A topos-theoretic proof of Shelah’s eventual categoricity conjecture

Christian Espíndola

Brno, MUNI

April 30th, 2020
Abstract elementary classes

Definition

An abstract elementary class (AEC) K is a category equivalent to an accessible category with directed colimits whose morphisms are monomorphisms, that admits an embedding $F: K \rightarrow A$ into a finitely accessible category preserving directed colimits and monomorphisms which is, in addition:

1. Full on isomorphisms: for every isomorphism $h: F(A) \rightarrow F(B)$ there is an isomorphism $m: A \rightarrow B$ with $F(m) = h$.

2. Nearly full: for every commutative triangle: $F(A) \rightarrow F(B) \rightarrow F(C)$ with $F(f) \circ F(g)$ there is $m: A \rightarrow C$ with $F(m) = h$.

Christian Espíndola (Brno, MUNI)
Abstract elementary classes

Definition

An abstract elementary class (AEC) \mathcal{K} is a category equivalent to an accessible category with directed colimits whose morphisms are monomorphisms, that admits an embedding $F : \mathcal{K} \to \mathcal{A}$ into a finitely accessible category preserving directed colimits and monomorphisms which is, in addition:

1. Full on isomorphisms: for every isomorphism $h : F(A) \to F(B)$ there is an isomorphism $m : A \to B$ with $F(m) = h$.
2. Nearly full: for every commutative triangle $F(A) \xrightarrow{F(f)} F(B) \xrightarrow{F(g)} F(C)$ there is $m : A \to C$ with $F(m) = h$.
Abstract elementary classes

Definition

An abstract elementary class (AEC) \(\mathcal{K} \) is a category equivalent to an accessible category with directed colimits whose morphisms are monomorphisms, that admits an embedding \(F : \mathcal{K} \rightarrow A \) into a finitely accessible category preserving directed colimits and monomorphisms which is, in addition:

1. Full on isomorphisms: for every isomorphism \(h : F(A) \rightarrow F(B) \) there is an isomorphism \(m : A \rightarrow B \) with \(F(m) = h \).
Abstract elementary classes

Definition

An abstract elementary class (AEC) \(\mathcal{K} \) is a category equivalent to an accessible category with directed colimits whose morphisms are monomorphisms, that admits an embedding \(F : \mathcal{K} \to \mathcal{A} \) into a finitely accessible category preserving directed colimits and monomorphisms which is, in addition:

1. Full on isomorphisms: for every isomorphism \(h : F(A) \to F(B) \) there is an isomorphism \(m : A \to B \) with \(F(m) = h \).

2. Nearly full: for every commutative triangle:

\[
\begin{array}{ccc}
F(A) & \xrightarrow{F(f)} & F(B) \\
\downarrow{h} & & \downarrow{F(g)} \\
F(C) & & \\
\end{array}
\]

there is \(m : A \to C \) with \(F(m) = h \).
Abstract elementary classes

Definition

An abstract elementary class (AEC) \mathcal{K} is a category equivalent to an accessible category with directed colimits whose morphisms are monomorphisms, that admits an embedding $F : \mathcal{K} \rightarrow A$ into a finitely accessible category preserving directed colimits and monomorphisms which is, in addition:

1. Full on isomorphisms: for every isomorphism $h : F(A) \rightarrow F(B)$ there is an isomorphism $m : A \rightarrow B$ with $F(m) = h$.

2. Nearly full: for every commutative triangle:

$$
\begin{array}{ccc}
F(A) & \xrightarrow{F(f)} & F(B) \\
\downarrow{h} & & \downarrow{F(g)} \\
F(C) & &
\end{array}
$$

there is $m : A \rightarrow C$ with $F(m) = h$.
Abstract elementary classes

FACT (Beke-Rosicky 2012): An AEC automatically admits an iso-full, nearly full embedding $E: K \rightarrow \text{Emb}(\Sigma)$ (for some signature Σ) preserving directed colimits. It also has eventually a Löwenheim-Skolem number λ: for every substructure $i: A \rightarrow F(B)$ there is $E(f): F(C) \rightarrow F(B)$ such that i factors through $E(f)$ and $|E(C)| \leq |A| + \lambda$.

FACT (Lieberman-Rosicky-Vasey 2019): For each object A of an AEC, $|E(A)|$ coincides with its internal size $|A|$ defined as follows. If $r(A)$ is the least regular cardinal λ such that A is λ-presentable, then:

$$|A| = \begin{cases} \kappa & \text{if } r(A) = \kappa \\ r(A) & \text{if } r(A) \text{ is limit} \end{cases}$$
FACT (Beke-Rosicky 2012): An AEC automatically admits an iso-full, nearly full embedding $E : \mathcal{K} \to Emb(\Sigma)$ (for some signature Σ) preserving directed colimits.

FACT (Lieberman-Rosicky-Vasey 2019): For each object A of an AEC, $|E(A)|$ coincides with its internal size $|A|$ defined as follows. If $r(A)$ is the least regular cardinal λ such that A is λ-presentable, then:

$$|A| = \begin{cases} \kappa & \text{if } r(A) = \kappa \\ r(A) & \text{if } r(A) \text{ is limit} \end{cases}$$
FACT (Beke-Rosicky 2012): An AEC automatically admits an iso-full, nearly full embedding $E : \mathcal{K} \to \text{Emb}(\Sigma)$ (for some signature Σ) preserving directed colimits. It also has eventually a Löwenheim-Skolem number λ: for every substructure $i : A \to F(B)$ there is $E(f) : F(C) \to F(B)$ such that i factors through $E(f)$ and $|E(C)| \leq |A| + \lambda$.

FACT (Lieberman-Rosicky-Vasey 2019): For each object A of an AEC, $|E(A)|$ coincides with its internal size $|A|$ defined as follows. If $r(A)$ is the least regular cardinal λ such that A is λ-presentable, then: $|A| = \begin{cases} \kappa & \text{if } r(A) = \kappa \\ r(A) & \text{if } r(A) \text{ is limit} \end{cases}$
FACT (Beke-Rosicky 2012): An AEC automatically admits an iso-full, nearly full embedding $E : \mathcal{K} \to \text{Emb}(\Sigma)$ (for some signature Σ) preserving directed colimits. It also has eventually a Löwenheim-Skolem number λ: for every substructure $i : A \to F(B)$ there is $E(f) : F(C) \to F(B)$ such that i factors through $E(f)$ and $|E(C)| \leq |A| + \lambda$.

FACT (Lieberman-Rosicky-Vasey 2019): For each object A of an AEC, $|E(A)|$ coincides with its internal size $|A|$ defined as follows.
FACT (Beke-Rosicky 2012): An AEC automatically admits an iso-full, nearly full embedding $E : \mathcal{K} \to Emb(\Sigma)$ (for some signature Σ) preserving directed colimits. It also has eventually a Löwenheim-Skolem number λ: for every substructure $i : A \to F(B)$ there is $E(f) : F(C) \to F(B)$ such that i factors through $E(f)$ and $|E(C)| \leq |A| + \lambda$.

FACT (Lieberman-Rosicky-Vasey 2019): For each object A of an AEC, $|E(A)|$ coincides with its internal size $|A|$ defined as follows. If $r(A)$ is the least regular cardinal λ such that A is λ-presentable, then:

$$|A| = \begin{cases} \kappa & \text{if } r(A) = \kappa^+ \\ r(A) & \text{if } r(A) \text{ is limit} \end{cases}$$
Shelah’s conjecture

Conjecture (ZFC) For every AEC there is a cardinal \(\kappa \) such that if the AEC is categorical in some \(\lambda > \kappa \) then it is categorical in every \(\lambda' > \kappa \).

