we get
flor) = f(T)f(o0)" = F(T)f(a) f(7)7 7 = f(on) F()".

Let us consider the second case I € T, i.e. 7 = poyw. Then f(7) =
f(roy) f(o)™. From the condition (1la) it follows that f(o;) % =

f(o1), which finally yields f(ou7) = f(7)f(01) 7" = f(7)f(o)” =
f()f(o)f(m)t = f(0;) f(7)° with one more application of Lemma
1.4 Ol

We are now ready to prove Proposition 1.3.

PROOF OF PROPOSITION 1.3. Let 0,7 € G, and let V C S be
determined by ¢ = [[,cy 0s. The case V = 0 is trivial. Let us
suppose that V' # 0, and that for every T ; V holds

#((110)r) = #(11 e - 51"

seT seT
Let m = minV,w = [[,cy\{m) 0s. Then 0 = onw, and from the
definition of f we have f(o) = f(0,)f(w)°™. Lemma 1.5 now yields

floT) = flomwT) = f(om)f(wT)™™,
and the induction hypothesis for V' \ {m} gives
flor) = flom)(F@)f(r)) = @) f(r)m = f(o)F(r)°.
Proposition follows. O

We shall now combine Proposition 1.2 and Proposition 1.3 into
one criterion which will be often useful in the next section.

PROPOSITION 1.6. If there exists a function g : {o;|l € S} —
K, which satisfies €'7° = g(0,)? for anyl € S and conditions

Vie S:g(o)tr =1 (1a)

Vp1,p2 € S 1 g(0p,) 72 = g(0p,)! (1b)
then € or —e 15 a square in Kg.
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Proor. We must only prove that the crossed homomorphism f
induced by the function g satisfies e'~7 = f(¢)? for any o € G.

For, let 0 € G be any automorphism, and let us write it as o0 =
[licr 0+, where T' C S is determined by o. We prove our assertion by
induction on #7T. The case T = 0 is trivial. In the case #T = 1 we
use the assumption and the remark after Proposition 1.3. Otherwise,
let P and @ be proper subsets of T' such that PN R = @ and o =
[ljep0; - Ilkcrox- Let 7 =1[lcp0j a w = [lgecgr 0x- Then 0 = 7w, and
the induction hypothesis gives '™ = f(7)? a ' ™% = f(w)?. Hence

el=0 — gl-mw _ 81—7‘<81—w>T _ f(T)Q (f(w)2>T _ f(Tw)Q'
The proposition is proved. Il

We would like to apply this proposition to the case S = {p,q,r},
i.e. to the octic field Ks = Q(/p, /4, /7). In this case the group
G = Gal(Ks/Q) is generated by the automorphisms o, 04, 0, so we
have to compute how act these automorphisms on arbitrary unit 7
from the subgroup of E generated by {—1, €,, €4, €+, Bpq» Bprs Bars Boar +-

In [5] it is proved that if (p/q) = 1 then Bpe * = (v/p), where
v € Z is such that v?2 = g (mod p). This fact we formulate in the
following proposition using the notation introduced in the previous
section.

ProrosiTION 1.7. If p,q are primes congruent to 1 modulo 4,
and (p/q) =1, then

ﬁ;;—aq = Xp(9)-

In this paragraph we prove a similar formula for ﬁ;l,; % in the case
(p/q) = —1. To the end of this section let us assume that 9 = 9,
R = R,, and R' = R,. Then

Ba= T &G—&) =& 1 (1-6),

0<a<pg 0<a<pg

gfe,¥(a)ER gle,P(e)ER
where s = ) ,a with a running through the same set of integers
as in the previous products. It is easy to see that ¢ | s, and that
s=(g—1)>,a (mod p), where the last sum is taken over all integers
a satisfying 0 < a < p, ¥(a) € R. Thus we have (in all following
products a runs over the same set as in the last sum)

l+og qa
L= (e

>1—F‘r°b(q,@(ﬁp -
= H(Eg —_ 5}:@)1*1“rob(q,@(4p))*1 - H(gz _ ga) H(g;q’ _ gpfaq’)fl,

1
) [1a - ga)171“rob(q,@(cp))‘1
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where ¢’ € Z is an inverse of ¢ modulo p. Now multiply both sides of
this equation by
[T &-&9
0<a<p

(a/p)=—1

P(a)¢ R
and an easy calculation yields (in all following products we assume
also 0 < a < D)

Bt T1 (& -6 11 (&% —¢°9)

(a/p)=—1 ¥(a)ER
P(a)¢R'
[T &-¢6 ] -7
P(a)ER (a/p)=—1
P(a)¢ R
= [ €-&=7* ] -6
%(a)¢ RUR/ (a/p)=1
= JI =& 11 &°—¢&)
P(a)ERUR' (a/p)=1
=6 I G )t I 0-¢)
$(a)ERUR/ (a/p)=1
= [ & —¢)t/p-eyp,
¥(a)ERUR/

where a in the sum is running over all quadratic residues modulo p
satisfying 0 < a < p. Now, we define

u(s) = (—1)#0<e<tp(e)e R il@)e R} | (1 )#{0<e<(-1)/2 Yi(a)2RiUR]}
for any prime [ = 1 (mod 4) and any integer s, which is nonresidue
modulo [.

REMARK. Although we have defined oy(s) by means of some fixed
character 1, from the following proposition it is clear that o; does
not depend on the choice of this character.

If we recall that v/1 = H (= WZ(S{“ — &) for any prime [ congruent
to 1 modulo 4, we can finish our calculations.

131+aq =¢, (_1)#{0<a<P|¢(a¢1)€R,'¢z(a)€R’} . (_1)#{0<a§(p71)/2\'¢(a)$RUR’}
=&, - 0p(9).
We have proved the following proposition.

ProrosITION 1.8. If p,q are primes congruent to 1 modulo 4,
and (p/q) = —1, then

IBH% = 0,(q) &
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ProposITION 1.9. If m,n are quadratic nonresidues modulo p,
then
ap(m) - ap(n) = —Xp(mn).

ProOF. Let us denote #{0 < a < p|¢¥(am) € R, ¥(a) € R'} by
Ty(p, m) (it is the exponent of one of the factors in a,(m)). Let b,c
be such integers that p — 1 = 2°c, where c is odd, and b > 2. Let g
be a primitive root modulo p satisfying ¥(g) = (. Then m = g*
(mod p), where 0 < k < p— 1. Write k in the form k = k; - 2° + ks,
where 0 < ky < 2°, and k, is an odd integer. Now

Ty(p,m)=#{0<a <p|9¥(am) € R, ¢(a) € R |

k 1
:#{z-2”+y\ogm<c,0§y<2b—1,2+y,<y+ ><}

b
b—1 y+ke 1
=c#y[0<y <oty (F50) <o

Let us first consider the case 0 < k; < 2°~1. Then the conditions
on y are equivalent to 0 < (y—1)/2 < 2°72—(k2+1)/2, where y is odd.
Hence 7y(p,m) = ¢~ (2°2 — (k2 + 1)/2). If 271 < ky < 2°, then the
above conditions are equivalent to 2°°2 > (y—1)/2 > 2" 1 — (ko +1)/2,
where again y is odd. We obtain 74(p,m) = ¢ - ((k2 + 1)/2 — 2°72).
Thus in both cases we have (note that the result still depends on the
choice of )

(_1)T¢(p,m) — ] e {kz =1 (mod4) if8f(p—1)

ks =3 (mod4) if8|(p—1)

If we now put x = %2, then x is a Dirichlet character mod-
ulo p of order 4. We can reformulate the previous statement as
(—1)wm) = (—1)P=1/%. 43 (m). From this equation and from the
fact that (—1)#{0<e<(p—1)/2|¥(a)ERUR} (the second factor in a,(m))
does not depend on m we have a,(m) - a,(n) = ((—1)P~D/%.5x(m))-
((—1)»=Y/%.4x(n)) = —x(mn). Since mn is a quadratic residue mod-
ulo p, we have x(mn) = x,(mn), and the proposition is proved. O

