The stable homotopy hypothesis

Maru Sarazola

Cornell University

joint work with Lyne Moser (EPFL), Viktoriya Ozornova (Ruhr-Universitat Bochum), Simona Paoli (University of Leicester) and Paula Verdugo (Macquarie University)

Outline

- The Homotopy hypothesis
 - What is it about?
 - The Tamsamani model
- ► The Stable homotopy hypothesis
 - What is it about?
 - Modeling the categorical side
 - Proof of the SHH

The homotopy hypothesis

Homotopy hypothesis

Homotopy Hypothesis (Grothendieck '83)

Topological spaces are "the same" as ∞ -groupoids

$$\operatorname{Ho}(\operatorname{Top}) \simeq \operatorname{Ho}(\operatorname{Gpd})$$

Homotopy hypothesis

Homotopy Hypothesis (Grothendieck '83)

Topological spaces are "the same" as ∞ -groupoids

$$Ho(Top) \simeq Ho(Gpd)$$

More refined version:

n-types are "the same" as n-groupoids

$$\operatorname{Ho}(\operatorname{Top}_{[0,n]}) \simeq \operatorname{Ho}(\operatorname{Gpd}^n)$$

What are the things involved in the HH?

▶ n-types are spaces whose homotopy groups are concentrated in [0,n] (so, $\pi_k X = 0$ for k > n)

What are the things involved in the HH?

- ▶ n-types are spaces whose homotopy groups are concentrated in [0,n] (so, $\pi_k X = 0$ for k > n)
- ▶ $\operatorname{Ho}(\operatorname{Top}_{[0,n]})$ is the **homotopy category**, where we invert the weak equivalences (the continuous maps between spaces that induce isomorphisms on all their homotopy groups)

What are the things involved in the HH?

- ▶ n-types are spaces whose homotopy groups are concentrated in [0,n] (so, $\pi_k X=0$ for k>n)
- $ightharpoonup \operatorname{Ho}(\operatorname{Top}_{[0,n]})$ is the **homotopy category**, where we invert the weak equivalences (the continuous maps between spaces that induce isomorphisms on all their homotopy groups)
- n-groupoids are...

What are the things involved in the HH?

- ▶ n-types are spaces whose homotopy groups are concentrated in [0,n] (so, $\pi_k X = 0$ for k > n)
- $ightharpoonup \operatorname{Ho}(\operatorname{Top}_{[0,n]})$ is the **homotopy category**, where we invert the weak equivalences (the continuous maps between spaces that induce isomorphisms on all their homotopy groups)
- n-groupoids are...different things, depending on whom you ask!

There exist many different models of n-groupoids in the literature.

There exist many different models of n-groupoids in the literature.

It's generally agreed that they should consist of some variant of higher (n-)categories with invertible cells above level 0.

There exist many different models of n-groupoids in the literature.

It's generally agreed that they should consist of some variant of higher (n-)categories with invertible cells above level 0.

Finding a useable definition of n-groupoids that satisfies the HH has proven to be a significant pursuit, that has greatly informed the foundations of higher category theory!

There exist many different models of n-groupoids in the literature.

It's generally agreed that they should consist of some variant of higher (n-)categories with invertible cells above level 0.

Finding a useable definition of n-groupoids that satisfies the HH has proven to be a significant pursuit, that has greatly informed the foundations of higher category theory!

Since all models of n-groupoids satisfy the HH, they are all equivalent for homotopy theory purposes.

Homotopy hypothesis: the idea

Homotopy Hypothesis

Topological spaces are "the same" as ∞ -groupoids

Why is this something you would expect?

Homotopy hypothesis: the idea

Homotopy Hypothesis

Topological spaces are "the same" as ∞-groupoids

Why is this something you would expect?

Think about the points of a space as objects, paths between them as 1-cells, homotopies between paths as 2-cells, homotopies between homotopies between paths as 3-cells, and so on.

The cases n=0 and n=1 are very familiar:

The cases n=0 and n=1 are very familiar:

ightharpoonup n=0: for 0-groupoids, we only have 0-cells and nothing else, so these are just sets.

The cases n = 0 and n = 1 are very familiar:

▶ n=0: for 0-groupoids, we only have 0-cells and nothing else, so these are just sets. For 0-types, we have spaces whose homotopy groups above 0 vanish, so these are spaces where each connected component is contractible. This is the same as sets, with one point for each connected component.

