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Theorem (Quillen, 1967)
The category of simplicial sets sSet carries a proper cartesian model
structure (the Kan–Quillen model structure) where

I weak equivalences are the weak homotopy equivalences,

I fibrations are the Kan fibrations,

I cofibrations are the monomorphisms.

Is it possible to internalize this theorem in categories more general than
the category of sets? That is, for which categories E can we construct
a model structure on the category of simplicial objects sE that specializes
to the Kan–Quillen model structure when E = Set?
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Theorem (constructive logic, CZF)
The category of simplicial sets sSet carries a proper cartesian model
structure where

I weak equivalences are the weak homotopy equivalences,

I fibrations are the Kan fibrations,

I cofibrations are the Reedy decidable inclusions.

I S. Henry, A constructive account of the Kan-Quillen model structure
and of Kan’s Ex∞ functor, https://arxiv.org/abs/1905.06160

I N. Gambino, C. Sattler, K. Szumi lo, The constructive Kan-Quillen model
structure: two new proofs, https://arxiv.org/abs/1907.05394
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Theorem
If E is a countably lextensive category, then the category of simplicial
objects sE carries a proper cartesian model structure (the effective model
structure) where

I weak equivalences are the weak homotopy equivalences,

I fibrations are the Kan fibrations,

I cofibrations are the Reedy complemented inclusions.

N. Gambino, S. Henry, C. Sattler, K. Szumi lo, The effective model
structure and ∞-groupoid objects, https://arxiv.org/abs/2102.06146

Definition
A category E is countably lextensive if

I it has finite limits,

I it has van Kampen countable coproducts.
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Definition
Let E have finite limits. The colimit Y? of a diagram Y : D → E is

I universal if for every morphism X? → Y?, X?
∼= colimd Yd ×Y?

X?.

I effective if for every cartesian transformation X → Y , the colimit X?

of X exists and Xd
∼= Yd ×Y?

X? for all d ∈ D.

I van Kampen if it is both universal and effective.

Remark
If E has finite limits and countable coproducts, it is countably lextensive
if and only if all countable coproducts are universal and disjoint.

Definition
A coproduct X? =

∐
d Xd is disjoint if Xd ×X?

Xd′ is initial for all d 6= d ′.
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Examples

I All presheaf categories are completely lextensive.

I All Grothendieck toposes are completely lextensive.
(Giraud’s Theorem: a category is a Grothendieck topos if and only if
it is locally presentable and coproducts and quotients by equivalence
relations are van Kampen.)

I The category of topological spaces is completely lextensive.

I The category of affine schemes is finitely lextensive.
The category of schemes is completely lextensive.

I The category of countable sets is countably lextensive.

I The free κ-coproduct completion of a finitely complete category E is
κ-lextensive.
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Definition
A morphism A→ B of E is a complemented inclusion if it has a
complement, i.e., a morphism C → B such that A t C ∼= B.

Lemma
In a countably lextensive category

I pushouts along complemented inclusions exist and are van Kampen,

I colimits of sequences of complemented inclusions exist and are van
Kampen.

Proof.
I (A t C ) tA X ∼= X t C

I colim(A0 → A0 t A1 → A0 t A1 t A2 → . . .) ∼=
∐

i Ai
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Definition
A morphism A→ B of sE is a levelwise complemented inclusion if
Ak → Bk is a complemented inclusion for all k .

Lemma
If E is countably lextensive, then

I pushouts along levelwise complemented inclusions exist in sE and are
van Kampen,

I colimits of sequences of levelwise complemented inclusions exist in
sE and are van Kampen.

Remark
If a functor D → E preserves coproducts, then the induced functor
sD → sE preserves pushouts along levelwise complemented inclusions and
colimits of sequences of levelwise complemented inclusions.
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If S is a countable set, let S =
∐

s∈S 1 in E . S 7→ S preserves countable
coproducts. We define sets of boundary inclusions and horn inclusions:

I = {∂∆[m]→ ∆[m] | m ≥ 0}

J = {Λi [m]→ ∆[m] | m ≥ i ≥ 0,m > 0}

We would like to apply the small object argument to I and J, but we
need an E-enriched version. However, sE is not E-enriched in general
since E is not assumed to be cartesian closed.

For X ,Y ∈ sE , we define the Hom-presheaf HomPsh E(X ,Y ) ∈ Psh E :

E 7→ HomSet(X × E ,Y ).

If this presheaf is representable, then the representing object is denoted
by HomE(X ,Y ), e.g., HomE(∆[m],Y ) = Ym.
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Definition
A morphism i : A→ B in sE has the Psh E-enriched left lifting property
with respect to p : X → Y if

HomPsh E(B,X )→ ProbPsh E(i , p)

has a section, where

ProbPsh E(i , p) = HomPsh E(A,X )×HomPsh E (A,Y ) HomPsh E(B,Y ).

If these presheaves are representable this reduces to the E-enriched
property, i.e.,

HomE(B,X )→ ProbE(i , p)

having a section.

This refers to a weak factorization system on E of (complemented
inclusions, split epimorphisms.).
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Definition
A Psh E-enriched weak factorization system on sE is a pair (L ,R) of
classes of morphisms such that

I a morphism is in L if and only if it has the enriched left lifting
property with respect to all morphisms of R,

I a morphism is in R if and only if it has the enriched right lifting
property with respect to all morphisms of L ,

I every morphism factors as a morphism of L followed by a morphism
of R.

