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Introduction



This talk is based on the preprint:

Distributive laws for relative monads, arXiv:2007.12982, 2020.
(G. Lobbia)

Theorem

Let I be a 2-category, (X, I, T) a relative monad in K and (S, Sp) a
compatible monad with |. The following are equivalent:

e a relative distributive law of T over (S, So);
e alifting T of T to the algebras of (S, So);
e a lifting S of S to the relative right modules of T.

Today: K = Cat, CAT
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@ Relative Monads;

(3) Relative Distributive Laws
(i.e. distributive laws between a monad and a relative monad).
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QOutline of the talk

@ Distributive Laws (for monads);
@ Relative Monads;

@ Relative Distributive Laws
(i.e. distributive laws between a monad and a relative monad).
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Distributive Laws



Distributive Laws

Definition (Beck)
Let (S, m, s) and (T, n, t) be monads on C. A distributive law of T
over S consists of a natural transformation d: ST — TS
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Distributive Laws

Definition (Beck)
Let (S, m, s) and (T, n, t) be monads on C. A distributive law of T
over S consists of a natural transformation d: ST — TS such that:

ST 5TS 757 sP2—> 5T ST
‘(ds th
mT TS2 d TST d & d
Ts
‘(Tm Td‘(
STT> TS TS T%S T TS ST) TS
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d: ST — TS distributive law
= TS has a monad structure given by

TSTS 12, 7252 25, 752 Iy 75 10 5 5 B, 75
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d: ST — TS distributive law
= TS has a monad structure given by

TdS nS 2> Tm
—

TSTS 1%, 1252 ", g 7S 1552 7S

Theorem (Beck)
Let S and T be two monads on C. TFAE

e A distributive law d: ST — TS;
e A lifting of T to S-algebras T: S-Alg — S-Alg;

e An extension 5: KI(T) — KI(T) of S to the Kleisli category
K(T);
e A monad structure on TS that is compatible with S and T.
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d: ST — TS distributive law
= TS has a monad structure given by

TdS nS 2> Tm
—

TSTS 1%, 1252 ", g 7S 1552 7S

Theorem (Beck)
Let S and T be two monads on C. TFAE

e A distributive law d: ST — TS;
e A lifting of T to S-algebras T: S-Alg — S-Alg;

e An extension 5: KI(T) — KI(T) of S to the Kleisli category
K(T);
e A monad structure on TS that is compatible with S and T.

Usual strategy: find a lifting to algebras = get distributive law
Then extensions to Kleisli and composite monad.
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P = power set monad, S = monad of monoids.
= S5-Alg = Mon and KI(P) = Rel category of sets and relations

P: Mon — Mon
M— PM={A | AC M}

where PM has the monoid structure:
A-B:={a-b| ac Aandb <€ B}

= There is a distributive law d: SP — PS, an extension S: Rel — Rel
and a monad structure on PS.

dx : SPX ——— PSX
A]_...An B {31...3,, ‘ a; € A,}



Example 1

P = power set monad, S = monad of monoids.
= 5-Alg = Mon and KI(P) = Rel category of sets and relations

P: Mon — Mon
M+— PM={A| AC M}

where PM has the monoid structure:

A-B:={a-b| acAandbc B}
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Example 1

P = power set monad, S = monad of monoids.
= 5-Alg = Mon and KI(P) = Rel category of sets and relations

P: Mon — Mon
M+— PM={A| AC M}

where PM has the monoid structure:
A-B:={a-b| acAandbc B}

= There is a distributive law d: SP — PS, an extension S: Rel — Rel
and a monad structure on PS.

dx : SPX ——— PSX
Al A H—— {31...3,7 ‘ aj € A,}
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T = monad of abelian groups, S = monad of monoids.
For X € Set
SX={x1-x, | x; € X}

TX — {Z aix; | aj € Zand x; € X}

i=1
= a distributive law d : ST — TS of T on S:

ny Nm

d: (D aixt)- - (Q_alx") v Y & alxg okl

= =il Ji€l1,ni]

Composite monad given by d = monad of rings.



