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Theorem (Quillen, 1967)

The category of simplicial sets sSet carries a proper cartesian model
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» weak equivalences are the weak homotopy equivalences,
» fibrations are the Kan fibrations,

» cofibrations are the monomorphisms.

Is it possible to internalize this theorem in categories more general than
the category of sets? That is, for which categories £ can we construct

a model structure on the category of simplicial objects s€ that specializes
to the Kan—Quillen model structure when £ = Set?
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N. Gambino, C. Sattler, K. Szumito, The constructive Kan-Quillen model
structure: two new proofs, https://arxiv.org/abs/1907.05394



Theorem

If € is a countably lextensive category, then the category of simplicial
objects s& carries a proper cartesian model structure (the effective model
structure) where

» weak equivalences are the weak homotopy equivalences,
» fibrations are the Kan fibrations,

» cofibrations are the Reedy complemented inclusions.



Theorem

If € is a countably lextensive category, then the category of simplicial
objects s& carries a proper cartesian model structure (the effective model
structure) where

» weak equivalences are the weak homotopy equivalences,
» fibrations are the Kan fibrations,

» cofibrations are the Reedy complemented inclusions.

N. Gambino, S. Henry, C. Sattler, K. Szumito, The effective model
structure and oco-groupoid objects, https://arxiv.org/abs/2102.06146



Theorem

If € is a countably lextensive category, then the category of simplicial
objects s& carries a proper cartesian model structure (the effective model
structure) where

» weak equivalences are the weak homotopy equivalences,
» fibrations are the Kan fibrations,

» cofibrations are the Reedy complemented inclusions.

N. Gambino, S. Henry, C. Sattler, K. Szumito, The effective model
structure and oco-groupoid objects, https://arxiv.org/abs/2102.06146

Definition
A category £ is countably lextensive if
» it has finite limits,

» it has van Kampen countable coproducts.
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» universal if for every morphism X, — Y, X, = colimy Yy Xy, X,.
> effective if for every cartesian transformation X — Y/, the colimit X,
of X exists and Xy = Yy Xy, X, forall d € D.

» van Kampen if it is both universal and effective.

Remark
If € has finite limits and countable coproducts, it is countably lextensive
if and only if all countable coproducts are universal and disjoint.

Definition
A coproduct X, = [[, Xq is disjoint if Xq xx, Xy is initial for all d # d’.
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Examples
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All presheaf categories are completely lextensive.

All Grothendieck toposes are completely lextensive.

(Giraud's Theorem: a category is a Grothendieck topos if and only if
it is locally presentable and coproducts and quotients by equivalence
relations are van Kampen.)

The category of topological spaces is completely lextensive.

The category of affine schemes is finitely lextensive.

The category of schemes is completely lextensive.

The category of countable sets is countably lextensive.

The free k-coproduct completion of a finitely complete category & is
k-lextensive.
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Definition
A morphism A — B of £ is a complemented inclusion if it has a
complement, i.e., a morphism C — B such that AL C & B.

Lemma
In a countably lextensive category

» pushouts along complemented inclusions exist and are van Kampen,

» colimits of sequences of complemented inclusions exist and are van
Kampen.

Proof.
> (AUC)Ua X XUC
>coIim(A0—>A0|_IA1—>A0|_IA1I_IA2—>...)§]_[,.A,- ]
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Definition
A morphism A — B of s€ is a levelwise complemented inclusion if
Ak — By is a complemented inclusion for all k.

Lemma
If € is countably lextensive, then

» pushouts along levelwise complemented inclusions exist in s€ and are
van Kampen,

» colimits of sequences of levelwise complemented inclusions exist in
s€ and are van Kampen.

Remark

If a functor D — & preserves coproducts, then the induced functor

sD — s& preserves pushouts along levelwise complemented inclusions and
colimits of sequences of levelwise complemented inclusions.
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If S is a countable set, let S = HSES lin £ S+ S preserves countable
coproducts. We define sets of boundary inclusions and horn inclusions:

I = {9A[m] — A[m] | m > 0}
J={N[m] = Alm] [ m>i>0,m> 0}

We would like to apply the small object argument to / and J, but we
need an £-enriched version. However, s€ is not £-enriched in general
since £ is not assumed to be cartesian closed.

For X, Y € s&, we define the Hom-presheaf Hompg, £(X, Y) € Psh &:
E — Homse (X x E,Y).

If this presheaf is representable, then the representing object is denoted
by Homg (X, Y), e.g., Homg(A[m], Y) = Y.
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A morphism i: A — B in s€ has the Psh E-enriched left lifting property
with respect to p: X — Y if

Hompshg(B,X) — Probpshg(i,p)

has a section, where

Probpshe(i, p) = Hompgh £ (A, X) XHompe, ¢ (4,v) Hompsp (B, Y).

