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Overview

Two special classes of maps ...
... guiding us to Burroni’s T-categories and T-functors
A network of specialized and generalized T-categories
Two special factorization systems leading to ...
... the comprehensive factorization system for T-functors
On-going and future work
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Two instances of “nice” maps p : E → B of ...

... topological spaces:

p perfect ⇐⇒ p is proper and separated
⇐⇒ p is a pullback-stably closed map and

distinct points of a fibre are sep’ed by disjoint open sets
⇐⇒ p is closed, has compact fibres, and is separated

... and of (small) categories:

p discrete cofibration ⇐⇒ ∀x ∈ E0 : x\E −→ px\B bijective on objects

“Nice”, because they share good properties, such as containing all
isos, being closed under composition and stable under pullback, ...

This talk is about the two classes actually having a common parent!
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Let’s search for a parent!
(Only categorists may have a chance to find one.)

p : E −→ B discrete cofibration in Cat:

x f !!❴❴❴ y

✤
✤
✤

obE

p0
""

Edom##

p
""

a u !! b obB Bdom##

p : E −→ B perfect map in Top:

x
conv !!❴❴❴ y

✤
✤
✤

UltE

p0
""

ConvEdom##

p1
""

a
conv !! b UltB ConvBdom##
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But where does the arrow x → y live?

Think (small) multicategory A à la Lambek 1969:

(x1, ..., xn) −→ y

set A0 of objects
set A1 of morphisms
“domain” and “codomain” functions

dom : A1 −→ LA0 and cod : A1 −→ A0
where L belongs to the list (or free-monoid) monad on Set
“composition” and “insertion-of-identity” functions

LA1 ×LA0 A1 −→ A1 and A0 −→ A1

subject to the expected associativity and neutrality laws
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Burroni’s 1971 generalization and internalization
Step 1: T- graphs

C category with pullbacks, T = (T , µ, η) any monad on C

Gph(T), the category of T-graphs in C:

TA0

Tf0
""

A1

f1
""

dA
0##

cA
0 !! A0

f0
""

A = (A0,A1, dA
0 , c

A
0 )

f= (f0,f1)
""

TB0 B1
dB

0##
cB

0 !! B0 B = (Bo,B1, dB
0 , c

B
0 )

RelGph(T), the category of relational (or regular) T-graphs:

full subcategory of Gph(T) of those A with (dA
0 , c

A
0 ) monic

Alg(T) = full subcat of Gph(T) of those A with A1 = TA0, dA
0 = 1TA0
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Step 2: Pointed T-graphs

PGph(T): pointed T-graphs = T-graphs equipped with iA : A0 → A1:

TA0 A0
ηA0##

iA
""

A0

TA0 A1
dA

0##
cA

0 !! A0

A0

f0
""

iA !! A1

f1
""

B0
iB !! B1

RefGph(T): reflexive T-graphs = relational pointed T-graphs

UAlg(T): unary T-algebras = reflexive T-graphs lying in Alg(T)

A0

ηA0
""

A0

TA0
cA

0 !! A0
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Step 3: T-categories (notational preparation)

The objects A2 = TA1 ×TA0 A1 of “composable pairs” and
A3 = TA2 ×TA1 A2 of “composable triples” of a T-graph:

TA1

Tc0
""

A2
d1##

c1
""

TA2

Tc1
""

A3
d2##

c2
""

TA0 A1
d0## TA1 A2

d1##

Every morphism f : A → B in Gph(T) gives

f2 = Tf1 ×Tf0 f1 : A2 −→ B2
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Step 3: T- categories (definition)

Cat(T), T-categories = pointed T-graphs equipped with mA : A2 → A1:

TA1

µA0
·Td0

""

A2
d1##

mA

""

c1 !! A1

c0
""

A2
mA
!!

f2
""

A1

f1
""

TA0 A1
d0## c0 !! A0 B2

mB
!! B1

subject to the associativity and neutrality laws

m · m1 = m · m2 and m · i1 = 1A1 = m · i2,

where m1 = Tm ×Tc0 c1, m2 = (µA1 · Td1)×(µA0
·Td0) m : A3 −→ A2

and i1 = Ti ×TA0 1TA1 , i2 = ηA1 ×ηA0
i : A1 −→ A2
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T-functors = T2-categories

T = (T , µ, η) on C gives a monad on T2 = (T 2, µ2, η2) on C2:

T 2 : ((u, v) : f →g) (→ (Tu,Tv) :Tf →Tg, µ2
f := (µx , µy ), η2

f := (ηx , ηy )

x u !!

f
""

z

g !−→
""

Tx Tu !!

