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Negative density dependence

Competition

Positive density dependence

Allee effect

Allee effects occur when fitness of an individual declines at small
population size or low population density



Individual fitness is commonly quantified as the per capita
population growth rate, Nt+1/Nt

Strong Allee effects
occur when the per capita
population growth rate
becomes negative below
a critical size or density

This critical value is known
as the Allee threshold

Berec et al. (2007), TREE; Tobin et al. (2011), Ecol. Lett.



Any observed Allee effect has an underlying mechanism

Mate-finding Allee effects: difficulty to find a (compatible and
receptive) mate at small population size or low population density

Vancouver Island marmot
Marmota vancouverensis

Berec et al. (2007), TREE; Gascoigne et al. (2009), Popul. Ecol.

Kramer et al. (2009), Popul. Ecol.; Brashares et al. (2010), J. Anim. Ecol.



Simple population model

Discrete-time model of a population with non-overlapping
generations, mate-finding Allee effect, and no competitive
interactions

Nt+1 = f(Nt) = λNt P(Nt) = λNt
Nt

Nt + θ

Allee threshold

Nt+1 = Nt = A ⇔ A =
θ

λ− 1

f ′(A) = 2− 1

λ
> 1 for λ > 1

Populations with densities above A grow, while those below A are
doomed to extinction



Eradication of small or sparse invading populations

Increasing number of invading alien species worldwide

Practicality of eradication (total elimination) is often questioned

Many questions revolve around the perception of the difficulty of
eliminating every individual in a population

Related to this is the difficulty in sampling very small or sparse
populations to confirm that eradication has been accomplished

But there are many successful examples of eradication

Simberloff (2009), Biol. Invasions; Suckling et al. (2012), J. Econ. Entomol.; Kean et al. (2013), b3.net.nz/gerda



Key to the success of eradication may lie in strong Allee effects that
trigger an Allee threshold

Strengthening Allee effect Lowering population density

Populations that would exceed an Allee threshold in the absence
of control tactics could fall below it when the tactics are applied



Pesticide application: prior to reproduction, pesticides are applied
that kill a fraction p of individuals



Population model with pesticide application

Nt+1 = λ(1− p)Nt
(1− p)Nt

(1− p)Nt + θ

Allee threshold

Nt+1 = Nt = Ac ⇔ Ac(p) =
θ

(1− p)[(1− p)λ− 1]

Ac(p) increases with p until p = 1− 1/λ (above this value extinction
is certain for any N)

Given current density N we require the next one to fall below Ac(p)

λ(1− p)N
(1− p)N

(1− p)N+ θ
< Ac(p)



Gypsy moth Lymantria dispar

λ = 15 and θ = 105
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p = 0.67
p = 0.73

We can stop applying pesticides once N falls below the control-free
Allee threshold A



When two or more tactics can be used simultaneously, models may
help prioritize control tactics under budget constraints



Population model

Gypsy moth, or more generally any sexually reproducing insect
with non-overlapping generations

Considered control tactics

1 Pesticide application affecting larval survival

2 Mating disruption via distribution of false pheromone sources

Hybrid modeling approach

1 Discrete-time model for between-generation dynamics

2 Continuous-time model for mating season dynamics



Discrete-time model for between-generation dynamics

J′ = Jt mJ p → egg survival to pupae

J′′ = J′W(J′,C, . . .) → pupal survival

Fmt = R(J′′, P, . . .) → mating season model

Jt+1 = λ Fmt → egg production



Predation on pupae: W(J′,C, . . .)

Holling type II functional response

Daily operation for T days

J′1 = J′
(

1− aC

1 + aTh J′

)
J′2 = J′1

(
1− aC

1 + aTh J′1

)
· · ·

J′′ = J′T−1

(
1− aC

1 + aTh J′T−1

)



Mating season dynamics: R(J′′, P, . . .)

Half of pupae emerge as females and half as males

Eclosion times are based on a normal distribution with means µM
and µF and standard deviations σM and σF for males and females,
respectively (protandry: µM < µF)

Females mate just once

Five moth states: virgin females (V), fertile males searching for
females (Ms), fertile males temporarily resting after mating (Mr),
fertile males caught in following false pheromone sources (PMs),
and virgin female–fertile male couples (Q)

The model outputs Fmt , the number of females per ha that
successfully reproduce by the end of the mating season



dMs

dt
=

1

2
J′′N(µM, σM)− z V Ms − y PMs +

1

tMr
Mr + . . .