ProposiTION 1.10. If p,q,T are primes congruent to 1 modulo
4, then

o 1—Frob q:@('\/ﬁv‘\/;)
piiee = g )

Proor.
1+o0q - . _
'quroq - H :gqr B qui) - ;qr H (1 - Cqu‘ )
0<a<pgr 0<a<pgr
Y(a)ER P(a)ER

gta, (a/r)=1 ala, (a/r)=1
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where s = ), a with a running through the same set as in the previ-
ous products. It is easy tosee that ¢ | s,7 | s, and that s = (¢—1) >, a
(mod pr), where the last sum is taken over integers a satisfying
0<a<pr9Y(a)€ R, (a/r) =1. Hence (in all following products
runs a through the same set as in the previous sum)

Biee — HeR(ad | _ ¢=ayl-Frob(g0(Crr))
qu H par H(
_ 1—Frob(q,Q({pr 1—Frob(q,Q((pr
H 2 pqr) (¢or) =Bk (2,Q(¢pr))
_Fro -1 —Frob( g, W
Since B, € Q(y/F, +/7), we have gl @A) _ glFrer(advpm)
and the proposition is proved. O

4. Proof of the theorem

In this section we prove the theorem stated in the introduction.
First, we state the main result from [5], which will be useful in our
considerations.

PROPOSITION 1.11. Let p and q be different primes such that
p=g=1 (mod 4). Let h be the class number of Q(,/p, /7).
1. If (p/q) = —1, then h is odd.
2. If (p/q) =1, then h is even, if and only if x4(p) = X»(q)-

REMARK. In [5] it is shown that if (p/q) = —1, then in the group
of units of the biquadratic field Q(,/p, ,/q) does not exist any unit
of the form |ep7eq Bpa| # 1, where z,,z,,Tp,, € {0,1}, which is a
square of another unit (here 85, = €p,). In the case (p/q) = 1 it is
proved that such unit exists if and only if x,(p) = x,(g), and that
this unit is equal to |Byel, if Xq(P) = Xp(q) = 1, and to |e,e48,4], if
Xq(P) = xp(q) = —1.

Consider now a unit 7 = |e7€q" €% Bo* Bot” Bar” Boor”| # 1, where
Tp, Tgy Try Tpgy Tpry Tgry Tpgr € {0,1}. We have proved earlier that, in
order to n be a square in F, at least one of z,q, Zpr, Tqr, Tpgr should
be nonzero, and there should exist a function g : {0,,04,0,} —
Q(y/p, /4, /7) satisfying n'~7 = g(c)? for any o € {0,,0,,0,} and
conditions (1a), (1b).

Let us now consider four cases separately:

(p/q) = (p/'r) =(g/r) =~
(p/q) =1, (p/T) = (g/7) =
(p/g) = (p /"") =1, (qg/r) =
(p/q) = (p/7) = (q/r) =1

At first, let us suppose that (p/q) = (p/r) = (¢/r) = 1. By Propo-

sition 1.10 we have Bper” = Bpar ® = Bad’r = 1. Let g(o,) = g(oy) =
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9(0,) = Bpgr- It is now easy to see that the conditions of Propo-
sition 1.6 are satisfied, therefore n = |B,,| is the required square
in E. We have proved that in this case the class number A of the
field Q(,/p, /q,+/T) is an even number. Moreover, if we denote by
Upg, Upr, Vgr the dyadic valuation of the class number of Q(,/p, /q),

Q(y/p, /1), Q(/4,+/T), respectively, we show that 2! tveetvertver | p,
For different j,k € {p,q,r} let E;, denote group of units of the

biquadratic field Q(v/7,Vk). If [Ej : (—1,€5, 6k B1)] = 2%* -1,
where 2 1 [, then it is easy to see that there exists a unit \j, € E,
for which [ Ejj : (—1,;,6x, Ajk)] = I, where \3/* = |Bjxe7ef*|, for
suitable ¢j,cx € Z. Then [E : <—1,5p,eq,er,)\pq,)\p,,)\qr,ﬁpq,,)] =
h/(2vrat¥rrt¥ar). Since we have proved that |5,4,| is a square in E, we
have 21+vstvertvar | .

Consider now the case (p/q) = (¢/r) = 1, (p/r) = —1. An easy
calculation yields

=7 = (~e2)% (B2, xa(0)) " (e (0) €762.) ™ (xa(r)B2 o)™
' = (=2 (B2,x0(0)) "~ (B2x:(2)) " (B ) "
'~ = (=62 (B2xq(r)) " (cn(r) 652 B2.) ™ (Xa(0)B728% ) "

From these equations it follows that a necessary condition in order
to n be a square in F is z,, = 0. Let

9(0p) = €57 - Bt - By, - Boar
9(oq) = €37 - Bpr® - Bas" + Bpgr
9(o,) = &7 g ﬁpq * Brar
Conditions (1a) and (1b) yield after some calculations conditions
1= g(0p)"7 = (=1)" - xq(p)"" - By, Xo(7) - Bgs
1)% - Xq(R)* - Xq(7)
1)% - xp(9)* - X (@)*
1) - Xq(r)™ By * Xa(P) - Bpg
1) - xq(T)* - Xq(P),

1= ( )1+a
1= g( )1+cr

I |

(=
(=
(=
(=

and
Xp(9)*7 - xr(9) = Xq(P)*™ - Xo(T)
X+ (@)% - Xp(2) = Xq(T)™ - Xq(P)
A necessary condition for 7 being a square in E is therefore
Xa(1) - X+(2) = Xq(P) - X5(@)-

If x4(7) = x-(q) or X4(p) = X»(q), the h is even already by the remark
after Proposition 1.11. Otherwise if x,(7) # x-(¢) and x,(p) # Xx»(q),
then by the conditions above z,, = z, = 1, and also z, = z, =
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z,, where (—1)* = x,(p)xq(r). With these settings the conditions
(1a),(1b) are satisfied, and 7 is therefore a square in C, i.e. the class
number h is in this case even.

Let us now suppose (p/q) = 1, (¢/r) = (p/r) = —1. At first, let
Zper = 0. Then we have again by Proposition 1.7 and Proposition 1.8

()" - (Bra - xal@) ™ - (e (P) e, 07,
(—e2) - (B2 xo(2)) ™" - (n(@) €782 ) ™
= (—e2)* - (an(r) e, 65,) ™ - (aalr) e, 65 ™

Here, n'=°?,7'~% and 7'~ must be squares in F. From this condi-
tion it follows that z,, = z,, = z, = 0. Thus we get n € Q(,/p, /7).
In the case z,4, = 1 we have

ntor = (_Ei)xp ) (15127(1 - Xq (D)) - (0 (p) £ }2,T)$pr (o) eq,qu iqr),

which cannot be a square in F (+¢,¢,* is not a square according to the
remark after Lemma 1.1). Hence we have proved that 7 is a square in
Q(+/p, /4, +/7) if and only if it is a square in Q(,/p, /q), which implies
that the parity of the class number A of the field Q(,/p, /g, /) is
the same as the parity of the class number of the field Q(,/p, ,/q)-

,’7170;,
nl—aq
nlfcrr

Let us now consider the last (most difficult) case (p/q) = (¢/r) =

(p/r) = —1. Using Proposition 1.8 and Proposition 1.10 we get

- 1
Brar * = —a.(q) - ag(r) €q et z%qr’ and

,’71*0'17 — (_Ei)a:p . (aq(p) Eq—l gq)l’pq (ar(p) E;l ;)wpr.