T = monad of abelian groups, S = monad of monoids.
For X € Set
SX={x1-x, | x; € X}

X = {Za;x,— | a,-EZandx,-EX}

i=1
= a distributive law d : ST — TS of T on S:

m N

. 1.1 m._m 1 m_1 m
d: ( g arxi ) ( § a"x™) — g aj Al X

=il i=1 Ji€l1,ni]

Composite monad given by d = monad of rings.



Example 2

T = monad of abelian groups, S = monad of monoids.
For X € Set
SX={x1-xy | xi € X}

n
TX = {Za,-x,- \ a,-eZandx,-eX}

i=1
= a distributive law d : ST — TS of T on S:

ny nm
. 1.1 m_m 1 m_1 m
d: (E :aiXi (E :ai 2 ) 2 : a0 X1 5
i=1 i=1

Ji€[1,ni]
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Example 2

T = monad of abelian groups, S = monad of monoids.
For X € Set
SX={x1-xy | xi € X}

n
TX = {Za,-x,- \ a,-eZandx,-eX}

i=1
= a distributive law d : ST — TS of T on S:

ny nm
. 1.1 m_m 1 m_1 m
d: (D abxd)- Qo arxm) — > a---alxh X
i=1 =1

Ji€[1,ni]

Composite monad given by d = monad of rings.
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Relative Monads



Why Relative Monads?

Problem: Let C be a small category, then P(C) := Cat(C°?, Set) is just
locally small.
P: Cat — CAT
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Why Relative Monads?

Problem: Let C be a small category, then P(C) := Cat(C°?, Set) is just

locally small.
P: Cat — CAT

Relative Monads generalise the concept of monad to functors defined on

a subcategory.
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Why Relative Monads?

Problem: Let C be a small category, then P(C) := Cat(C°?, Set) is just

locally small.
P: Cat — CAT

Relative Monads generalise the concept of monad to functors defined on

a subcategory.

Aim: Have a new version of distributive laws describing the lifting P

given by Day's convolution product.

Mon —— MON

l l

Cat —p CAT
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P = power set monad.

e KI(P) = category of sets and relations;

o P-Alg= sup-semilatices.

What if we want to consider relations/sup-semilatices with an upper
bound on cardinality of sets? Or even a set theory where PX is a class?

Problem: P: Set<, — Set is not an endofunctor.

Solution: Relative monads!
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An Example

P = power set monad.

e KI(P) = category of sets and relations;

e P-Alg= sup-semilatices.

What if we want to consider relations/sup-semilatices with an upper
bound on cardinality of sets? Or even a set theory where PX is a class?
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An Example

P = power set monad.

e KI(P) = category of sets and relations;

e P-Alg= sup-semilatices.

What if we want to consider relations/sup-semilatices with an upper
bound on cardinality of sets? Or even a set theory where PX is a class?

Problem: P: Set<, — Set is not an endofunctor.
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An Example

P = power set monad.

e KI(P) = category of sets and relations;

e P-Alg= sup-semilatices.

What if we want to consider relations/sup-semilatices with an upper
bound on cardinality of sets? Or even a set theory where PX is a class?

Problem: P: Set<, — Set is not an endofunctor.

Solution: Relative monads!
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A relative monad T over | : Co — C consists of:

e TX €C, forevery X € Cy;
e functions (*)L.W C(IX, TY) — C(TX, TY) for X, Y € Cyp;
e morphisms tx: IX — TX in C for X € Cy;

such that:
Associativity: (g - )l =gl - fT (for f: IX = TY, g: IY = T2Z);
Left Unity: £ =f1-tx (for f:IX = TY);
Right Unity: t} = 17x (for X € Co).