+
1

tP
PMs +mFQ+ (1− pQ)

1

tQ
Q−mMMs

dPMs
dt

= y PMs −
1

tP
PMs −mMPMs

dMr

dt
= pQ

1

tQ
Q− 1

tMr
Mr −mMMr

dV

dt
=

1

2
J′′N(µF, σF)− zMs V +mMQ+ (1− pQ)

1

tQ
C−mFV

dQ

dt
= zMs V −

1

tQ
Q− (mM +mF)Q

Output variable: Fmt = R(J′′, P, . . .) =

∫ τ

0
pQ

1

tQ
Qdt



Annual costs of applying each control tactic per hectare

Pesticide application

Proportion of population killed

Cost =


54.4

ln(1− p)

ln(1− 0.8)
,

p > 0.8

54.4
p

0.8
, p ≤ 0.8
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Mating disruption

Number of pheromone flakes / ha

Cost = 7.66 + 1.346 · 10−4x

One in every 100 flakes
assumed effective in mating
disruption: P = x/100
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Interaction of pesticide application and mating disruption

Initial population size = 10 egg masses per hectare

The optimal eradication strategy has
a duration of 3 years and requires the
application of only false pheromone
sources (53.27 USD)

Eradication can be achieved in just
2 years using a combination of both
tactics for a modest increase in cost
(103.09 USD)

At high enough budgets criteria such
as environmental safety or non-target
effect concerns might be used to se-
lect an appropriate combination



Modeling may also help optimize operations if complaints about
spraying (as happens both with pesticide application and mating
disruption) threaten use of the optimal control strategy



To calculate the Allee threshold we need to know strength of the
mate-finding Allee effect θ

θ is estimated from mate-finding experiments

Does using just a point estimate of θ or accounting for uncertainty
in its estimate makes any difference for evaluating the probability
of population extinction?



Population model

Nt+1 = f(Nt) = λ

(
1− exp

(
−Nt

2θ

))
Nt

2

Allee threshold

Nt+1 = Nt = A ⇔ A = −2θ ln

(
1− 2

λ

)

f ′(A) = 1 +

(
1− λ

2

)
ln

(
1− 2

λ

)
> 1 for

λ

2
> 1

Populations with densities above A grow, while those below A are
doomed to extinction



Mate-finding experiment

Imagine k replicates, in each of
which we put together ni/2 males
and ni/2 females

Let mi out of ni/2 females get
mated (i = 1,2, . . . , k)

Let d = (n1, . . . ,nk,m1, . . . ,mk) be
the data vector

Estimating θ: The product binomial likelihood:

L(θ|d) =
k∏

i=1

(
ni/2

mi

)
P(ni/2; θ)

mi(1− P(ni/2; θ))
ni/2−mi



Probability of population extinction

Given population density N
and data vector d,

P1
ext(N) = P(N < A|d) =

=
∫∞
N pa(a|d)da =

=

∫ ∞
N/M

pθ(θ|d)dθ =

=

∫∞
N/M L(θ|d)p(θ)dθ∫∞
0 L(θ|d)p(θ)dθ

where M = −2 ln(1− 2/λ)

Gypsy moth

Lymantria dispar

λ = 28 and θ = 140
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Probability of population extinction decreases sigmoidally with
increasing population density
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plus: azuki bean weevil asterisk: gypsy moth

square: mountain parnassian diamond: freshwater copepod

Uncertainty in the Allee threshold increases when the Allee effect
strength increases and the species recovery potential decreases

Not a good news, since we would like to preferentially and efficiently
manage slowly recovering populations prone to strong Allee effects



Conclusions

Practically, eradication of a pest population exploiting an Allee
effect could proceed as follows:

1 Estimate the pest population size or density

2 Obtain data for key life history processes to parameterize a
model

3 Introduce feasible control tactics into the model

4 Identify potentially successful control tactics and choose the
best tactic(s) based on the available budget

Management of populations subject to Allee effects should be risk
averse