There is a proof of the conjecture (Shelah-Vasey 2019) assuming GCH and large cardinals. In fact, the use of large cardinals is to guarantee that the AEC will eventually satisfy the amalgamation property:

\[N \xrightarrow{A} M \xrightarrow{B} N' \]

We will give a short topos-theoretic proof of the conjecture assuming GCH and that the AEC satisfies amalgamation.
Shelah’s conjecture

Conjecture

(ZFC) For every AEC there is a cardinal κ such that if the AEC is categorical in some $\lambda > \kappa$ then it is categorical in every $\lambda' > \kappa$.

There is a proof of the conjecture (Shelah-Vasey 2019) assuming GCH and large cardinals. In fact, the use of large cardinals is to guarantee that the AEC will eventually satisfy the amalgamation property: $\mathbb{N}A\mathbb{M}$$\mathbb{N}'$

We will give a short topos-theoretic proof of the conjecture assuming GCH and that the AEC satisfies amalgamation.
Shelah’s conjecture

Conjecture

(ZFC) For every AEC there is a cardinal κ such that if the AEC is categorical in some $\lambda > \kappa$ then it is categorical in every $\lambda' > \kappa$.

There is a proof of the conjecture (Shelah-Vasey 2019) assuming GCH and large cardinals. In fact, the use of large cardinals is to guarantee that the AEC will eventually satisfy the amalgamation property:

\[
\begin{array}{ccc}
N & \longrightarrow & A \\
\uparrow & & \uparrow \\
M & \longrightarrow & N'
\end{array}
\]
Shelah’s conjecture

Conjecture

(ZFC) For every AEC there is a cardinal κ such that if the AEC is categorical in some $\lambda > \kappa$ then it is categorical in every $\lambda' > \kappa$.

There is a proof of the conjecture (Shelah-Vasey 2019) assuming GCH and large cardinals. In fact, the use of large cardinals is to guarantee that the AEC will eventually satisfy the amalgamation property:

We will give a short topos-theoretic proof of the conjecture assuming GCH and that the AEC satisfies amalgamation.
The Scott adjunction

Given an accessible category A with κ-directed colimits, its κ-Scott topos $S_\kappa(A)$ is the full subcategory of the presheaf \mathbf{Set}^A given by those functors $F: A \to \mathbf{Set}$ preserving κ-directed colimits.

Given a topos E, its category of κ-points $\text{pt}_\kappa(E)$ (i.e., geometric morphisms to \mathbf{Set} whose inverse images preserve all κ-small limits) is an accessible category with κ-directed colimits.

Theorem (Henry-Di Liberti) There is a $(2,1)$-adjunction: $S_\kappa: \text{Acc}^\kappa \to \text{Top}_\kappa: \text{pt}_\kappa$ between the category of accessible categories with κ-directed colimits and the category of κ-exact localization of presheaf toposes given by the Scott functor S_κ and the functor pt_κ.

Christian Espíndola (Brno, MUNI)
The Scott adjunction

Given an accessible category A with κ-directed colimits, its κ-Scott topos $S_\kappa(A)$ is the full subcategory of the presheaf Set^A given by those functors $F : A \to Set$ preserving κ-directed colimits.
The Scott adjunction

Given an accessible category A with κ-directed colimits, its κ-Scott topos $S_\kappa(A)$ is the full subcategory of the presheaf Set^A given by those functors $F : A \to Set$ preserving κ-directed colimits.

Given a topos \mathcal{E}, its category of κ-points $pt_\kappa(\mathcal{E})$ (i.e., geometric morphisms to Set whose inverse images preserve all κ-small limits) is an accessible category with κ-directed colimits.
The Scott adjunction

Given an accessible category A with κ-directed colimits, its κ-Scott topos $S_\kappa(A)$ is the full subcategory of the presheaf Set^A given by those functors $F : A \to Set$ preserving κ-directed colimits. Given a topos \mathcal{E}, its category of κ-points $pt_\kappa(\mathcal{E})$ (i.e., geometric morphisms to Set whose inverse images preserve all κ-small limits) is an accessible category with κ-directed colimits.

Theorem

(Henry-Di Liberti) There is a (2-)adjunction:

$$S : \text{Acc}_\kappa \rightleftharpoons \text{Top}_\kappa : pt_\kappa$$

between the category of accessible categories with κ-directed colimits and the category of κ-exact localization of presheaf toposes given by the Scott functor S_κ and the functor pt_κ.
Proof idea

Let K be an AEC with amalgamation that is categorical in some successor $\lambda > \kappa$. A model M is $\mu^+\text{-saturated}$ if for every morphism $N \to N'$ between models of size μ, every morphism $N \to M$ can be extended.

Consider the following diagram of toposes and inverse images of geometric morphisms given by restriction:

$$
\begin{array}{ccc}
S \kappa^+ (K \geq \kappa^+) & \sim & S \lambda^+ (K \geq \lambda^+) \\
S \kappa^+ (Sat \kappa^+ (K)) & & S \lambda^+ (Sat \lambda^+ (K)) \\
\end{array}
$$
Proof idea

Let \(\mathcal{K} \) be an AEC with amalgamation that is categorical in some successor \(\lambda > \kappa \).

Consider the following diagram of toposes and inverse images of geometric morphisms given by restriction:
Proof idea

Let \mathcal{K} be an AEC with amalgamation that is categorical in some successor $\lambda > \kappa$.

A model M is μ^+-saturated if for every morphism $N \to N'$ between models of size μ, every morphism $N \to M$ can be extended:

\[
\begin{array}{ccc}
N' & \xrightarrow{\text{dashed}} & M \\
\uparrow & & \downarrow \\
N & \xrightarrow{} & M
\end{array}
\]
Proof idea

Let \mathcal{K} be an AEC with amalgamation that is categorical in some successor $\lambda > \kappa$.

A model M is μ^+-saturated if for every morphism $N \to N'$ between models of size μ, every morphism $N \to M$ can be extended:

\[
\begin{array}{c}
N' \\
\uparrow \\
N \longrightarrow M
\end{array}
\]

Consider the following diagram of toposes and inverse images of geometric morphisms given by restriction:
Proof idea

Let \mathcal{K} be an AEC with amalgamation that is categorical in some successor $\lambda > \kappa$.

A model M is μ^+-saturated if for every morphism $N \to N'$ between models of size μ, every morphism $N \to M$ can be extended:

\[
\begin{array}{c}
N' \\
\uparrow \\
N \\
\overrightarrow{\longrightarrow} \quad M
\end{array}
\]

Consider the following diagram of toposes and inverse images of geometric morphisms given by restriction:

\[
\begin{array}{ccc}
S_{\kappa^+}(\mathcal{K}_{\geq \kappa^+}) & \longrightarrow & S_\lambda(\mathcal{K}_{\geq \lambda}) \\
\downarrow & & \downarrow I_R \\
S_{\kappa^+}(Sat_{\kappa^+}(\mathcal{K})) & \longrightarrow & S_\lambda(Sat_\lambda(\mathcal{K}))
\end{array}
\]
Proof idea

Let \mathcal{K} be an AEC with amalgamation that is categorical in some successor $\lambda > \kappa$.