Relative Monads

Definition

A relative monad T over | : Cy — C consists of:

o TX €C, forevery X € Cy;
e functions (7);7\,: C(IX, TY) — C(TX, TY) for X, Y € Cy;
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Relative Monads

Definition

A relative monad T over | : Cy — C consists of:

o TX €C, for every X € Cyp;
e functions (7);7\,: C(IX, TY) — C(TX, TY) for X, Y € Cy;
e morphisms tx: IX — TX in C for X € Cy;

such that:
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Relative Monads

Definition
A relative monad T over | : Cy — C consists of:
e TX €C, forevery X € Cy;
e functions (7);\,: C(IX, TY) — C(TX, TY) for X, Y € Cy;
e morphisms tx: IX — TX in C for X € Cy;
such that:
Associativity: (gf - )l =g - T (for f: IX = TY, g: IY = T2);
Left Unity: f = fT.tx (forf:IX = TY);
Right Unity: t} = 17x (for X € Co).
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1. |: Set<,, — Set inclusion, T := P: Set<, — Set power set,



1. |: Set<,, — Set inclusion, T := P: Set<, — Set power set,
tx: IX — PX f: X — PY
x — {x} ff: PX — PY

J — Ujgj f(j)

2. | : Fin < Set inclusion, Tn := Set(/n, R) with R ring,

to: In — Set(In, R) f:ln — Set(Im, R)

i 5 ff: Tn — Set(Im, R)

o Z,-E,,(\(/) (1) (=)



1. |: Set<,, — Set inclusion, T := P: Set<, — Set power set,

tx: IX — PX f: X — PY
x  — {x} ff: PX — PY
J = U, f0)

2. | : Fin < Set inclusion, Tn := Set(/n, R) with R ring,

tn: In — Set(In, R) f:In — Set(Im, R)

i — 5 ff:Tn — Set(Im, R)

o %Z,-;,,”(/‘)'f(’.)(*)



Examples

Gabriele Lobbia

: Set<,, — Set inclusion, T := P: Set<,, — Set power set,

tx: IX — PX f: X — PY
x  — {x} ff: PX — PY
J — UjeJ f(J)

: Fin < Set inclusion, Tn := Set(/n, R) with R ring,
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Examples

1. I: Set<, — Set inclusion, T := P: Set<,, — Set power set,
tx: IX — PX f: X — PY
x  — {x} ff: PX — PY

J — UjeJ f(J)

2. | : Fin < Set inclusion, Tn := Set(/n, R) with R ring,

t,: In — Set(In, R) f:ln — Set(Im, R)
i 6 ft:Tn — Set(Im, R)

a = e, oli) - F(I)(=)
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Relative Monads generalise Monads

Relative Monads with / =1 Monads
(—)k.y: C(X, SY) = C(SX, SY) m:$2 S
(gt - )t =g f1 Associativity

f=fl.syand sk = 1sx Left/Right Unit Law
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Relative Monads generalise Monads

Relative Monads with /| =1 Monads
(—)k.y: C(X, SY) = C(SX, SY) m:$2 S
(gt - )t =g f1 Associativity
f=fT.sx and sj( = 1sx Left/Right Unit Law
Proof.
(Manes)

(<) For any f: X — SY, we define fT as my - Sf: SX — SY;
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Relative Monads generalise Monads

Relative Monads with / =1 Monads
(Dkv: CX, SY) = C(SX, 5Y) | m:$? =S
(gh- =gt fT Associativity
f=fl.sxand sl = 1sx Left/Right Unit Law
Proof.
(Manes)

(<) For any f: X — SY, we define fT as my - Sf: SX — SY;

(=) Given an extension (—)" we define myx as (1sx)': S2X — SX;
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Relative Monads generalise Monads

Relative Monads with / =1 Monads
(Dkv: CX, SY) = C(SX, 5Y) | m:$? =S
(gh- =gt fT Associativity
f=fl.sxand sl = 1sx Left/Right Unit Law
Proof.
(Manes)

(<) For any f: X — SY, we define fT as my - Sf: SX — SY;
(=) Given an extension (—)" we define myx as (1sx)': S2X — SX;

Using unity, and axioms for a relative monad we can prove that these
constructions are inverse of each other. O
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I, T: Cy — C relative monad. A relative T-algebra consists of A€ C

with maps (—)% : C(IX, A) — C(TX, A)
satisfying the following axioms for h: IX — A and k: IX" — TX:

X —%— TX X —~— TX
JhA JhA
h (hA - K)A
A A

Theorem (Altenkirch, Chapman and Uustalu)




Relative Algebras
Definition
I, T: Cy — C relative monad. A relative T-algebra consists of A € C

with maps (—)%: C(IX, A) — C(TX, A)
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Relative Algebras

