Introduction	Tangent ∞ -categories	The Goodwillie tangent str
000	000000	000000

Tangent structures for ∞ -toposes 000

Tangent $\infty\text{-}\mathsf{categories}$ and Goodwillie calculus

Michael Ching Amherst College

8 April 2020 Masaryk University Algebra Seminar

Introduction	Tangent ∞ -categories	The Goodwillie tangent structure	Tangent structures for ∞ -toposes
000	000000	000000	000

Based on:

- Tangent ∞-categories and Goodwillie calculus, arxiv:2101.07819, joint with Kristine Bauer, Matthew Burke
- Dual tangent structures for ∞ -toposes, arxiv:2101.08805

Inspired by:

• Kristine Bauer, Brenda Johnson, Christina Osborne, Emily Riehl and Amelia Tebbe, Directional derivatives and higher order chain rules for abelian functor calculus, *Topology Appl.* 235 (2018)

Two meanings of the phrase "tangent category"

(1) (nLab: tangent category on C): the category of abelian group objects of the slice categories over C (aka Beck modules)

[Or the homotopical version: the $\infty\text{-category}$ of parameterized spectra over $\mathfrak{C}.]$

(1) (nLab: tangent bundle category X): provides for each object C ∈ X a tangent bundle TC, a projection morphism p : TC → C, a zero section 0 : C → TC, etc... such that ...

[E.g. $\mathbb{X} = \mathbb{M}fld$, category of smooth manifolds and smooth maps.]

Goal of this project: connect these two meanings by making (1) an example of (2) with X equal to some ∞ -category of ∞ -categories.

Warning: We use the terminology tangent category for meaning (2), the reverse of the nLab choice!

Introduction	langent ∞-categories	The Goodwillie tangent structure	langent structures for ∞-toposes
000	000000	000000	000

Tangent categories

The notion of tangent category was developed by:

- Jiří Rosický, Abstract tangent functors, Diagrammes 12 (1984);
- Robin Cockett and Geoff Cruttwell, Differential structure, tangent structure and SDG, *Applied Categorical Structures* 22 (2014);

in order to axiomatize (some) properties of the tangent bundle functor

 $T:\mathbb{M}\mathrm{fld}\to\mathbb{M}\mathrm{fld}$

A tangent structure on a category X consists of an endofunctor $T : X \to X$ together with natural transformations

- projection $p: TM \to M$
- zero section $0: M \rightarrow TM$
- addition $+: TM \times_M TM \to TM$
- symmetry $c: T(TM) \rightarrow T(TM)$
- vertical lift ℓ : $TM \rightarrow T(TM)$

Tangent categories (continued)

such that

• lots of diagrams commute

2 the vertical lift axiom: for each $M \in \mathbb{X}$, there is a pullback square

In $\mathbb{M}\mathrm{fld}$ this axiom says that

$$T(T_{x}M)\cong T_{x}M\times T_{x}M.$$

smoothly in $x \in M$.

Tangent categories (examples)

- **1** Mfld: smooth manifolds with ordinary tangent bundle
- e microlinear objects in a model of Synthetic Differential Geometry
- differential λ -calculus [Ehrhard-Regnier]
- \mathbb{CRing} : commutative rings, $TR := R[x]/(x^2)$
- Sch: schemes with Zariski tangent bundle

In order to generalize tangent structures to $\infty\mbox{-}categories,$ we use a reformulation due to

• Poon Leung, Classifying tangent structures using Weil algebras, *Theory and Applications of Categories* 32(9), (2017).

Introduction I angent ∞-categories 000 000●00	The Goodwillie tangent structure 000000	Tangent structures for ∞ -toposes
Weil-algebras		

Definition

Let Weil be the monoidal category of Weil-algebras with:

• objects: augmented commutative semi-rings of the form

$$\mathbb{N}[x_1,\ldots,x_n]/(x_ix_j \mid i \sim j)$$

- morphisms: augmented semi-ring homomorphisms;
- monoidal structure: tensor product \otimes , unit \mathbb{N} .

E.g.

- $W = \mathbb{N}[x]/(x^2)$
- $W^2 = \mathbb{N}[x, y]/(x^2, xy, y^2)$
- $W \otimes W = \mathbb{N}[x, y]/(x^2, y^2)$
- $W^{n_1} \otimes \cdots \otimes W^{n_r}$

I.e. for each Weil-algebra A, we are given a functor $T^A : \mathbb{X} \to \mathbb{X}$:

- $T^{\mathbb{N}} \cong I$, the identity functor on \mathbb{X}
- $T^W = T$ is the tangent bundle functor
- $T^{W^{\otimes 2}} \cong T^2$, $T^{W^2} \cong T \times_I T$

with natural transformations $p, 0, +, c, \ell$ given by applying T to the following morphisms in Weil:

•
$$p: W \to \mathbb{N}; x \mapsto 0, \quad 0: \mathbb{N} \to W, \quad +: W^2 \to W; x, y \mapsto x$$

• $c: W^{\otimes 2} \to W^{\otimes 2}; x \mapsto y, y \mapsto x, \quad \ell: W \to W^{\otimes}; x \mapsto xy$

ntrodu 000	ction Tangent ∞-categories 00000●	The Goodwillie tangent structure	Tangent structures for ∞ -topose
Ta	ngent ∞ -categories		
	Definition (Bauer-Burke-C.)		
	A tangent structure on an \propto	o-category ${\mathbb X}$ is a (strong)	monoidal functor
	\mathcal{T}^{ullet}	$: \mathbb{W}\mathrm{eil}^\otimes \to End(\mathbb{X})^\circ$	
	that preserves those same pu	Illbacks in Weil.	