A model M is μ^+-saturated if for every morphism $N \to N'$ between models of size μ, every morphism $N \to M$ can be extended:

Consider the following diagram of toposes and inverse images of geometric morphisms given by restriction:

\[
\begin{array}{ccc}
S_{\kappa^+}(S_{\kappa^+}(\mathcal{K}_{\geq \kappa^+})) & \longrightarrow & S_{\lambda}(\mathcal{K}_{\geq \lambda}) \\
\downarrow & & \downarrow R \\
S_{\kappa^+}(\text{Sat}_{\kappa^+}(\mathcal{K})) & \longrightarrow & S_{\lambda}(\text{Sat}_{\lambda}(\mathcal{K}))
\end{array}
\]
FACT (Rosicky 1997): $\mathcal{K}_{\geq \lambda}$ coincides with $Sat_\lambda(\mathcal{K})$. Therefore the right morphism is an isomorphism.
FACT (Rosicky 1997): $\mathcal{K}_{\geq \lambda}$ coincides with $\text{Sat}_\lambda(\mathcal{K})$. Therefore the right morphism is an isomorphism.

The AEC \mathcal{K}, as any accessible category, can be axiomatized up to equivalence by basic sentences through a theory \mathbb{T} in $\mathcal{L}_{\mu^+\mu}$, and can have models not just in Set but in any μ-coherent category (i.e., in a category with enough Set-like properties).
FACT (Rosicky 1997): $\mathcal{K}_{\geq \lambda}$ coincides with $Sat_{\lambda}(\mathcal{K})$. Therefore the right morphism is an isomorphism.

The AEC \mathcal{K}, as any accessible category, can be axiomatized up to equivalence by basic sentences through a theory \mathbb{T} in $\mathbb{L}_{\mu^+, \mu}$, and can have models not just in Set but in any μ-coherent category (i.e., in a category with enough Set-like properties).

The syntactic category $C_\mathbb{T}$ is defined through the following universal property:
FACT (Rosicky 1997): $\mathcal{K}_{\geq \lambda}$ coincides with $Sat_\lambda(\mathcal{K})$. Therefore the right morphism is an isomorphism.

The AEC \mathcal{K}, as any accessible category, can be axiomatized up to equivalence by basic sentences through a theory \mathbb{T} in $\mathcal{L}_{\mu^+, \mu}$, and can have models not just in Set but in any μ-coherent category (i.e., in a category with enough Set-like properties).

The syntactic category $C_\mathbb{T}$ is defined through the following universal property:

Then $\mathcal{K}_{\geq \kappa^+}$ is axiomatized by basic sentences through \mathbb{T}_{κ^+}.
Proof idea

The κ^+-classifying topos of $T\kappa^+$ (Espíndola 2017), $\text{Set}^{[T\kappa^+]}\kappa^+$ is defined through the following universal property: $C_{\text{Set}^{[T\kappa^+]}\kappa^+}$ $E\kappa^+ - \text{small limit preserving}$
Proof idea

The κ^+-classifying topos of T_{κ^+} (Espindola 2017), $\text{Set}[T_{\kappa^+}]_{\kappa^+}$ is defined through the following universal property:

$$
\mathcal{C}_T \xrightarrow{\kappa^+-\text{small limit preserving}} \text{Set}[T_{\kappa^+}]_{\kappa^+}
$$
Proof idea

Suppose \(\text{Sat}^\kappa + (K) \) is axiomatizable by \(T^{\text{sat}}_\kappa + \). Then the morphism \(C^{T^\kappa +} \rightarrow C^{T^{\text{sat}}_\kappa +} \) induces a morphism between the corresponding \(\kappa + \)-classifying toposes \(f^*: \text{Set}[[T^\kappa +]]_{\kappa +} \rightarrow \text{Set}[[T^{\text{sat}}_\kappa +]]_{\kappa +} \).

Then:

\[\text{Set}[[T^\kappa +]]_{\kappa +} \cong \text{Set}[[T^{\text{sat}}_\kappa +]]_{\kappa +} \]

We now want to deduce from the fact that the right morphism is an isomorphism that \(f^* \) is an equivalence, i.e., every model of size \(\kappa + \) is \(\kappa + \)-saturated. Then \(K \) is \(\kappa + \)-categorical since there is a unique such model (Rosicky 1997).
Proof idea

Suppose $Sat_{\kappa^+}(\mathcal{K})$ is axiomatizable by $T_{\kappa^+}^{sat}$. Then the morphism $C_{T_{\kappa^+}} \rightarrow C_{T_{\kappa^+}^{sat}}$ induces a morphism between the corresponding κ^+-classifying toposes $f^* : Set[T_{\kappa^+}]_{\kappa^+} \rightarrow Set[T_{\kappa^+}^{sat}]_{\kappa^+}$.

We now want to deduce from the fact that the right morphism is an isomorphism that f^* is an equivalence, i.e., every model of size κ^+ is κ^+-saturated. Then \mathcal{K} is κ^+-categorical since there is a unique such model (Rosicky 1997).
Proof idea

Suppose $Sat_{\kappa^+}(\mathcal{K})$ is axiomatizable by $T_{\kappa^+}^{sat}$. Then the morphism $C_{T_{\kappa^+}} \rightarrow C_{T_{\kappa^+}^{sat}}$ induces a morphism between the corresponding κ^+-classifying toposes $f^*: \text{Set}[T_{\kappa^+}]_{\kappa^+} \rightarrow \text{Set}[T_{\kappa^+}^{sat}]_{\kappa^+}$. Then:

$$
\begin{align*}
\text{Set}[T_{\kappa^+}]_{\kappa^+} & \xrightarrow{\eta^*_{\text{Set}[T_{\kappa^+}]_{\kappa^+}}} S_{\kappa^+}(\mathcal{K}_{\geq \kappa^+}) & S_{\kappa^+}(\mathcal{K}_{\geq \kappa^+}) & \xrightarrow{\text{R}} S_{\lambda}(\mathcal{K}_{\geq \lambda}) \\
\text{Set}[T_{\kappa^+}^{sat}]_{\kappa^+} & \xrightarrow{\eta^*_{\text{Set}[T_{\kappa^+}^{sat}]_{\kappa^+}}} S_{\kappa^+}(Sat_{\kappa^+}(\mathcal{K})) & S_{\kappa^+}(Sat_{\kappa^+}(\mathcal{K})) & \xrightarrow{\text{R}} S_{\lambda}(Sat_{\lambda}(\mathcal{K})) \\
\end{align*}
$$

We now want to deduce from the fact that the right morphism is an isomorphism that f^* is an equivalence, i.e., every model of size κ^+ is κ^+-saturated. Then \mathcal{K} is κ^+-categorical since there is a unique such model (Rosicky 1997).
Proof idea

Suppose $Sat_{\kappa^+}(\mathcal{K})$ is axiomatizable by $T_{\kappa^+}^{sat}$. Then the morphism $C_{T_{\kappa^+}} \rightarrow C_{T_{\kappa^+}^{sat}}$ induces a morphism between the corresponding κ^+-classifying toposes $f^*: \text{Set}[T_{\kappa^+}]_{\kappa^+} \rightarrow \text{Set}[T_{\kappa^+}^{sat}]_{\kappa^+}$. Then:

$$
\text{Set}[T_{\kappa^+}]_{\kappa^+} \xrightarrow{\eta^*_{\text{Set}[T_{\kappa^+}]}_{\kappa^+}} \text{Set}[T_{\kappa^+}^{sat}]_{\kappa^+} \xrightarrow{\eta^*_{\text{Set}[T_{\kappa^+}^{sat}]}_{\kappa^+}} \text{Set}[T_{\kappa^+}^{sat}]_{\kappa^+} \\
\downarrow f^* \quad \downarrow \quad \downarrow