The cases n=0 and n=1 are very familiar:

- n = 0: for 0-groupoids, we only have 0-cells and nothing else, so these are just sets. For 0-types, we have spaces whose homotopy groups above 0 vanish, so these are spaces where each connected component is contractible. This is the same as sets, with one point for each connected component.
- ▶ n=1: we have the correspondence between 1-types and groupoids given by the fundamental groupoid functor, and the realization. Eilweg- $|G| \leftarrow G$

```
Marlowe \Pi_1\colon \mathrm{Top}_{[0,1]}\leftrightarrow \mathrm{Gpd}^1\colon |-|
X\longmapsto \pi_1 X \text{ is a cat with}
\circ^{\flat}j=\text{ points in } X
\text{maps = htey clarge paths in } X
```

For n > 2, strict n-groupoids do not model n-types.

Instead, we need a more general (weaker) type of higher structure, where associativity and unitality of composites works up to higher data.

For n > 2, strict n-groupoids do not model n-types.

Instead, we need a more general (weaker) type of higher structure, where associativity and unitality of composites works up to higher data.

To build a model of weak n-category we need a "combinatorial" machinery that encodes:

- ▶ The sets of cells in dimension 0 up to *n*
- The behavior of the compositions
- The higher categorical equivalences

For n > 2, strict n-groupoids do not model n-types.

Instead, we need a more general (weaker) type of higher structure, where associativity and unitality of composites works up to higher data.

To build a model of weak n-category we need a "combinatorial" machinery that encodes:

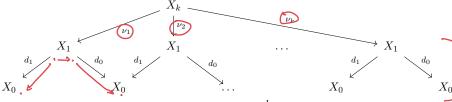
- ▶ The sets of cells in dimension 0 up to *n*
- The behavior of the compositions
- The higher categorical equivalences

A natural way to do this is to use **multisimplicial sets**, since we can encode compositions via the Segal maps.

Let $X \in [\Delta^{\mathrm{op}}, \mathcal{C}]$ be a simplicial object in a category $\underline{\mathcal{C}}$ with pullbacks.

Definition: Segal maps

For each $k \geq 2$, let $\nu_j \colon X_k \to X_1$ be induced by the map $\nu^j \colon [1] \to [k]$ in Δ sending 0 to j-1 and 1 to j.



The k-th Segal map is $S_k \colon X_k \to X_1 \times_{X_0} \stackrel{k}{\cdots} \times_{X_0} X_1$

Picks out the composites

We define **Tamsamani** n-categories and their equivalences by induction on n.

We define **Tamsamani** n-categories and their equivalences by induction on n.

Definition: Tamⁿ

- ightharpoonup Tam⁰ = Set, 0-equivalences = bijections
- ightharpoonup $\mathrm{Tam}^1=\mathrm{Cat},\,1$ -equivalences = equivalences of categories
- ▶ for n > 1, Tam^n are the functors $X \in [(\Delta^{\operatorname{op}})^{n-1}, \operatorname{Cat}] \subseteq [(\Delta^{\operatorname{op}})^n, \operatorname{Set}]$ such that
 - ▶ X₀ is discrete
 - $ightharpoonup X_k \in \operatorname{Tam}^{n-1} \text{ for all } k > 0$
 - ▶ for all $k \ge 2$, the Segal map $X_k \to X_1 \times_{X_0} \cdot^k \cdot^k \times_{X_0} X_1$ is an (n-1)-equivalence

Intuition:

- they are multi-simplicial objects, with Segal maps in all the simplicial directions
- ▶ X_0 (resp. $X_{1...10}$) is the set of 0-cells (resp. r-cells for $1 \le r \le n-2$)
- ▶ the set of (n-1) (resp. n)-cells is given by $obX_{1,\ldots,1}$ (resp. $morX_{1,\ldots,1}$)
- we compose cells using the Segal maps

$$X_1 \times_{X_0} X_1 \stackrel{\sim}{\leftarrow} X_2 \stackrel{d_1}{\longrightarrow} X_1$$

where $d_1 \colon [2] \to [1]$ is the face map in Δ^{op}

Equivalences: a higher dimensional version of "fully faithful and essentially surjective"

Equivalences: a higher dimensional version of "fully faithful and essentially surjective"

Definition: n-equivalences in Tam^n

- ▶ 0-equivs are bijections
- 1-equivs are equivs of categories
- ▶ for n > 1, an n-equivalence is a map $f: X \to Y$ in Tam^n such that
 - For all $a, b \in X_0$, the induced map

$$f(a,b)\colon X(a,b)\to Y(fa,fb)$$

is an (n-1)-equivalence

 $p^{(n-1)}f$ is an (n-1)-equivalence

truncation Functor that "about dividus out" by the highest invertible cells.

Once we have Tamsamani n-categories, we can define Tamsamani n-groupoids.

Once we have Tamsamani n-categories, we can define Tamsamani n-groupoids.