If these presheaves are representable this reduces to the £-enriched
property, i.e.,
Homg(B, X) — Probg(i, p)

having a section.

This refers to a weak factorization system on & of (complemented
inclusions, split epimorphisms.).
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A Psh E-enriched weak factorization system on s is a pair (£, %) of
classes of morphisms such that

» a morphism is in .Z if and only if it has the enriched left lifting
property with respect to all morphisms of %,

» a morphism is in Z if and only if it has the enriched right lifting
property with respect to all morphisms of .Z,

» every morphism factors as a morphism of . followed by a morphism
of Z.

Theorem

If | is a countable set of levelwise complemented inclusions between finite
objects of sE€, then there is a Psh E-enriched weak factorization system,
where

> % are the I-fibrations, i.e., morphisms with the enriched right lifting
property with respect to I,

» £ are the |-cofibrations, i.e., morphisms with the enriched left
lifting property with respect to £ .
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Lemma

» A morphism A — B is a cofibration if and only if it is a Reedy
complemented inclusion, i.e., Ax Ui, a LkB — Bk.

» A morphism X — Y is a trivial fibration if and only if it is a Reedy
split epimorphism, i.e., X = M X xXm,y Yk.

Definition
A morphism X — Y is a pointwise weak equivalence if

Homgset(E, X) — Homgset(E, Y)

is a weak homotopy equivalence in sSet for all E € £.
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Proposition
A fibration between fibrant objects is trivial if and only if it is a pointwise
weak equivalence.

Proof.
This holds pointwise, i.e., on applying of Homgser(E, —) forall E€ €. [

Definition

A morphism X — Y is a weak homotopy equivalence if its canonical
fibrant replacement X — Y (produced by the enriched small object
argument) is a pointwise weak equivalence.

To complete the proof of the main theorem we need to generalize the
proposition to fibrations between all objects.



Proposition (Equivalence extension property)
Given the diagram of morphisms between cofibrant objects

where the lower square is a pullback and Xy — Xy is a homotopy
equivalence over A, there is Yy and dashed morphisms such that the back
square is a pullback and Yy — Y1 is a homotopy equivalence over B.
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If X, A and B are cofibrant, X — A is a fibration and A — B a trivial
cofibration, then there is a pullback square

X---->
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Proposition (Fibration extension property)

If X, A and B are cofibrant, X — A is a fibration and A — B a trivial
cofibration, then there is a pullback square

X---->

|

y
A——B

where Y — B is a fibration and X — Y s a trivial cofibration.
Corollary

A fibration between cofibrant objects is trivial if and only if it is a weak
equivalence.
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Definition
Let £ be completely lextensive.
> X € & is connected if Homgset(X, —) preserves van Kampen
coproducts.

» & is locally connected if every object is a van Kampen coproduct of
connected objects.

Theorem (Generalized Elmendorf's Theorem)

If € is a locally connected completely lextensive category, then Hoy, s€ is
equivalent to the Hou, sPsh(E°™) where £°" is the category of
connected objects of £.
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Proposition

» |f € is k-lextensive, then Ho., S€ satisfies k-descent, i.e., k-small
colimits in Hoo, s€ are van Kampen.

» If & is locally cartesian closed, then so is Hos, SE.
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Theorem

If € is either countably complete or countably lextensive, then Hooo (sEib)
is equivalent to the full subcategory of simplicial presheaves over £ that
are homotopy colimits (geometric realizations) of Kan complexes in &.

Proof sketch.

>

There is a fibration category s, Ex, of semisimplicial objects in €
and an equivalence of fibration categories s&, — s,E5ib provided
that &£ is countably complete or countably lextensive.

The category Fam & (the coproduct completion of s&) is completely
lextensive.

In the diagram

s&ip ———— s &b

| |

(sFam &) —— (s:Fam &)sp

the right functor is fully faithful on Ho,, and hence so is the left one.
Apply Elmendorf's Theorem ((Fam &) = &). O



Corollary

Under the same assumptions, the full subcategory of set-truncated
objects in Ho(s&sp) is equivalent to the ex/lex completion of £.



Corollary

Under the same assumptions, the full subcategory of set-truncated
objects in Ho(s&sp) is equivalent to the ex/lex completion of £.

Conjecture

Under the same assumptions, the ex/lex completion of the oco-category £
is equivalent to the full subcategory of Hoo,(sExib) on objects that are
n-truncated for some n.



Corollary

Under the same assumptions, the full subcategory of set-truncated
objects in Ho(s&sp) is equivalent to the ex/lex completion of £.

Conjecture

Under the same assumptions, the ex/lex completion of the oco-category £
is equivalent to the full subcategory of Hoo,(sExib) on objects that are
n-truncated for some n.

Conjecture

For general finitely complete £, the ex/lex completion of the co-category
& is equivalent to the full subcategory of Hos(s,.Efib) on objects that are
n-truncated for some n.