\text{Set}[T_{\kappa^+}]_{\kappa^+} \xrightarrow{\eta^*_{\text{Set}[T_{\kappa^+}]}_{\kappa^+}} \text{Set}[T_{\kappa^+}^{sat}]_{\kappa^+} \xrightarrow{\eta^*_{\text{Set}[T_{\kappa^+}^{sat}]}_{\kappa^+}} \text{Set}[T_{\kappa^+}^{sat}]_{\kappa^+} \\
\downarrow \quad \downarrow \quad \downarrow

S_{\kappa^+}(\mathcal{K}_{\geq \kappa^+}) \quad \text{Set}(\mathcal{K})_{\geq \kappa^+} \quad S_{\lambda}(\mathcal{K}_{\geq \lambda})
$$

We now want to deduce from the fact that the right morphism is an isomorphism that f^* is an equivalence, i.e., every model of size κ^+ is κ^+-saturated. Then \mathcal{K} is κ^+-categorical since there is a unique such model (Rosicky 1997)
Proof idea

We will prove that in fact $\text{Sat}^κ + (K)$ can be axiomatized and, moreover, if $τ_D$ is the dense (alternatively, atomic) Grothendieck topology on K:

$$\text{Set}[\text{Sat}^κ +] = \text{Sh}(K^{op}, τ_D)$$

This is based in the following:

Theorem

Let $T^κ$ axiomatize $K ≥ κ$. Then the $κ^+$-classifying topos of $T^κ$ is equivalent to the presheaf topos $\text{Set}K^κ$. Moreover, the canonical embedding of the syntactic category is given by (note that $K^κ$ ∈ $C^{T^κ} → \text{Set}$):

$$C^{T^κ} \ni M : C^{T^κ} → \text{Set} \quad M ↦ M(X)$$

Christian Espíndola (Brno, MUNI)
We will prove that in fact $\text{Sat}_{\kappa^+}(\mathcal{K})$ can be axiomatized and, moreover, if τ_D is the dense (alternatively, atomic) Grothendieck topology on $\mathcal{K}_{\kappa}^{\text{op}}$:

$$\text{Set}[\mathcal{T}_{\kappa^+}^{\text{sat}}]_{\kappa^+} \cong \text{Sh}(\mathcal{K}_{\kappa}^{\text{op}}, \tau_D)$$
Proof idea

We will prove that in fact $\text{Sat}_{\kappa^+}(\mathcal{K})$ can be axiomatized and, moreover, if τ_D is the dense (alternatively, atomic) Grothendieck topology on $\mathcal{K}_{\kappa}^{op}$:

$$\text{Set}[\mathbb{T}_{\kappa^+}^{\text{sat}}]_{\kappa^+} \cong \mathcal{S}h(\mathcal{K}_{\kappa}^{op}, \tau_D)$$

This is based in the following:

Theorem

Let \mathbb{T}_{κ} axiomatize $\mathcal{K}_{\geq \kappa}$. Then the κ^+-classifying topos of \mathbb{T}_{κ} is equivalent to the presheaf topos $\text{Set}^{\mathcal{K}_{\kappa}}$. Moreover, the canonical embedding of the syntactic category is given by (note that $\mathcal{K}_{\kappa} \ni M : \mathcal{C}_{\mathbb{T}_{\kappa}} \rightarrow \text{Set}$):

$$\mathcal{C}_{\mathbb{T}_{\kappa}} \xrightarrow{\text{ev}} \text{Set}^{\mathcal{K}_{\kappa}}$$

$$X \xrightarrow{\quad \quad M \mapsto M(X) \quad \quad} M$$
Proof idea

Every model of T is a κ^+-filtered colimit of models in K. We have:

$$C^T_{\kappa} \cong \text{ev} \lim_{\to i} M_i = \text{ev} \lim_{\to i} M_i$$

This proves the universal property when $E = \text{Set}$.

Christian Espíndola (Brno, MUNI)
A topos-theoretic proof of Shelah’s eventual categoricity conjecture
April 30th, 2020
11/22
Proof.
Every model of \mathbb{T} is a κ^+-filtered colimit of models in \mathcal{K}_κ. We have:
Proof.
Every model of \mathcal{T} is a κ^+-filtered colimit of models in \mathcal{K}_κ. We have:

\[
\mathcal{C}_{\mathcal{T}_\kappa} \xrightarrow{\text{ev}} \text{Set}^{\mathcal{K}_\kappa} \\
\xymatrix{ M \cong \lim_{\to} M_i \
\text{Set} \\
\text{Set}^{\mathcal{K}_\kappa} } \xleftarrow{\lim_{i} \text{ev}_{M_i}}
\]
Proof idea

Proof.

Every model of \mathbb{T} is a κ^+-filtered colimit of models in \mathcal{K}_κ. We have:

\[
\begin{array}{ccc}
\mathcal{C}_{\mathbb{T}_\kappa} & \xrightarrow{ev} & \text{Set}^{\mathcal{K}_\kappa} \\
\downarrow M \cong \lim_{\rightarrow i} M_i & & \downarrow \lim_{\rightarrow i} ev_{M_i} \\
\text{Set} & & \\
\end{array}
\]

This proves the universal property when $\mathcal{E} = \text{Set}$.
Proof idea

Let now E be the κ^{+}-classifying topos of T_κ. Then it has enough κ^{+}-points by the infinitary Deligne completeness theorems (Espíndola 2017). We have:

$$C_{T_\kappa}S \cong \text{ev} \circ N \circ G_{\kappa} \circ \text{ev}.$$ Now every object F in S_{κ} can be written as $F \sim \lim_{\rightarrow i} \left[M_i, - \right] \text{Mod}_\lambda(T)$, i.e.:

$$\lim_{\rightarrow i} \lim_{\leftarrow j} \left[\phi_{ij}, - \right] C_{T_\kappa}, - \sim \lim_{\rightarrow i} \lim_{\leftarrow j} \text{ev}(\phi_{ij})$$
Proof idea

Let now \(\mathcal{E} \) be the \(\kappa^+ \)-classifying topos of \(T_\kappa \). Then it has enough \(\kappa^+ \)-points by the infinitary Deligne completeness theorems (Espindola 2017).
Proof idea

Let now \mathcal{E} be the κ^+-classifying topos of \mathbb{T}_κ. Then it has enough κ^+-points by the infinitary Deligne completeness theorems (Espindola 2017). We have:

$$
\begin{align*}
\mathcal{C}_{\mathbb{T}_\kappa} & \xrightarrow{\text{ev}} \mathcal{S}et^{\mathcal{C}_\kappa} \\
N & \downarrow \quad \mathcal{E} \\
\mathcal{E} & \xrightarrow{G} \mathcal{S}et^{\mathcal{C}_\kappa} \\
\mathcal{S}et^I & \xrightarrow{\text{ev}_i} \mathcal{S}et
\end{align*}
$$
Proof idea

Let now \mathcal{E} be the κ^+-classifying topos of \mathbb{T}_κ. Then it has enough κ^+-points by the infinitary Deligne completeness theorems (Espindola 2017). We have:

$$\mathcal{C}_{\mathbb{T}_\kappa} \xrightarrow{\text{ev}} \text{Set}^{\mathcal{K}_\kappa}$$

Now every object F in $\text{Set}^{\mathcal{K}_\kappa}$ can be written as $F \cong \lim_{i} [M_i, -]_{\text{Mod}_\lambda(\mathbb{T})}$, i.e.:

$$\lim_{i} \lim_{j} [\phi_{ij}, -]_{\mathcal{C}_{\mathbb{T}}} \cong \lim_{i} \lim_{j} [[\phi_{ij}, -]_{\mathcal{C}_{\mathbb{T}}}, -]_{\text{Mod}_\lambda(\mathbb{T})} \cong \lim_{i} \lim_{j} \text{ev}(\phi_{ij})$$
Proof idea

Since G preserves colimits and κ^+-small limits, we have:

$$G(F) \cong \lim_{\to} \lim_{\leftarrow} G \circ \text{ev}(\phi_{ij})$$

and hence G is completely determined by its values on $\text{ev}(C_T\kappa)$, which land in E. Since E also preserves colimits and κ^+-small limits, the whole G lands in E.

