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Abstract

In this dissertation we present new results in the theory of symplectic systems on time
scales (also symplectic dynamic systems) obtained and published by the author (jointly
with collaborators) during his doctoral study between the years 2007 and 2011.

The dissertation is organized into five chapters. The study of symplectic systems is
motivated in the introductory chapter, where an overview of the new results contained
in the text is also given. In the second chapter, the reader will find fundamental parts of
the time scale calculus indispensable for the understanding of the subsequent chapters.

The main body of the text is represented by the following chapters. In Chapter 3,
we define trigonometric and hyperbolic systems on time scales and study their proper-
ties. Solutions of these systems generalize the well known trigonometric functions sine,
cosine, tangent, cotangent, and their hyperbolic analogies. They also satisfy formulas
generalizing some of the known trigonometric and hyperbolic identities from the scalar
continuous case (e.g., Pythagorean trigonometric identity, double angle, product-to-sum,
and sum-to-product formulas). In the following Chapter 4, the Weyl-Titchmarsh theory for
symplectic dynamic systems is established. We generalize results for linear Hamiltonian
differential systems obtained particularly during the second half of the 20th century. The
theory given in both of these chapters is new even for symplectic difference systems,
which are a special case of the symplectic systems on time scales. In the final chapter,
we pay our attention to the most special case of the symplectic systems on time scales,
namely to the Sturm-Liouville dynamic equations of the second order. For operators as-
sociated with these equations we characterize the domains of their Krein—von Neumann
and Friedrichs extensions and also introduce the concept of the critical, subcritical, and
supercritical operators. Some results obtained in Chapter 4 are also new in this special
case, therefore the most important results of the Weyl-Titchmarsh theory for the second
order Sturm-Liouville dynamic equations are given in the last part of this chapter.

For completeness, this dissertation is finished with a sketch of a further research in
the presented theory, author’s current list of publications, and his curriculum vitae.

2010 Mathematics Subject Primary 34N05; 34820, 34B24.
Classification: Secondary 26E70; 39A12; 34C99; 34B27; 47B25.



|
Abstrakt

V této disertacni praci predkladdame nové casti teorie symplektickych systémd na
¢asovych skalach (téz symplektickgch dynamickych systémii), které autor (spole¢né se
spoluautory) publikoval v rémci doktorského studia v pribéhu let 2007-2011.

Hlavni ¢ast prace je rozdélena do péti kapitol. V prvni kapitole se ¢tendi sezndml
se symplektickgmi systémy a s prehledem novych visledktd prezentovangch v této praci.
Ve druhé kapitole je uvedena zakladni teorie ¢asovych skal, jejiz zvladnut( je nezbytngm
predpokladem pro pochopent feSené problematiky.

Nosnou cast prace tvorl nasledujict kapitoly. V Kapitole 3 jsou definovany trigo-
nometrické a hyperbolické systémy na casovych Skalach a studovany jejich vlastnosti.
Regen( t&chto systémU jsou zobecnénim znamych goniometrick(ch funkct sinus, kosinus,
tangens, kotangens a jejich hyperbolickgch analogil. Tyto funkce také spliuji identity
zobecriujicl dobfe zndmé vzorce ze skaldrntho spojitého piipadu (napf. trigonometricka
jednicka, vzorce pro dvojnasobny tihel, soucet, rozdil a soucin trigonometrickgch a hyper-
bolickqch funkci). Dale, v Kapitole 4 jsou polozeny zaklady Weylovy—Titchmarschovy teo-
rie pro symplektické dynamické systémy, které zobecnuji vysledky dosazené ve spojitém
pripadé (predevsim ve druhé poloviné 20. stoleti) pro linedrni Hamiltonovské diferencialn(
systémy. Teorie ohsazena v téchto dvou kapitolach je nova dokonce i pro diskrétni sym-
plektické systémy, které jsou specialnim pripadem symplektickych systému na ¢asovych
skalach. V zavérecné kapitole vénujeme pozornost dalSimu specidlnimu piipadu sym-
plektickgch dynamickgch systémd, a to Sturmovym-Liouvilleovgm dynamickgm rovnicim
druhého Fadu. Pro operatory pridruzené témto rovnicim charakterizujeme defini¢ni obory
jejich Kretnova—von Neumannova a Friedrichsova rozsifeni a také zavadime koncept kri-
tickych, subkritickych a superkritickgch operatord. Nékteré vysledky odvozené v Ka-
pitole 4 jsou nové dokonce i v tomto pripadé, proto jsou nejdtlezitéjsi ¢asti Weylovy-
-Titchmarshovy teorie pro tyto rovnice prezentovany v poslednt ¢asti této kapitoly.

Diserta¢ni prace je pro Uplnost uzaviena nastinem mozného smérovani dalstho v(zku-
mu fFeSené problematiky, aktualnim prehledem autorovych védeckych publikact a nékolika
Zivotopisnymi Udaji o autorovi.
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We could, of course, use any notation we want; do not
laugh at notations; invent them, they are powerful. In fact,
mathematics is, to a large extent, invention of better no-
tations.

