Pásek Michal ( search by name in IS MU /auth )

Body na spoluautora Body za publikaci pro MU Odkaz ISVaV
19,10 19,10 The role of mammalian cardiac t-tubules in excitation-contraction coupling: experimental and computational approaches
27,01 54,02 A model of the guinea-pig ventricular cardiac myocyte incorporating a transverse-axial tubular system
0,00 0,00 Voltage homogenity over the membrane of cardiac cell with a transverse-axial tubular system
2,84 14,18 Action potential voltage clamp analysis of rate-dependent changes of action potential in rat ventricular myocytes
0,00 0,00 A novel quantitative description of electrophysiological processes in guinea pig ventricular cardiomyocytes
0,00 0,00 Analýza frekvenčně závislých změn průběhu akčního napětí metodou vnuceného akčního napětí u komorových srdečních buněk potkana
3,36 23,52 Effect of antipsychotic drug perphenazine on fast sodium current and transient outward potassium current in rat ventricular myocytes
0,00 0,00 Účinky sigma ligandu haloperidolu na membránové proudy kardiomyocytů potkana
3,36 6,72 Physiological role of transverse-axial tubular system in cardiac ventricular myocytes: a simulation study
46,28 92,57 Quantitative exploration of T-tubular membrane parameters in a model of rat ventricular cardiomyocyte
0,00 0,00 Physiological role of transverse-axial tubular system in cardiac ventricular myocytes: a simulation study
0,00 0,00 Effect of Sigma Ligand Haloperidol on Transient Outward Potassium Current in Rat Cardiomyocytes
46,28 92,57 Cycling of cations between T-tubular and surface membranes in a model of guinea-pig ventricular cardiomyocyte
0,00 0,00 Effects of a persistent sodium current through mutated hNav1.5 sodium channels on intracellular ionic homeostasis in a ventricular cell model
6,72 6,72 Effects of a persistent sodium current through mutated hNav1.5 sodium channels on intracellular ionic homeostasis in a ventricular cell model
0,00 0,00 Effect of ajmaline on course of action potential and ionic membrane currents in rat ventricular myocytes
3,54 14,18 Effect of sigma receptor ligand haloperidol on cardiac excitability
2,31 11,55 Effect of ajmaline on transient outward current Ito in rat ventricular myocytes
2,31 11,55 Effect of ajmaline on action potential and ionic currents in rat ventricular myocytes
0,00 0,00 Effects of sigma receptor ligand haloperidol on ionic currents in rat cardiomyocyte
0,00 0,00 The Effect Of Perphenazine On Transient Outward Potassium Current In Rat Ventricular Myocytes
15,57 31,14 The functional role of cardiac T-tubules in a model of rat ventricular myocytes
0,67 4,68 The effect of perphenazine on transient outward potassium current in rat ventricular myocytes
5,33 21,30 Effect of haloperidol on transient outward potassium current in rat ventricular myocytes
0,00 0,00 Interaction of haloperidol with IKto-channels in cardiac cells: a quantitative model
0,67 4,68 Perphenazine-Induced block of sodium and transient outward potassium current: experimental and simulation study
27,01 54,02 Modelling the cardiac transverse-axial tubular system
2,34 4,68 Modelling in cardiac electrophysiology
1,56 4,68 Resolution of action voltage of cardiac cells into components represented by transferred charges
54,02 54,02 Quantification of t-tubule area and protein distribution in rat cardiac ventricular myocytes
2,34 2,34 Computer modelling in cardiac cell electrophysiology
54,02 54,02 Changes in action potentials and intracellular ionic homeostasis in a ventricular cell model related to a persistent sodium current in SCN5A mutations underlying LQT3
14,18 14,18 Physiological consequences of ion concentration changes in the transverse-axial tubular system of rat and guinea pig ventricular cardiomyocytes
0,00 0,00 Use of quantitative model to assess the fractional area of t-tubular membrane in ventricular cardiomyocyte
0,00 0,00 A model of IKto-channel function in rat ventricular cardiomyocytes
0,00 0,00 Activity-dependent changes of [Ca2+] in the transverse-axial tubular system reduce SR Ca2+ content and Ca2+ transient amplitude in rat and guinea pig cardiac ventricular myocytes: a simulation study
Back
(c) Michal Bulant, 2011