<_ar(Q) . Olq(’)") gq—lsT—l . iqr>mpqr
The relations for 7' %2 and ' °r we get by the symmetry. At first,
let us suppose that z,,, = 0. Again, from the remark after Lemma
1.1 we get z,y = z,, = 0, and z, = 0. By the symmetry we finally
get n € Q. Hence z,,, = 1. The same argument as above gives that
Tpq = Tpr = 1, and symmetrically also z,, = 1. Using Proposition 1.9
we have

N7 = (=1) - (—€5)"  Xq(pr) - X+ (P9) - €, BpoprBpgr-
Let s, = X-(Pq) - Xq(PT), 54 = X+ (PQ) - Xp(aT), 8 = Xq(PT) - Xp(qT).
It is clear that necessary conditions for 8 being a square in E are
(—1)*» = —s,p, (—1)% = —s,, and (—1)*" = —s,, and that for s, s, s,
the identity s,s, = s, holds true. From this it follows that either
Sp = S = s, = 1 or exactly one of s,,s,,5, is equal to 1, and the
others are equal to —1. Let us consider these two cases separately.
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Sp =8q =8y =1

From the conditions above we get z, = z, = =, = 1. It is easy
to see that the only possible definition of the function g (up to the
uninteresting sign) is

g(op) = Epeglg;lﬁpqﬁprﬁpqr
g(og) = Egjlgqg;lﬁpqﬁqrﬁpqr
g(o"r) = 5;15;15r:6pr,6qr,8pqr

Then we have

1 1 —2_.-2nl 1 1 —2_.—2
g(op) P = sp”Peq £, ,Bp;‘fp pj%ﬁp;ﬁz’ =(-1)-¢,%,

(o) ea) (r(p)er) - (~an(@)er - () eq) = 5, = 1.

Symmetrically also g(o,)'™¢ = g(o,)"°r = 1. The condition (la)
from Proposition 1.6 is thus satisfied. Further,

—a o) L -0 —0
9(op)t 7 = (63 q) ( :iq q) ('lenzr q)
= (~€,") (Brow(@)e, ) - (~an(r)ar(p) e, e, By )
=€,%; €, Bpg* Xp(ar) - -(P)  Brgr
and by the symmetry
9(09)" " =€, %, %6, Byq - Xa(PT) - 0 (q) - Bpgr-
Then the condition (1b) yields that x,(q7r) - a,(p) = xq.(pr) - @, (q).
Since s, = 1, we have x,(qr) = x,(pr), and this condition can be
written as o, (p) = a,(g), i.e. by Proposition 1.9 x,(pg) = —1.
This calculation can be carried out symmetrically, and we get by
the Proposition 1.6 that 7 = |e,€,6,8pqBprBqrBpgr| is @ square in E if
and only if x,(pg) = xq(pr) = Xp(g7) = —1.

Exactly one of s;,sq,s, is equal to 1

We can assume that s, = 1,5, = s, = —1. Thenz, = 1,2, =
0,z, = 0, and 7 = |€,BpeBprBqrBrqr|- Again, the only possible defini-
tion of g is

g9(op) = Epeglg;lﬂpqﬁprﬁpqr
9(oy) = 5;;157«_1:613:15«17’:6?47'
g(ar) — Eglgq_lﬁprﬁqrﬁpqr

Note that in this case we have a symmetry between g and r. Let
us first check the condition (la). As in the above case we have

g(o,)t°» = s, = 1, and from the analogy with the above case we

get g(o,)tt%e = s, - e, % = 1. By the symmetry we have also

g(o,.)'™°r = 1. Let us now consider the condition (1b). As before, we

have

l-oq

9(op) 7 =¢,%, %, By, - Xo(ar) - (D) - B,
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and also

(9(og)es) " =e;%, % B2 - Xa(pT) - 02 (q) - B,y
From these equations we get g(o,)' %¢ = g(o,)! °7 if and only if
Xp(q7) - 0 (p) = Xq(pr) - 0r(g) which is equivalent to a,(p) = —a,(q).
Using the assertion of Proposition 1.9 we can write this condition as
X-(pg) = 1. By the symmetry we have a condition x,(pr) = 1. Now
we determine the condition for g(o,)*~7" = g(o,)' 2. We have

l—0o, 1 _o _
(9(00)eq) = &5, Byr - Xa(Pr) - 2p(Q) - B

and o
(9(0)er) 7 = €576, *Brr - xo (00) - 0p(r) - B

Since e, " = e+ °? = 1, we get the condition Xq(pr) - ap(q) = x»(pg) -
a,(r). Further, since x,(pr) - x-(pg) = s, = 1, we have a,(q) = o,(7),
and this is by Proposition 1.9 equivalent to x,(qgr) = —1. By the
Proposition 1.6 we get in this case of s,, s, and s, that the unit n =
|€8pqBorBarBrqr| 18 @ square in E if and only if x,(pg) = x,(pr) = 1,
and x,(gr) = —1.

Putting this case together with the former one and with its sym-
metrical analogies, we obtain the assertion of the remaining part of
the theorem.



CHAPTER 2

On the Parity of the Class Number of the Field

Qv2,/p, V1)

1. Introduction

In the paper [5] R. Kucera determines the parity of the class num-
ber of any biquadratic field Q(,/p, /) and Q(,/p, v/2), where p and
g are different primes, p = ¢ = 1 (mod 4). In Chapter 1 we applied
his method and computed the parity of the class number of the field
Q(+/p, +/q,/T), where p,q and r are different primes, all congruent
to 1 modulo 4.

Here we present that result together with the case p = 2.

THEOREM 2. Let p,q and r be different primes either congruent
to 1 modulo 4 or equal to 2. Let us denote by (a/b) the Kronecker
symbol. Further, denote for any prime | = 1 (mod 4) by x; one
of the Dirichlet characters modulo | of order 4 and by x» one of
the Dirichlet characters modulo 16 of order 4. Let h denote the
class number of Q(/p, /a2, /T).

1. If (p/q) = (p/r) = (q¢/r) = —1, then h is even if and only if
xXp(a7) - Xq(7) - X-(P9) = —1.

2. If (p/q) =1, (p/r) = (g/r) = —1, then the parity of h is the
same as the parity of the class number of the bigquadratic field
Qy5, /a).

3. If (p/q) = (qg/r) =1, (p/r) = —1, then h s even.

4. If (p/q) = (p/r) = (g/r) = 1, then h is even. (Moreover, if we
denote by vVpg, Vpr, Ugr, Upgr the highest exponents of 2 dividing the

class number of Q(,/p, /7), Ql/p; v7), Q(v/T,v/T), Ql\/D, /T, /T),

respectively, then Upg > 1+ Upg + Upr + Ugr-)

The proof of the theorem in the case p,q,r = 1 (mod 4) is con-
tained in Section 4 of Chapter 1. In this chapter we prove the theorem
in the case when exactly one of primes p, g, r is equal to 2.

2. Cyclotomic units

We now fix for the rest of this chapter two different primes p, g,
both congruent to 1 modulo 4. We denote by E the group of units
of the field Q(+v/2, /P,+/q). Let us denote ¢, = e?™/™ for any pos-
itive integer m, and ¢, = ¢(**™)/2 for any positive odd integer n.
By Frob(l, K) we mean the Frobenius automorphism of prime !/ on

20
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a field K. For any prime ! congruent to 1 modulo 4 let b, ¢ be
such integers that [ — 1 = 2%c;, where 2 { ¢;, and b, > 2. For this
prime [ fix a Dirichlet character modulo [ of order 2%, and denote
it by ¢. Let By = {p] | 0 < j < 2472}, and R} = (» Ry, where
py = e*ma/=1) (= (1) is a primitive 2% ~'th root of unity. Then
#R, = #R; = (I — 1)/(4c;) (where #S denotes the number of ele-
ments of the set S). Further, for each [, where l =1 (mod 4) orl = 2,
we fix one of the characters x; as defined in the theorem. Note that
for any integer a satisfying (a/l) = 1 the value x;(a) does not depend
on the choice of the character ;.