Definition: $GTam^n$

- ▶ $GTam^0 = Set \subseteq Set$
- ightharpoonup GTam¹ = Gpd \subseteq Cat
- ▶ for n > 1, $GTam^n \subseteq Tam^n$ are the functors $X \in Tam^n$ such that
 - $ightharpoonup X_k \in \operatorname{GTam}^{n-1} \text{ for all } k > 0$
 - $p^{(n-1)}X \in \operatorname{GTam}^{n-1}$

Once we have Tamsamani n-categories, we can define Tamsamani n-groupoids.

Definition: $GTam^n$

- ▶ $GTam^0 = Set \subseteq Set$
- ▶ $GTam^1 = Gpd \subseteq Cat$
- ▶ for n > 1, $GTam^n \subseteq Tam^n$ are the functors $X \in Tam^n$ such that
 - $ightharpoonup X_k \in \operatorname{GTam}^{n-1} \text{ for all } k > 0$
 - $p^{(n-1)}X \in \operatorname{GTam}^{n-1}$

Homotopy hypothesis (Tamsamani)

Geometric realization $|-|: \operatorname{GTam}^n \to \operatorname{Top}_{[0,n]}$ induces an equivalence on homotopy categories.

The stable homotopy hypothesis

In the stable homotopy hypothesis, we study **spectra** instead of spaces.

In the stable homotopy hypothesis, we study **spectra** instead of spaces.

Definition: Spectra

A spectrum consists of a sequence $\{X_i\}_i$ of pointed spaces, together with structure maps $\sigma^i \colon \Sigma X_i \to X_{i+1}$.

In the stable homotopy hypothesis, we study **spectra** instead of spaces.

Definition: Spectra

A spectrum consists of a sequence $\{X_i\}_i$ of pointed spaces, together with structure maps $\sigma^i \colon \Sigma X_i \to X_{i+1}$.

Why do we care about spectra?

In the stable homotopy hypothesis, we study **spectra** instead of spaces.

Definition: Spectra

A spectrum consists of a sequence $\{X_i\}_i$ of pointed spaces, together with structure maps $\sigma^i \colon \Sigma X_i \to X_{i+1}$.

Why do we care about spectra?

they give sense to a notion of negative homotopy groups,

Spectra

In the stable homotopy hypothesis, we study **spectra** instead of spaces.

Definition: Spectra

A spectrum consists of a sequence $\{X_i\}_i$ of pointed spaces, together with structure maps $\sigma^i \colon \Sigma X_i \to X_{i+1}$.

Why do we care about spectra?

- they give sense to a notion of negative homotopy groups,
- provide a natural setting for the study of stable homotopy groups (of spheres, for example),

Spectra

In the stable homotopy hypothesis, we study **spectra** instead of spaces.

Definition: Spectra

A spectrum consists of a sequence $\{X_i\}_i$ of pointed spaces, together with structure maps $\sigma^i \colon \Sigma X_i \to X_{i+1}$.

Why do we care about spectra?

- they give sense to a notion of negative homotopy groups,
- provide a natural setting for the study of stable homotopy groups (of spheres, for example),
- contain the infinite loop spaces, and through these, characterize all (co)homology theories by Brown's Representability Theorem,

Spectra

In the stable homotopy hypothesis, we study **spectra** instead of spaces.

Definition: Spectra

A spectrum consists of a sequence $\{X_i\}_i$ of pointed spaces, together with structure maps $\sigma^i \colon \Sigma X_i \to X_{i+1}$.

Why do we care about spectra?

- they give sense to a notion of negative homotopy groups,
- provide a natural setting for the study of stable homotopy groups (of spheres, for example),
- contain the infinite loop spaces, and through these, characterize all (co)homology theories by Brown's Representability Theorem,
- can be interpreted as an abelianization of spaces by May's Recognition Theorem.

Spectra: homotopy groups

What is the analogous notion of n-types in spectra?

Spectra: homotopy groups

What is the analogous notion of n-types in spectra?

Stable *n***-types:** spectra X such that $\pi_k X = 0$ for $k \notin [0, n]$.

Spectra: homotopy groups

What is the analogous notion of n-types in spectra?

Stable *n***-types:** spectra X such that $\pi_k X = 0$ for $k \notin [0, n]$.

