Oplax Hopf Algebras

Christina Vasilakopoulou

University of Patras, Greece GENERAL SECRETARIAT FOR

Algebra seminar, Masaryk University

Outline

- Some preliminaries
- Oplax bimonoids and oplax Hopf monoids
- 3. The symmetric monoidal bicategory Span $|\mathcal{V}|$
- Hopf categories as oplax Hopf algebras in Span $|\mathcal{V}|$

Bimonoids in braided monoidal categories

Suppose $(\mathcal{V}, \otimes, I, \sigma)$ is braided monoidal category.

▶ A bimonoid is an object M with a monoid (M, μ, η) and a comonoid (M, δ, ε) structure which are compatible, in that

A bimonoid morphism is an arrow $f: M \to N$ that is a monoid and comonoid morphism $\sim >$ obtain a category Bimon(\mathcal{V}).

Hopf monoids in braided monoidal categories

▶ A Hopf monoid is a bimonoid with an antipode, i.e. $s: M \to M$ with

* Equivalently, s is the inverse of 1_M under convolution in $\mathcal{V}(M, M)$:

$$f\odot g:=M\xrightarrow{\delta}M\otimes M\xrightarrow{f\otimes g}M\otimes M\xrightarrow{\mu}M,\quad I_{\odot}\colon M\xrightarrow{\varepsilon}I\xrightarrow{\eta}M$$

These form a full subcategory Hopf(V) of Bimon(V).

Hopf categories

Idea: like a category can be thought as a many-object monoid, a Hopf category is the many-object generalization of a Hopf monoid.

▶ A semi-Hopf V-category H is a Comon(V)-enriched category:

$$\mu_{xyz} \colon H_{x,y} \otimes H_{y,z} \to H_{x,z}$$
 $\eta_x \colon I \to H_{x,x}$ global multiplication lcomlt_{ab}: $H_{a,b} \to H_{a,b} \otimes H_{a,b}$ $\varepsilon_{ab} \colon H_{a,b} \to I$ local comultiplication

ightharpoonup A Hopf category with $s_{xy} \colon H_{x,y} \to H_{y,x}$ so that

$$H_{x,y} \otimes H_{x,y} \xrightarrow{1 \otimes \mathsf{s}_{xy}} H_{x,y} \otimes H_{y,x} \xrightarrow{\mu_{xyx}} H_{x,y} \xrightarrow{\delta_{xy}} I \xrightarrow{\eta_x} H_{x,x}$$

With Comon(V)-functors, obtain categories Hopf-V-Cat \subseteq sHopf-V-Cat. Examples

- A one-object semi-Hopf/Hopf V-category is a bimonoid/Hopf monoid in V.
- If $\mathcal V$ is cartesian monoidal, any $\mathcal V$ -category is semi-Hopf (since $\mathsf{Comon}(\mathcal V)\cong\mathcal V$).
- When $\mathcal V$ is also locally presentable and closed, $\mathsf{Mon}(\mathcal V)$ is a semi-Hopf $\mathcal V$ -category.
- A Hopf (Set-)category is a groupoid.

Idea: 'relax' the monoid/comonoid compatibility in a 2-categorical setting.

Suppose $(\mathcal{K}, \otimes, I, \sigma)$ is braided monoidal bicategory.

- ▶ A pseudo(co)monoid is an object with (co)multiplication, (co)unit that are associative and unital up to iso. Can have lax or oplax maps!
- ▶ An *oplax bimonoid* is pseudomonoid & pseudocomonoid $(M, \mu, \eta, \delta, \varepsilon)$ along with 2-cells (satisfying axioms...)

These form a bicategory $OplBimon(\mathcal{V}) = PsComon_{opl}(PsMon_{opl}(\mathcal{K}))$.

▶ An oplax M-module X for pseudomon (M, μ, η) has $X \otimes M \xrightarrow{\rho} M$ with

$$\begin{array}{cccc}
X \otimes M \otimes M & \xrightarrow{1 \otimes \mu} & X \otimes M & X & \xrightarrow{1 \otimes \eta} & X \otimes M \\
& & & & \downarrow \rho & & \downarrow \rho & & \downarrow \xi_0 & \downarrow \rho \\
X \otimes M & \xrightarrow{\qquad \qquad \downarrow \chi & & \downarrow \chi_0 & \downarrow \chi_0
\end{array}$$

For an oplax bimonoid M, the bicategory OplMod $_{\mathrm{opl}}^{\mathrm{M}}$ has a monoidal structure such that OplMod $_{\mathrm{opl}}^{\mathrm{M}} \to \mathcal{K}$ is strict monoidal.

$$X \otimes Y \otimes M \xrightarrow{11\delta} X \otimes Y \otimes M \otimes M \xrightarrow{1\sigma 1} X \otimes M \otimes Y \otimes M \xrightarrow{\rho\rho} X \otimes Y \text{ with}$$

Oplax Hopf monoids

An *oplax inverse* for X in a monoidal $\mathcal V$ is Y with $X\otimes Y\overset{\tau_1}{\longrightarrow}I\overset{\tau_2}{\longleftarrow}Y\otimes X$ such that $1\otimes\tau_1=\tau_2\otimes 1:Y\otimes X\otimes Y\overset{\sim}{\longrightarrow}Y,\ \tau_1\otimes 1=1\otimes\tau_2:X\otimes Y\otimes X\overset{\sim}{\longrightarrow}X.$

- \star The above is a special case of a *firm Morita context* in a bicategory, which also makes Y unique up to isomorphism.
- ▶ An *oplax antipode* for an oplax bimonoid M is an oplax inverse of 1_M in $\mathcal{K}(M,M)$ with convolution.

$$M \otimes M \xrightarrow{1 \otimes s} M \otimes M$$

$$\downarrow \tau_1 \qquad \eta \qquad \downarrow \tau_1 \qquad \eta \qquad \downarrow M$$

$$\delta \xrightarrow{\delta} I \xrightarrow{\uparrow \tau_2} M \otimes M \qquad \text{s.t. } 1_s \odot \tau_1 = \tau_2 \odot 1_s,$$

$$M \otimes M \xrightarrow{s \otimes 1} M \otimes M \qquad \qquad \tau_1 \odot 1_{1_M} = 1_{1_M} \odot \tau_2$$

▶ An oplax Hopf monoid is an oplax bimonoid with an oplax antipode. With maps that preserve the oplax antipode, get bicategory OplHopf(K).