Let J = {2}U{a € Z| a is a prime congruent to 1 modulo 4}. We
let ngyy = 8 and nyy = [ for any other element of J. For any finite
subset S of J we let (by convention, an empty product is 1)

ns=[]ng, (=", Q°=Q(s), Ks=Q{Vi|les).
les

For any [ € S we denote by o; the nontrivial automorphism in the
group Gal (K s/ K 5\{;}). Let us further define

1 if S =0,
Eng = \%NQS/KS(]- — Cs) if S = {l},
NQS/KS(]- — Cs) lf #S > ].,
where ms = [[;cgl. It is easy to see that e,, are units in K (in
particular, &, = —1 + +/2). Let C be the group generated by —1 and
by all conjugates of e, , where S C {2,p,q}. It can be shown (see
[6]) that units {—1,¢&5,&p, &4, €24, E2g, Epgs E2pq} fOrm a basis of C, and
that [E : C] = 2* - h, where h is the class number of Q(v/2, /B, /9)-
We shall study the structure of C in order to find the subgroup

of E of the sufficiently low index in E. Then we will be able to
discuss the parity of h. We know from the results in [5] that for units

Eapy €24, aNd £y, there exist units By, Bag, and Byg in Q(V2, /P, 1/7)
respectively, such that ey, = 33,, €2 = B3,, and &, = B2, Where

Bop = H (Cl_e;_qep) and [y = H (E;q—E;Za

0<a<16p 0<a<pq
a=1(16) Yp(a)ERy
(a/p)=1 (a/g)=1

and the definition of 3,, is analogical to the definition of 8,5, (see also
Proposition 3.2). Here we show that for e,,, there also exists a unit
Bopg in B, such that e,y = B5,,. After showing this fact we will have
the subgroup of E generated by {—1,¢&2,¢&p,€q, B2p, B2qs Bpg) Bapg} Of
the index h.
We have directly from the definition
Eopg = H(l - Cgpq) = Clsﬁpq ) H(Cfﬁ‘;q - Cfﬁpq)a

a
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where s = ), a with a in the products and the sum running through
the set of all positive integers a < 8pg satisfying a = +1 (mod 8)
and (a/p) = (a/q) = 1. It is easy to see that 8pg | >, a. Further if
a = 19 (mod 16), then a + 8pg = +1 (mod 16), therefore

Eopg = + H (Cl%‘;q - Cfﬁpq) == H (Clzil;)q - Cfﬁpq)z'

0<a<16pq 0<a<16pq
a=+1(16) a=1(16)
(a/p)=(a/q)=1 (a/p)=(a/q)=1

Now, if we define (B,,, by the formula

Bopg = H (Cl_fs;q - Cfﬁpq):

0<a<16pgq
a=1(16)
(a/p)=(a/q)=1

we get £2py = +£03,,- We will prove that By, € Q(v2, /D, /7). Let
us take any 7 € Gal (Q((lﬁpq)/(@(\/ﬁ, /P ﬂ)) Then there is t € Z
satisfying ¢ = £1 (mod 8) and (t/p) = (¢/q) = 1 such that (f;,, =
(lepe- We will show that B, = B2, This fact is easy to see in
the case £ = 1 (mod 16). If £ = 9 (mod 16), then t' =t + 8pg = 1
(mod 16), Clqu Cfﬁpq, and

ﬁ;—pq = H( 6pq 16pq) = ( 1) prlle-1)/4 H(Cmt;z fépq) = ,szq

In the remaining case ¢t = —1 (mod 8) let ' = —¢. Then t' = 1
(mod 8) and the same equation as above yields again Bapg = Bopgs

therefore indeed [, € Q(\/ﬁ, /P, 1/q). Finally, as e3,, is a positive
real number (it is a norm from an imaginary abelian field to a real
one), we have €5, = +83,,

Summarising these results we can conclude that the class num-
ber h of the field Q(+v/2, \/D,+/q) is even if and only if there are
T2, Tp, Tq, Tapy Tag, Tpg, Tapg € {0, 1}, such that

N = |e37erel Bayt Brat Bor Brpt| # 1
is a square in E. The set of all such possible  can be restricted using

the next statement, which is taken from [6]:

LemMmA 2.1. Let S C J finite and l € S arbitrary. Then

-1 if S ={l},
1 Frob(l,K )
NKS/KS\{I} (gﬂs) = (l/k) (hitom) if S= {l, k},l * k,

1— F‘rob(l KS\{I})

67['5\{1} ’Lf #S > 2.

REMARK. This lemma is in fact the same as Lemma 1.1 but now
we allow also [ = 2.

From this lemma it follows that

(£e2)"F7? = (Fe,) 7% = (Feg) 70 = —1

)
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hence none of +e¢5, +¢,, ¢, could be a square in E. Since
1+oo 2 1+os 2 1+o0, _ 2
(feqgp) = —€, (Leqgq) = —¢;, (£epey) 77 = —€5,
none of te,e,, £e26,, £€,€4 could be a square, and finally nor e5¢,¢,
could be a square in F, because

)1+0’2 —

2.2
(Le2epe, —€,€5-

3. Crossed homomorphisms and units

In the next section we shall discuss whether a given unit n € C
is a square in F or not. For this purpose we shall use Proposition
1.3. In our case we have S = {2,p, ¢} and thus we want to know how
automorphisms o,,0, and o, act on arbitrary unit n which can be
generated by {—1, €3, €,, €4, Bop, Bogs Bpgs Bopgt- First, we recall result
of this type proved in [5].

PROPOSITION 2.2. If p, q are distinct primes either even or con-
gruent to 1 modulo 4, and (p/q) =1, then

'6;;% = Xp(9)-

In Proposition 1.7 we have proved an analogy to Proposition 2.2 in
the case where p and g are primes, p,g = 1 (mod 4) and (p/q) = —1.
We will present that result together with the case when one of the
primes is equal to 2. For the presentation of that result we recall the
auxiliary function o (defined in Chapter 1) using notation introduced
in the previous section. We define

oy(s) = (_1)#{0<a<lWz(as)eRz,sz(a)eRf} ) (_1)#{0<a§(l—1)/2|¢l(a)¢RlUR;}

for any prime [ = 1 (mod 4) and any integer s, which is nonresidue
modulo [.

We also define the function ¢ in the case ! = 2 and s =5 (mod 8)
by the formula

a(s) = -1 if s=5 (mod 16),
271 1 if s=13  (mod 16).

The result mentioned above is stated in the following proposition.

ProrosITION 2.3. If p and q are distinct primes either even or
congruent to 1 modulo 4, and (p/q) = —1, then

zlwqﬂrq = a,(q) &p-

ProoOF. The case when both primes are odd is proved in Proposi-
tion 1.8, here we assume that ¢ = 2 and p is an odd prime congruent
to 1 modulo 4. From here on to the end of this section we let 9 = 9,
R=R,, and R' = R,.
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First, we prove the formula Gil 7 = a,(2)e,. We have

2p
Bro= [] (Giop—Clop) = (1D [T (Gip — Cip)
2p 16p 16p 16p 16p
0<a<16p 0<a<16p
(a/p)=1 a==+1(16)
a=1(16) P(a)ER
::j:Cﬂ; : II (1 _'Cgb%
0<a<8p
a=+1(8)
¥(a)ER

where r = Y, a with a running through the same set as in the last
product. It is easy to see that 8 | 7 (hence (fs, € Q((;)), and that

r=2 > a (modp).
0<a<p
Y(a)eR

Let ¢ be an integer satisfying ¢ = 1 (mod p), and ¢ = 3 (mod 16),
and 7 € Gal (Q(¢16p)/Q) be the automorphism determined by (s, =

(te,- Then o, is the restriction of 7 onto the field Q(+/2, /p). Then

(G " =Gy = [ (-7
0<a<p
P(a)ER

Hence

B = (G T1 (=g

0<a<8p
a==+1(8)
Y(a)eR
= [T @2 I -¢&)
0<a<p 0<a<8p
Y(a)ER 2fa,y¥(a)ER

As it can be easily seen, we have for a fixed integer b

[T (1—¢g)=(1— ¢y -mee(awm)

0<a<8p
2fa, a=b(p)

and therefore we can continue our calculations as follows:

Bior= [ (oo — ¢yt Reneam)