Definition: homotopy groups of spectra

The ith homotopy group of a spectrum X is defined as

$$\pi_i X = \operatorname{colim}_j \pi_{i+j} X^j,$$

where the colimit is taken over the maps

$$\begin{bmatrix} \mathsf{S}^{\mathsf{i},\mathsf{j}}, \mathsf{X}^{\mathsf{j}} \end{bmatrix} \longrightarrow \begin{bmatrix} \mathsf{E} \mathsf{S}^{\mathsf{i},\mathsf{j}}, \underbrace{\mathsf{E} \mathsf{X}^{\mathsf{j}}} \end{bmatrix} \xrightarrow{\sigma_*^j} \begin{bmatrix} \mathsf{S}^{\mathsf{i},\mathsf{j},\mathsf{m}}, \mathsf{X}^{\mathsf{j},\mathsf{m}} \end{bmatrix} \\ \pi_{i+j}X^j \xrightarrow{\Sigma} \pi_{i+j+1}\Sigma X^j \xrightarrow{\sigma_*^j} \pi_{i+j+1}X^{j+1} \longrightarrow \cdots$$

and runs over all $j \ge 0$ when $i \ge 0$, and over $j + i \ge 0$ for i < 0.

Spectra: model structure

Definition: weak equivalence of spectra

A map of spectra $f \colon X \to Y$ is a **stable weak equivalence** if it induces isomorphisms $f_* \colon \pi_n X \to \pi_n Y$ for all n.

Spectra: model structure

Definition: weak equivalence of spectra

A map of spectra $f\colon X\to Y$ is a **stable weak equivalence** if it induces isomorphisms $f_*\colon \pi_nX\to \pi_nY$ for all n.

Theorem (Bousfield-Friedlander)

The category of spectra admits a model structure with the stable weak equivalences.

Homotopy hypothesis

n-types (with weak equivalences) are the same as n-groupoids (with higher categorical equivalences).

Homotopy hypothesis

n-types (with weak equivalences) are the same as n-groupoids (with higher categorical equivalences).

Stable homotopy hypothesis

Stable n-types (with stable weak equivalences) are the same as...?

Stable homotopy hypothesis

Stable n-types (with stable weak equivalences) are the same as... ?

What should we have on the categorical side?

Stable homotopy hypothesis

Stable n-types (with stable weak equivalences) are the same as... ?

What should we have on the categorical side?

Draw intuition from infinite loop spaces:

 Multiplication given by concatenation of loops, which is associative, unital, and commutative (up to coherent higher homotopies);

Stable homotopy hypothesis

Stable n-types (with stable weak equivalences) are the same as... ?

What should we have on the categorical side?

Draw intuition from infinite loop spaces:

Multiplication given by concatenation of loops, which is associative, unital, and commutative (up to coherent higher homotopies); we expect the corresponding n-groupoids to have a symmetric monoidal structure.

Stable homotopy hypothesis

Stable n-types (with stable weak equivalences) are the same as... ?

What should we have on the categorical side?

Draw intuition from infinite loop spaces:

- Multiplication given by concatenation of loops, which is associative, unital, and commutative (up to coherent higher homotopies); we expect the corresponding n-groupoids to have a symmetric monoidal structure.
- Loops have inverses up to homotopy;

Stable homotopy hypothesis

Stable n-types (with stable weak equivalences) are the same as... ?

What should we have on the categorical side?

Draw intuition from infinite loop spaces:

- Multiplication given by concatenation of loops, which is associative, unital, and commutative (up to coherent higher homotopies); we expect the corresponding n-groupoids to have a symmetric monoidal structure.
- Loops have inverses up to homotopy; the **objects** in the n-groupoids should be **invertible** in some sense. X ⊗ Y ≅ 1

Stable homotopy hypothesis

Stable n-types (with stable weak equivalences) are the same as... ?

What should we have on the categorical side?

Draw intuition from infinite loop spaces:

- Multiplication given by concatenation of loops, which is associative, unital, and commutative (up to coherent higher homotopies); we expect the corresponding n-groupoids to have a symmetric monoidal structure.
- ▶ Loops have inverses up to homotopy; the **objects** in the *n*-groupoids should be **invertible** in some sense.

The categorical side in the SHH is given by grouplike, symmetric monoidal *n*-groupoids called **Picard** *n*-categories.

Stable homotopy hypothesis

Stable n-types (with stable weak equivalences) are the same as Picard n-categories (with higher equivalences).

What should we have on the categorical side?

Draw intuition from infinite loop spaces:

- Multiplication given by concatenation of loops, which is associative, unital, and commutative (up to coherent higher homotopies); we expect the corresponding n-groupoids to have a symmetric monoidal structure.
- ▶ Loops have inverses up to homotopy; the objects in the n-groupoids should be invertible in some sense.

The categorical side in the SHH is given by grouplike, symmetric monoidal *n*-groupoids called **Picard** *n***-categories**.

Some evidence that the SHH holds:

ightharpoonup n=0: Stable 0-types are Eilenberg-MacLane spectra.

