Spectral Density Estimation via Autoregressive Modeling

Marie Forbelská

Masaryk University Brno, Department of Mathematics and Statistics

Podlesí, 3.9.-6.9.2013

Characteristics of Time Series

Time Series (Discrete-Time Stochastic Processes)

• A time series is a sequence of random variables $\{Y_t, t=0,\pm 1,\pm 2,\ldots\}$

Second Order Statistical Description

Definition

Stochastic process $\{Y_t, t \in T\}$ is said to be a second-order process if $EY_t^2 < \infty$ for all $t \in T$.

Mean

• Mean $EY_t = \mu_t < \infty$ for all $t \in T$.

Autocovariance and Autocorelation

• Autocovariance $C_Y(t,s)$ of a random process $\{Y_t, t \in \mathbb{Z}\}$ is defined as the covariance of Y_t and Y_s :

$$C_Y(t,s) = E(Y_t - EY_t)(Y_s - EY_s)$$

• In particular, when t = s, we have

$$C_Y(t,t) = E(Y_t - EY_t)^2 = DY_t$$

• Autocorrelation coefficient is defined as $R_Y(t,s) = \frac{C_Y(t,s)}{\sqrt{DY_t DY_s}}$

Marie Forbelská (MU–ÚMS)

Weak Stationarity

• We introduce weak stationarity which require that time series exhibit certain time-invariant behavior.

Definition

- A time series $\{Y_t, t \in \mathbb{Z}\}$ is (weak) stationary if $EY_t < \infty$ for each t, and
 - (i) $EY_t = \mu$ is a constant, independent of t, and
 - (ii) $C_Y(t, t+k)$ is independent of t for each k.

Notation

• If
$$\{Y_t, t \in \mathbb{Z}\}$$
 is (weak) stationary denote by
 $\gamma_Y(k) = C_Y(t, t+k)$
 $\rho_Y(k) = R_Y(t, t+k)$ for all t .

A E F A E F

Spectral theory

Spectral density

Let $\{Y_t, t \in \mathbb{Z}\}$ be a zero mean stationary random sequence with the autocovariance function satisfying

$$\sum_{=-\infty}^{\infty} |\gamma(t)| < \infty.$$

Then the spectral density function is the continuous function $f(\lambda)$ given by the uniformly convergent series

$$f(\lambda) = \sum_{t=-\infty}^{\infty} \gamma(t) e^{-i\lambda t}$$

(see Doob 1953, p. 476).

Marie Forbelská (MU–ÚMS) Spectral Density Estimation via AR Modeling Podlesí, 3. 9. – 6. 9. 2013 5 / 83

(E) < E)</p>

White Noise

Definition

The process $\{\varepsilon_t, t \in T\}$ is said to be an White Noise

- if ε_t are uncorrelated random variables,
- each with zero mean and variance $\sigma_{\varepsilon}^2 > 0$

Notation: $\varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2)$.

Definition

If ε_t are also independent and identically distributed, then the process $\{\varepsilon_t, t \in T\}$ is said to be an **IID process**.

Notation: $\varepsilon_t \sim IID(0, \sigma_{\varepsilon}^2)$.

◆ロト ◆帰 ト ◆注 ト ◆注 ト → 見 − のへの

Gaussian White Noise

Weak Stationarity

Exponential White Noise

Weak Stationarity

Beta-distributed White Noise

ARMA Process

Definition

The process $\{Y_t, t \in \mathbb{Z}\}$ is said to be an ARMA(p, q) process

- if $\{Y_t, t \in \mathbb{Z}\}$ is stationary and
- if for every $t \in \mathbb{Z}$,

$$Y_t - \varphi_1 Y_{t-1} - \dots - \varphi_p Y_{t-p} = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q}$$

where $\varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2)$.

We say that $\{Y_t, t \in \mathbb{Z}\}$ is an ARMA(p,q) process with mean μ

• if $\{Y_t - \mu, t \in \mathbb{Z}\}$ is an ARMA(p, q) process.

Special cases

- If p = 0 then Y_t is said to be moving average process MA(q).
- If q = 0 then Y_t is said to be autoregressive AR(p).