0<a<p
Y(a)ER

= I (E;a_fg)lflﬁ‘rob(ZQ(Cp))_l

0<a<p
Y(a)ER

= ] &*-¢) [I & -0,

0<a<p 0<a<p
Y(a)ER Y(a)ER
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where ¢’ € Z is an inverse of 2 modulo p. Now multiply both sides
of this equation by
[T -9

0<a<p
(a/p)=—1
Y(a)¢ R

and an easy calculation yields (in all following products we assume
also 0 < a < D)

Bt 1 (&e-¢; ﬂlll@w —£°)

(a/p)=-1 P(a)ER
P(a)¢R'
[T -6 11 -9
P(a)ER (a/p)=-1
P(a)¢ R
= JI (-6 [1 -6
¥(a)¢RUR/ (a/p)=1
= JI &*=&)" 11 &°—¢&)
P(a)ERUR' (a/p)=1
=6 I G )t I 0-¢)
$(a)ERUR/ (a/p)=1
= JI (&°—€&) " v ey,
¥(a)ERUR!

where a in the sum is running over all quadratic residues modulo p
satisfying 0 < a < p. If we recall that for any prime [ congruent to 1
modulo 4

—1)/2
H =&,

=1

Q

we finally get
514—02 = &+ 0(2).
Now we prove the second assertion of the proposition, namely
Bay " = a5(p)es. We have

140 —a a —s a
,6 P = H (Cl6p - Cle) = Cle ’ H (1 - Cs;n),
0<a<16p 0<a<16p
pta=1(16) pla=1(16)
where s = ), a with a running through the same set as in the pre-
vious products. Again, it is easy to see that p | s and that s=p—1
(mod 16). Therefore

B (¢, Grg)t FoblpG) " { 1-+2 if p=5 (mod 16),
16 —

~1++/2 if p=13 (mod 16),

which is by the definition equal to —e5 in the former case and to €5
in the latter one. The proposition is proved. O
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Now we present a relation between function o defined above and
Dirichlet characters.

PROPOSITION 2.4. If p 15 a prime such that either p = 2 or
p =1 (mod 4) and m,n are integers satisfying m,n Z 3 (mod 8),
(m/p) = (n/p) = -1, then

ay(m) - ap(n) = —xp(mn).

Proor. The proposition is proved in Proposition 1.9 if p is an
odd prime. If p = 2 then the assertion is trivial. Il

In Chapter 1 it is shown how automorphisms from the Galois
group of the field extension Q(,/p, /4, v/7)/Q act on the unit B, in
the case when all primes are congruent to 1 modulo 4. Here we state
this result together with the case when one of them is equal to 2 and
the other are congruent to 1 modulo 4.

ProposIiTION 2.5. Let p,q, and r are distinct primes either
congruent to 1 modulo 4 or equal to 2. Then

g 1—Frob p:@([:ﬁ)
piies = g )

ProoOF. The case when all primes are odd is proved in Proposition
1.10. Now we can assume without loss of generality that p and ¢ are
odd primes congruent to 1 modulo 4, and r = 2. We have to prove
two equalities:

140 1-Frob p:@(\/ir\/a) o 1—Frob 21@(‘\/?"\/6)
:62::21 " = Bog ( ) and ;-;:] ? = LPrq ( )

Let us prove the first equality:

Bom? =TI (Gt — Cope) = Ciona - [ (1= ¢,

0<a<16pq 0<a<16pq
pta=1(16) pta=1(16)
(a/g)=1 (a/g)=1

where s = ), a with a running through the same set as in the pre-
vious products. By the suitable reorganization of the terms in this
sum we can easily see that p | s, ¢ | s, and that

s=(@-1)- Y a (mod 16g).
0<a<16g
a=1(16)
(a/q)=1
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. . 1+o
Now we can continue our computation of B,,, © as follows:

140 s o -1
,62;;" _ /p H(l ng 1 Frob(p,Q(¢(16q))

:(Cfeq )L~ Frob(pQlGreq))” H(1 e Frob(p,Q(C164)) ™

= H(Cfe‘é S B GO Bl Feob(p QL)

1—Frob(p,Q(v2,1/3))
- ﬁ2q )

where the last equation holds because B,, € Q(v/2, V/@). All the
products and the sum in the calculation above are taken over all
positive integers a < 16¢ satisfying a = 1 (mod 16), and (a/q) = 1.

Now, let us consider the second equality (recall that by the con-
vention introduced earlier we have ¥ = 9, and R = R,). First, we
write the unit 5., in a modified form:

:62pq — H (Cl_fil;q - C](.z(ipq)

0<a<16pq
a=1(16)
(a/p)= (a/q)

( ) Na=1)/8.. H (Cl_ﬁt;q - Cfﬁpq)

0<a<16pgq
a=+1(16)
Y(a)ER, (a/q)=1
= C]B;q ’ H (1 - Cgpq))

0<a<8pgq
a=+1(8)
Y(a)ER, (a/g9)=1

where 7 = Y-, a with a running through the same set as in the last
but one product. It is easy to see that 16 | r, that

r=2 > a (modp),
0<a<pg
Y(a)ER,(a/q)=1

and that the same congruence holds also modulo g.

Let ¢ be an integer satisfying ¢ = 1 (mod p), £ = 1 (mod gq),
and t = 3 (mod 16), and 7 € Gal (Q((i6pe)/Q) be the automorphism
determined by (., = (l6,,- Then o is the restriction of 7 onto the

field Q(v/2, /B, 1/2)-
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Hence we have

ﬂé;:;a2 = (Cl_G‘;q)l—H- ’ H (1 - Cgpq)l—H- = C8_p‘; : H (1 - Cgpq)

0<a<8pgq 0<a<8pg
a=+1(8) 2ta, (a/q)=1
¥(a)€R, (a/q)=1 Y(a)eR
= Copr - [T - C;q)l—Frob(zQ(cpq))‘

0<a<pg
¥(a)ER, (a/q)=1

1*F\f°b(2:Q(Cpq))_1
()

H (1 _ ;q)1*ﬁ°b(2:Q(Cpq))_l

0<a<pgq 0<a<pq
Y(a)ER, (a/q)=1 Y(a)ER, (a/q)=1
— H ( a _ ¢—a 1*F‘r°b(2:Q(Cpq))_l — 1*F‘r°b(2:(@(qu))_1
pq pq pgq )
0<a<pgq

Y(a)ER, (a/q)=1

i —Fro -1 1—Frob( 2,Q(,/?,
Since B, € Q(1/B, /7), we have B P> UEN T — g (20(veva)
O

Now we have all information about units needed to prove the
theorem.

4. Proof of the theorem

Having all the necessary information about the units from the pre-
vious section handy we can prove the theorem stated in the beginning
of this paper. As we have already mentioned, the statement of the
theorem in the case when all primes p, g, are odd (and congruent
to 1 modulo 4), is proved in Chapter 1. Now we should consider the
case when exactly one of primes p,q,r is equal to 2 and the others
are congruent to 1 modulo 4.

This proof uses the same auxiliary results as the one of the main
theorem of the Chapter 1. We outline the main ideas of the proof
again to allow standalone reading of this chapter. The reader is ad-
vised to fill in details using the previous chapter.

As we have already mentioned at the end of the second section,
now we shall discuss whether there exists a unit

— |gZTppTqoZr 3Tpg BTpr BTqr BLpgr
?7 - |Ep gq gr Pq pr qr pqr | # 1)

which is a square in E. We have also proved that for n to be a square
in B, at least one of z,q, Tpr, T4, and T, should be nonzero, and
there should also exist a function g : {0,,0,,0,} — Q(\/p,/q,VT)
satisfying n*~ 7 = g¢(o)? for any o € {0y,0,,0,}, and conditions
(1a),(1b) of Proposition 1.3.

