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� This talk will oscillate between syntactic definitions and

category theory, so do interrupt when necessary!

� The work on S-contextual categories is joint with Peter LeFanu

Lumsdaine.

� The work on opetopic nerve functors is joint with Cédric Ho

Thanh.

2 / 46



Outline

1. Introduction (algebraic theories revisited)

2. Dependent type signatures as lfd-categories

3. Contextual categories as monoids in collections

4. Interesting example: opetopic nerve functors

5. Perspective: theories of higher algebraic structures
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Introduction
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Algebraic theories

Many algebraic structures can be specified by algebraic (or

“Lawvere”) theories. Such a theory consists of:

1. A set S of sorts,

2. a set Σ of S-sorted (finitary) function symbols, each written

x:A1, . . . , xn:An � f :A (A1, . . . , An, A ∈ S),

3. Equations between S-sorted terms over Σ, each written

x:A1, . . . , xn:An � t = u :A.
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Example

The theory of associative monoids:

1. set of sorts {M},
2. function symbols

� 1 :M x, y:M � ◦ :M,

3. equations

x:M � 1 ◦ x = x :M x:M � x ◦ 1 = x :M

x, y, z:M � (x ◦ y) ◦ z = x ◦ (y ◦ z) :M.

also of groups, rings, unicoloured operads,. . .

6 / 46



Generalising algebraic theories

Some algebraic structures cannot be described by algebraic theories.

E.g. small categories, coloured operads, small groupoids,

n-categories, simplicial sets . . .

Two well-known generalisations of algebraic theories are :

� Essentially algebraic theories

� Generalised algebraic theories (à la Cartmell)
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Example
The essentially algebraic theory of categories :

1. sorts are {O,H},
2. (partial) function symbols are

f :H � s :O f :H � t :O

x:O � 1 :H f, g:H, sg = tf :O � ◦ :H

3. equations are

x:O � s(1(x)) = x :O x:O � t(1(x)) = x :O

f :H � 1(t(f)) ◦ f = f :H f :H � f ◦ 1(s(f)) = f :H

. . . � s(g ◦ f) = s(f) :H . . . � t(g ◦ f) = t(g) :H

. . . � h ◦ (g ◦ f) = (h ◦ g) ◦ f :H.
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Example
The generalised algebraic theory of categories :

1. sorts are

� O x, y:O � H(x, y)

2. function symbols are

x:O � 1 :H(x, x) . . . , f :H(x, y), g:H(y, z) � ◦ :H(x, z)

3. equations are

. . . � 1 ◦ f = f :H(x, y) . . . � f ◦ 1 = f :H(x, y)

. . . � h ◦ (g ◦ f) = (h ◦ g) ◦ f :H(x1, x4).
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� I will present a strict subclass of generalised algebraic theories

(dependently typed algebraic theories).

� But which nicely generalise multisorted algebraic theories from a

category-theoretic point of view.

� And there are many interesting examples of these!
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The guiding intuition is that the contexts of variables of these

theories are finite cell complexes (whose generating cells are of some

kind of shape, and of finite dimension).
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Algebraic theories as finite-product categories

Every S-sorted algebraic theory T has a syntactic category CT of

contexts.

The objects of CT are finite contexts of S-sorted variables (e.g.

x:A, y:B where A,B ∈ S).

A morphism Γ → (x1:A1, . . . , xn:An) is a list (ti)1≤i≤n of terms of

T, sorted as Γ � ti :Ai.

Composition of morphisms is defined by substitution.
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The syntactic category CS of the S-sorted algebraic theory with no

function symbols (and no equations) is a finite-product completion

of S.

For every T, there is a unique identity-on-objects, finite-product

preserving functor CS → CT.

A morphism T → T� is simply a functor CT → CT� making the

triangle commute. Call this category ThS .

CS CT

CT�

13 / 46



A model of T is a finite-product preserving functor CT → Set.

Morphisms of models are natural transformations.

The category of models of CS is just Set/S .

So CT → Set is a model of T iff the composite CS → CT → Set is

in Set/S .
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Multisorted algebraic theories as monoids in collections

Let S ∈ Set be “a set of sorts”.

The over-category Fin/S is the category of f.p. objects of Set/S .

(N.B. Fin is the category of finite sets.)

Fin/S is also the free completion of S under finite coproducts.

(Objects of Fin/S are exactly finite contexts of S-sorted variables.)
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Definition
The category of S-sorted cartesian collections is the presheaf

category CollS :=
�
Fin/S , Set/S

�
=

�
Fin/S × S, Set

�
.