Definition
I, T: Cy — C relative monad. A relative T-algebra consists of A € C

with maps (—)%: C(IX, A) — C(TX, A)
satisfying the following axioms for h: IX — A and k: IX" — TX:

X —% 5 TX X —— TX

J» J»
h (KA - K)A
A A
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Relative Algebras

Definition
I, T: Cy — C relative monad. A relative T-algebra consists of A € C

with maps (—)%: C(IX, A) — C(TX, A)
satisfying the following axioms for h: IX — A and k: IX" — TX:

X —% 5 TX X —— TX
J» J»
B (HA - K)A
A A

Theorem (Altenkirch, Chapman and Uustalu)
Relative monads < Relative adjuctions
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Relative Distributive Laws



When can we talk about relative distributive laws?

We want a relative monad /, T: Cy — C and a monad S: C — C that
restrict nicely to Cy, i.e.

Gabriele Lobbia 17 December 2020



When can we talk about relative distributive laws?

We want a relative monad /, T: Co — C and a monad S: C — C that
restrict nicely to Cy, i.e.

Definition

Let |: Co — C be a functor. We define a compatible monad with /
as a pair of monads Sy: Cqg — Cq and S: C — C such that SI = 1Sy,
ml = Img and sl = Isy.

Gabriele Lobbia 17 December 2020



When can we talk about relative distributive laws?

We want a relative monad /, T: Co — C and a monad S: C — C that
restrict nicely to Cy, i.e.

Definition

Let |: Co — C be a functor. We define a compatible monad with /
as a pair of monads Sy: Cqg — Cq and S: C — C such that SI = 1Sy,
ml = Img and sl = Isy.

We will define a relative distributive law of a relative monad T on a
compatible monad (S, Sp) with /.
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Relative Distributive Laws

» Distributive Laws

Definition

I, T: Co— C relative monad, (S, So) compatible with I. A relative
distributive law of T over (S, Sy) is a transformation d: ST — TS
satisfying four axioms (for any f: IX — TY):

S2T — STS,

ST Sfi St
dSo T—ST STX — STY S| —— ST
mT ng - d dx dy d
So
Tmo TSO T50X — TSOY /50 — TSO
(dy - S tSo
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Beck-like Theorem

Theorem (Lobbia)
Given a relative monad |, T: Co — C and a compatible monad (S, Sp)
with |, TFAE:

(1) A relative distributive law d : ST — TSy,
(2) A lifting T: Sy-Alg — S-Alg of T to the algebras of Sy and S;

(3) An extension S: KI(T) — KI(T) of S to the Kleisli of T.
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Beck-like Theorem

Theorem (Lobbia)

Given a relative monad |, T: Co — C and a compatible monad (S, Sp)
with |, TFAE:

(1) A relative distributive law d : ST — TSy,
(2) A lifting T: Sy-Alg — S-Alg of T to the algebras of Sy and S;

(3) An extension S: KI(T) — KI(T) of S to the Kleisli of T.

Proof.
(1) < (2) direct proof.
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Beck-like Theorem

Theorem (Lobbia)

Given a relative monad |, T: Co — C and a compatible monad (S, Sp)
with |, TFAE:

(1) A relative distributive law d : ST — TSy,
(2) A lifting T: Sy-Alg — S-Alg of T to the algebras of Sy and S;

(3) An extension S: KI(T) — KI(T) of S to the Kleisli of T.
Proof.
(1) < (2) direct proof.

(1) & (3) similar to The formal theory of monads by Street (see next
slide). O
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Relative distributive laws < Extension to Kleisli

Proof.
(Sketch) Define the 2-category of relative monads Rel(Cat) .
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Relative distributive laws < Extension to Kleisli

Proof.
(Sketch) Define the 2-category of relative monads Rel(Cat) .

Define another 2-category Ext(Cat) with relative monads as objects
and extensions to Kleisli as morphisms.
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Relative distributive laws < Extension to Kleisli

Proof.
(Sketch) Define the 2-category of relative monads Rel(Cat) .