Theorem
If I is a countable set of levelwise complemented inclusions between finite
objects of sE , then there is a Psh E-enriched weak factorization system,
where

I R are the I -fibrations, i.e., morphisms with the enriched right lifting
property with respect to I ,

I L are the I -cofibrations, i.e., morphisms with the enriched left
lifting property with respect to L .



11/19

Definition
A Psh E-enriched weak factorization system on sE is a pair (L ,R) of
classes of morphisms such that

I a morphism is in L if and only if it has the enriched left lifting
property with respect to all morphisms of R,

I a morphism is in R if and only if it has the enriched right lifting
property with respect to all morphisms of L ,

I every morphism factors as a morphism of L followed by a morphism
of R.

Theorem
If I is a countable set of levelwise complemented inclusions between finite
objects of sE , then there is a Psh E-enriched weak factorization system,
where

I R are the I -fibrations, i.e., morphisms with the enriched right lifting
property with respect to I ,

I L are the I -cofibrations, i.e., morphisms with the enriched left
lifting property with respect to L .



12/19

Definition
I A (Kan) fibration is a J-fibration.

I A trivial (Kan) fibration is an I -fibration.

I A cofibration is an I -cofibration.

I A trivial cofibration is a J-cofibration.

Lemma
I A morphism A→ B is a cofibration if and only if it is a Reedy

complemented inclusion, i.e., Ak tLkA LkB → Bk .

I A morphism X → Y is a trivial fibration if and only if it is a Reedy
split epimorphism, i.e., Xk → MkX ×MkY Yk .

Definition
A morphism X → Y is a pointwise weak equivalence if

HomsSet(E ,X )→ HomsSet(E ,Y )

is a weak homotopy equivalence in sSet for all E ∈ E .
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Proposition
A fibration between fibrant objects is trivial if and only if it is a pointwise
weak equivalence.

Proof.
This holds pointwise, i.e., on applying of HomsSet(E ,−) for all E ∈ E .

Definition
A morphism X → Y is a weak homotopy equivalence if its canonical
fibrant replacement X̂ → Ŷ (produced by the enriched small object
argument) is a pointwise weak equivalence.

To complete the proof of the main theorem we need to generalize the
proposition to fibrations between all objects.
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Proposition (Equivalence extension property)
Given the diagram of morphisms between cofibrant objects

X0 Y0

X1 Y1

A B

∼ ∼

where the lower square is a pullback and X0 → X1 is a homotopy
equivalence over A, there is Y0 and dashed morphisms such that the back
square is a pullback and Y0 → Y1 is a homotopy equivalence over B.
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Proposition (Fibration extension property)
If X , A and B are cofibrant, X → A is a fibration and A→ B a trivial
cofibration, then there is a pullback square

X Y

A B

where Y → B is a fibration and X → Y is a trivial cofibration.

Corollary
A fibration between cofibrant objects is trivial if and only if it is a weak
equivalence.
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If G is a group and E = G -Set, then the resulting model structure on
G -sSet coincides with the genuine equivariant model structure.

Definition
Let E be completely lextensive.

I X ∈ E is connected if HomsSet(X ,−) preserves van Kampen
coproducts.

I E is locally connected if every object is a van Kampen coproduct of
connected objects.

Theorem (Generalized Elmendorf’s Theorem)
If E is a locally connected completely lextensive category, then Ho∞ sE is
equivalent to the Ho∞ sPsh(Econ) where Econ is the category of
connected objects of E .
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Proof sketch.
I We consider the category of small simplicial preseaves sPsh(Econ).

I This category carries a projective model structure with class
cofibrantly generated weak factorization systems by results of
Chorny and Dwyer.

I These weak factorization systems correspond to those of sE under
the restricted Yoneda embedding sE → sPsh(Econ).

Cf. F. Hörmann, Model category structures on simplicial objects,
https://arxiv.org/abs/2103.01156

Proposition

I If E is κ-lextensive, then Ho∞ sE satisfies κ-descent, i.e., κ-small
colimits in Ho∞ sE are van Kampen.

I If E is locally cartesian closed, then so is Ho∞ sE .
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Chorny and Dwyer.

I These weak factorization systems correspond to those of sE under
the restricted Yoneda embedding sE → sPsh(Econ).

Cf. F. Hörmann, Model category structures on simplicial objects,
https://arxiv.org/abs/2103.01156
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Theorem
If E is either countably complete or countably lextensive, then Ho∞(sEfib)
is equivalent to the full subcategory of simplicial presheaves over E that
are homotopy colimits (geometric realizations) of Kan complexes in E .

Proof sketch.
I There is a fibration category s+Efib of semisimplicial objects in E

and an equivalence of fibration categories sEfib → s+Efib provided
that E is countably complete or countably lextensive.

I The category Fam E (the coproduct completion of sE) is completely
lextensive.

I In the diagram

sEfib s+Efib

(sFam E)fib (s+Fam E)fib

the right functor is fully faithful on Ho∞ and hence so is the left one.

I Apply Elmendorf’s Theorem ((Fam E)con = E).
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Corollary
Under the same assumptions, the full subcategory of set-truncated
objects in Ho(sEfib) is equivalent to the ex/lex completion of E .

Conjecture
Under the same assumptions, the ex/lex completion of the ∞-category E
is equivalent to the full subcategory of Ho∞(sEfib) on objects that are
n-truncated for some n.

Conjecture
For general finitely complete E , the ex/lex completion of the ∞-category
E is equivalent to the full subcategory of Ho∞(s+Efib) on objects that are
n-truncated for some n.
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