Example: X^2 in (Span, \times , **1**)

• Every set has a (strict) comonoid structure in Span; e.g. for X^2

• For every set X, codiscrete groupoid X^2 gives pseudomonoid

• There is a (unique!) oplax bimonoid structure on X^2 with the above structures; it is an oplax Hopf monoid with oplax antipode

 \star Choosing the reverse structures, X^2 is again an oplax Hopf monoid.

There is a bicategory Span $|\mathcal{V}|$ with

- · 0-cells pairs M_X with X a set, $M: X \to \mathcal{V}$ a functor i.e. $\{M_x\}_{x \in X} \in \mathcal{V}$
- · 1-cells $M_X o N_Y$ are spans $X \leftarrow_{f} S g \rightarrow Y$ with natural transf

· 2-cells are maps of spans that satisfy

· If $\mathcal V$ is monoidal, $M_X\otimes N_Y:=X\times Y\xrightarrow{M\times N}\mathcal V\times\mathcal V\xrightarrow{\otimes}\mathcal V$

 \star Span| $\mathcal K$ was introduced by Böhm for arbitrary monoidal bicategory $\mathcal K$, here for a monoidal 1-category $\mathcal V$ with trivial 2-cells.

 \star There is a (strict) monoidal functor of bicategories $U\colon \mathsf{Span}|\mathcal{V}\to\mathsf{Span}$ which forgets all data associated to \mathcal{V} .

If \mathcal{V} has colimits, the forgetful $U: \operatorname{Span}|\mathcal{V} \to \operatorname{Span}$ is a 2-opfibration.

 $\textit{Sketch:} \ \, \mathsf{Build} \ \, \mathsf{a} \ \, \mathsf{pseudofunctor} \ \, \mathsf{Span} \to \mathsf{Cat} \hookrightarrow \mathsf{2}\text{-}\mathsf{Cat} \ \, \mathsf{via} \ \, \mathsf{X} \mapsto [\mathsf{X}, \mathcal{V}] \ \, \mathsf{and}$

Then 2-dimensional Grothendieck construction is isomorphic to U.

Any braided monoidal pseudofunctor of bicategories preserves pseudo(co)monoids, oplax bimonoids and oplax Hopf monoids.

 \star In particular, an oplax Hopf monoid in Span $|\mathcal{V}$ will have as underlying set an oplax Hopf monoid in Span – think X^2 with earlier structure...

Hopf categories as oplax Hopf algebras

Idea: each piece of structure of a Hopf category $(H, \mu, \eta, \delta, \varepsilon, s)$ corresponds to that of an oplax Hopf monoid in Span|V|.

A pseudomonoid in Span|V| over the pseudomonoid X^2 is a V-category.

An oplax pseudomonoid map between H_{X^2} and G_{Y^2} in $\mathsf{Span}|\mathcal{V}$ of the form

$$\chi^2$$
 \downarrow_{α} \downarrow_{α} \downarrow_{α} \downarrow_{γ} is a \mathcal{V} -functor between the resp. \mathcal{V} -categories.

 \star We realize V-Cat as a specific subcategory of PsMon_{opl}(Span|V).

- A comonoid in Span $|\mathcal{V}|$ over the comonoid X^2 is a Comon (\mathcal{V}) -graph.
- An oplax bimonoid in Span $|\mathcal{V}|$ over the oplax bimonoid X^2 is a semi-Hopf category.
- An oplax Hopf monoid in Span $|\mathcal{V}|$ over the oplax Hopf monoid X^2 is a Hopf category.
- \star Similar correspondences exist for morphisms. Thus Hopf- $\mathcal V\text{-Cat}$ is a specific subcategory of OplHopf(Span| $\mathcal V$).
- lacktriangleright Frobenius $\mathcal V$ -categories are Frobenius pseudomonoids in Span $|\mathcal V|$

$$\mu_{xyz} \colon H_{x,y} \otimes H_{y,z} \to H_{x,z}$$
 $\eta_x \colon I \to H_{x,x}$ global multiplication $d_{abc} \colon H_{a,c} \to H_{a,b} \otimes H_{b,c}$ $e_a \colon H_{a,a} \to I$ global comultiplication

A Hopf \mathcal{V} -category is Frobenius under certain assumptions...

Thank you for your attention!

- Batista, Caenepeel, Vercruysse, "Hopf categories", Algebras and Representation Theory, 2016
- Böhm, "Hopf polyads, Hopf categories and Hopf group monoids viewed as Hopf monads", Theory and Applications of Categories, 2017
- Buckley, Fieremans, Vasilakopoulou, Vercruysse, "Oplax Hopf algebras", Arxiv:1710.01465, to appear in Higher structures
- Buckley, Fieremans, Vasilakopoulou, Vercruysse, "A Larson-Sweedler Theorem for Hopf V-categories", Arxiv:1908.02049, to appear in Advances in Mathematics