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Plan of the talk

Introduction on partial maps and Ord-enrichments;

Lax weak orthogonality;

Lax factorisation systems;

Lax factorisation systems for P (%¢) generated by total maps;
Extracting an oplax WFs for P (%) from a WFS on €,

Lax factorisation systems for P (Set);

Open problems on lax factorisation for some pointed
Ord-categories.
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Ord-enriched categories

A category ¢ is Ord-enriched if on every € (A, B) is defined a
partial order among morphisms. This order must be compatible
with compositions, i.e. for any h, k morphisms in €

f<g == foh<goh kof <kog.

Any Ord-enriched category % gives rise to the category ‘ﬁgx
whose objects are Arr (%) and morphisms are lax commutative

squares as:
C
s

—V>D.

u
—_
4

A
(u,v): f — g fl 7
B
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Partial maps

Let ¥ be a category with pullbacks and S a class of monomorphisms
closed under pullbacks and composition. A partial map is a span

Dy
SQU{I YF
A — B.

If of =ida we say that f is total.
They form a category of partial maps P (%) whose composition law is

" (og) I \Ui (e

Pg
UfI \W\Jf
—|f—>B—!g—>C.
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Discrete Ord-enrichment

A category of partial maps comes equipped with a partial order among
arrows. We define f < g if there exists s € § such that

Properties

@ Iff istotal and f X g then f = g.

@ Ifg-f is total, then f is total.
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General Ord-enrichment

If € has an Ord-enrichment denoted by C and morphisms in S are
faithful, we can induce an Ord-enrichment on P (%).
We define f < g if there exists s € § such that

Properties

@ Iff is total and f < g then g is total.

@ Ifg-f is total, then f is total.
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Set is a suitable category for this construction. In fact it has

pullbacks and partial domains in Set are equivalence classes of
monomorphisms.

Properties

o Domains for compositions are Dg.f = @7 * (Dy).

@ The discrete Ord-enrichment here induces that f < g iff f is a
restriction of g.
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Lax weak orthogonality

Two morphisms in % are said laxly weakly orthogonal, denoted by
f A g, if for any lax square (u,v) : f — g, there exists a morphism
d : cod(f) — dom(g) such that

A

fl u<dof
god<v

B

The morphism d is called lax diagonal morphism for (u, v).
Given two classes of morphisms H,H' C €72, we write:

© HANH ifforevery he Heh € H' then h A H;
o HN = {fh A for any h € H};
° /I\H:{ﬂf/l\hforanthH}.

D(—r\

m/
//\|
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Adjoint morphisms

As usual, in an Ord-enriched category, two morphisms f : A — B
and g : B — A form an adjunction f - g if we have the following

2-cells:
ida<g-f
f -8 < idB.

Proposition

Let f be a morphism in €. Then the following are equivalent:
O f is laxly weakly orthogonal to itself;
Q f is a left adjoint;
O A%
Q “L AT

v
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Sketch proof

1.=2. This is shown considering the square

2.=3.=1. Considering a lax square (u,v): f — g

u

57

|

f*N/lf =

J\

idg

2.=4. Analogous.
3.=1. and 4.=1. are trivial.
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Adjoint morphisms for partial maps

Proposition

Let € be an Ord-enriched category and P (€) a category of partial
maps. A pair of morphisms in P (¢) constitute an adjunction f - g if
and only if f is total and ¢r = 0, - P; such that o - g in €.

In particular we deduce that if the Ord-enrichment on € is discrete, then
a pair of morphisms constitute an adjunction f < g if and only if
f = (ida,0) and g = (0,ida), for some o € S.
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Consider the adjunction f 4 g in P (%). The 2-cell ida < g - f yields that
g - f is total and therefore f is total, we can write

/D
Nb

Dg
Dg id I
fﬂTg\w De
Ny a} \\
——
B
ida £ ¢g - 0
Pf - pg = 0g - P g & 0g.

This yields the existence of the adjunction ®; 4 ¢, in €. The other
direction is proved simply by calculation.
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Lax weak factorisation systems

A lax weak prefactorisation system is a pair (£, R) of classes of
morphisms such that R = E/T\ and £ =" R. Moreover, if every
morphism f admits an (£, R)-factorisation

A—F B

then (£, R) is called lax weak factorisation systems.
We remark that for any lax weak prefactorisation system (£, R),
LNTR =LA(%).

Proposition

Given any H C 67, then (4\7-[, (4\7{) A) and (4\ (’H/I\) ,’H4\> are lax

weak prefactorisation systems.
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Lax functorial factorisation systems

We denote by
(_ o _) : Cglix X& %ﬁx — Cglgx

the composition functor.

Definition

A lax functorial factorisation system is a functor
F:GZ, — Cpy X¢ Chyo such that (—o —) F = ldg .

Composition of F with the projections of €2, x¢ €72

x Yields the
definition of the following functors

La R :(glix — (glgax)
K€% — €.

