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The homotopy hypothesis



Homotopy hypothesis

Homotopy Hypothesis (Grothendieck ’83)
Topological spaces are “the same” as∞-groupoids

Ho(Top) ' Ho(Gpd)

More refined version:
n-types are “the same” as n-groupoids

Ho(Top[0,n]) ' Ho(Gpdn)
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Definitions

What are the things involved in the HH?

I n-types are spaces whose homotopy groups are concentrated in
[0, n] (so, πkX = 0 for k > n)

I Ho(Top[0,n]) is the homotopy category, where we invert the weak
equivalences (the continuous maps between spaces that induce
isomorphisms on all their homotopy groups)

I n-groupoids are...different things, depending on whom you ask!
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n-groupoids

There exist many different models of n-groupoids in the literature.

It’s generally agreed that they should consist of some variant of higher
(n-)categories with invertible cells above level 0.

Finding a useable definition of n-groupoids that satisfies the HH has
proven to be a significant pursuit, that has greatly informed the
foundations of higher category theory!

Since all models of n-groupoids satisfy the HH, they are all equivalent
for homotopy theory purposes.
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Homotopy hypothesis: the idea

Homotopy Hypothesis
Topological spaces are “the same” as∞-groupoids

Why is this something you would expect?

Think about the points of a space as objects, paths between them as
1-cells, homotopies between paths as 2-cells, homotopies between
homotopies between paths as 3-cells, and so on.
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Homotopy hypothesis: n = 0, 1

The cases n = 0 and n = 1 are very familiar:

I n = 0: for 0-groupoids, we only have 0-cells and nothing else, so
these are just sets. For 0-types, we have spaces whose homotopy
groups above 0 vanish, so these are spaces where each
connected component is contractible. This is the same as sets,
with one point for each connected component.

I n = 1: we have the correspondence between 1-types and
groupoids given by the fundamental groupoid functor, and the
realization.

Π1 : Top[0,1] ↔ Gpd1 : | − |
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The Tamsamani model

For n > 2, strict n-groupoids do not model n-types.

Instead, we need a more general (weaker) type of higher structure,
where associativity and unitality of composites works up to higher data.

To build a model of weak n-category we need a “combinatorial”
machinery that encodes:
I The sets of cells in dimension 0 up to n
I The behavior of the compositions
I The higher categorical equivalences

A natural way to do this is to use multisimplicial sets, since we can
encode compositions via the Segal maps.
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The Tamsamani model

Let X ∈ [∆op, C] be a simplicial object in a category C with pullbacks.

Definition: Segal maps

For each k ≥ 2, let νj : Xk → X1 be induced by the map νj : [1]→ [k] in
∆ sending 0 to j − 1 and 1 to j.

Xk

X1 X1 . . . X1

X0 X0 . . . X0 X0

ν1
ν2

νk

d1 d0 d1 d0
d1 d0

The k-th Segal map is Sk : Xk → X1×X0

k· · ·×X0X1
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The Tamsamani model

We define Tamsamani n-categories and their equivalences by
induction on n.

Definition: Tamn

I Tam0 = Set, 0-equivalences = bijections
I Tam1 = Cat, 1-equivalences = equivalences of categories
I for n > 1, Tamn are the functors
X ∈ [(∆op)n−1,Cat] ⊆ [(∆op)n,Set] such that
I X0 is discrete
I Xk ∈ Tamn−1 for all k > 0

I for all k ≥ 2, the Segal map Xk → X1×X0

k· · ·×X0
X1 is an

(n− 1)-equivalence
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The Tamsamani model

Intuition:

I they are multi-simplicial objects, with Segal maps in all the
simplicial directions

I X0 (resp. X1...
r

10) is the set of 0-cells (resp. r-cells for
1 ≤ r ≤ n− 2)

I the set of (n− 1) (resp. n)-cells is given by obX1 ...
n−1

1 (resp.

morX1 ...
n−1

1)

I we compose cells using the Segal maps

X1 ×X0 X1
∼←− X2

d1−→ X1

where d1 : [2]→ [1] is the face map in ∆op
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The Tamsamani model

Equivalences: a higher dimensional version of “fully faithful and
essentially surjective”

Definition: n-equivalences in Tamn

I 0-equivs are bijections
I 1-equivs are equivs of categories
I for n > 1, an n-equivalence is a map f : X → Y in Tamn such that

I For all a, b ∈ X0, the induced map

f(a, b) : X(a, b)→ Y (fa, fb)

is an (n− 1)-equivalence
I p(n−1)f is an (n− 1)-equivalence
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The Tamsamani model

Once we have Tamsamani n-categories, we can define Tamsamani
n-groupoids.