E.g. DMfld: derived manifolds (Spivak, Carchedi-Steffens)

There are notions of tangent functor and tangent natural transformation. We can form the (∞ , 2)-category of tangent ∞ -categories

$\text{Tan}(\text{Cat}_\infty).$

More generally, there is a notion of tangent object in any $(\infty, 2)$ -category C and an $(\infty, 2)$ -category of tangent objects in C:

Tan(C).

The Goodwillie tangent structure

An $\infty\text{-}\mathsf{category}$ is differentiable if it admits finite limits and sequential colimits, which commute.

There is a (very large) $\infty\text{-category }\mathbb{C}at^{\mathrm{diff}}_\infty$ with:

- objects: the (large) differentiable ∞ -categories;
- morphisms: functors that preserve sequential colimits.

Let $\mathsf{Top}_{*,\mathsf{fin}}$ be the $\infty\text{-category of finite pointed CW-complexes.}$

Definition (Goodwillie tangent bundle on an ∞ -category (Lurie))

For a (differentiable) ∞ -category \mathcal{C} , set

$$T(\mathcal{C}) = \operatorname{Exc}(\mathsf{Top}_{*,\mathsf{fin}}, \mathcal{C})$$

the ∞ -category of excisive functors $\mathsf{Top}_{*,\mathsf{fin}} \to \mathbb{C}$: those that map pushouts in $\mathsf{Top}_{*,\mathsf{fin}}$ to pullbacks in \mathbb{C} . For $F : \mathbb{C} \to \mathcal{D}$ we define

 $T(F): T(\mathcal{C}) \to T(\mathcal{D}); \quad L \mapsto P_1(FL).$

The Goodwillie tangent structure (continued)

Theorem (Bauer-Burke-C.)

There is a tangent structure on the ∞ -category $\mathbb{Cat}_{\infty}^{\mathrm{diff}}$ with tangent bundle functor $T : \mathbb{Cat}_{\infty}^{\mathrm{diff}} \to \mathbb{Cat}_{\infty}^{\mathrm{diff}}$, projection $p : T(\mathcal{C}) \to \mathcal{C}; L \mapsto L(*)$, zero section $0 : \mathcal{C} \to T(\mathcal{C}); X \mapsto \mathrm{const}_X, ...$

For a Weil-algebra $A = \mathbb{N}[x_1, \dots, x_n]/(R)$ and differentiable ∞ -category \mathcal{C} , the tangent structure is given by

$$T^{A}(\mathcal{C}) := \mathsf{Exc}^{A}(\mathsf{Top}^{n}_{*,\mathsf{fin}}, \mathcal{C}) \subseteq \mathsf{Fun}(\mathsf{Top}^{n}_{*,\mathsf{fin}}, \mathcal{C})$$

the subcategory of functors that are A-excisive, i.e. take certain pushout squares to pullbacks in C, depending on the relations R.

For a morphism $\phi : A \rightarrow A'$ in Weil, we define a corresponding functor

$$\tilde{\phi}: \mathsf{Top}_{*,\mathsf{fin}}^{n'} \to \mathsf{Top}_{*,\mathsf{fin}}^{n}$$

and then T^{ϕ} : $T^{A}(\mathcal{C}) \to T^{A'}(\mathcal{C})$ is given by $L \mapsto P_{A'}(L\tilde{\phi})$.

Universality of vertical lift

The vertical lift axiom for the Goodwillie tangent structure: for each differentiable $\infty\text{-category}\ {\mathcal C},$ there is a pullback (of $\infty\text{-categories})$ of the form

This claim amounts to a splitting result for functors $\text{Top}_{*,\text{fin}} \times \text{Top}_{*,\text{fin}} \rightarrow \mathbb{C}$ that are excisive in each variable separately, and reduced in *one* variable, which is proved using Goodwillie's classification of homogeneous functors.

Differential objects in a tangent ∞ -category

In any tangent ∞ -category \mathbb{X} , a differential object is $C \in \mathbb{X}$ with a (suitable) splitting

$$TC \simeq C \times C.$$

The tangent spaces $T_x M$ (when they exist) are precisely the differential objects.