This proves the universal property when E is κ^+-classifying topos of $T\kappa$.

Since this later satisfies the same universal property, we must have $E \cong \text{Set}_{K\kappa}$. This finishes the proof.
Since G preserves colimits and κ^+-small limits, we have:

$$G(F) \cong \lim_{i} \lim_{j} G \circ \text{ev}(\phi_{ij})$$

and hence G is completely determined by its values on $\text{ev}(\mathcal{C}_{T,\kappa})$, which land in \mathcal{E}. Since E also preserves colimits and κ^+-small limits, the whole G lands in \mathcal{E}.

This proves the universal property when E is κ^+-classifying topos of T_{κ}. Since this later satisfies the same universal property, we must have $E \cong \text{Set}$. This finishes the proof.
Proof idea

Since G preserves colimits and κ^+-small limits, we have:

$$G(F) \cong \lim_{i} \lim_{j} G \circ \text{ev}(\phi_{ij})$$

and hence G is completely determined by its values on $\text{ev}(\mathcal{C}_{T_\kappa})$, which land in \mathcal{E}. Since E also preserves colimits and κ^+-small limits, the whole G lands in \mathcal{E}.

This proves the universal property when \mathcal{E} is κ^+-classifying topos of T_κ.

Since this later satisfies the same universal property, we must have $\mathcal{E} \cong \text{Set}^{\mathcal{K}_\kappa}$. This finishes the proof.
Proof idea

Coming back to Sat^{κ}, we have the following situation:

$$\mathsf{C} \mathsf{T}^{\kappa} \mathsf{S} \mathsf{et} \kappa = \mathsf{C} \mathsf{T}^{\kappa} \mathsf{S} \mathsf{et} \left[\mathsf{T}^{\kappa} \right] \kappa = \mathsf{C} \mathsf{T} \mathsf{sat}^{\kappa} \mathsf{S} \mathsf{h} \left(\mathsf{K} \mathsf{op}^{\kappa}, \tau \mathsf{D} \right) \mathsf{ev} \mathsf{f} \mathsf{∗} \mathsf{M} \sim \lim_{\to} \mathsf{Ni} \mathsf{f} \mathsf{∗}$$

FACT (e.g. Johnstone's Elephant): The embedding $\mathsf{S} \mathsf{h} \left(\mathsf{K} \mathsf{op}^{\kappa}, \tau \mathsf{D} \right) \to \mathsf{S} \mathsf{et} \kappa$ factors through $\mathsf{f} \mathsf{∗}$ if and only if $\mathsf{f} \mathsf{∗}$ is dense ($\mathsf{f} \mathsf{∗}(0) = 0$, or alternatively $\mathsf{f} \mathsf{∗}(C) \neq 0$ for $C \neq 0$).
Coming back to $Sat_{\kappa^+}(\mathcal{K})$, we have the following situation:
Coming back to $Sat_{\kappa^+}(\mathcal{K})$, we have the following situation:

\[
\begin{array}{ccc}
C_{\mathbb{T}_\kappa} & \xrightarrow{\text{ev}} & Set^{\mathcal{K}_{\kappa}} \\
\downarrow & & \\
C_{\mathbb{T}_{\kappa^+}} & \rightarrow & Set[\mathbb{T}_{\kappa^+}]_{\kappa^+} \\
\downarrow & & \\
C_{\mathbb{T}_{\kappa^+}^{\text{sat}}} & \rightarrow & Sh(K_{\kappa}^{\text{op}}, \tau_D) \\
\end{array}
\]
Coming back to $Sat_{\kappa^+}(\mathcal{K})$, we have the following situation:

\[
\begin{array}{ccc}
C_{T_{\kappa}} & \xrightarrow{ev} & Set^{\mathcal{K}_{\kappa}} \\
\downarrow & & \downarrow f^* \quad f_* \\
C_{T_{\kappa}^+} & \rightarrow & Set[\mathcal{T}_{\kappa^+}]_{\kappa^+} \\
\uparrow & & \downarrow \\
C_{T_{\kappa}^{sat}} & \rightarrow & Sh(K_{\kappa}^{op}, \tau_D)
\end{array}
\]

FACT (e.g. Johnstone’s Elephant): The embedding $Sh(K_{\kappa}^{op}, \tau_D) \hookrightarrow Set^{\mathcal{K}_{\kappa}}$ factors through f_* if and only if f_* is dense ($f_*(0) = 0$, or alternatively $f^*(C) \neq 0$ for $C \neq 0$).
Proof idea

If M is a saturated model of size κ^+, for every $p : N \to N'$ in K_{κ}, each $N \to M$ extends to some $p' : N' \to M$. This is the same as saying that M factors through $\text{Set} K_{\kappa} \to \text{Set}$ maps $p^* : [N', -] \to [N, -]$ to an epimorphism, since:

$$\lim_{\to} \text{ev} N_i([N, -]) = \lim_{\to} [N, N_i] \sim [N, \lim_{\to} N_i] \sim [N, M]$$

It follows that M factors through $\text{Sh}(K_{\kappa}^{\text{op}}, \tau_D)$ and that $\text{Set} K_{\kappa}^{\text{op}}$ is the κ^+-classifying topos of $T_{\text{sat}}^{\kappa^+}$.

FACT (Rosicky 1997): κ^+-saturated models exist. This can also be seen topos-theoretically by noticing that $\text{Sh}(K_{\kappa}^{\text{op}}, \tau_D)$ has enough κ^+-points (Espindola 2017). The uniqueness of κ^+-saturated models of size κ^+ can be seen as well by noticing that $\text{Sh}(K_{\kappa}^{\text{op}}, \tau_D)$ is two-valued and Boolean (Barr-Makkai 1987, Espindola 2017).
Proof idea

If M is a saturated model of size κ^{++}, for every $p: N \to N'$ in K_{κ}, each $N \to M$ extends to some $p': N' \to M$. This is the same as saying that $M: \text{Set} \to \text{Set}$ maps $p^*: [N', -] \to [N, -]$ to an epimorphism, since:

$\lim_{\to} - \to \text{eval}_N \circ i \circ (N, -) = \lim_{\to} - \to i \circ N \circ \text{eval}_N \sim = [N, \lim_{\to} - \to \text{eval}_N \circ N \circ i] \sim = [N, M]$

It follows that M factors through $\text{sh}(K_{\kappa^{op}}, \tau_D)$ and that $\text{sh}(K_{\kappa^{op}}, \tau_D)$ is the κ^{++}-classifying topos of $T_{\text{sat}}\kappa^{++}$.