Define another 2-category Ext(Cat) with relative monads as objects
and extensions to Kleisli as morphisms.

Rel(Cat) = Ext(Cat)
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Relative distributive laws < Extension to Kleisli

Proof.
(Sketch) Define the 2-category of relative monads Rel(Cat) .

Define another 2-category Ext(Cat) with relative monads as objects
and extensions to Kleisli as morphisms.

Rel(Cat) = Ext(Cat)
= Mnd(Rel(Cat)) = Mnd(Ext(Cat))

Gabriele Lobbia 17 December 2020



Relative distributive laws < Extension to Kleisli

Proof.
(Sketch) Define the 2-category of relative monads Rel(Cat) .

Define another 2-category Ext(Cat) with relative monads as objects
and extensions to Kleisli as morphisms.

Rel(Cat) = Ext(Cat)
= Mnd(Rel(Cat)) = Mnd(Ext(Cat))

Objects of Mnd(Rel(Cat)) = relative distributive laws;
Objects of Mnd(Ext(Cat)) = extensions to Kleisli. O
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Differences with distributive laws

e Duality does not hold: relative monads in K° are not the same as
relative monads in IC;
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Differences with distributive laws

e Duality does not hold: relative monads in KC° are not the same as
relative monads in C;

e Extensions to Kleisli need new axioms: we require that
U: KI(T) — C is a monad morphism and that t: | — UJy is a
monad transformation (and another axiom).
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Differences with distributive laws

e Duality does not hold: relative monads in KC° are not the same as
relative monads in C;

e Extensions to Kleisli need new axioms: we require that
U: KI(T) — C is a monad morphism and that t: | — UJy is a
monad transformation (and another axiom).

Relative Algebras | Relative Kleisli

(left modules) (right modules)
Relative adjunction v X
Equivalence with Rel(K) X Vv
Beck-like Theorem vV Vv
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T = power set relative monad, S = monad of monoids, 5, = S | Set<,..

For X € Set<,. and Y € Set
SY={yi--ya | Yi€Y,neN}
SeX={x1:x, | x;€X,neN}
TX=P(X)={A | AC X}
= a relative distributive law d : ST — TS of T on (S, Sk):

dy :STX — . TS, X
Al---An B {al...an ‘ a; € A,}



Example

T = power set relative monad, S = monad of monoids, S, = S [ Set<,..

For X € Set<,, and Y < Set
SY={n-yan |l yieY,neN}

S X={xa-x | x€X,neN}
TX=PX)={A | ACX}
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Example

T = power set relative monad, S = monad of monoids, S, = S [ Set<,..

For X € Set<,, and Y < Set
SY={n-yan |l yieY,neN}

S X={xa-x | x€X,neN}
TX=PX)={A | ACX}

= a relative distributive law d : ST — TS of T on (S, Sk):

dy: STX — 5 TS, X
Al Ay —— {31...3,, | aj € A,}
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Applications

e There is a lifting of the power set relative monad to
Mon<,. — Mon.

e There exists an extension of the free monoid monad to the category
of relations over sets with cardinality < k.
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Applications

e There is a lifting of the power set relative monad to
Mon<,. — Mon.

e There exists an extension of the free monoid monad to the category
of relations over sets with cardinality < k.

e The monad S of pointed sets is compatible with /: Fin — Set.
The relative monad Vn := Set(/n, K) has a lifting V: Fin, — Set,.
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Applications

e There is a lifting of the power set relative monad to
Mon<,. — Mon.

e There exists an extension of the free monoid monad to the category
of relations over sets with cardinality < k.

e The monad S of pointed sets is compatible with /: Fin — Set.
The relative monad Vn := Set(/n, K) has a lifting V: Fin, — Set,.

= There is an extension S: Vectx — Vectyk whose algebras are
pointed vector spaces.
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Future Work

e Prove that a relative distributive law of T over (S, Sp) is equivalent
to a relative monad structure on TSy compatible with T and
(57 SO):

e Extend this work to relative pseudomonads, define distributive laws
between a relative pseudomonad and a 2-monad;

e Possible connection with Lawvere Theories,
MEMO: Lawvere Theories are equivalent to finitary monads.
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