- In \mathbb{M} fld, the differential objects are the Euclidean spaces \mathbb{R}^n .
- In Sch, the differential objects include the free affine schemes \mathbb{A}^n .
- In $\mathbb{C}at_\infty^{\rm diff}$, the differentiable objects are... the stable $\infty\text{-categories},$ because tangent spaces are given by

$$T_X \mathfrak{C} \simeq \operatorname{Sp}(\mathfrak{C}_{/X})$$

for $X \in \mathcal{C}$.

	Tangent ∞ -categories	The Goodwillie tangent structure	Tangent structures for ∞ -toposes
000	000000	000000	000

Jets in a tangent ∞ -category

 $F: C \rightarrow D$: morphism in a tangent ∞ -category

The *n*-jet of *F* at $x : * \to C$ is (the equivalence class of) the morphism $T_x^n(F) : T_x^n(C) \hookrightarrow T^n(C) \xrightarrow{T^n(F)} T^n(D).$

We say F, G agree to order n at x if $T_x^n(F) \simeq T_x^n(G)$.

- In Mfld, $f, g: M \to N$ agree to order n at $x \in M$ if and only if their Taylor expansions (in local coordinates at x) agree up to degree n polynomials.
- In Cat^{diff}_∞, F, G : C → D agree to order n at X ∈ C (via a natural transformation α : F → G) if and only if α induces an equivalence

$$P_n^X(F) \xrightarrow{\sim} P_n^X(G)$$

between Goodwillie's n-excisive approximations at X.

Introduction	Tangent ∞-categories	The Goodwillie tangent structure	Tangent structures for ∞-toposes
000	000000	00000●	000
Future dire	ctions		

Other concepts developed for abstract tangent categories:

- Robin Cockett and Geoff Cruttwell, Differential bundles and fibrations for tangent categories, *Cah. Topol. Géom. Différ. Catég.* 59 (2018).
- Robin Cockett and Geoff Cruttwell, Connections in tangent categories, *Theory and Applications of Categories* 32 (2017).
- Geoff Cruttwell and Rory Lucyshyn-Wright, A simplicial foundation for differential and sector forms in tangent categories, *J. Homotopy Relat. Struct.* 13 (2018).
- Richard Blute, Geoff Cruttwell, and Rory Lucyshyn-Wright, Affine geometric spaces in tangent categories, *Theory and Applications of Categories* 34 (2019).

What do these concepts correspond to in $\mathbb{C}at_{\infty}^{\mathrm{diff}}$?

Introduction	Tangent ∞ -categories	The Goodwillie tangent structure	Tangent structures for ∞ -toposes
			000

∞ -toposes

An ∞ -topos is an ∞ -category that is an accessible left-exact localization of a presheaf ∞ -category $\mathcal{P}(C)$ for a small ∞ -category C. E.g. Sh(X) for a topological space X.

A geometric morphism $G : \mathcal{X} \to \mathcal{Y}$ between ∞ -toposes is a functor that has a left-exact left adjoint $F : \mathcal{Y} \to \mathcal{X}$.

There are (very large) ∞ -categories:

- $\mathbb{T}\mathrm{opos}_\infty$ of ∞ -toposes and geometric morphisms
- Logos_∞ ≃ Topos_∞^{op} of ∞-toposes and the left adjoints of geometric morphisms (i.e. the functors that preserve colimits and finite limits)

These correspond to two dual ways to think of $\infty\mbox{-toposes}$ (geometric and algebraic), see

• Mathieu Anel and André Joyal, Topo-logie, available at http://mathieu.anel.free.fr/

Tangent structures on ∞ -toposes

There are dual tangent structures on these $\infty\text{-categories:}$

Theorem (C.)

- Logos_∞ has tangent structure T : Logos_∞ → Logos_∞ given by the restriction of the Goodwillie tangent structure to Logos_∞ ⊆ Cat^{diff}_∞.
- Topos_∞ has tangent structure U : Topos_∞ → Topos_∞ given by the right adjoint of the functor T^{op}. We call this the geometric tangent structure.

Questions:

- What is U(Sh(X)) for a topological space X?
- What are the differentiable objects (i.e. tangent spaces) in the geometric tangent structure?
- What are the *n*-jets in the geometric tangent structure?

The geometric tangent structure on $\mathbb{T}opos_{\infty}$

Any $\infty\text{-topos}$ has an $\infty\text{-category}$ of points

$$Pt(\mathfrak{X}) := \operatorname{Fun}^{R}(\mathfrak{S},\mathfrak{X}) \simeq \operatorname{Fun}^{L}(\mathfrak{X},\mathfrak{S})$$

where § is the ∞ -topos of spaces, the terminal object in $\mathbb{T}opos_{\infty}$.

Theorem (C.)

There is an equivalence of tangent ∞ -categories

$$Pt: \mathbb{I}nj\mathbb{T}opos_{\infty} \xrightarrow{\sim} \mathbb{C}at_{\infty}^{\mathrm{pr,ca}}$$

between the geometric tangent structure on the injective ∞ -toposes, and the Goodwillie tangent structure on presentable, compactly-assembled ∞ -categories.