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» This talk will oscillate between syntactic definitions and
category theory, so do interrupt when necessary!

» The work on S-contextual categories is joint with Peter LeFanu
Lumsdaine.

» The work on opetopic nerve functors is joint with Cédric Ho

Thanh.
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Outline

o s~ Wb

Introduction (algebraic theories revisited)
Dependent type signatures as Ifd-categories
Contextual categories as monoids in collections
Interesting example: opetopic nerve functors

Perspective: theories of higher algebraic structures
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Introduction
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Algebraic theories

Many algebraic structures can be specified by algebraic (or

“Lawvere") theories. Such a theory consists of:
1. A set S of sorts,

2. aset ¥ of S-sorted (finitary) function symbols, each written
A, .., A B fA (Ay,..., A, A€S),
3. Equations between S-sorted terms over X, each written

A, A Ft=u Al
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Example

The theory of associative monoids:
1. set of sorts {M},

2. function symbols
F1:M z,y:Mt=o: M,
3. equations

cMbFlox=a2:M cMbzxzol=ax:M

x,y,z2MbE (xoy)oz=zo0(yoz): M.

also of groups, rings, unicoloured operads,. ..
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Generalising algebraic theories

Some algebraic structures cannot be described by algebraic theories.
E.g. small categories, coloured operads, small groupoids,

n-categories, simplicial sets . ..
Two well-known generalisations of algebraic theories are :

» Essentially algebraic theories

» Generalised algebraic theories (a la Cartmell)
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Example
The essentially algebraic theory of categories :
1. sorts are {O, H},
2. (partial) function symbols are
ffHFs:0 ffHFt:0
zOF1:H fgH,sg=tf:OFo: H

3. equations are

z:0Fs(l(z)=2:0 z:OFt(l(z) =2:0
fHELIG(f)of=f:H fHE fol(s(f))=f:H
..Fs(gof)y=s(f):H . Ftlgof)=t(g): H

...Fho(gof)=(hog)o f:H.
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Example
The generalised algebraic theory of categories :

1. sorts are
O x,y:0 b H(z,y)
2. function symbols are

z:OkF1:H(z,x) ...,[:H(x,y),9:H(y,z)Fo:H(z,z2)

3. equations are

.Flof=f:H(z,vy) o.Ffol=f:H(x,y)
...bho(gof)=(hog)o f:H(x1,x4).
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» | will present a strict subclass of generalised algebraic theories

(dependently typed algebraic theories).

» But which nicely generalise multisorted algebraic theories from a

category-theoretic point of view.

» And there are many interesting examples of these!
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The guiding intuition is that the contexts of variables of these
theories are finite cell complexes (whose generating cells are of some
kind of shape, and of finite dimension).

ASCH B ANy
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Algebraic theories as finite-product categories

Every S-sorted algebraic theory T has a syntactic category Cp of

contexts.

The objects of C are finite contexts of S-sorted variables (e.g.
x:A,y:B where A, B € S).

A morphism I' — (x1:A41, ..., 2,:A4,) is a list (t;)1<i<n of terms of
T, sorted as I' ¢, : A;.

Composition of morphisms is defined by substitution.
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The syntactic category Cg of the S-sorted algebraic theory with no
function symbols (and no equations) is a finite-product completion
of S.

For every T, there is a unique identity-on-objects, finite-product

preserving functor Cg — Cr.

A morphism T — T’ is simply a functor Ct — Cp making the

triangle commute. Call this category Thg.

CS%CT

\ Cl,
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A model of T is a finite-product preserving functor Cp — Set.

Morphisms of models are natural transformations.
The category of models of Cg is just Set .
So Cr — Set is a model of T iff the composite Cg — Cr — Set is

in Set/s.

14 / 46



Multisorted algebraic theories as monoids in collections

Let S € Set be “a set of sorts’.

The over-category Fin g is the category of f.p. objects of Set .

(N.B. JFin is the category of finite sets.)

Fin g is also the free completion of S under finite coproducts.

(Objects of Fin g are exactly finite contexts of S-sorted variables.)

|

S
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Definition
The category of S-sorted cartesian collections is the presheaf

category Collg = [?in/S,Set/S] = [Er"in/s xS, Set].