Tf
""

Tz

Tg
""

TTx
µx !!

TTf
""

Tx

Tf
""

x
ηx !!

f
""

Tx

Tf
""

y v
!! w Ty

Tv
!! Tw TTy µy

!! Ty y ηy
!! Ty

For f = (f0, f1, d f
0, c

f
0, i

f ,mf ) to be a T2-category means to have

T2f0 f1
d f

0=(dA
0 ,d

B
0 )

##
cf

0=(cA
0 ,c

B
0 ) !! f0 f2

mf=

(mA,mB)

!! f1 f0
i f=

(iA,iB)
!! f1

satisfying the T2-category equations, which means equivalently:

A and B are T-categories and f : A → B is a T-functor.
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T-(pre)orders, Eilenberg-Moore algebras

Ord(T): T-(pre)orders = relational T-categories

EM(T): Eilenberg-Moore T-algebras

EM(T) !! !!

""

Ord(T) !! !!

""

Cat(T)

""
UAlg(T) !! !!

""

RefGph(T) !! !!

""

PGph(T)

""
Alg(T) !! !!

""

RelGph(T) !! !!

""

Gph(T)

""
C C C

Note: The upper and middle rectangles are pullbacks in CAT.
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Special cases, examples

T = IdC : categories, (pre)orders, ..., internal to C

Note: while EM(C) = UAlg(C) ∼= C, generally Alg(C) ≇ C
C = Set, T = L(ist): multicategories, multiorders, monoids, ...
C = Set, T = U(ltrafilter), induced by

hom(−, 2) : BooAop ⇄ Set : hom(−, 2) .

Imagined by Hausdorff 1914, and probably also by Cartan 1937,
proved by Manes 1967 (compact Hausdorff case) and Barr 1970
(general case), adapted by Burroni 1971 to his setting, one has:

U-orders ⇐⇒ topologies (on the set A0 of objects), in terms of an
ultrafilter convergence relation ⇝, satisfying two basic axioms:

Reflexivity: ẋ ⇝ x ; Transitivity: (X ⇝ y and y ⇝ z) =⇒ ΣX ⇝ z

Open problem: U-categories = ultracategories (Clementino-T 2003)?
Walter Tholen (York University) Colimits Brno, 06 May 2021 12 / 25
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Reflexivity: ẋ ⇝ x ; Transitivity: (X ⇝ y and y ⇝ z) =⇒ ΣX ⇝ z

Open problem: U-categories = ultracategories (Clementino-T 2003)?
Walter Tholen (York University) Colimits Brno, 06 May 2021 12 / 25



Special cases, examples

T = IdC : categories, (pre)orders, ..., internal to C

Note: while EM(C) = UAlg(C) ∼= C, generally Alg(C) ≇ C
C = Set, T = L(ist): multicategories, multiorders, monoids, ...
C = Set, T = U(ltrafilter), induced by

hom(−, 2) : BooAop ⇄ Set : hom(−, 2) .

Imagined by Hausdorff 1914, and probably also by Cartan 1937,
proved by Manes 1967 (compact Hausdorff case) and Barr 1970
(general case), adapted by Burroni 1971 to his setting, one has:

U-orders ⇐⇒ topologies (on the set A0 of objects), in terms of an
ultrafilter convergence relation ⇝, satisfying two basic axioms:
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Some categorical properties

In the chain

EM(T) !! !! Ord(T) !! !! Cat(T) !! PGph(T) !! Gph(T)

each category but EM(T) is fibred over C, via (−)0, with the arrows
preserving cartesian morphisms, and all categories are (small)
complete when C is.