Marie Forbelská (MU–ÚMS) Spectral Density Estimation via AR Modeling Podlesí, 3.9.–6.9.2013 10 / 83

Backshift Operators and Characteristic Polynomials

Backshift Operator B such that

$$BY_t = BY_{t-1}$$
 and $B^kY_t = BY_{t-k}$ for all $k \in \mathbb{Z}$

ARMA notation using backshift operators

$$Y_t \sim ARMA(p,q) : \Phi(B)Y_t = \Theta(B)\varepsilon_t$$

Characteristic polynomials

$$\begin{array}{ll} AR \text{ part } & \Phi(z) = 1 - \varphi_1 z - \dots - \varphi_p z^p \\ MA \text{ part } & \Theta(z) = 1 + \theta_1 z + \dots + \theta_q z^p \\ \parallel < 1 \end{array}$$

defined on |z| < 1.

Marie Forbelská (MU–ÚMS) Spectral Density Estimation via AR Modeling Podlesí, 3.9.–6.9.2013 11 / 83

3

ヨー つくで

Causality and Invertibility of ARMA Processes

Definition

An ARMA(p, q) process is said to be **causal** (relative to $\{\varepsilon_t\}$) if there exists a sequence of constants $\{\psi_i\}$ such that $\sum_{i=0}^{\infty} |\psi_i| < \infty$ and $Y_t = \sum_{i=0}^{\infty} \psi_i \varepsilon_{t-i}, \ t \in \mathbb{Z}$

Which is equivalent to the condition

$$\Phi(z) = 1 - \varphi_1 z - \ldots - \varphi_p z^p \neq 0, \ \forall \ |z| < 1$$

A similar definition for the invertibility of an ARMA(p,q) process relative to ε_t can be presented if we interchange the role of $\{Y_t\}$ with $\{\varepsilon_t\}$. Then the invertibility is equivalent to the condition

$$\Theta(z) = 1 + \theta_1 z + \ldots + \theta_p z^q \neq 0, \ \forall \ |z| < 1$$

・ロト ・ 一 ・ ・ ヨ ト ・ ヨ ・ ・ ク へ つ

Spectral density of ARMA process

Spectral density of a MA(q) process $f_Y(\omega) = \frac{\sigma_{\varepsilon}^2}{2\pi} \left| \Theta\left(e^{-i\omega} \right) \right|^2$ for $\omega \in \langle -\pi, \pi \rangle$

Spectral density of a AR(p) process

$$f_Y(\omega) = rac{\sigma_arepsilon^2}{2\pi} rac{1}{|\Phi(e^{-i\omega})|^2} \qquad ext{for} \qquad \omega \in \langle -\pi,\pi
angle$$

Spectral density of a ARMA(p, q) process

$$f_{Y}(\omega) = rac{\sigma_{arepsilon}^{2}}{2\pi} rac{|\Theta(e^{-i\omega})|^{2}}{|\Phi(e^{-i\omega})|^{2}} \qquad ext{for} \qquad \omega \in \langle -\pi,\pi
angle$$

where

 $\Theta(z) = 1 + \theta_1 z + \ldots + \theta_q z^q \quad \text{and} \quad \Phi(z) = 1 - \varphi_1 z - \ldots - \varphi_p z^p.$ $(\Box \triangleright \langle \Box \rangle \langle$

Moments of the AR(p) process

To calculate the mean we need causal AR(p) process:

$$EY_t = E \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j} = \sum_{j=0}^{\infty} \psi_j E \varepsilon_{t-j} = 0.$$

Calculation of the autocovariance function is complicated: first equation $Y_t = \varphi_1 Y_{t-1} + \dots + \varphi_p Y_{t-p} + \varepsilon_t$ multiplied by a term Y_{t-k} and calculate the mean values of both sides, i.e.

$$\underbrace{EY_tY_{t-k}}_{=\gamma(k)} = \varphi_1\underbrace{EY_{t-1}Y_{t-k}}_{=\gamma(k-1)} + \dots + \varphi_p\underbrace{EY_{t-p}Y_{t-k}}_{=\gamma(k-p)} + E\varepsilon_tY_{t-k}.$$

then we compute

$$\begin{split} EY_{t-k}\varepsilon_t &= E(\sum_{j=0}^{\infty}\psi_j\varepsilon_{t-j-k})\varepsilon_t = \sum_{j=0}^{\infty}\psi_jE\varepsilon_{t-j-k}\varepsilon_t = \sum_{j=0}^{\infty}\psi_j\sigma_{\varepsilon}^2\delta_{j+k} \\ &= \begin{cases} \sigma_{\varepsilon}^2 & k = 0, \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Marie Forbelská (MU–ÚMS)