Every presheaf X € Collg is a signature* of S-sorted function
symbols. (For every finite context I € JFin /g and every sort A € S,
X(r,4) is its set of function symbols I' - f : A.)
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Collections can be composed: for X,Y € Collg,

©€din, g
(YOX)(F’A) ::/ 1/(9:14) X Set/g(@,X(pﬁ)).
X
° oo
Yhew T 550
K YV.&(V\

— o — is a monoidal product on Collg, with unit i: Fin ;g < Set /5.
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Left Kan extension along i: Jin,g < Set /g is a full monoidal
embedding Collg — [Set/S,Set/S} whose image is the category of

finitary endofunctors on Set /g.

f}'in/s L) Set/s

Zj Aix

Set/s

So Mon(Collg, 0,7) C Mnd(Set ) is the full subcategory of finitary

monads on Set /g.
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For T' a monad on Set g, we have a commutative square

I l

Set /s —1 T-Alg.

T.F.AEE.
1. T is finitary.

2. I preserves finite coproducts.

3. (I)*(Ip), restricts to Set/S(\Xig ZO“‘""“C/ (\420*(3
wor N PVIISN \/"\V\/‘SL&-VIS}
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An S-sorted Lawvere theory is an identity-on-objects
finite-coproduct preserving functor Fin,g — ©. A morphism is just a

functor © — ©’ making the triangle commute. Call this category

"\ ‘S — ?
\4
We have \ C‘)l

Mon(Collg, 0,i) ~ FinMnd(Set/5) =~ Lawg ~ Thg.

Laws. -‘:

20 / 46



We could play the same game l;()ry taking S to be a small category,
and replacing i ot

1. Set;g and Fin g with S and gfp resp.,
2. finite coproducts with finite colimits,
3. Lawg with Laws.

But the syntactic counterpart of Thg is not straightforward.

| will show that when S is a small category of “shapes” that

corresponds to a dependent type signature, there is a Thg that is

just as elegant.
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Dependent type signatures as locally finite direct categories
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Dependent type signatures

Begin with a syntactic definition.

A (dependent) type signature S is a graded set S = [[,,cx Sn.

such that each S; is a set of type declarations over the signature
S<j= Hi<j Si

A type declaration over a signature S is a pair (I'; A) where I is a

(Martin-L&f) context typed by S and A is a (fresh) type symbol.
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Examples

> S=10
» S =
S rovy=S,
%:E,y:Obl—Hom(a:,y)j = SL
» S =

Src 3 =51

- %1:0,...,1‘;6:0,31:0!—Op(ml,...,axk,y) Vk‘EN}
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Every signature S has a syntactic category whose objects are
contexts I' typed by S and whose morphisms are context morphisms

I — A.
(11, ik)

For a signature .S, let Cg be the full subcategory of its category of

contexts on the contexts (I', z:A) for all (I, 4) in S.

Then C& is a locally finite direct category.
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Lfd categories

A direct category is a small category C such that the relation
c<d & 3 a non-identity arrow ¢ — d

on the objects of C'is well-founded (i.e. no infinite chains ... < ¢p).

If C is direct and X € C, then C/X is direct.

26 / 46



A category C is locally finite if each of its slice categories is finite,

i.e. in every cartesian square in Cat of the form

A— C7

l - lt A is finite.

* — C

If C is locally finite and X € C, then C/X is locally finite.
(Recall:

A~ p B~
tl lt is cartesian iff p is a disc. fibration.)
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Categorical definition of type signatures

S € Cat is Ifd if it is locally finite and direct.
So if X €8, then S/X is Ifd.

For every Ifd category S, there is a unique type signature .S such

that = Cs. = Z(Dc,c\) \ CC/$§

S is Ifd iff S°P is simple (or “one-way finitely branching”) in the sense

of MakkaiMakos].  ( (60D S VQQ@()
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Examples of dependent type signatures/Ifd categories

N e o s~ W N

Any set S, seen as a discrete category.

The category {s,t:0 = 1}.

The category G of globes.

The category A" of semi-simplices.

The category elty,) of planar corollas/elementary trees.
The category €2, of planar trees.

The category O of opetopes.

The category of globular pasting schemes. @ C @

29 / 46



Contextual categories as monoids in collections

30 / 46



Contextual categories (Cm YA\ LWD \’\ALS\&)

'
A contextual category C is the data of: \\/ O
1. a small category C, —Ftw '
2. a grading of objects as ob(C) = Cn, \\’
grading of obj (€) = [nen et ()
3. an object 1 € Cy, o
4. "parent” functions ft(—),,: C,1 — C,, (we will usually suppargss

the subscript),
for each T" € C;,41, @ map pp: I' — ft(T),

foreachT' € C, 41 and f: TV — ft(T'), an object f*T" together
with a connecting map f.I': f*T' — T
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such that:
» 1 is the unique object in Cp;

» 1 is a terminal object in C;

» foreachI' € C,yq, and f: IV — ft(I"), we have ft(f*T") =T7,

and the square

T

Pf*I‘l B lpr
s w()
is cartesian (the canonical pullback of F/aﬁong f); and
» canonical pullbacks are strictly functorial.