For this discussion it is necessary to distinguish the following four
cases:

(p/q) = (p/T)=(g/7) =1
(p/q) = (p/r) =1, (¢/7) = -1
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e (p/g)=1, (p/r)=(g/r)=-1
e (p/q)=(p/r)=(g/T)=-1

In the first case we have by Proposition 2.5 Bpgr ¥ = Bpgr © =
,6;1,;"” = 1. Therefore we can put n = |B,,|, satisfying conditions
of Proposition 1.6. Hence |B,,| is the required square in E and the
class number of the field Q(,/p, /g, v/7) is an even number. Moreover,
this special form of the unit 7 implies the remaining assertion of the
theorem in this case. For the details see page 15.

In the second case, (p/q) = (p/r) = 1, (g/r) = —1, there is always
a unit of the required type, which is a square in E. If x,(q) = x4(p) or
Xp(T) = Xx-(p), then it is easy to see by Proposition 1.11 that the re-
quired unit 7 exists already in the corresponding biquadratic subfield
of Q(\/p, /4, /7). Otherwise, it can be easily shown using Proposi-
tion 1.3 that n = |egeser BpgBprBpqr|, Where (—1)° = x,(q)Xp(7), is @
square in E. Therefore the class number A is even in this case too.

Let us now consider the third case, (p/q) = 1, (p/r) = (g/r) =
—1. By the exactly same process (now we, of course, allow some of
the primes is equal to 2) as on the page 17 in Chapter 1 we deduce
that the parity of the class number of Q(,/p, /g, +/r) is the same as
the parity of the class number of the field Q(,/p, \/q).

The last case (p/q) = (p/r) = (g/r) = —1 is the most difficult
one. Using again the exactly same reasoning (but using extended
underlying results) as on the page 17 in Chapter 1 we can verify that
the necessary and sufficient condition for A to be and even number is

Xp(qr) - Xq(pr) - X-(Pg) = —1



CHAPTER 3

Class Number Parity of a Compositum of Five
Quadratic Fields

1. Introduction

Here we formulate the main result of this paper:

THEOREM 3. Let p,q,r,s,t be different primes either equal to
2 or congruent to 1 modulo 4. Then the class number of the field

Q(/P, /T, VT, v/5,Vt) 1is an even number.

REMARK. In the following whenever we talk about primes without
further specification we will implicitly assume that p =2 orp =1
(mod 4).

1.1. Notation. In this section we introduce the notation we shall
use throughout this paper.

S ... a finite nonempty set of distinct positive primes not
congruent to 3 modulo 4

ns = [liesl, ms = [lies Mgy, where mysy = 8, myy = [ for
I #2

(p/q) ... the Kronecker symbol

Xp (p an odd prime, resp. p = 2)... Dirichlet character of
order 4 mod p (resp. mod 16)

Ks =Q(\/p;p€S)

@S — @(Cms)) where C‘n — e27ri/n, fn — e'/ri/n

0; ... the unique automorphism for [ € S determined by the
relation Gal <K5/K5\{l}> = {1, O'l}

Frob(l, K)... the Frobenius automorphism of prime [ on a
field K

Es ... the group of units in K

Cs ... the group generated by —1 and all conjugates of €,
where T' C S, and

1 if T =20,
Enp = %N@T/KT(l —mp) if T =1},
Nor/kp(l = Cmp) i #T >1

30
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1.2. The index of C. In the paper [6] Kucera proves the follow-
ing result:

ProOPOSITION 3.1. {—1}U{en,;0 # T C S} form a basis of Cs,
moreover

[Bs : Cs] = 22" - hs,

where hg 15 the class number of Ks and s = #S.

The index of Cs plays the key role in our considerations. In the
paper [5] and Section 2 of Chapter 1 it has been proved that ¢,,, and
Epgr are squares in Eg. We will need a similar result for €,4,;, and
Epqrst DUt We will be able to prove even more general statement. First,
we formulate an auxiliary definition:

DEeFINITION. For any prime [ congruent to 1 modulo 4 let b, ¢
be such integers that [ — 1 = 2%¢;, where 2 { ¢;, and b, > 2. For this
prime [ fix a Dirichlet character modulo ! of order 2%, and denote it
by 1/)[. Let

Ry ={n \ 0<j<2"?}, and Rj = (- B,
where p; = e4™@/(171) (= (,5,-1) is a primitive 2%~'th root of unity.

REMARK. It is easy to see that #R; = #R; = (I — 1)/4c.

Now we can state and proof the promised result.
ProposITION 3.2. If #S > 1 then €, 15 a square in Kg.
PRroorF. Consider sets P, M; defined by
P:{aEZ‘0<a<ms, (a/l) =1 for any lES},
and
Ml:Pﬂ{aEZ‘O<a<ms,¢l(a)€Rl} for any odd [ € S.

For any a € P and any odd | € S we have either a € M; or mg —a €
M;. Therefore

€ng = H(l_ fns): H (1_ s@s)(l_c';t‘;

achP acM;
= [T Q=& -6 = [] (s — &ns)(Ems — &%)
acM; acM;
Since 2 | #M;, we can write €,, = ,215, where
Brs = 1 (€ns — &ns)-
acM;

Now we have to show that 3,, € Ks. We will distinguish two cases
— either 2 ¢ S or 2 € S: In the first case, let ¢ be an element of the
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Galois group Gal (@S /K S). Then there exists an odd integer k£ such
that o (¢ms) = ¢f,. We have (k/lI) =1 for any [ € S, and
7= 1€k —6) = Bog - (FDHECMIMERERD,
acM;

and since for any d € M; the number of elements a of the set 1/;, such
that ¥;(a) = ¥i(d), is equal to ¢;[Ties\ g3 (¢t — 1)/2 which is an even
integer, we have 57 = (s, 1.6. Bns € K.
Let now 2 € S. First, write ¢, in a slightly modified way:
s = [1(1—Cag) = &0 TT (602 — €5
acP acP

where the sum is taken over a € P. This sum is easily seen to be
divisible by mg, therefore

EnS::i: H (;’LZ"_ ;.7"1.5)::‘: H (‘r_n(_lg_ ;'7’7.5)2'

0<a<2msg 0<a<2mg
a=+1 (16) a=1 (16)
vteS:(a/t)=1 vteS:(a/t)=1

Let us now define v, by

fY’n.s — H ( ‘;7,2' - fns)'
0<a<2mg
a=1 (16)
VteS:(a/t)=1
Then e, = +v2,. We prove 9,;, € Kgs. Let us take any 7 €
Gal (Q(éms)/Ks). Then there is t € Z satisfying (¢/1) = 1 for each
!l € S such that £, = ¢&,.. Hence t = 1 (mod 8). We will show

that 7], = 7as. This fact is easy to see in the case ¢t = 1 (mod 16).
If t =9 (mod 16), then ¢ =t + mgs =1 (mod 16), &, = —¢., _, and

- —a a 1-1)/2 —at! at!

7 = (1 — &) = (DHesa A T (e —gir) = .
In the remaining case ¢t = —1 (mod 8) let ' = —t. Then ¢’ = 1
(mod 8) and the same equation as above yields again v. . = Vs,
therefore indeed 7,, € Kg. Moreover, as €, is a positive real number
(it is a norm from an imaginary abelian field to a real one), we have

gns — +’Y’?Ls'
Finally, we have also &,, = (2 s therefore B8,; = +7v,s which
implies 8, € K too. O

For later reference we state the definition of 8 once again:

DEeFINITION. For any T' C S, #T > 1 we define
Bur = 11 (& — &mp),
acM;

where M, is defined as in the beginning of the proof of Proposition
3.2.
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REMARK. Although f3,, is defined in the way depending on the
choice of [ € T and on the particular selection of the character 9, it
is easy to see that these choices can influence only the sign of (,,.
As we are not interested in this sign we do not need to specify the
choice of [ and 1), precisely.

Putting last result together with Proposition 3.1 we obtain the
following assertion:

ProrosiTiON 3.3. Let
Cs={-1}U{er; TC S, #T =1}U{Br; T C S, #T > 1}).

Then
[ES . Cg] = hs.