FACT (Rosicky 1997): κ^{++}-saturated models exist. This can also be seen topos-theoretically by noticing that $\text{sh}(K_{\kappa^{op}}, \tau_D)$ has enough κ^{++}-points (Espindola 2017). The uniqueness of κ^{++}-saturated models of size κ^{++} can be seen as well by noticing that $\text{sh}(K_{\kappa^{op}}, \tau_D)$ is two-valued and Boolean (Barr-Makkai 1987+ Espindola 2017).
Proof idea

If M is a saturated model of size κ^+, for every $p : N \to N'$ in \mathcal{K}_κ, each $N \to M$ extends to some $p' : N' \to M$. This is the same as saying that $M : \text{Set}^{\mathcal{K}_\kappa} \to \text{Set}$ maps $p^* : [N', -] \to [N, -]$ to an epimorphism, since:

$$\lim_i \text{ev}_{N_i}([N, -]) = \lim_i [N, N_i] \cong [N, \lim_i N_i] \cong [N, M]$$
Proof idea

If \(M \) is a saturated model of size \(\kappa^+ \), for every \(p : N \to N' \) in \(\mathcal{K}_\kappa \), each \(N \to M \) extends to some \(p' : N' \to M \). This is the same as saying that \(M : \text{Set}^{\mathcal{K}_\kappa} \to \text{Set} \) maps \(p^* : [N', -] \to [N, -] \) to an epimorphism, since:

\[
\lim_i \text{ev}_{N_i}([N, -]) = \lim_i [N, N_i] \cong [N, \lim_i N_i] \cong [N, M]
\]

It follows that \(M \) factors through \(a : \text{Set}^{\mathcal{K}_\kappa} \to \text{Sh}(K_\kappa^{op}, \tau_D) \) and that \(\text{Sh}(K_\kappa^{op}, \tau_D) \) is the \(\kappa^+ \)-classifying topos of \(\mathbb{T}_{\kappa^+}^{\text{sat}} \).
If M is a saturated model of size κ^+, for every $p : N \to N'$ in \mathcal{K}_κ, each $N \to M$ extends to some $p' : N' \to M$. This is the same as saying that $M : \text{Set}^{\mathcal{K}_\kappa} \to \text{Set}$ maps $p^* : [N', -] \to [N, -]$ to an epimorphism, since:

$$\lim_{i} \text{ev}_{N_i}([N, -]) \cong \lim_{i} [N, N_i] \cong [N, \lim_{i} N_i] \cong [N, M]$$

It follows that M factors through $a : \text{Set}^{\mathcal{K}_\kappa} \to Sh(K^{\text{op}}_\kappa, \tau_D)$ and that $Sh(K^{\text{op}}_\kappa, \tau_D)$ is the κ^+-classifying topos of $\mathbb{T}^{\text{sat}}_{\kappa^+}$.

FACT (Rosicky 1997): κ^+-saturated models exist. This can also be seen topos-theoretically by noticing that $Sh(K^{\text{op}}_\kappa, \tau_D)$ has enough κ^+-points (Espindola 2017). The uniqueness of κ^+-saturated models of size κ^+ can be seen as well by noticing that $Sh(K^{\text{op}}_\kappa, \tau_D)$ is two-valued and Boolean (Barr-Makkai 1987+ Espindola 2017)

Christian Espíndola (Brno, MUNI) A topos-theoretic proof of Shelah's eventual categoricity conjecture April 30th, 2020 15 / 22
Wrapping up
Wrapping up

\[\text{Set}[^{\mathbb{T}_\kappa^+}]_{\kappa^+} \xrightarrow{\eta_{\text{Set}[\mathbb{T}_\kappa^+],\kappa^+}} S_{\kappa^+}(\mathcal{K}_{\geq \kappa^+}) \xrightarrow{\eta_{\text{Sh}(\mathbb{K}_\kappa^\text{op},\tau_D)}} S_{\lambda}(\mathcal{K}_{\geq \lambda}) \]

\[\text{Sh}(\mathbb{K}_\kappa^\text{op},\tau_D) \xrightarrow{f^*} S_{\kappa^+}(\text{Sat}_{\kappa^+}(\mathcal{K})) \xrightarrow{\eta_{\text{Sh}(\mathbb{K}_\kappa^\text{op},\tau_D)}} S_{\lambda}(\text{Sat}_\lambda(\mathcal{K})) \]

Christian Espíndola (Brno, MUNI) A topos-theoretic proof of Shelah’s eventual categoricity conjecture April 30th, 2020 16 / 22
Wrapping up

To prove that $\text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+} \cong \text{Sh}(\text{Mod}_{\kappa}(\mathbb{T})^{\text{op}}, \tau_D)$ we show that the embedding $\text{Sh}(\text{Mod}_{\kappa}(\mathbb{T})^{\text{op}}, \tau_D) \hookrightarrow \text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+}$ is an isomorphism, for which we in turn show that any basic sequent valid in $\text{Sh}(\text{Mod}_{\kappa}(\mathbb{T})^{\text{op}}, \tau_D)$ will also be valid in $\text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+}$.
Wrapping up

\[
\begin{array}{c}
\text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+} \xrightarrow{\eta^*_{\text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+}}} S_{\kappa^+}(\mathcal{K}_{\geq \kappa^+}) \xrightarrow{\text{f}^*} S_{\lambda}(\mathcal{K}_{\geq \lambda}) \\
\downarrow \quad \quad \quad \quad \quad \downarrow \quad \quad \quad \quad \quad \quad \downarrow \\
\text{Sh}(\mathcal{K}_{\kappa}^{\text{op}}, \tau_D) \xrightarrow{\eta^*_{\text{Sh}(\mathcal{K}_{\kappa}^{\text{op}}, \tau_D)}} S_{\kappa^+}(\text{Sat}_{\kappa^+}(\mathcal{K})) \xrightarrow{\text{f}^*} S_{\lambda}(\text{Sat}_{\lambda}(\mathcal{K})) \\
\end{array}
\]

To prove that \(\text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+} \cong \text{Sh}(\text{Mod}_{\kappa}(\mathbb{T})^{\text{op}}, \tau_D)\) we show that the embedding \(\text{Sh}(\text{Mod}_{\kappa}(\mathbb{T})^{\text{op}}, \tau_D) \hookrightarrow \text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+}\) is an isomorphism, for which we in turn show that any basic sequent valid in \(\text{Sh}(\text{Mod}_{\kappa}(\mathbb{T})^{\text{op}}, \tau_D)\) will also be valid in \(\text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+}\).

Inspection of the diagram shows that any such basic sequent \(\forall x(\phi \rightarrow \psi)\) valid in \(\text{Sh}(\text{Mod}_{\kappa}(\mathbb{T})^{\text{op}}, \tau_D)\) is also valid in \(S_{\lambda}(\mathcal{K}_{\geq \lambda})\), and hence in the unique model of size \(\lambda\).
Wrapping up

Consider the presheaf category \(\text{Set}^{K_{\geq \kappa^{+} \leq \lambda}} \). The interpretation of the sentence \(\forall x (\phi \rightarrow \psi) \) corresponds to a subobject \(S \hookrightarrow 1 \).

FACT (Kripke-Joyal semantics):

\(S = 0 \) if and only if for every morphism \(M \rightarrow N \) in \(K_{\geq \kappa^{+} \leq \lambda} \) there is a morphism \(N \rightarrow N' \) with \(N' \not\models \forall x (\phi \rightarrow \psi) \).

We conclude that \(S \neq 0 \).