To avoid ambiguity, a lax functorial factorisation system will be denoted
by (F,L, R, K).
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Lax functorial factorisation systems

Every functorial factorisation system comes equipped with two
natural transformations 7 : ldg> = Rand ¢: L = ldg2 . These
transformations operate as follows:

Lf

A—— Kf A—)A

f nf lRf Lf lf

B—— B, Kf —— B.
IdB Rf
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Differently from ordinary factorisation systems, these
transformations are not strict in general, but only oplax. In fact,
considering 7, for any lax square (u,v) : f — g we have that

At c B kg A e K1) g

fJV 7/ J’g Tlg Rg f{ J Rf 7/ JV

B——D——D B——B——D,
v IdD IdB

since Lg - u < K (u,v) - Lf by definition of lax functorial
factorisation. This amounts to have that 7, - (u,v) < R(u,v) - nf.
Similarly one can prove that ¢ is an oplax natural transformation as
well.
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Lax functorial weak factorisation systems

Definition

A lax weak factorisation system (£, R) is functorial if there exists a
functorial factorisation system (F, L, R, K) such that Lf € £ and
Rf € R.

Let (F, L, R, K) be a lax functorial factorisation system. We define
the two classes

Lr = {f|f A RF} Re = {fILF A f}.

Then (F, L, R, K) is lax predistributive if, for every morphism f,
Lf € LF and Rf € Rf, i.e. Lf A RLf and LRf A Rf.
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Let (F, L, R, K) be a predistributive lax functorial factorisation
system. Then we can give the equivalent definitions

Lr = {f| n¢ has a lax diagonal morphism}
REe = {f] e has a lax diagonal morphism} .

We will denote such lax liftings for any f by

At kf A*>A

fJ }f/\l JRf Lf il /\/Jf

B%)B, Kf —— B.
IdB Rf
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We consider f such that pr is a lax diagonal morphism for 1 and a lax

square
A—L S5 KF
A—YL s KF Lf 7 LL’f Arr
K(u,v) ‘L
f 1 Rf — Kf Kg
B — B por < {f 7 J’RRf
B——B

where pr is a diagonal morphism of s existing by assumption and Agr is
a diagonal morphism of egs existing since LRf A\ Rf.

This yields that A = Agr - K (u, v) - pr is the diagonal morphism sought
and f A Rf.
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Let (F,L, R, K) be a predistributive lax functorial factorisation system.
Then (Lr, RF) is a lax weak factorisation system. Moreover, for any lax
functorial weak factorisation system (L, R) with lax functorial
factorisation (F, L, R, K), we have (L,R) = (Lr, RF).

Let f € L and g € Rr. We factorise a lax square as

Ay j‘ j>

The morphism A = A\, - K (u, v) - pr is a lax diagonal morphism.
Moreover, for any f A R, then f A Rf, thus f € £, namely RA Cc L.
Analogously E/T\ CR.
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Lax monads

For an Ord-enriched category ¢, a lax monad is a triple (7,7, i),
such that

o T :% — ¥ is a locally monotone functor;
n:ld = T is an oplax natural transformation;
o u: TT = T is an oplax natural transformation;

and such that the following lax monads laws are satisfied

T ,TT< T T 7T

\ y ol o

TT — T.
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Lax algebraic weak factorisation systems

A lax algebraic weak factorisation system is a functorial factorisation
system (F, L, R, K) such that (R,n) is part of a lax monad (R, 7, ©),
(L,e) is part of a lax comonad (L, e, ), and there exists a distributive
law A : LR = RL of the comonad over the monad such that the
following diagram commutes

LRR —2% 3 RLR —R2 , RRL

L@l l@L

LR A RL
QRJ/ J,RQ
LIR 2 IRL—2“ S RIL.

Proposition

A lax algebraic weak factorisation system (F, L, R, K) is a predistributive
lax functorial factorisation system.
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Oplax case

Dual arguments can be discussed for €2

oplax- Morphisms here are oplax
squares as

A——C
| = s
B D.

Here the oplax weak orthogonality relation f V g requires that, for any
oplax square (u,v) : f — g, there exists a morphism
d : cod(f) — dom(g) such that

(u,v): f—g

-

—

A—>C
l dof<u
/VI v<god.
B—)D

The main difference here will be that self orthogonal morphisms are right
adjoint morphisms.



Total maps

Let us consider € Ord-enriched category and P (€¢) a category of partial
maps. Any morphism may be factorised as follows

Ds D¢ D+
O'fI X‘ — o I |de|deX
A—— B A—+— D —— B.
f Lf Rf

This factorisation is functorial and lax predistributive.
The underlying lax weak factorisation system is given by

Lr =PLA = {f|psf =0 -7, with 0 € S and s € LA(%¥)}, Rr =Tot.

This lax functorial factorisation system is actually a lax algebraic weak
factorisation system.
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Sketch proof

@ One proves functoriality and defines the lax (co)monad naturally.