Definition: GTamn

I GTam0 = Set ⊆ Set

I GTam1 = Gpd ⊆ Cat

I for n > 1, GTamn ⊆ Tamn are the functors X ∈ Tamn such that
I Xk ∈ GTamn−1 for all k > 0
I p(n−1)X ∈ GTamn−1

Homotopy hypothesis (Tamsamani)

Geometric realization | − | : GTamn → Top[0,n] induces an equivalence
on homotopy categories.
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The stable homotopy hypothesis



Spectra

In the stable homotopy hypothesis, we study spectra instead of
spaces.

Definition: Spectra

A spectrum consists of a sequence {Xi}i of pointed spaces, together
with structure maps σi : ΣXi → Xi+1.

Why do we care about spectra?

I they give sense to a notion of negative homotopy groups,

I provide a natural setting for the study of stable homotopy groups
(of spheres, for example),

I contain the infinite loop spaces, and through these, characterize
all (co)homology theories by Brown’s Representability Theorem,

I can be interpreted as an abelianization of spaces by May’s
Recognition Theorem.
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Spectra: homotopy groups

What is the analogous notion of n-types in spectra?

Stable n-types: spectra X such that πkX = 0 for k 6∈ [0, n].

Definition: homotopy groups of spectra
The ith homotopy group of a spectrum X is defined as

πiX = colimj πi+jX
j ,

where the colimit is taken over the maps

πi+jX
j πi+j+1ΣXj πi+j+1X

j+1Σ σj
∗

and runs over all j ≥ 0 when i ≥ 0, and over j + i ≥ 0 for i < 0.
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Spectra: model structure

Definition: weak equivalence of spectra
A map of spectra f : X → Y is a stable weak equivalence if it
induces isomorphisms f∗ : πnX → πnY for all n.

Theorem (Bousfield–Friedlander)
The category of spectra admits a model structure with the stable weak
equivalences.
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The stable homotopy hypothesis

Homotopy hypothesis
n-types (with weak equivalences) are the same as n-groupoids (with
higher categorical equivalences).

Stable homotopy hypothesis
Stable n-types (with stable weak equivalences) are the same as...?
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The stable homotopy hypothesis

Stable homotopy hypothesis
Stable n-types (with stable weak equivalences) are the same as... ?

What should we have on the categorical side?

Draw intuition from infinite loop spaces:
I Multiplication given by concatenation of loops, which is

associative, unital, and commutative (up to coherent higher
homotopies); we expect the corresponding n-groupoids to have a
symmetric monoidal structure.

I Loops have inverses up to homotopy; the objects in the
n-groupoids should be invertible in some sense.

The categorical side in the SHH is given by grouplike, symmetric
monoidal n-groupoids called Picard n-categories.
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The stable homotopy hypothesis

Stable homotopy hypothesis
Stable n-types (with stable weak equivalences) are the same as Picard
n-categories (with higher equivalences).

What should we have on the categorical side?
Draw intuition from infinite loop spaces:
I Multiplication given by concatenation of loops, which is

associative, unital, and commutative (up to coherent higher
homotopies); we expect the corresponding n-groupoids to have a
symmetric monoidal structure.
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The stable homotopy hypothesis: n = 0, 1, 2

Some evidence that the SHH holds:

I n = 0: Stable 0-types are Eilenberg-MacLane spectra.

Picard
0-categories have just objects and no higher cells, and a
symmetric monoidal product making objects “invertible”; a.k.a. an
abelian group.

Obs: we can shift one dimension up, and describe an abelian
group as a 1-grupoid with one object + symmetry.

I n = 1: Stable 1-types correspond to Picard categories (Patel):
groupoids with a symmetric monoidal structure and invertible
objects; alternatively, groupoidal bicategories with one object +
symmetry.

I n = 2: Stable 2-types correspond to Picard Bicategories
(Gurski–Johnson–Osorno).
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Our project

Our goal: generalize this, and give a definition of Picard weak
n-category that satisfies the stable homotopy hypothesis for all n.

Naive try: why not just copy the above definition replacing the number
by n?

I Picard 0-categories are grouplike, groupoidal, symmetric monoidal
0-categories

I Picard 1-categories are grouplike, groupoidal, symmetric monoidal
categories

I Picard 2-categories are grouplike, groupoidal, symmetric monoidal
bicategories

...