Podlesí, 3.9.-6.9.2013

(ロ > 4回 > 4回 > 4回 > ヨ シック

15 / 83

Yule–Walker equations

By simple modifications of the previous equations we get Yule–Walker equations

for the autocovariance function

for
$$k = 0$$
: $\gamma(0) - \varphi_1 \gamma(1) - \dots - \varphi_p \gamma(p) = \sigma_{\varepsilon}^2$
for $k \neq 0$: $\gamma(k) - \varphi_1 \gamma(k-1) - \dots - \varphi_p \gamma(k-p) = 0$

for the autocorrelation function

for
$$k = 0$$
: $\underbrace{\rho(0)}_{=1} - \varphi_1 \rho(1) - \cdots - \varphi_p \rho(p) = \frac{\sigma_{\varepsilon}^2}{\gamma(0)}$
for $k \neq 0$: $\rho(k) - \varphi_1 \rho(k-1) - \cdots - \varphi_p \rho(k-p) = 0$ (YW_{*})

Yule–Walker equation is a widely used method to estimate the coefficients of the AR(p) models.

Marie Forbelská (MU–ÚMS) Spectral Density Estimation via AR Modeling Podlesí, 3.9.–6.9.2013 16 / 83

イロト イポト イヨト イヨト

Limit properties of the $\rho(k)$ of the AR(p) process

Solution of the homogeneous differential equation, which we marked with a (YW_*) , we get in addition to recurrent relationship too explicit form of the autocorrelation function

$$\rho_{AR(p)}(k) = \sum_{j=1}^{m} \left(\sum_{s=0}^{p_j-1} c_{js} k^s \right) \lambda_j^k = \sum_{j=1}^{m} \left(\sum_{s=0}^{p_j-1} c_{js} k^s \right) r_j^k e^{ik\theta_j},$$

where c_{js} are constants determined by the initial conditions and $\lambda_j = r_j e^{i\theta_j}$ are the inverse of the roots of the $\Phi(z) = 1 - \varphi_1 z - \ldots - \varphi_p z^p$ with multiplicities p_j . Because holds

$$|\lambda_j| = r_j < 1,$$
 kde $\Phi(z_{0j}) = 0$ pro $z_{0j} = rac{1}{\lambda_j},$

we get here, that $\rho(k)$ decreases for $k \to \infty$ exponentially to zero, i.e.

$$\rho(k) \xrightarrow[k \to \infty]{} 0,$$

which is a very important property identification autoregressive AR(p) processes.

Marie Forbelská (MU–ÚMS) Spectral Density Estimation via AR Modeling Podlesí, 3.9.–6.9.2013 17 / 83

Introduction

Weak Stationarity

Introduction We

Weak Stationarity

Introduction Weak

Weak Stationarity

Marie Forbelská (MU–ÚMS)

Spectral Density Estimation via AR Modeling

Podlesí, 3.9.-6.9.2013 30

30 / 83

Seasonal linear models

So far we have discussed the links between neighboring random variables

 $\ldots, Y_t, Y_{t+1}, Y_{t+2}, \ldots$

If a random process also includes seasonal fluctuations, it is necessary to notice the dependencies between random variables, which divides season length L.

$$\ldots, Y_t, Y_{t+L}, Y_{t+2L}, \ldots$$

First, we introduce seasonal differential operator of length L > 0:

$$\Delta_{L} Y_{t} = Y_{t} - Y_{t-L} = (1 - B^{L}) Y_{t}$$

$$\Delta_{L}^{2} Y_{t} = \Delta_{L} (\Delta_{L} Y_{t}) = \Delta_{L} (Y_{t} - Y_{t-L})$$

$$= (Y_{t} - Y_{t-L}) - (Y_{t-L} - Y_{t-2L})$$

$$= Y_{t} - 2Y_{t-L} + Y_{t-2L} = (1 - B^{L})^{2} Y_{t}$$

$$\Delta_L^D Y_t = (1 - B^L)^D Y_t$$

Construction seasonal models

• To better understand the structure of seasonal patterns in the B–J methodology, divide, for example, monthly data (L = 12) for r years in the following table.