Every presheaf X ∈ CollS is a signature* of S-sorted function

symbols. (For every finite context Γ ∈ Fin/S and every sort A ∈ S,

X(Γ,A) is its set of function symbols Γ � f :A.)
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Collections can be composed: for X,Y ∈ CollS ,

(Y ◦X)(Γ,A) :=

� Θ∈Fin/S
Y(Θ,A) × Set/S

�
Θ, X(Γ,−)

�
.

− ◦ − is a monoidal product on CollS , with unit i : Fin/S �→ Set/S .
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Left Kan extension along i : Fin/S �→ Set/S is a full monoidal

embedding CollS �→
�
Set/S , Set/S

�
whose image is the category of

finitary endofunctors on Set/S .

Fin/S Set/S

Set/S

i

X

∼=
LaniX

So Mon(CollS , ◦, i) ⊂ Mnd(Set/S) is the full subcategory of finitary

monads on Set/S .

18 / 46



For T a monad on Set/S , we have a commutative square

Fin/S ΘT

Set/S T -Alg.

lT i.o.

FT

T.F.A.E.

1. T is finitary.

2. lT preserves finite coproducts.

3. (lT )
∗(lT )! restricts to Set/S .
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An S-sorted Lawvere theory is an identity-on-objects

finite-coproduct preserving functor Fin/S → Θ. A morphism is just a

functor Θ → Θ� making the triangle commute. Call this category

LawS .

We have

Mon(CollS , ◦, i) � FinMnd(Set/S) � LawS � ThS .
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We could play the same game by taking S to be a small category,

and replacing

1. Set/S and Fin/S with �S and �Sfp resp.,

2. finite coproducts with finite colimits,

3. LawS with LawS.

But the syntactic counterpart of ThS is not straightforward.

I will show that when S is a small category of “shapes” that

corresponds to a dependent type signature, there is a ThS that is

just as elegant.
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Dependent type signatures as locally finite direct categories
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Dependent type signatures

Begin with a syntactic definition.

A (dependent) type signature S is a graded set S =
�

n∈N Sn,

such that each Sj is a set of type declarations over the signature

S<j =
�

i<j Si.

A type declaration over a signature S is a pair (Γ, A) where Γ is a

(Martin-Löf) context typed by S and A is a (fresh) type symbol.
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Examples

� S = ∅
� S =

� Ob

x, y:Ob � Hom(x, y)

� S =

� C

x1:C, . . . , xk:C, y:C � Op(x1, . . . , xk, y) ∀k ∈ N
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Every signature S has a syntactic category whose objects are

contexts Γ typed by S and whose morphisms are context morphisms

Γ → Δ.

For a signature S, let CS be the full subcategory of its category of

contexts on the contexts (Γ, x:A) for all (Γ, A) in S.

Then Cop
S is a locally finite direct category.
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Lfd categories

A direct category is a small category C such that the relation

c < d ⇔ ∃ a non-identity arrow c → d

on the objects of C is well-founded (i.e. no infinite chains . . . < c0).

If C is direct and X ∈ �C, then C/X is direct.
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A category C is locally finite if each of its slice categories is finite,

i.e. in every cartesian square in Cat of the form

A C→

� C

�
t A is finite.

If C is locally finite and X ∈ �C, then C/X is locally finite.

(Recall:

A→ B→

A C

p→

t t

p

is cartesian iff p is a disc. fibration.)
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Categorical definition of type signatures

S ∈ Cat is lfd if it is locally finite and direct.

So if X ∈ �S, then S/X is lfd.

For every lfd category S, there is a unique type signature S such

that S ∼= CS .

S is lfd iff Sop is simple (or “one-way finitely branching”) in the sense

of Makkai[Mak95].
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Examples of dependent type signatures/lfd categories

0. Any set S, seen as a discrete category.

1. The category {s, t : 0 ⇒ 1}.
2. The category G of globes.

3. The category Δ+ of semi-simplices.

4. The category eltpl of planar corollas/elementary trees.

5. The category Ωpl of planar trees.

6. The category O of opetopes.

7. The category of globular pasting schemes.
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Contextual categories as monoids in collections

30 / 46



Contextual categories

A contextual category C is the data of:

1. a small category C,

2. a grading of objects as ob(C) =
�

n∈N Cn,

3. an object 1 ∈ C0,

4. “parent” functions ft(−)n : Cn+1 → Cn (we will usually suppress

the subscript),

5. for each Γ ∈ Cn+1, a map pΓ : Γ → ft(Γ),

6. for each Γ ∈ Cn+1 and f : Γ� → ft(Γ), an object f∗Γ together

with a connecting map f.Γ : f ∗Γ → Γ;
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such that:

� 1 is the unique object in C0;
� 1 is a terminal object in C;
� for each Γ ∈ Cn+1, and f : Γ� → ft(Γ), we have ft(f∗Γ) = Γ�,

and the square

f∗Γ Γ

Γ� ft(Γ)

�
f.Γ

pf∗Γ pΓ

f

is cartesian (the canonical pullback of Γ along f); and
� canonical pullbacks are strictly functorial.