As an easy consequence of this proposition we get the following

COROLLARY. hg is even if and only if C5 N (E%\ C2) # 0.

Thus there is a square in Q which is not a square in Cf% if and only
if the class number hg of K5 is even. The conditions for the existence
of such a unit were succesfully found for the fields Ks, where the set
S has up to 3 elements (see Chapters 1 and 2).

In the Theorems 1 and 2 it has been shown that whenever there
are such primes p,q,r where at least 2 of the Kronecker symbols
(p/q),(p/7),(g/r) are equal to 1 then the class number of the field
Q(+/p, +/q,/7) is even. The exact statement of those theorems can
be found on pages 7 and 20.

2. Possible cases

First, let us state an easy consequence of class field theory (cf.
e.g. Theorem 10.1 in [7]):

LEMMA 3.4. Let S, T be sets of primes as above, and S CT. If
the class number of Ks 1s even then also the class number of K¢
15 an even number.

From the previous lemma it follows that we can limit ourselves
only to those cases where the class number of any subfield K;, J C S
is an odd number. The following lemma easily follows from Theorem
2 and Lemma 3.4.

LEMMA 3.5. If the class number of Q(/P, /4, /T,/$,Vt) is

odd then the following must be satisfied: There exist four distinct
primes pi, D, D3, Pa from the set {p,q,r,s,t} such that either
e for any distinct 1,5 € {1,2,3,4}, (p:/p;) =—1, or
e ezactly one pair 1, Jo € {1,2,3,4} of distinct indices sat-
wsfies (pi/p;) =1, for the other pairs of indices 1,7 the
value of Kronecker symbol (p;/p;) should be equal to -1.
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ProOOF. Assume that for any four distinct primes pi, ps, D3, Ps
from the set {p, g, 7, s,t} there are at least two pairs of indices yield-
ing quadratic residues. It can be easily seen that there must be
three primes g¢i,g»,gs from the set {p,q,r,s,t} such that (g;/g2) =
(g1/g3) = 1. By Theorem 2 it means that the class number of the
field Q(,/4,,/4,,+/q;) is even and by Lemma 3.4 we get a contradic-
tion. O

According to Lemma 3.5 and thanks to the symmetry we can
now investigate the class number of Q(,/p,/q,+/7,+/s) only in the
following cases:

(1) all pairs are mutual non-residues.
(2) (p/q) = 1, all the other pairs form quadratic non-residues

We will be able to prove that in both cases there is an additional
square in the subgroup C% and therefore (thanks to Corollary follow-
ing Proposition 3.3) the class number of the field Q(,/p, \/q, /T, /S)
and thus also the class number of the original field is an even number.

2.1. Search for an additional square. In the following para-
graphs we will consider the two cases individually to prove that in
each of them we can find a unit of the form

n=1[1&"" 1] 8
keS JCS
#T>2
which is a square in E. We will need Proposition 1.6 of Chapter 1
which provides us with the necessary tools. Recall that the field K is
abelian and that its Galois group can be viewed as a (multiplicative)
vector space over F, with basis {o; |l € S}.

From this proposition it is evident that it will be necessary to know
the action of homomorphisms o; on the generators of Cs, and Cg. As
this task was already considered in [5] and the previous chapters, we
will only cite those results here:

PROPOSITION 3.6. Let T C S be arbitrary (nonempty), and
leT, then

» if T ={l},
(enn) 7 = L (/R) -1 TS i ey 1,
gL FEob(r o) if #T > 2.

Let us now define an auxiliary function a using notation intro-
duced in the previous section. We define

Oll(S) :(_ 1)#{ 0<a<li|4i(as)ER, ¥i1(a)ER, }

(pytlocesenzineenon |
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for any prime { = 1 (mod 4) and any integer s, which is a nonresidue
modulo [. We also define the function o in the case l =2 and s =5
(mod 8) by the formula

oa(s) = -1 ifs=5 (mod 16),
27 1 if s=13  (mod 16).

We need the following statement for the calculations in the next
section:

LEMMA 3.7. If p 1s a prime such that either p = 2 or p =
1 (mod 4) and m,n are integers satisfying m,n Z 3 (mod 8),
(m/p) = (n/p) = -1, then

ap(m) - ap(n) = —xp(mn).
Proor. This is Proposition 1.9. U

The next proposition is in fact a stronger variant of Proposition
3.6.

PRrROPOSITION 3.8. Let T C S be arbitrary, #T > 1, andl € T.
Then

xx(1) if T={k,1},(k/l)=1
Bralt = ull)er if T={k1},(k/1) = -1
ﬁi;zzb(l’KT\{l}) ’lf #T > 9.

Proor. For the proofs of the first two assertions see [5], and
Proposition 2.3. We now present a proof of the third case which
is in fact an easy modification of the proof of the same statement for
the case #7T = 3 in Proposition 1.10.

Let g € T, g # 1 odd, and put ¢ = 9¢,, R = R;. Then

B = Il G- =6&. [l (-6,

0<a<mm O<a<mm
Y(a)ER, Ua Y(a)CR, lfa
Vi£l:(a/t)=1 Vil (a/t)=1

where s = ), a with a running through the same set as in the previ-
ous products. It is easy to see that my; | s, and that

s=e(mpy) > a (modmmgy),
0<a<mp\ (13

Y(a)ER,
Vt£l:(a/t)=1
where ¢ is the usual Euler function.
Hence (a in the following products runs through the same set as
in the previous sum)
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—1
1+a m{l}a lfF‘rob<l,Q(§mT\{l} >H 1 F‘rob(l,@((mT\{l}))
mT\{l}
a
—1
_ —1
H( 'rn{l}a . m{l}a>1 F‘rOb<l’Q(£mT\{l})) . l—F‘IOb(l,KT\{l})
mr N\ {1}
a
since ,BnT\{l} € KT\{Z}- O

Having the relations from the last section handy, we can try to
find units satisfying Proposition 1.6.

2.2. All pairs non-residues. At first, we will calculate Bpers’

Brarr = ﬂ;;:q"”s =B (B )" (Be)™
q‘rs ( ar(s)as(r)es E‘r )
( qrs ( aq(s)as(q)gq_lgs_l)> ’
) ( qrs ( aq(r)ar(q)é?;l.s;l» o
1+o0q+0q0,

= (82,) T (—an(s)a(r)e, e )

' (aq(S)as(Q)€q€§1)

: (—aq(r)ar(Q)Eqar)

~Bars * Xr(35)Xs(r@)Xq(rs)-
As we suppose that the class number of the field Q(,/g, /7, +/s) is
an odd number (which is by Theorem 2 equivalent to the condition
Xq(78)x-(g5)xs(gr) = 1), we finally have
Brard = —Bars-

Now, if we put

S)
Q
N N N
Il
o
Q
=3
=
)
3
17}

g Us) — ,qurs:B;(;vgs’

we can see that the unit 7 = |e,6,6,€:8,4rs| 18 the required additional
square in E by verification of conditions (1a) and (1b) of Proposition
1.6. Thanks to the perfect symmetry we can always verify only one
instance of these conditions:

9(0)"" 7" = Bpge?  Brd T+ (—1) = Bgps - Bops =1

9(0)" 7 = Xp(r5)Xr (PS)X:(PT) - BprsBorstres - (—0tr(5)0ts(r)) - Bpgrs
9(09)" " = Xo(75) X (95)X:(qT) - BpreBarseres - (—tr(8)ats(T)) - Bogrss



3. COMPOSITUM OF FIVE QUADRATIC FIELDS 37

which implies g(o,)' % = g(o,)* 77, using the assumption about the

class number of the octic subfields Q(,/p, v/7,/s), and Q(/q, /7, /$),

and the derived equality x,(rs)x.(ps)xs(pr) = xq(rs)x-(a5)Xxs(q7r) =
1.