If, in addition, C is wellpowered, then Ord(T) is topological over C and,
in particular, (small) cocomplete when C is cocomplete.

Note: None of these statements require any special properties of T.
Still, they don’t come unexpected, just like the following observation.
But unlike what comes afterwards, I think!
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Well-behaviour under transformations

T = (T , µ, η) on C, S = (S, ν, ε) on D, (F ,α) : T → S where

F : C → D preserves pullbacks, α : SF → FT nat. transf. with

α · δF = Fη and α · νF = Fµ · αT · Sα

Then one has the induced (vertical) functors of the diagram

EM(T) !! !!

""

Ord(T) !! !!

""

Cat(T) !!

""

PGph(T) !!

""

Gph(T)

""
EM(S) !! !! Ord(S) !! !! Cat(S) !! PGph(S) !! Gph(S)

Important special case: S = IdC , F = IdC , α = η

Hence: every T-category has an underlying internal category in C, etc.
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The comprehensive factorization of Cat

Street-Walters 1973:

Every functor f : A → B of small categories factors orthogonally

(initial = limit-invariant, discrete cofibration):

el(Lanf∆1)
p

$$❏
❏❏

❏❏
❏❏

❏❏
❏

Set colim B(f−,b)

A
f

!!

ℓ
%%$$$$$$$$$$

B A
f
!!

∆1
⇒

&&⑥⑥⑥⑥⑥⑥⑥⑥
B

Lanf∆1

''

b
❴

''

Reminder:

ℓ : A → E limit-invariant ⇐⇒ ℓ/e connected for all e ∈ E
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The (antiperfect, perfect)-factorization in Tych

Henriksen-Isbell 1958, Whyburn 1966, Herrlich 1972; categorical
generalizations: Ringel 1970, Cassidy-Hébert-Kelly 1985; T 1999:

Every cont. map f : X → Y of Tychonoff spaces factors orthogonally

(antiperfect, perfect):

βX
βf

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗

βX

''''''''''''''''

''''''''''''''''
βX ×βY Y

p

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗

''

βY

X
f

!!

βX

''
ℓ=〈βX ,f 〉

))'''''''''''''' Y

βY

''

Reminder:

f perfect ⇐⇒ Stone-Čech naturality diagram of f is a pullback
f antiperfect ⇐⇒ βf is a homeomorphism

Walter Tholen (York University) Colimits Brno, 06 May 2021 16 / 25



The (antiperfect, perfect)-factorization in Tych

Henriksen-Isbell 1958, Whyburn 1966, Herrlich 1972; categorical
generalizations: Ringel 1970, Cassidy-Hébert-Kelly 1985; T 1999:
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Goal:
Establish a “comprehensive factorization” in Cat(T)!

C category with pullbacks, T monad on C

Call f : A → B in Cat(T) perfect or a discrete cofibration if

TA0

Tf0
""

A1

f1
""

dA
0##

TB0 B1
dB

0##

is a pullback diagram in C.

Problem:

Does the class P of perfect T-functors belong to an
orthogonal factorization system (L,P) of Cat(T)?
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In a cat A with pbs: When does an arbitrary class
M belong to an orth. factorization system (E ,M)?

That’s the case if, and only if,

M is closed under composition;
M is stable under pullback;
(Ehrbar-Wyler 1968) for every object B ∈ A, the full subcategory
M/B is reflective in the comma category A/B.
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Pullback stability of P

The class P is trivially closed under composition in Cat(T):
it’s just the pasting of pullback diagrams!