The category of contextual categories is denoted CxlCat.

The syntactic category of a Martin-Löf type theory is a contextual

category.
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The initial S-contextual category

Let S be an lfd category.

For c ∈ S, let S−/c ⊂ S/c be obtained by removing the identity

morphism 1c : c → c.

Let the boundary of c be the subrepresentable presheaf ∂c �→ c

that is the colimit of S−/c → S �→ �S.

Since S is locally finite, every ∂c is finitely presentable.

We define the set IS := {∂c �→ c | c ∈ S}.
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The category Cell(S) of finite IS-cell complexes is defined as:

� objects are finite sequences ∅ → X1 → . . . → Xn in �S, along

with for each morphism Xi → Xi+1, a choice of pushout square

∂c Xi

c Xi+1,

γ

pXi+1

γ.c �
� its morphisms are defined by

Cell(S)(∅ → . . . X, ∅ → . . . Y ) := �S(X,Y ).

The image of the fully faithful forgetful functor Cell(S) → �S is �Sfp.
(Since S is lfd, IS is a f.p. cellular model for �S.)
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Cell(S)op has the structure of a contextual category.

� Grade the objects ∅ → X1 → . . . Xn by length.

� Define canonical pullbacks by:

∂c Xn Ym

c Xn+1 f∗X

γ f

γ.c

fγ.c

� f.X

35 / 46



Let D be a contextual category. Then f : Sop → D is a contextual

functor if for all c in S,

1. fc is in Dkc , where kc =
�

d∈S|S(d, c)| = |ob(S/c)|,
2. ft(fc) is a limit of (S−/c)

op → Sop f−→ D, and pfc : fc → ft(fc)

is the canonical morphism of limits given by S−
/c ⊂ S/c.

The category CxlCatSop/ of contextual functors under Sop has as

morphisms those of CxlCat making the triangle commute.

The inclusion* Sop ⊂ Cell(S)op is the initial object in CxlCatSop/.

That is, CxlCatSop/ � CxlCatCell(S)op/.
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An S-contextual category is a morphism of contextual categories

Cell(S)op → D such that in its (i.o.,ff) factorisation

Cell(S)op lD−→ ΘD
kD
�−→ D :

� kD : ΘD �→ D is initial among all g : Cell(S)op → D� equipped

with a functor ΘD → D� such that g = Cell(S)op → ΘD → D�.

The category CxlCatS of S-contextual categories is the full

subcategory of CxlCatCell(S)op/ on the S-contextual categories.

Proposition

A morphism of S-contextual categories is just a functor

f : ΘD → ΘD� making the triangle commute (lD� = lDf).
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Final picture

Playing the same game as for algebraic theories, we have

Mon(CollS, ◦, i) � FinMnd(�S) � LawS � CxlCatS.
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Opetopic theories
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Opetopes

I won’t recall the category O of opetopes (this is a little involved).

But for those who know it, it is easy to see that it is an lfd category.

O contains (as full subcats) the category {s, t : 0 ⇒ 1} as well as

the category eltpl of planar corollas/elementary trees.
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Pictures
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Let Om,n be the full subcategory of O of objects of dimensions

m ≤ i ≤ n. Then

O0,1 = { � �
t

s }

O1,2 =

n

� ...

0

t

s1

. . .
sn

t

So we have Gph = �O0,1 (directed graphs) and Coll = �O1,2 (coloured

planar collections).
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The category �O1,3 is the category of coloured combinatorial patterns

of Loday [Lod12].
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We have monadic adjunctions �O0,1
−→⊥←− Cat (small categories) and

�O1,2
−→⊥←− Opd (planar coloured Set-operads).

We also have a monadic adjunction �O1,3
−→⊥←− Comb (planar coloured

combinads [Lod12]).
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Opetopic nerve theorem

Theorem [HTLS19]

Cat,Opd,Comb are reflective subcategories of �O. The idempotent

monad is finitary in each case.
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Pictures
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Cédric Ho Thanh and Chaitanya Leena Subramaniam.

Opetopic algebras I: Algebraic structures on opetopic sets.

arXiv preprint arXiv:1911.00907, 2019.

Jean-Louis Loday.

Algebras, operads, combinads.

2012.

Slides of a talk given at HOGT Lille on 23th of March (2012).

Michael Makkai.

First order logic with dependent sorts, with applications to

category theory.

1995.
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