Year	January	February	•••	December
1	<i>Y</i> ₁	Y ₂	• • •	Y ₁₂
2	Y ₁₃	Y ₁₄	• • •	Y ₂₄
÷	÷	:	÷	÷
r	$Y_{1+12(r-1)}$	$Y_{2+12(r-1)}$		$Y_{12+12(r-1)}$

For each column j ∈ {1,...,12} separately consider a ARMA(P, Q) model of the same type:

$$Y_{j+12t} = \pi_1 Y_{j+12(t-1)} + \dots + \pi_P Y_{j+12(t-1)} + \eta_{j+12t} + \psi_1 \eta_{j+12(t-1)} + \dots + \psi_Q \eta_{j+12(t-1)}$$

• Because all 12 random processes is of the same type, we can write $\pi(B^{12})Y_t = \Psi(B^{12})\eta_t.$

Sac

Remap white noise to the new process

When 12 white noise of the same type $\{\eta_{1+12t}\} \sim WN(0, \sigma_{\eta}^2)$ $\{\eta_{2+12t}\} \sim WN(0, \sigma_{\eta}^2)$ $\vdots \vdots \vdots$ $\{\eta_{12+12t}\} \sim WN(0, \sigma_{\eta}^2)$

sequentially assemble in time and create a single random process

 $\{\eta_t^*, t = 0, \pm 1, \pm 2, \ldots\},\$

we do not get white noise, it is recalled that:

 $E\eta_t^*\eta_{t+h}^* = 0$ only where *h* that are multiples of 12 $E\eta_t^*\eta_{t+h} \neq 0$ may occur for any other *h*,

therefore model the process η_t as a general ARMA(pq) process

 $\Phi(B)\eta_t^* = \Theta(B)\varepsilon_t, \qquad \varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2).$

Stationary SARMA models

• General stationary seasonal mixed SARMA model:

 $\Phi(B)\pi(B^{L})Y_{t} = \Theta(B)\Psi(B^{L})\varepsilon_{t} \sim SARMA(p,q) \times (P,Q)_{L}$

kde

•
$$\Phi(B) = 1 - \varphi_1 B - \dots - \varphi_p B^p$$

• $\pi(B^L) = 1 - \pi_1 B^L - \dots - \pi_p B^{PL}$
• $\Theta(B) = 1 + \theta_1 B^1 + \dots + \theta_p B^p$

•
$$\Psi(B^L) = 1 + \psi_1 B + \dots + \psi_q B^q$$

• $\Psi(B^L) = 1 + \psi_1 B^L + \dots + \psi_Q B^Q$

• MA homogeneous seasonal models

$$Y_t = \Theta(B)\Psi(B^L)\varepsilon_t \sim SARMA(0,q) \times (0,Q)_L.$$

• AR homogeneous seasonal models

$$\Phi(B)\pi(B^L)Y_t = \varepsilon_t \sim SARMA(p,0) \times (P,0)_L$$

・ロ > (□ > (□ > (□ > (□ > (□ > (□ >

SARMA model as a special type of ARMA model

• Consider a simple example $SARMA(1,0) \times (1,0)_{12}$ model:

$$\Phi(B)\pi(B^{12})Y_t = \varepsilon_t$$

$$(1 - \varphi_1 B)(1 - \pi_1 B^{12})Y_t = \varepsilon_t$$

$$(1 - \varphi_1 B - \pi_1 B^{12} + \varphi_1 \pi_1 B^{13})Y_t = \varepsilon_t$$

$$Y_t - \varphi_1 Y_{t-1} - \pi_1 Y_{t-12} + \varphi_1 \pi_1 Y_{t-13} = \varepsilon_t$$

- We see that it is a special case of AR(13) model in which:
 - 10 coefficients are zero,
 - three remaining non-zero coefficients were created on two parameters:.