2.3. One residual pair. Let us suppose that (p/gq) = 1 and
all other pairs form non-residues. Further, from the condition that

Q(v/p, /1), Q(\/p, /T, +/5), and Q(,/q, /7, +/s) have all an odd class

number we may use the following relations in our reasoning:

* Xp(q) - Xq(pP) = —
® Xp(r8)X-(ps)xs(pr) =1
o xq(75)x-(g5)xs(qr) = 1

LEMMA 3.9. x,(rs)x.(7s)x-(Pg)Xxs(pg) = 1.

PROOF. X,(75)Xq(78)x-(Pq)xs(pg) is by the assumptions made

above equal to (Xp(rs)x,(ps)xs(pr» (xq(rs)xr(qs)xs(qr)) =1, us-
ing the evident equalities x,(pq) = —x,(ps)x-(¢s) and x;(pg) =
—Xs(pr)xs(qr). O

Let us now calculate Bpgrs?, By (the other norms we can get by
the symmetry):

Brar? = B = By (B)”
- IBq'r's ’ (_aq(s)as(q)gt; 8;1) ) (_ 27'5 ) aq(r)a,’_(q)g;]'g;l) '
=g2e7 - (—og(s)as(q)e; e ") - (ag(r)ar(g)e, e,
= —agy(r)a-(g)a.(s)as(g)e-€s
By a similar calculation we get
Brary = Bpa™ " = B (B”) " (Bra™)

= (0tg(5)E 9845 Bpgs) - (ap(S)Epﬁps pqs)"”-(xp((J)xq(P)ﬁiqs)”””q

= —Olq(S)Olp(S)Xp( )Xq(p)epg E q32 iqs
= 01 ()0 (8)epE €26, B,y gqs,

where the last equation follows from the condition x,(q)x.(p) = —1.
Put now 7, = 8,,' 6. qj}ﬁ;jﬂpqrs. We get

l—0op

M7 = Xg(r8)X-(P2)Xs(PD)Byr Brs Bogrs = Xo(T5)Brr Brs Brgrs
and
M7 = Xp(18)Xa(75)€5 B BisBar BasBrasBaars
(the equations for n'~%2 and n' 7 we get by the symmetry).
Let z, = xp(75), 24 = Xq(78), 2, = T5 = Xp(T5)X,4(T5), and

51:{1 if o= 1

g ifzg=-1
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for any I € {p,q,r, s}. Further, let
n="m H o1,

le{p,q,7,s}
and
9(op) = 517:6;;1 ;slﬁpqrs
9(0,) = 6,6, B, BpsBr BasBrgsBrars
and symmetrically for g(o,), g(os). Then n'~* = g(0;)? for any prime

le{p,q,r s}
We will now verify conditions (1a), (1b) for the pairs (p, q), (p, ),
and (r, s), which is sufficient thanks to the symmetry. We have

9(0p) 77" = 657" xo(r8) X (P2) Xs(Pg) = 1
9(0, )P = 6,7 xp(r5) Xq(Ts) = 1

since z; = (5114“” for any ! € {p,q, 7, s}.

9(0p)" 7 = —oyp(r)ap(s)ar(p)es(p) - €, "5 " Bpgrs
9(09)" 77 = —ay(r)ay(s)ar(q)as(q) - €, "¢, Bryrs

and as we can get using the above lemmas o, (7)o, (s)a.(p)as(p) -

0 (1) (5)0 (0)0a(@) = xp(r3)xa(r o) (BO)Xs(p0) = 1, it follows
that g(o,)! 72 = g(oy)* °*.

For the second condition we have to compare

g(ap)l_or = _XP(TS)aq(S) ) 6;185_2 ;:rz ;213 gsﬁp_q?s Zq'rs
l—op _ —1.-21n-2102 02 -2 2
g(O’r) - X"‘ (pq)xs (pq)aq(r) ) E.q Es pr Mps qsﬁpqs pqrs

which yields similarly as above that g(o,)'7" = g(o,)'°*.
Finally, we have g(0,)' ™ = a,(r)a,(s)ae(r)ay(s) -e,%e %, %62 -

2 32 @32 A2 3273272 _ l-o T4 :
=+ B5582: B35 BpgeBrgslBaqrs = 9(0s)' " hence the conditions hold triv-
ially true.

Thus we have shown that 7 meets conditions (1a), (1b) of Propo-
sition 1.6 and therefore there exists a unit 7; € E which is the addi-
tional required square.

Altogether we get Theorem 3 proved.



CHAPTER 4

Some related questions in this area

1. A compositum of four quadratic fields

As it can be easily seen we are not able to prove results simi-
lar to Theorem 3 in case of a compositum of four quadratic fields
Q(+/p, +/q,+/7,+/5) only using the results presented in the previous
chapters. In this case even if we restrict ourselves only to the cases
which can potentially yield an odd class number using results of Chap-
ters 1 and 2 there still remains one unsolved case:

e (p/q) = (r/s) = 1, the remaining pairs forming quadratic
non-residues,
where the primes p,q,r, and s satisfy (besides the usual condition
p,q,7,8 =1 (mod 4) or one of them equal to 2) according to Propo-
sition 1.11 the conditions:

Xp(@) - Xq(P) = X(5) - X:s(r) = 1.

In Section 4 of Chapter 1 we have proved there there is no ap-
propriate nonsquare circular unit which is a square in Ep for any
three-element subset 7' of the set S = {p,q,7,s}. In the case of
four-element set S we were not able to prove either existence or
non-existence of such unit in general. We were able to prove the
existence of such unit only in the case

Xp(78) - Xq(73) - X-(Pg) - xs(P) = 1.

Therefore we cannot provide complete classification of the fields
Q(+/p, +/q,/T,+/s) With an even class number (although our numer-
ical computations shown in the table below suggest that the class
number of Kg is probably even already in the case of four-element
set S, i.e. that an equivalent of Theorem 3 could hold true even for

the fields Q(,/p, /4, VT, V/S) 7).

L » | a | r | s [rQG/P3V7V5)) ]|
5 41 53 97 72
5 41 97 193 120
5 41 137 193 8
5 61 157 173 8

1\We know from the class field theory that if the class number of Q(,/pg, /7, /s)
is divisible by 4 then the class number of Q(,/p, /g, /7, /s) is an even number.
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L » | g | v | s [rQG/psVrVs)) |
5 149 157 197 56
13 17 37 41 8
13 17 37 73 8
13 17 97 193 40
13 17 109 193 3
13 29 37 73 8
13 29 37 137 168
13 29 41 73 24
13 29 73 97 3
13 29 97 193 40
13 113 137 197 72
17 101 109 173 24
17 101 113 173 3
29 53 157 193 120
29 149 157 193 120
37 41 89 109 24
37 41 97 109 24
37 41 97 193 120
37 53 109 193 8
41 113 137 193 8
41 113 181 193 24
61 97 157 173 3
73 149 157 197 8
113 173 181 193 8

Table 1: List of all 4-tuples of primes upto 200, con-
gruent to 1 modulo 4, satisfying (p/q) = (r/s) = 1,
Xp(@) - Xq(P) = Xr(5) - Xs(r) = —1, and x,(7s) - Xq(75) -
X-(Pq) - Xs(pg) = —1

2. Power of 2 dividing a class number

Numerical results which we have obtained during the work on
this paper suggest that in some cases (where we were able to prove
that the class number is an even number) the class number is in fact
divisible by rather high power of 2.

Probably we could study the group of circular units more deeply
to get more exact result about the divisibility of the class number by
the power of 2.
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3. What about primes congruent to 3 modulo 47

After reading this paper a natural question can arise: whether
similar results can be proved in the case where some of the primes
are not congruent to 1 modulo 4. As we were motivated by the work
of R. Kucera in [5] and [6] where the theory was built for the case of
primes congruent to 1 modulo 4 we also restricted ourselves to this
case.

In the case where some of the primes are congruent to 3 modulo
4 the theory should be appropriately modified and probably some
results about the class number could be obtained by studying the
group of circular units although it will not be sufficient to work in
real extensions of Q any more and many of the underlying results will
need non-apparent replacements.
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