Assume now that \(K \) is \(\kappa \)-categorical. Then \(\text{Set}^{K_{\kappa^{+}^{+}}} \), and hence \(\text{Set}^{[T_{\kappa^{+}^{+}}]}_{\kappa^{+}^{+}} \), is two-valued. Thus the interpretation of \(\forall x (\phi \rightarrow \psi) \) in \(\text{Set}^{[T_{\kappa^{+}^{+}}]}_{\kappa^{+}^{+}} \) corresponds to a subobject \(T \) that is either 0 or 1. It is hence enough to prove it is not 0.

This is the last missing piece, which is proven through an infinitary generalization of a completeness theorem of Joyal:
Consider the presheaf category $\text{Set}^{K_{\geq \kappa^+, \leq \lambda}}$. The interpretation of the sentence $\forall x (\phi \rightarrow \psi)$ corresponds to a subobject $S \rightarrow 1$.

FACT (Kripke-Joyal semantics): $S = 0$ if and only if for every morphism $M \rightarrow N$ in $K_{\geq \kappa^+, \leq \lambda}$ there is a morphism $N \rightarrow N'$ with $N' \not\equiv \forall x (\phi \rightarrow \psi)$. We conclude that $S \neq 0$. Assume now that K is κ-categorical. Then Set^K_{κ}, and hence $\text{Set}^{\left[T_{\kappa^+} \right]_{\kappa^+, \leq \lambda}}$, is two-valued. Thus the interpretation of $\forall x (\phi \rightarrow \psi)$ in $\text{Set}^{\left[T_{\kappa^+} \right]_{\kappa^+, \leq \lambda}}$ corresponds to a subobject T that is either 0 or 1. It is hence enough to prove it is not 0. This is the last missing piece, which is proven through an infinitary generalization of a completeness theorem of Joyal:
Consider the presheaf category \(\text{Set}^{\mathcal{K}_{\geq \kappa^+}, \leq \lambda} \). The interpretation of the sentence \(\forall x(\phi \rightarrow \psi) \) corresponds to a subobject \(S \hookrightarrow 1 \).

FACT (Kripke-Joyal semantics): \(S = 0 \) if and only if for every morphism \(M \rightarrow N \) in \(\mathcal{K}_{\geq \kappa^+}, \leq \lambda \) there is a morphism \(N \rightarrow N' \) with \(N' \not\equiv \forall x(\phi \rightarrow \psi) \).

We conclude that \(S \neq 0 \).

Assume now that \(\mathcal{K} \) is \(\kappa \)-categorical. Then \(\text{Set}^{\mathcal{K}_{\kappa^+}, \leq \lambda} \) is two-valued. Thus the interpretation of \(\forall x(\phi \rightarrow \psi) \) in \(\text{Set}^{\mathcal{T}_{\kappa^+}, \leq \lambda} \) corresponds to a subobject \(T \) that is either 0 or 1. It is hence enough to prove it is not 0.

This is the last missing piece, which is proven through an infinitary generalization of a completeness theorem of Joyal.
Consider the presheaf category $\text{Set}^{\mathcal{K}_{\geq \kappa^+, \leq \lambda}}$. The interpretation of the sentence $\forall x(\phi \rightarrow \psi)$ corresponds to a subobject $S \rightarrow 1$.

FACT (Kripke-Joyal semantics): $S = 0$ if and only if for every morphism $M \rightarrow N$ in $\mathcal{K}_{\geq \kappa^+, \leq \lambda}$ there is a morphism $N \rightarrow N'$ with $N' \not\equiv \forall x(\phi \rightarrow \psi)$.

We conclude that $S \neq 0$.

We assume now that \mathcal{K} is κ-categorical. Then $\text{Set}^{\mathcal{K}_{\kappa^+, \kappa^+}}$ and hence $\text{Set}^{[\mathcal{T}_{\kappa^+}]_{\kappa^+}}$ is two-valued. Thus the interpretation of $\forall x(\phi \rightarrow \psi)$ in $\text{Set}^{[\mathcal{T}_{\kappa^+}]_{\kappa^+}}$ corresponds to a subobject T that is either 0 or 1. It is hence enough to prove it is not 0. This is the last missing piece, which is proven through an infinitary generalization of a completeness theorem of Joyal.
Consider the presheaf category $\text{Set}^{\mathcal{K}_{\geq \kappa^+, \leq \lambda}}$. The interpretation of the sentence $\forall x (\phi \rightarrow \psi)$ corresponds to a subobject $S \hookrightarrow 1$.

FACT (Kripke-Joyal semantics): $S = 0$ if and only if for every morphism $M \rightarrow N$ in $\mathcal{K}_{\geq \kappa^+, \leq \lambda}$ there is a morphism $N \rightarrow N'$ with $N' \not\equiv \forall x (\phi \rightarrow \psi)$. We conclude that $S \neq 0$.

Assume now that \mathcal{K} is κ-categorical. Then $\text{Set}^{\mathcal{K}_{\kappa}}$, and hence $\text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+}$, is two-valued. Thus the interpretation of $\forall x (\phi \rightarrow \psi)$ in $\text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+}$ corresponds to a subobject T that is either 0 or 1. It is hence enough to prove it is not 0.
Consider the presheaf category \(\text{Set}^{\mathcal{K}_{\geq \kappa^+, \leq \lambda}} \). The interpretation of the sentence \(\forall x (\phi \to \psi) \) corresponds to a subobject \(S \to 1 \).

FACT (Kripke-Joyal semantics): \(S = 0 \) if and only if for every morphism \(M \to N \) in \(\mathcal{K}_{\geq \kappa^+, \leq \lambda} \) there is a morphism \(N \to N' \) with \(N' \not\models \forall x (\phi \to \psi) \). We conclude that \(S \neq 0 \).

Assume now that \(\mathcal{K} \) is \(\kappa \)-categorical. Then \(\text{Set}^ {\mathcal{K}_{\kappa}} \), and hence \(\text{Set}^ {\mathcal{T}_{\kappa^+}_{\kappa^+}} \), is two-valued. Thus the interpretation of \(\forall x (\phi \to \psi) \) in \(\text{Set}^ {\mathcal{T}_{\kappa^+}_{\kappa^+}} \) corresponds to a subobject \(T \) that is either 0 or 1. It is hence enough to prove it is not 0. This is the last missing piece, which is proven through an infinitary generalization of a completeness theorem of Joyal:
Wrapping up

Theorem

The evaluation functor: $\text{ev}: S_{\mathbb{K}}[T_{\kappa}^+] \rightarrow S_{\mathbb{K} \geq \kappa, \leq \lambda}$ preserves the interpretation of the sentence $\forall x (\phi \rightarrow \psi)$.

Proof.

$C(T_{\kappa}^+)^{\mathbb{K}} \subseteq S_{\mathbb{K}}[T_{\kappa}^+] \subseteq S_{\mathbb{K}^+}$.

Christian Espíndola (Brno, MUNI)

A topos-theoretic proof of Shelah’s eventual categoricity conjecture

April 30th, 2020
The evaluation functor:

\[\text{ev} : \text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+} \to \text{Set}^{\mathcal{K}_{\geq \kappa^+}, \leq \lambda} \]

preserves the interpretation of the sentence \(\forall x(\phi \to \psi) \).
Wrapping up

Theorem

The evaluation functor:

\[\text{ev} : \text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+} \rightarrow \text{Set}^{\mathcal{K}_{\geq \kappa^+}, \leq \lambda} \]

preserves the interpretation of the sentence \(\forall x (\phi \rightarrow \psi) \).