Relationship between SARMA and ARMA models

Model $SARMA(p,q) \times (P,Q)_L$ is actually ARMA(p + PL, QL + q) model with additional conditions on AR and MA coefficients.

Marie Forbelská (MU–ÚMS)

Spectral Density Estimation via AR Modeling

40 / 83

Estimation of moments

Let $\mathbf{Y} = (Y_1, \dots, Y_n)^T$ be a time series observed at equally-spaced time points t_1, \dots, t_n . We consider the problem of using these data to forecast Y_{n+1} at time t_{n+1} .

Without loss of generality, we can therefore assume that $t_i = i$.

Estimation of the second order moments

Suppose we have data Y_1, \ldots, Y_n from a stationary time series. We can estimate

Empirical Mean Estimator

$$\hat{Y} = \frac{1}{n} \sum_{t=1}^{n} Y_t$$

Empirical Autocovariance Function Estimator

$$C_k = \widehat{\gamma}(k) = \frac{1}{n-k} \sum_{t=1}^{n-k} (Y_t - \bar{Y})(Y_{t+k} - \bar{Y})$$
 for $k = 0, 1, ..., n-1$

Empirical Autocorrelation Function Estimator

$$\widehat{\rho}(k) = rac{\widehat{\gamma}(k)}{\widehat{\gamma}(0)}$$

Marie Forbelská (MU–ÚMS)

Э

イロト イポト イヨト イヨト

Sac 48 / 83

Example with ACF estimates for AR(2)

Example with ACF estimates for AR(2)

Example with ACF estimates for AR(2) (cont.)

Marie Forbelská (MU–ÚMS) Spectral Density Estimation via AR Modeling Podlesí, 3. 9. – 6. 9. 2013 51 / 83

Example with ACF estimates for AR(2) (cont.)

Marie Forbelská (MU–ÚMS) Spectral Density Estimation via AR Modeling Podlesí, 3.9.–6.9.2013 52 / 83

Monte Carlo study for the 1000 replication

Monte Carlo study for the 1000 replication (cont. 1)

Monte Carlo study for the 1000 replication (cont. 2)

LA Pollution-Mortality Study: Total Mortality (weekly data)

LA Pollution-Mortality Study: Total Mortality

Spectral Density

Marie Forbelská (MU – ÚMS)

Spectral Density Estimation via AR Modeling

LA Pollution-Mortality Study: Total Mortality

LA Pollution-Mortality Study: Cardiovascular Mortality

LA Pollution-Mortality Study: Cardiovascular Mortality Spectral Density

Marie Forbelská (MU – ÚMS)

Spectral Density Estimation via AR Modeling

Podlesí, 3.9.-6.9.2013

60 / 83

LA Pollution-Mortality Study: Cardiovascular Mortality

LA Pollution-Mortality Study: Temperature (weekly data)

LA Pollution-Mortality Study: Temperature

Spectral Density

Marie Forbelská (MU – ÚMS)

Spectral Density Estimation via AR Modeling

LA Pollution-Mortality Study: Temperature

LA Pollution-Mortality Study: Relative Humidity

LA Pollution-Mortality Study: Relative Humidity

Spectral Density

Marie Forbelská (MU – ÚMS)

Spectral Density Estimation via AR Modeling

Podlesí, 3.9.-6.9.2013

66 / 83

LA Pollution-Mortality Study: Relative Humidity (weekly data)

LA Pollution-Mortality Study: Carbon Monoxide (weekly data)

LA Pollution-Mortality Study: Carbon Monoxide (weekly data)

Spectral Density

Marie Forbelská (MU – ÚMS)

Spectral Density Estimation via AR Modeling

LA Pollution-Mortality Study: Carbon Monoxide (weekly

LA Pollution-Mortality Study: Hydrocarbons

LA Pollution-Mortality Study: Hydrocarbons

Spectral Density

Marie Forbelská (MU – ÚMS)

Spectral Density Estimation via AR Modeling

Podlesí, 3.9.-6.9.2013

72 / 83
LA Pollution-Mortality Study: Hydrocarbons

Spectral Density

Marie Forbelská (MU – ÚMS)

Spectral Density Estimation via AR Modeling

Podlesí, 3.9.-6.9.2013 75 / 83

Spectral Density

Marie Forbelská (MU – ÚMS)