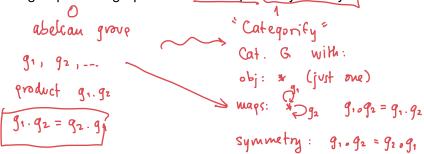
Some evidence that the SHH holds:

n = 0: Stable 0-types are Eilenberg-MacLane spectra. Picard 0-categories have just objects and no higher cells, and a symmetric monoidal product making objects "invertible"; a.k.a. an abelian group.

Some evidence that the SHH holds:

n = 0: Stable 0-types are Eilenberg-MacLane spectra. Picard 0-categories have just objects and no higher cells, and a symmetric monoidal product making objects "invertible"; a.k.a. an abelian group.

Obs: we can shift one dimension up, and describe an abelian group as a 1-grupoid with one object + symmetry.



Some evidence that the SHH holds:

- n = 0: Stable 0-types are Eilenberg-MacLane spectra. Picard 0-categories have just objects and no higher cells, and a symmetric monoidal product making objects "invertible"; a.k.a. an abelian group.
 - Obs: we can shift one dimension up, and describe an abelian group as a 1-grupoid with one object + symmetry.
- n = 1: Stable 1-types correspond to Picard categories (Patel): groupoids with a symmetric monoidal structure and invertible objects;

Some evidence that the SHH holds:

- n = 0: Stable 0-types are Eilenberg-MacLane spectra. Picard 0-categories have just objects and no higher cells, and a symmetric monoidal product making objects "invertible"; a.k.a. an abelian group.
 - Obs: we can shift one dimension up, and describe an abelian group as a 1-grupoid with one object + symmetry.
- n=1: Stable 1-types correspond to Picard categories (Patel): groupoids with a symmetric monoidal structure and invertible objects; alternatively, groupoidal bicategories with one object + symmetry.

Some evidence that the SHH holds:

- n = 0: Stable 0-types are Eilenberg-MacLane spectra. Picard 0-categories have just objects and no higher cells, and a symmetric monoidal product making objects "invertible"; a.k.a. an abelian group.
 - Obs: we can shift one dimension up, and describe an abelian group as a 1-grupoid with one object + symmetry.
- ightharpoonup n=1: Stable 1-types correspond to Picard categories (Patel): groupoids with a symmetric monoidal structure and invertible objects; alternatively, groupoidal bicategories with one object + symmetry.
- n = 2: Stable 2-types correspond to Picard Bicategories (Gurski–Johnson–Osorno).

Our goal: generalize this, and give a definition of Picard weak n-category that satisfies the stable homotopy hypothesis for all n.

Our goal: generalize this, and give a definition of Picard weak n-category that satisfies the stable homotopy hypothesis for all n.

Naive try: why not just copy the above definition replacing the number by n?

Our goal: generalize this, and give a definition of Picard weak n-category that satisfies the stable homotopy hypothesis for all n.

Naive try: why not just copy the above definition replacing the number by n?

- Picard 0-categories are grouplike, groupoidal, symmetric monoidal 0-categories
- Picard 1-categories are grouplike, groupoidal, symmetric monoidal categories
- Picard 2-categories are grouplike, groupoidal, symmetric monoidal Voicategories

Our goal: generalize this, and give a definition of Picard weak n-category that satisfies the stable homotopy hypothesis for all n.

Naive try: why not just copy the above definition replacing the number by n?

- Picard 0-categories are grouplike, groupoidal, symmetric monoidal 0-categories
- Picard 1-categories are grouplike, groupoidal, symmetric monoidal categories
- ► Picard 2-categories are grouplike, groupoidal, symmetric monoidal bicategories

Because symmetric monoidal bicategories are already hard, and there's not even a definition for n > 4!

Our goal: generalize this, and give a definition of Picard weak n-category that satisfies the stable homotopy hypothesis for all n.

Naive try: why not just copy the above definition replacing the number by n?

- ► Picard 0-categories are grouplike, groupoidal, symmetric monoidal 0-categories
- Picard 1-categories are grouplike, groupoidal, symmetric monoidal categories
- ► Picard 2-categories are grouplike, groupoidal, symmetric monoidal bicategories

Because symmetric monoidal bicategories are already hard, and there's not even a definition for $n \ge 4!$

Instead, we will use the change in perspective outlined above.

Picard *n*-category: grouplike, symmetric monoidal *n*-groupoid.

Picard *n*-category: grouplike, symmetric monoidal *n*-groupoid.

We can encode the monoidal structure on the groupoid by shifting one dimension up:

monoidal n-groupoid = (n + 1)-groupoid with one object

Picard n-category: grouplike, symmetric monoidal n-groupoid.

We can encode the monoidal structure on the groupoid by shifting one dimension up:

monoidal n-groupoid = (n + 1)-groupoid with one object

Now the original objects are encoded as the morphisms in the (n+1)-groupoid, and these are invertible, so this reflects the grouplike condition.