Pullback stability of P is straightforward if T of T preserves pullbacks:

TP0

Tg′
0
""

Tf ′0

**✸
✸✸
✸✸
✸✸
✸✸
✸✸
✸✸
✸✸
✸

P1

g′
1
""
✤
✤
✤

f ′1

++✵
✵
✵
✵
✵
✵
✵
✵dP

0

##
cP

0

!! P0

g′
0
""

f ′0

++✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

TA0

Tf0

**✸
✸✸
✸✸
✸✸
✸✸
✸✸
✸✸
✸✸
✸

A1

f1

++✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵dA

0

##
cA

0

!! A0

f0
++✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

TB0

Tg0
""

B1

g1
""

dB
0##

cB
0 !! B0

g0
""

TC0 C1
dC

0##
cC

0 !! C0

It is not straightforward for arbitrary T , see the next diagram:
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TP0

Tg′
0

,,

ℓ0
""

Tf ′0

**✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
✸

P1
dP

0##

g′
1

--

ℓ′0
""

f ′1

++✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷

cP
0 !! P0

g′
0

--

f ′0

++✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷

PT
0

gT
0
""

f T
0

**✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹

!P1
!d0##

g∗
1
""

f∗1

**✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷

!c0 !! P0

g′
0
""

f ′0

**✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷

TA0

Tf0

..✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
A1

dA
0##

f1

**✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷

cA
0 !! A0

f0

**✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷
✷✷

✷✷

TB0 B1
dB

0##
cB

0 !! B0

TB0

Tg0
""

B1
dB

0##

g1
""

cB
0 !! B0

g0
""

TC0 C1
dC

0##
cC

0 !! C0
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The main Theorem

So: P is pullback stable (without assuming pb-preservation by T !),
but our proof is lengthy (some 9 pages in Yeganeh-T 2020).

And it doesn’t get easier or shorter in the proof of the reflectivity part
(some 11 pages in Yeganeh-T 2020). There we need some
discriminatory hypotheses on T , but still no pb-preservation by T :

Theorem

Assume that the category C with pullbacks also admits coequalizers of
reflexive pairs and that these be stable under pullback and be
preserved by T . Then, for every T-category B, the full subcategory
P/B is reflective in Cat(T)/B.

Consequently, there is a class L of T-functors such that (L,P) is an
orthogonal factorization system of Cat(T).
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A glimpse at the construction of the reflector

Cat(T)/B −→ P/B, (f : A → B) (−→ (p : P → B)

TA1 ×TB0 B1
k !!

ℓ
!!

Tf1×1B1
""

TA0 ×TB0 B1
z !!

π2

""

P0

p0

""
B2 = TB1 ×TB0 B1

mB
!!

cB
1

!! B1
cB

0 !! B0

TP0

Tp0
""

P1 = TP0 ×TB0 B1
dP

0

##

p1

""
TB0 B1

dB
0##

D′ k !!

ℓ

!!

t ′
""

D z !!

t
""

P1

cP
0
""

C′ k !!

ℓ
!! C z !! P0
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Applications ...

Cat(C) has a comprehensive factorization system, for any
category C with pullbacks and pullback-stable reflexive
coequalizers (Johnstone 2002) .
MultiCat has a comprehensive factorization system
(Berger-Kaufmann 2017).
Under the hypotheses of the Theorem, the comprehensive
factorization system of Cat(T) restricts to OrdT).
EM(T) always has the comprehensive factorization system,
but it is trivial: (iso, all).
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... and not-yet applications

Tych ⊆ Top ∼= Ord(U)
has a comprehensive factorization system, despite the ultrafilter
functor U not satisfying the hypothesis of the theorem!

Example (Hofmann 2020):

Consider the set R = {(n,m) | |n − m| ≤ 1} of pairs of equal or
adjacent natural numbers, with its projections p1, p2 to N. Their
coequalizer in Set identifies all numbers. It now suffices to show that,
by contrast, the coequalizer of the maps Up1,Up2 : UR → UN = βN
cannot identify a fixed ultrafilter with a free ultrafilter on R. Indeed, if
we had an ultrafilter r on R with Up1(r) = ṅ fixed and Up2(r) free, then
we would have p−1

1 (n) ∈ r. Since p−1
1 (n) has at most 3 elements, this

would force r to be fixed. But then also Up2(r) would have to be fixed.
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Thank you!

Current and future work should start here, such as:

When is a T-category “Tychonoff”?
Establish the comprehensive factorization in that subcategory!
Exponentiability in Cat(T)?
What about the 2-categorical context?
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