@ If f € PLA, then Rf is a left adjoint morphism and therefore
f ARf,ie. f € Lr. On the other hand if f € Lf, one can prove
that the existence of a lax diagonal morphism for the square 7y
yields that
pf =05 Py and Pr s
Hence we have that L = PLA.

o If f is total, then Lf is an identity, therefore Lf A f, ie. f € Re. If
f € Re and ' a lax diagonal morphism for ef, then idy < 6 - Lf.
Hence Lf = id4.

This implies that R = Tot.

@ Predistributivity follows trivially since for every f

Lf e PLA = Lr and Rf € Tot = Rr.

Leonardo Larizza Lax factorisation systems and categories of partial maps 25 /37



Extracting an oplax WFs for P (%) from a WFS on ¢

We consider ¢ a category with a stable wrs (£, M) and P (%)

category of partial maps. Then for any partial morphism f we have

the factorisation

Dr —05 My Df\ A\?f )
AN e = N
A — B A —— M — B.
We define
& ={flpr € &}, M = {flpr € M}.

Stability under pullback of the class £ enables us to build
appropriate lax diagonal morphisms for oplax squares e — m and
prove that £ ¥ M.
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Moreover we have that if (£, M) is functorial on % through
(F,L,R,K), then the functors can be extended to P (%) as

Lf = (O'f, L(pf) and ﬁf = (ingofa R(pf) .

These are functors on P (¢)3

oplax*

Proposition

The pair (€, M) is an oplax weak factorisation system. If (€, M)
is functorial underlying (F, L, R, K), then (3, /V) is functorial
underlying (F, L, R, K). Moreover if (F,L, R, K) is an algebraic
weak factorisation system, then (F,L, R, K) is an oplax weak
algebraic factorisation system.
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What happens for P (Set)

We recall that for P (Set) left adjoint partial morphisms are

injective total maps and right adjoint partial morphisms are partial
bijective maps.

Then on P (Set) we have the following factorisation systems.

o First we have lax functorial weak factorisation system

(Mono, Tot) as described in general. We remark that Mono
is here given by f such that ¢f is monic.
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@ Since we know that (Mono, Epi) is a weak factorisation
system in Set and Mono is stable under pullback, then
(Mono,?ﬁ) is an oplax weak factorisation system in
P (Set). Each morphism f may be factorised as

Df‘ Df x B
UFI idp, x¢f id 7B
N
A— Dr x B+— B,
but also as
D¢ D11 B
I i T erllidg
of IDf 1
Nl
A—+—>DfII B o B
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e Finally (Epi,Mono) is a stable orthogonal factorisation
system. Then (Epi, Mono) is an oplax algebraic weak
factorisation system. Each morphism f is factorised as

Df Imcpf

UfI \@ ile J&if
mep
Nl

A - Imys m B.
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Pointed categories

Consider P (Set). In this category @ is a zero object, in fact for every
pair of sets A, B we have the zero map

N

A—— B.
Da,B

We define the class of morphisms
0= {@A’B|A, B e Set}.

We want to apply to O the proposition and its oplax version seen before:

Proposition

Given any H C €72, then (4\7-[, (4\7{) 4\> and (4\ <’H/I\) ,’H4\> are lax

weak prefactorisation systems.
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In P (Set) we obtain:
o ON=Tot = (Mono,Tot);
s ho=LA = (LA AN
o OV —Epi = (Mono,Epi);
o YO=Epi = (Epi,Mono).

Can this behaviour be generalized?
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Consider an Ord-category % that has an initial object / and such that
all initial morphisms ix € & and they are minimal. Then [ is still an
initial object in P (%), moreover if | is either a zero object or a strict
initial object, then / is a zero object in P (¢). We consider

O ={@ap = (ia,ig): A— B|A;BcOb(%)}.

For any P (€¢), a minimal map f such that D¢ = | is right absorbent.
Whenever | is actually a zero-object, then it is both left and right
absorbent.
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We consider f € /'\(9. We have
A
|
B

Then MO =14 = {f | ida < d - f for some d}.

ida A
Al
C/\J/Q)A,B
ya
— B.
idg

If the partial order on € is discrete, then iday < d - f yields that f is a
split monomorphism and a left adjoint morphism.

The complement uh = {f|f - d’ <idp for some d'}, the intersection
ubhnu being exactly the left adjoint morphisms.
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If f e O/I\, then there exists a lax diagonal morphism ¢ as in

A—C
o] 1|1
B N D.

—

Notice that a necessary and sufficient condition for the existence of such
§isthat u=@. Then ON = DD = {f|f - u =@ = u =0}
Open problem:What isNDD in general?

Remark
In Set we have DD = Tot. In general it is only true that DD 2O Tot.

Counterexample in Ab:
/
[N\

Q—+7Z.
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Similarly in the oplax case we have:
o DI =Y O={flv f=0=v=0)}.
Open problem: What is DY in general?
o V=0V = {flidg < f - d for some d}.

The complement Yy = {f|f - d’ <ida for some d'}, the
intersection being exactly the right adjoint morphisms.
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Thanks for the attention
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