Picard n-category: grouplike, symmetric monoidal n-groupoid.

We can encode the monoidal structure on the groupoid by shifting one dimension up:

monoidal n-groupoid = (n+1)-groupoid with one object

Now the original objects are encoded as the morphisms in the (n+1)-groupoid, and these are invertible, so this reflects the grouplike condition.

Missing: the "symmetric" part.

Picard n-category: grouplike, symmetric monoidal n-groupoid.

We can encode the monoidal structure on the groupoid by shifting one dimension up:

monoidal n-groupoid = (n + 1)-groupoid with one object

Now the original objects are encoded as the morphisms in the (n+1)-groupoid, and these are invertible, so this reflects the grouplike condition.

Missing: the "symmetric" part.

Picard n-category: grouplike, symmetric monoidal Tamsamani n-groupoid.

We can encode the monoidal structure on the groupoid by shifting one dimension up:

monoidal Tamsamani n-groupoid = Tamsamani (n+1)-groupoid with one object

Now the original objects are encoded as the morphisms in the (n+1)-groupoid, and these are invertible, so this reflects the grouplike condition.

Missing: the "symmetric" part.

How do we encode the fact that the monoidal product is symmetric?

A Tamsamani (n+1)-groupoid with one object is a functor

$$X \colon (\Delta^{\mathrm{op}})^{n+1} \to \mathrm{Set}$$

How do we encode the fact that the monoidal product is symmetric?

A Tamsamani (n+1)-groupoid with one object is a functor

$$X \colon (\Delta^{\mathrm{op}})^{n+1} \to \mathrm{Set}$$

We want the composition to be commutative.

$$X : (\Delta^{\mathrm{op}})^{n+1} \to \mathrm{Set}$$

How do we compose? Using the Segal condition!

$$X_1 \times_{X_0} X_1 \stackrel{\sim}{\leftarrow} X_2 \stackrel{d_1}{\longrightarrow} X_1$$

where $d_1 \colon [2] \to [1]$ is the face map in Δ^{op} .

$$X: \triangle^{\operatorname{op}} \times (\triangle^{\operatorname{op}})^{\operatorname{MF}} \longrightarrow \operatorname{Set}$$
 $X: (\Delta^{\operatorname{op}})^{n+1} \to \operatorname{Set}$

How do we compose? Using the Segal condition!

$$X_1 \times_{X_0} X_1 \stackrel{\sim}{\leftarrow} X_2 \stackrel{d_1}{\longrightarrow} X_1$$

where
$$d_1\colon [2] o [1]$$
 is the face map in $\Delta^{\operatorname{op}}$.

To introduce the symmetry, we extend the first Δ^{op} to a Γ .

$$X \in [(\Delta^{\mathrm{op}}) \times (\Delta^{\mathrm{op}})^n, \mathrm{Set}] \hookrightarrow [(\Gamma) \times (\Delta^{\mathrm{op}})^n, \mathrm{Set}]$$

$$\mathsf{using} \ \underline{\phi} \colon \Delta^{\mathrm{op}} \hookrightarrow \Gamma$$

How do we compose? Using the Segal condition!

$$X_1 \times_{X_0} X_1 \stackrel{\sim}{\leftarrow} X_2 \stackrel{d_1}{\longrightarrow} X_1$$

where $d_1 \colon [2] \to [1]$ is the face map in Δ^{op} .

$$X \in [(\Delta^{\mathrm{op}}) \times (\Delta^{\mathrm{op}})^n, \mathrm{Set}] \hookrightarrow [(\Gamma) \times (\Delta^{\mathrm{op}})^n, \mathrm{Set}]$$

$$\mathsf{using} \ \phi \colon \Delta^{\mathrm{op}} \hookrightarrow \Gamma$$

How do we compose? Using the Segal condition!

$$X_1 \times_{X_0} X_1 \stackrel{\sim}{\leftarrow} X_2 \stackrel{\phi d_1}{\longrightarrow} X_1$$

where $\phi d_1 : \langle 2 \rangle \to \langle 1 \rangle$ is the map in Γ taking 1, 2 to 1.

$$X \in [(\Delta^{\mathrm{op}}) \times (\Delta^{\mathrm{op}})^n, \mathrm{Set}] \hookrightarrow [(\Gamma) \times (\Delta^{\mathrm{op}})^n, \mathrm{Set}]$$

$$\mathsf{using} \ \phi \colon \Delta^{\mathrm{op}} \hookrightarrow \Gamma$$

How do we compose? Using the Segal condition!

$$X_1 \times_{X_0} X_1 \stackrel{\sim}{\leftarrow} X_2 \stackrel{\phi d_1}{\longrightarrow} X_1$$

where $\phi d_1 : \langle 2 \rangle \to \langle 1 \rangle$ is the map in Γ taking 1, 2 to 1.