The category of contextual categories is denoted CxlCat.

The syntactic category of a Martin-Lof type theory is a contextual

category.
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The initial S-contextual category
Let S be an Ifd category.

For c €S, let S/_c C S/, be obtained by removing the identity
morphism 1.: ¢ — c.
Let the boundary of ¢ be the subrepresentable presheaf dc < ¢

that is the colimit of S?c 5SS,

Since S is locally finite, every Oc is finitely presentable.

We define the set Is := {0c < ¢ | ¢ € S}.
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The category Cell(S) of finite Is-cell complexes is defined as:

» objects are finite sequences ) — X7 — ... — X, in S, along

with for each morphism X; — X1, a choice of pushout square

80%X1

J: lpxwl
=

v.c
c — Xiya1,

» its morphisms are defined by
Cell(S)() — ... X,0 — ...Y) =S(X,Y).

The image of the fully faithful forgetful functor Cell(S) — Sis /S\fp.
(Since S is Ifd, Is is a f.p. cellular model for S.)
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Cell(S)°P has the structure of a contextual category.

» Grade the objects ) —+ X; — ... X,, by length.

» Define canonical pullbacks by:

de —— X, ! >1£,)n /g’> \
e X S ey Y
fry.c

Qﬂ/ﬁ Yo oxtuac. g a S\ (b Aoes vt
randed acdoss (’,Cvxi,.\)- 5} Co&’(’,&f\\e))-
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Let D be a contextual category. Then f: S°® — D is a contextual

functor if for all ¢ in S,
1. fcisin Dg,, where k. = > ,.5[S(d, ¢)| = |ob(S.)],
2. ft(fc) is a limit of (S7)°" — S L5 D, and pye: fe — ft(fe)

/c
is the canonical morphism of limits given by S/_C CSye.

The category CxICatgop, of contextual functors under S°P has as

morphisms those of CxlCat making the triangle commute.

The inclusion® S°P C Cell(S)°P is the initial object in CxlCatgop .
That iS, GXlCatgop/ ~ GXlCat@eH(S)op/.
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An S-contextual category is a morphism of contextual categories
Cell(S)°P — D such that in its (i.o.,ff) factorisation ~_ DI
Cell(S)°P 25 0p 5 D (e
» kp: Op — D is initial among all g: Cell(S)°P — D’ equipped D
with a functor ©p 5 D’ such that g = Cell(S)°P — ©p — D',
The category CxICatg of S-contextual categories is the full

subcategory of CxlCatey(s)or; 0N the S-contextual categories.

Proposition

A morphism of S-contextual categories is just a functor
f: ©p — O©p making the triangle commute (lD/ Inf).
G 5 76\ (e—y O
Vo
&
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Final picture

Playing the same game as for algebraic theories, we have

~

Mon(Collg, 0,7) ~ FInMnd(S) ~ Lawg ~ CxlCatg.
L

C%‘; Cd(;‘ — D in (kG
peseres &QV\;\EJUM\’S )
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Opetopic theories
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Opetopes

| won't recall the category O of opetopes (this is a little involved).

But for those who know it, it is easy to see that it is an Ifd category.

O contains (as full subcats) the category {s,t: 0 =% 1} as well as

the category elty,) of planar corollas/elementary trees.
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Pictures

O, = éﬁi

b, = %/2}\3 [ we N
o (Y
T AN



Let Oy, be the full subcategory of O of objects of dimensions
m <1 <mn. Then

@071:{<>:j;|:|}

So we have Gph = @0\71 (directed graphs) and Coll = @-1\2 (coloured
planar collections).
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The category ([/))E, is the category of coloured combinatorial patterns
of Loday [Lod12].

S <lides
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We have monadic adjunctions Qg1 = Cat (small categories) and

015 2 £ Opd (planar coloured Set-operads).

We also have a monadic adjunction @1 3 & L Comb (planar coloured
combinads [Lod12]).
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Opetopic nerve theorem

Theorem [HTLS19]

Cat, Opd, Comb are reflective subcategories of 0. The idempotent

monad is finitary in each case.
Tee ore ! ;&W@D\'Wu O- E""]ﬁC’)Q
fagies Ja GI, O | Comby .
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Q/D\ [2/\[“)3%“0 \ o G(Dzzgll = O




Pictures
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