Proof.

\[
\begin{array}{cccc}
C_{(\mathbb{T}_{\kappa^+})_{\lambda}} & \xrightarrow{Y'} & \text{Set}[\mathbb{T}_{\kappa^+}]_{\lambda^+} \\
g & \uparrow & & \uparrow g^* \\
C_{\mathbb{T}_{\kappa^+}} & \xrightarrow{Y} & \text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+}
\end{array}
\]
Wrapping up

It is enough to prove that the interpretation of $\forall x (\phi \to \psi)$ is preserved by the canonical morphism $g^*: \text{Set}^{\text{T}\kappa^+} \rightarrow \text{Set}^{\text{T}\kappa^+\lambda^+}$, since this latter is the λ^+-classifying topos of $\text{T}\kappa^+$. An entirely analogous proof to a previous theorem shows that this must be the presheaf topos $\text{Set}_K^{\geq \kappa^+, \leq \lambda^+}$. This follows immediately since g preserves the interpretation of $\forall x (\phi \to \psi)$ (by the syntactic construction of the syntactic categories), and a theorem of Butz and Johnstone (1998) proves that the interpretation of $\forall x (\phi \to \psi)$ is preserved by Y and Y'. This completes the proof.
Wrapping up

It is enough to prove that the interpretation of $\forall x (\phi \to \psi)$ is preserved by the canonical morphism $g^*: \text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+} \to \text{Set}[\mathbb{T}_{\kappa^+}]_{\lambda^+}$, since this latter is the λ^+-classifying topos of \mathbb{T}_{κ^+}, and an entirely analogous proof to a previous theorem shows that this must be the presheaf topos $\text{Set}^{\mathbb{K}_{\geq \kappa^+, \leq \lambda}}$.
Wrapping up

It is enough to prove that the interpretation of $\forall x (\phi \rightarrow \psi)$ is preserved by the canonical morphism $g^* : \text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+} \rightarrow \text{Set}[\mathbb{T}_{\kappa^+}]_{\lambda^+}$, since this latter is the λ^+-classifying topos of \mathbb{T}_{κ^+}, and an entirely analogous proof to a previous theorem shows that this must be the presheaf topos $\text{Set}^{\mathcal{K}_{\geq \kappa^+}, \leq \lambda}$. This follows immediately since g preserves the interpretation of $\forall x (\phi \rightarrow \psi)$ (by the syntactic construction of the syntactic categories), and a theorem of Butz and Johnstone (1998) proves that the interpretation of $\forall x (\phi \rightarrow \psi)$ is preserved by Y and Y'. This completes the proof.
Wrapping up

We conclude that categoricity in κ and λ implies categoricity in $\kappa +$. Repeating the argument we conclude categoricity in κ^{++}, and so on. For a limit μ, we simply consider the diagram:

$\text{Set}[\text{T}_{\kappa +}]_{\kappa +}$

$\text{Set}[\text{T}_{\kappa^{++}}]_{\kappa^{++}}$

\vdots

$\text{Sh}(\text{Kop}_{\kappa}, \tau_{D})$

$\text{Sh}(\text{Kop}_{\kappa +}, \tau_{D})$

\vdots

This also serves for the case in which λ is limit.
We conclude that categoricity in κ and λ implies categoricity in κ^+. Repeating the argument we conclude categoricity in κ^{++}, and so on. For a limit μ, we simply consider the diagram:

$$
\begin{align*}
Set[\mathbb{T}_{\kappa^+}]_{\kappa^+} & \rightarrow Set[\mathbb{T}_{\kappa^{++}}]_{\kappa^{++}} & \rightarrow & \cdots & \rightarrow Set[\mathbb{T}_{\mu}]_{\mu} \\
\downarrow & & & & \downarrow \\
Sh(K_{\kappa}^{op}, \tau_D) & \rightarrow Sh(K_{\kappa^+}^{op}, \tau_D) & \rightarrow & \cdots & \rightarrow E
\end{align*}
$$

This also serves for the case in which λ is limit.
We conclude that categoricity in κ and λ implies categoricity in κ^+. Repeating the argument we conclude categoricity in κ^{++}, and so on. For a limit μ, we simply consider the diagram:

\[
\begin{align*}
\text{Set}[\mathbb{T}_{\kappa^+}]_{\kappa^+} & \longrightarrow \text{Set}[\mathbb{T}_{\kappa^{++}}]_{\kappa^{++}} \longrightarrow \cdots \longrightarrow \text{Set}[\mathbb{T}_\mu]_\mu \\
\downarrow & \downarrow & \vdots \\
\mathcal{S}h(K^{\text{op}}_\kappa, \tau_D) & \longrightarrow \mathcal{S}h(K^{\text{op}}_{\kappa^+}, \tau_D) \longrightarrow \cdots \longrightarrow \mathcal{E}
\end{align*}
\]

This also serves for the case in which λ is limit.
Wrapping up

Proof of Shelah's eventual categoricity conjecture.

FACT (Hanf numbers): For every AEC K there is a cardinal κ such that if K is categorical in some $\lambda > \kappa$, it is categorical in unboundedly many cardinals. Since categoricity in a pair of cardinals implies categoricity in all cardinals in between, we conclude that there is a tail of cardinals where K is categorical. QED

Remark: Assume GCH. Let K be an accessible category with all morphisms monomorphisms, directed bounds and amalgamation. Then the same proof outlined also proves that there is a cardinal κ such that if K is λ-categorical for some $\lambda \supseteq \kappa$ (i.e., it has only one object of internal size λ up to isomorphism) then it is λ'-categorical for every $\lambda' \supseteq \kappa$. The hypotheses on K can be spared assuming instead a proper class of strongly compact cardinals.
Wrapping up

Proof of Shelah’s eventual categoricity conjecture.
Proof of Shelah’s eventual categoricity conjecture.

FACT (Hanf numbers): For every AEC \mathcal{K} there is a cardinal κ such that if \mathcal{K} is categorical in some $\lambda > \kappa$, it is categorical in unboundedly many cardinals.

Remark

Assume GCH. Let \mathcal{K} be an accessible category with all morphisms monomorphisms, directed bounds and amalgamation. Then the same proof outlined also proves that there is a cardinal κ such that if \mathcal{K} is λ-categorical for some $\lambda \in \kappa$, it is λ'-categorical for every $\lambda' \in \kappa$. The hypotheses on \mathcal{K} can be spared assuming instead a proper class of strongly compact cardinals.
Wrapping up

Proof of Shelah’s eventual categoricity conjecture.

FACT (Hanf numbers): For every AEC \mathcal{K} there is a cardinal κ such that if \mathcal{K} is categorical in some $\lambda > \kappa$, it is categorical in unboundedly many cardinals.

Since categoricity in a pair of cardinals implies categoricity in all cardinals in between, we conclude that there is a tail of cardinals where \mathcal{K} is categorical. QED
Proof of Shelah’s eventual categoricity conjecture.

FACT (Hanf numbers): For every AEC \mathcal{K} there is a cardinal κ such that if \mathcal{K} is categorical in some $\lambda > \kappa$, it is categorical in unboundedly many cardinals.

Since categoricity in a pair of cardinals implies categoricity in all cardinals in between, we conclude that there is a tail of cardinals where \mathcal{K} is categorical. QED

Remark

Assume GCH. Let \mathcal{K} be an accessible category with all morphisms monomorphisms, directed bounds and amalgamation. Then the same proof outlined also proves that there is a cardinal κ such that if \mathcal{K} is λ-categorical for some $\lambda \geq \kappa$ (i.e., it has only one object of internal size λ up to isomorphism) then it is λ'-categorical for every $\lambda' \geq \kappa$. The hypotheses on \mathcal{K} can be spared assuming instead a proper class of strongly compact cardinals.
Thank you!