But in Γ we are allowed to twist! $t: \langle 2 \rangle \to \langle 2 \rangle$, t(1) = 2, t(2) = 1.

$$X \in [(\Delta^{\mathrm{op}}) \times (\Delta^{\mathrm{op}})^n, \mathrm{Set}] \hookrightarrow [(\Gamma) \times (\Delta^{\mathrm{op}})^n, \mathrm{Set}]$$

$$\mathsf{using} \ \phi \colon \Delta^{\mathrm{op}} \hookrightarrow \Gamma$$

How do we compose? Using the Segal condition!

$$X_1 \times_{X_0} X_1 \stackrel{\sim}{\leftarrow} X_2 \stackrel{\phi d_1}{\longrightarrow} X_1$$

where $\phi d_1 : \langle 2 \rangle \to \langle 1 \rangle$ is the map in Γ taking 1, 2 to 1.

But in Γ we are allowed to twist! $t: \langle 2 \rangle \to \langle 2 \rangle$, t(1) = 2, t(2) = 1.

Since $\phi d_1 = \phi d_1 \circ t$, they must induce the same map $X_2 \to X_1$, and this makes composition commutative.

Our proposed model:

Definition: Picard *n*-category (MOPSV)

A Picard n-category is a functor $X \colon \Gamma \times (\Delta^{\mathrm{op}})^n \to \mathrm{Set}$ such that the restriction to $(\Delta^{\mathrm{op}})^{n+1}$ is a Tamsamani (n+1)-groupoid with one object.

Notation: $PicTam^n$

Our proposed model:

Definition: Picard *n*-category (MOPSV)

A Picard n-category is a functor $X \colon \Gamma \times (\Delta^{\mathrm{op}})^n \to \mathrm{Set}$ such that the restriction to $(\Delta^{\mathrm{op}})^{n+1}$ is a Tamsamani (n+1)-groupoid with one object.

Notation: $PicTam^n$

Definition: weak equivalences (MOPSV)

A map of Picard n-categories $f\colon X\to Y$ is a weak equivalence if it's an equivalence of Tamsamani (n+1)-groupoids after restricting to $(\Delta^{\mathrm{op}})^{n+1}$.

How do we connect $\operatorname{Ho}(\operatorname{PicTam}^n)$ and $\operatorname{Ho}(\operatorname{Sp}_{[0,n]})$?

How do we connect $Ho(\operatorname{PicTam}^n)$ and $Ho(\operatorname{Sp}_{[0,n]})$?

Key concept: Γ -objects!

Definition: Γ -objects

Let $\mathcal C$ be a pointed category. A Γ -object in $\mathcal C$ is a functor $\Gamma \to \mathcal C$ mapping $\langle 0 \rangle$ to *. Notation: $\Gamma \mathcal C$.

How do we connect $Ho(\operatorname{PicTam}^n)$ and $Ho(\operatorname{Sp}_{[0,n]})$?

Key concept: Γ -objects!

Definition: Γ -objects

Let $\mathcal C$ be a pointed category. A Γ -object in $\mathcal C$ is a functor $\Gamma \to \mathcal C$ mapping $\langle 0 \rangle$ to *. Notation: $\Gamma \mathcal C$.

When in addition $\mathcal C$ has weak equivalences, we can define **special** Γ -objects.

Definition: special Γ -object

A Γ -object A in \mathcal{C} is special if, for each $k \geq 0$, the map

$$A\langle k\rangle \to A\langle 1\rangle \times \cdots \times A\langle 1\rangle = A\langle 1\rangle^{\times k}$$

is a weak equivalence.

We are interested in $C = sSet_*$ and $C = GTam^n$.

We are interested in $C = sSet_*$ and $C = GTam^n$.

For a special Γ -object A in one of these categories, the set $\pi_0 A \langle 1 \rangle$ becomes an abelian monoid, with multiplication

$$\pi_0 A \langle 1 \rangle \times \pi_0 A \langle 1 \rangle \xleftarrow{(\nu_1, \nu_2)} \pi_0 A \langle 2 \rangle \xrightarrow{m} \pi_0 A \langle 1 \rangle$$

We are interested in $C = sSet_*$ and $C = GTam^n$.

For a special Γ -object A in one of these categories, the set $\pi_0 A \langle 1 \rangle$ becomes an abelian monoid, with multiplication

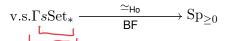
$$\pi_0 A \langle 1 \rangle \times \pi_0 A \langle 1 \rangle \xleftarrow{(\nu_1, \nu_2)} \pi_0 A \langle 2 \rangle \xrightarrow{m} \pi_0 A \langle 1 \rangle$$

Definition: very special Γ -object

A Γ -object A is very special if it is special, and the abelian monoid $\pi_0 A\langle 1\rangle$ is a group.

