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Preliminaries

Bimonoids in braided monoidal categories

Suppose (V,®, I, 0) is braided monoidal category.

A bimonoid is an object M with a monoid (M, i, n) and a comonoid
(M, 0, ¢) structure which are compatible, in that
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A bimonoid morphism is an arrow f: M — N that is a monoid and
comonoid morphism~~+ obtain a category Bimon()).
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Hopf monoids in braided monoidal categories
A Hopf monoid is a bimonoid with an antipode, i.e. s: M — M with
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* Equivalently, s is the inverse of 1y, under convolution in V(M, M):
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These form a full subcategory Hopf(V) of Bimon(V).



Preliminaries

Hopf categories
Idea: like a category can be thought as a many-object monoid, a Hopf
category is the many-object generalization of a Hopf monoid.

Comon(V) is monoidal when V is braided monoidal:
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A semi-Hopf V-category H is a Comon(V)-enriched category:

Pxyz: Hxy @ Hy ; — Hy , Nx: | — Hy x global multiplication
lcomltay: Hap — Hyp @ Hap €ab: Hap — | local comultiplication
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Preliminaries
A Hopf category is a semi-Hopf category with s, : Hy, — H, x so that
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With Comon(V)-functors, obtain categories Hopf-V-Cat C sHopf-V-Cat.
Examples
= A one-object semi-Hopf/Hopf V-category is a bimonoid /Hopf
monoid in V.

= If V is cartesian monoidal, any V-category is semi-Hopf (since
Comon(V) 2 V).

= When V is also locally presentable and closed, Mon(V) is a
semi-Hopf V-category.

= A Hopf (Set-)category is a groupoid.



Oplax bimonoids and Hopf monoids

Idea: ‘relax’ the monoid/comonoid compatibility in a 2-categorical setting.

Suppose (K, ®, 1, 0) is braided monoidal bicategory.

A pseudo(co)monoid is an object with (co)multiplication, (co)unit that
are associative and unital up to iso. Can have lax or oplax maps!

An oplax bimonoid is pseudomonoid & pseudocomonoid (M, i, 7,9, )
along with 2-cells (satisfying axioms...)
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These form a bicategory OplBimon(V) = PsComongp(PsMongpi(K)).
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* For ordinary bimonoid M, the forgetful Mody — V is strict monoidal.

» An oplax M-module X for pseudomon (M, 11,7) has X @ M 2 M with
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Oplax bimonoids and Hopf monoids

Oplax Hopf monoids

An oplax inverse for X in a monoidal V is Y with X@Y 25/<2Y®X
such that 1@7=mRL:YRXQY Y, Mol = 1om:XQYX5X.

* The above is a special case of a firm Morita context in a bicategory,
which also makes Y unique up to isomorphism.

An oplax antipode for an oplax bimonoid M is an oplax inverse of 1y,
in (M, M) with convolution.
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An oplax Hopf monoid is an oplax bimonoid with an oplax antipode.
With maps that preserve the oplax antipode, get bicategory OplHopf(K).



Oplax bimonoids and Hopf monoids

Example: X2 in (Span, x,1)

= Every set has a (strict) comonoid structure in Span; e.g. for X?
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= For every set X, codiscrete groupoid X? gives pseudomonoid

X3 X

X4 ; X2 1=+ 1 X2

= There is a (unique!) oplax bimonoid structure on X2 with the above
structures; it is an oplax Hopf monoid with oplax antipode
X2

=

X2 . X2

% Choosing the reverse structures, X2 is again an oplax Hopf monoid.




Monoidal bicategory Span|V

There is a bicategory Span|V with
- 0-cells pairs Mx with X a set, M: X — V a functor i.e. {My}xex€V
- 1-cells Mx — Ny are spans X «f— S —&— Y with natural transf
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- 2-cells are maps of spans that satisfy
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- If V is monoidal, My @ Ny 1= X x ¥ XNy oy 8y

* Span|KC was introduced by Béhm for arbitrary monoidal bicategory /C,
here for a monoidal 1-category V with trivial 2-cells.



Monoidal bicategory Span|V

* There is a (strict) monoidal functor of bicategories U: Span|}V — Span
which forgets all data associated to V.

If V has colimits, the forgetful U: Span|V — Span is a 2-opfibration. J

Sketch: Build a pseudofunctor Span — Cat < 2-Cat via X — [X, V] and
X &5 £ v o Lang(-o f): [X,V] —— [Y, V]
xMy. — shxMy
el

v -7 Lang (Mf)

Then 2-dimensional Grothendieck construction is isomorphic to U.

Any braided monoidal pseudofunctor of bicategories preserves
pseudo(co)monoids, oplax bimonoids and oplax Hopf monoids.

* In particular, an oplax Hopf monoid in Span|V will have as underlying
set an oplax Hopf monoid in Span — think X? with earlier structure...
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Hopf categories as oplax Hopf algebras

Idea: each piece of structure of a Hopf category (H, i, 7,9,¢,s)
corresponds to that of an oplax Hopf monoid in Span|V.
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* We realize V-Cat as a specific subcategory of PsMongp(Span|V).
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* Similar correspondences exist for morphisms. Thus Hopf-V-Cat is a
specific subcategory of OplHopf(Span|V).

» Frobenius V-categories are Frobenius pseudomonoids in Span|V

Hxyz: Hxy @ Hy ; — Hy » Nx: | — Hy x global multiplication
dabe: Hae = Hap @ Hp ¢ €. Hya — | global comultiplication

( A Hopf V-category is Frobenius under certain assumptions... ]




Thank you for your attention!
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