Because symmetric monoidal bicategories are already hard, and
there’s not even a definition for n ≥ 4!
Instead, we will use the change in perspective outlined above.
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Modeling Picard n-categories

Picard n-category: grouplike, symmetric monoidal n-groupoid.

We can encode the monoidal structure on the groupoid by shifting one
dimension up:

monoidal n-groupoid = (n+ 1)-groupoid with one object

Now the original objects are encoded as the morphisms in the
(n+ 1)-groupoid, and these are invertible, so this reflects the grouplike
condition.

Missing: the “symmetric” part.
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Modeling Picard n-categories

Picard n-category: grouplike, symmetric monoidal Tamsamani
n-groupoid.

We can encode the monoidal structure on the groupoid by shifting one
dimension up:

monoidal Tamsamani n-groupoid = Tamsamani (n+ 1)-groupoid with
one object

Now the original objects are encoded as the morphisms in the
(n+ 1)-groupoid, and these are invertible, so this reflects the grouplike
condition.

Missing: the “symmetric” part.
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Modeling Picard n-categories

How do we encode the fact that the monoidal product is symmetric?

A Tamsamani (n+ 1)-groupoid with one object is a functor

X : (∆op)n+1 → Set

We want the composition to be commutative.
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Modeling Picard n-categories

X : (∆op)n+1 → Set

How do we compose? Using the Segal condition!

X1 ×X0 X1
∼←− X2

d1−→ X1

where d1 : [2]→ [1] is the face map in ∆op.

To introduce the symmetry, we extend the first ∆op to a Γ.
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Modeling Picard n-categories

X ∈ [(∆op)× (∆op)n, Set] ↪→ [(Γ)× (∆op)n,Set]

using φ : ∆op ↪→ Γ
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Modeling Picard n-categories

X ∈ [(∆op)× (∆op)n, Set] ↪→ [(Γ)× (∆op)n,Set]

using φ : ∆op ↪→ Γ

How do we compose? Using the Segal condition!

X1 ×X0 X1
∼←− X2

φd1−−→ X1

where φd1 : 〈2〉 → 〈1〉 is the map in Γ taking 1, 2 to 1.

But in Γ we are allowed to twist! t : 〈2〉 → 〈2〉, t(1) = 2, t(2) = 1.

Since φd1 = φd1 ◦ t, they must induce the same map X2 → X1, and
this makes composition commutative.
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Modeling Picard n-categories

Our proposed model:

Definition: Picard n-category (MOPSV)

A Picard n-category is a functor X : Γ× (∆op)n → Set such that the
restriction to (∆op)n+1 is a Tamsamani (n+ 1)-groupoid with one
object.

Notation: PicTamn

Definition: weak equivalences (MOPSV)
A map of Picard n-categories f : X → Y is a weak equivalence if it’s
an equivalence of Tamsamani (n+ 1)-groupoids after restricting to
(∆op)n+1.
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Γ-objects

How do we connect Ho(PicTamn) and Ho(Sp[0,n])?

Key concept: Γ-objects!

Definition: Γ-objects
Let C be a pointed category. A Γ-object in C is a functor Γ→ C
mapping 〈0〉 to ∗. Notation: ΓC.

When in addition C has weak equivalences, we can define special
Γ-objects.

Definition: special Γ-object
A Γ-object A in C is special if, for each k ≥ 0, the map

A〈k〉 → A〈1〉 × · · · ×A〈1〉 = A〈1〉×k

is a weak equivalence.
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Γ-objects

We are interested in C = sSet∗ and C = GTamn.

For a special Γ-object A in one of these categories, the set π0A〈1〉
becomes an abelian monoid, with multiplication

π0A〈1〉 × π0A〈1〉
(ν1,ν2)←−−−− π0A〈2〉

m−→ π0A〈1〉

Definition: very special Γ-object
A Γ-object A is very special if it is special, and the abelian monoid
π0A〈1〉 is a group.
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Proving the SHH

Theorem: SHH (MOPSV)
Picard n-categories are “the same” as stable n-types.

v.s.ΓsSet∗ Sp≥0
'Ho

BF 

v.s.ΓsSet∗[0,n] Sp[0,n]
'Ho

MOPSV

GTamn sSet∗[0,n]
'Ho

HH (Tamsamani)

 

v.s.ΓGTamn
'Ho

MOPSV

Theorem (MOPSV)

A functor X : Γ× (∆op)n → Set is a Picard–Tamsamani n-category if
and only if it’s a very special Γ-object in Tamsamani n-groupoids.
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Thanks for your time!