Theorem: SHH (MOPSV)

Theorem: SHH (MOPSV)



Theorem: SHH (MOPSV)

$$v.s.\Gamma s Set_* \xrightarrow{\simeq_{\mathsf{Ho}}} Sp_{\geq 0}$$

$$\ \ \, \downarrow$$

Theorem: SHH (MOPSV)

$$\begin{array}{ccc} v.s.\Gamma s Set_* & \xrightarrow{\simeq_{\mathsf{Ho}}} & Sp_{\geq 0} \\ & & & & \\ & & & & \\ & & & & \\ v.s.\Gamma s Set_{*[0,n]} & \xrightarrow{\simeq_{\mathsf{Ho}}} & Sp_{[0,n]} \end{array}$$

Theorem: SHH (MOPSV)

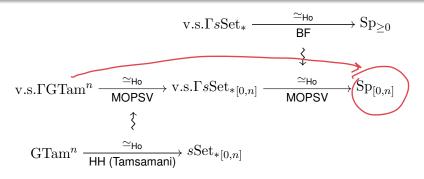
$$\begin{array}{ccc} \mathrm{v.s.}\Gamma s\mathrm{Set}_{*} & \xrightarrow{\simeq_{\mathsf{Ho}}} & \mathrm{Sp}_{\geq 0} \\ & & & & & \\ & & & & \\ & & & & \\ \mathrm{v.s.}\Gamma s\mathrm{Set}_{*[0,n]} & \xrightarrow{\simeq_{\mathsf{Ho}}} & \mathrm{Sp}_{[0,n]} \end{array}$$

$$\operatorname{GTam}^n \xrightarrow{\cong_{\mathsf{Ho}}} s\mathrm{Set}_{*[0,n]}$$

Theorem: SHH (MOPSV)

$$\begin{array}{c} \text{v.s.}\Gamma s \text{Set}_* & \xrightarrow{\simeq_{\text{Ho}}} \text{Sp}_{\geq 0} \\ & \downarrow \\ & \downarrow \\ \text{v.s.}\Gamma s \text{Set}_{*[0,n]} & \xrightarrow{\simeq_{\text{Ho}}} \text{Sp}_{[0,n]} \\ & \downarrow \\ & \xrightarrow{\simeq_{\text{Ho}}} \text{Sp}_{[0,n]} & \xrightarrow{\simeq_{\text{Ho}}} \text{Sp}_{[0,n]} \\ & \downarrow \\ & \downarrow \\ & \text{MOPSV} & \Rightarrow_{\text{Fo}} \text{Sp}_{[0,n]} \\ & \downarrow \\ & \downarrow \\ & \text{GTam}^n & \xrightarrow{\simeq_{\text{Ho}}} \text{SSet}_{*[0,n]} \end{array}$$

Theorem: SHH (MOPSV)



Theorem: SHH (MOPSV)

Picard n-categories are "the same" as stable n-types.

$$\begin{array}{c} \text{v.s.}\Gamma s \text{Set}_* & \xrightarrow{\simeq_{\text{Ho}}} \text{Sp}_{\geq 0} \\ & & \downarrow \\ \text{v.s.}\Gamma g \text{Tam}^n & \xrightarrow{\simeq_{\text{Ho}}} \text{v.s.}\Gamma s \text{Set}_{*[0,n]} & \xrightarrow{\simeq_{\text{Ho}}} \text{MOPSV} \end{array} \\ \begin{array}{c} \text{Sp}_{[0,n]} \\ & & \downarrow \\ \text{MOPSV} \end{array} \\ & \xrightarrow{\simeq_{\text{Ho}}} \text{Sp}_{[0,n]} \\ & & \downarrow \\ \text{GTam}^n & \xrightarrow{\simeq_{\text{Ho}}} \text{MOPSV} \end{array} \\ \end{array}$$

Theorem (MOPSV)

$$\Gamma \longrightarrow [(\Delta^p)^n, Set]$$

A functor $X \colon \Gamma \times (\Delta^{\operatorname{op}})^n \to \operatorname{Set}$ is a Picard–Tamsamani n-category if and only if it's a very special Γ -object in Tamsamani n-groupoids.

Theorem: SHH (MOPSV)

Picard n-categories are "the same" as stable n-types.

Theorem (MOPSV)

A functor $X\colon \Gamma\times (\Delta^{\operatorname{op}})^n\to\operatorname{Set}$ is a Picard–Tamsamani n-category if and only if it's a very special Γ -object in Tamsamani n-groupoids.

Thanks for your time!