Spectral Density Estimation via AR Modeling

Podlesí, 3.9.-6.9.2013

78 / 83

Literatura

- Anděl, J. Statistická analýza časových řad. Praha. SNTL 1976.
- Altman, N. S. (1990): Kernel Smoothing of Data With Correlated Errors. *Journal of the American Statistical Association*. Vol. **85**, No. 411, pp. 749–759.
- Anderson, T.W. *The Statistical Analysis of Time Series*. John Wiley & Sons Inc. 1971.
- Box, G., Jenkins, G. *Time series analysis forecasting and control*. Holden-Day 1976.
- Brabanter, K., Brabanter, J., Suykens, J. A. K. (2011): Kernel Regression in the Presence of Correlated Errors. *Journal of Machine Learning Research* 12, pp. 1955–1976.
- Brillinger, D. R. (1975): *Time Series. Data Analysis and Theory*. San Francisco: Holden-Day.
- Brockwell, P.J., Davis, R.A. *Time Series: Theory and Methods*. Springer–Verlag, New York, 1991.

Marie Forbelská (MU–ÚMS) Spectral Density Estimation via AR Modeling Podlesí, 3.9.–6.9.2013 80 / 83

Literatura (pokračování)

- Brockwell, P.J., Davis, R.A. *Introduction to time series and forecasting*. Springer-Verlag, New York, 2002.
- Cipra, T. *Analýza časových řad s aplikacemi v ekonomii*. SNTL, Praha, 1986.
- Doob, J.L. Stochastic processes. New York, Wiley 1953.
- Damsleth, E., Spjøtvoll, E. Estimation of Trigonometric Components in Time Series, *J. Amer. Statistics, Assoc.* 77. 1982, pp. 382–387.
- Daniels, H.E. Rank correlation and population models. Journals of the Royal Statistical Society, B, 12 1950. 171–181.
- Doob, J.L. Stochastic processes. New York, Wiley 1953.
- Fisher, R.A. Tests of significance in harmonic analysis. *Proc. Royal Soc.* A 125, 1929, 54–59.

イロト 不得下 イヨト イヨト 二日

Literatura (pokračování)

- Forbelská, M. Detekce periodicity v hydrologických datech. In XIII. letní škola bometriky, Biometrické metody a modely v současné vědě a výzkumu. 1. vyd. Brno: ÚKZÚZ Brno, 1998. s. 173–178.
- Forbelská, M. Stochastické modelování jednorozměrných časových řad. Munipress, 2009.
- Geweke, J.F., Meese, R. Estimating Regression Models of Finite but Unknown Order. *International Economic Review*, 22, 1981. 55–70.
- Gichman, I.I., Skorochod, A.V. *Teorija slučajnych processov*. Moskva. Nauka 1971.
- Hamilton, J.D. *Time Series Analysis*. Princeton University Press. 1994.
- Hannan, E.J., Quinn, B. G. The Determination of the Order of an Autoregression, *Journal of the Royal Statistical Society*, Series B, 41, No.2, 1979, 190–195.

イロト イポト イヨト イヨト

3

Literatura (pokračování)

- Michálek, J., Budíková, M., Brázdil, R. Metody odhadu trendu časové řady na příkladu středoevropských teplotních řad. 1. vyd. Praha : Český hydrometeorologický ústav, 1993, 53 s.
- Priestley, M. Spectral analysis and time series. Academic Press 1989.
- Štulajter, F. Odhady v náhodných procesoch. Alfa. Bratislava. 1989.
- Veselý, V. Knihovna programů TSA-M pro analýzu časových řad. Ed. P.Fľak. In XIV. letná škola biometriky, Biometrické metódy a modely v pôdohospodárskej vede, výskume a výuke. Nitra: Agentúra Slovenskej akadémie pôdohospodárskych vied, 2000. s. 239–248.
- Veselý, V. Úvod do časových řad. In *Proceedings ANALÝZA* DAT'2003/II. Pardubice (Czech Rep.): Trilobyte, Ltd., 2004. od s. 7–31.
- Zvára, K. Regresní analýza Praha. Academia. 1989.

프 문 문 프 문

3