RicHARD P. FEYNMAN, SEE [70, CHAPTER 17]

List of Notation

For reader’s convenience, in the following table we present a list of symbols (followed
by an explanation of their meaning) appearing in this dissertation.

Z N ® A

T

[a, b]

[a, b],

[a, bl

[a, 00)r
(—o0, 00)r
RAXN
Cl'l)(ﬂ

T

M*—1 — /\/1_1*
M*(")

M=1()
M>0

the set of all complex numbers

the set of all real numbers

the set of all integers

the set of all natural numbers including 0

a time scale

an interval of real numbers

a discrete interval

a bounded time scale interval

a time scale interval, which is unbounded above
an unbounded time scale

the set of all real n x n matrices

the set of all complex n x n matrices

the identity matrix or operator of an appropriate dimension
I . 0 7

the matrix (—I 0)

the zero matrix of an appropriate dimension
an n x n matrix M

the transpose of the matrix M

the conjugate transpose of the matrix M
the inverse matrix of the square matrix M
the matrix [M*]™" = [/\/1_1]*

the value [M(-)]*

the value [M(:)]""

positive definiteness of the matrix M



Notation

M>0
M <0
M<O0
rank M
Ker M
ImM
defM
Re(M)
Im(M)
A
Re(A)
Im(A)
0(A)
Ay,

o
el
u(-) and v()
fo(t)

')
)
)

positive semidefiniteness of the matrix M

negative definiteness of the matrix M

negative semidefiniteness of the matrix M

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

the

rank of the matrix M

kernel of the matrix M

image of the matrix M

defect (i.e., the dimension of the kernel) of the matrix M
Hermitian component of the matrix M, i.e., (M + M*)/2
Hermitian component of the matrix M, i.e., (M — M*)/(2i)
complex conjugate of the number A

real part of the number A

imaginary part of the number A

value sgn (ImA)

forward difference operator, i.e., the value y,,, — y,
forward jump operator on T

backward jump operator on T

graininess functions on T

value f (a(t))

value f (p(t))

A-derivative of the function f at the point t
V-derivative of the function f at the point t

conjugate transpose of the function f(:)

value [f*(1)]° = [fo(t)]"

value [f*(t)]A = [fA(t)]*

right/left-hand limit of the function f at the point t
value f(b) — f(a)

set of all rd-continuous functions

set of all piecewise rd-continuous functions

set of all rd-continuously A-differentiable functions

set of all piecewise rd-continuously A-differentiable functions
set of all ld-continuous functions

set of all piecewise ld-continuous functions

set of all ld-continuously V-differentiable functions

set of all piecewise ld-continuously V-differentiable functions

we refer to the second identity in (XY)

— X[ —



The approach turns out to be fruitful and successtul, and
leads to the effective construction as well as the theoret-
ical understanding of an abundance of what we call sym-
plectic difference scheme, or symplectic algorithms, or sim-
ply Hamiltonian algorithms, since they present the proper
way, i.e., the Hamiltonian way for computing Hamiltonian

dynamics.
KaNG FENG, SEE [69]
Chapter
INTRODUCTION
Discrete symplectic systems
Xie1 = Arxie + Beug,  uggr = Cexke + Deu, kel CN, (1.1

where the coefficient matrix

Ar By

)memmmﬁ,z$&=jfmmkeum|j:(o ﬂ,

were initiated as the proper discrete analogy (because systems (1.1) and (1.2) below have
symplectic transition matrices) of linear Hamiltonian differential systems

X(t) = A(t) x(t) + B(t) u(t), U'(t) = C(t)x(t) —A*(H)u(t), telCR, (12

where B(t) and C(t) are Hermitian matrices for all t € /.
Unfortunately, the terminology “symplectic” and “Hamiltonian” can be for the reader
confusing because there were also introduced discrete linear Hamiltonian systems as

Axi = Aixi41 + Beuk,  Aug = Cexiepr — Aguk, kel CN (1.3)

with Hermitian matrices By and Ci and the invertible matrix Z — A for all k € I in [63,64].
Nevertheless, if we rewrite system (1.3) into the form

Xipr = (1= A) ™ xi + (I = A) ™" Breug,
i = Cull = A) ™+ [1 = AL + Gl = A" i,

we obtain a symplectic system, see [3, Theorem 3]
In the unifying theory for differential and difference equations — the theory of time
scales — the theory of symplectic systems on time scales, i.e.,

xB(t) = A(t) x(t) + B(t) u(t), u?(t) =C(t)x(t) + D(t)u(t), teT, (1.4)

_1_



Chapter 1. Introduction

originated in [58]. These systems generalize and unify a large spectrum of differential and
difference equations and systems, in particular any even order Sturm-Liouville differential
and difference equations, systems (1.2), (1.1), and consequently (1.3). Let us note that, in
analogy with the discrete case, dynamic systems in the form

XA(t) = A(t) x7(t) + B(t) u(t),  u(t) = C(t)x°(t) — A*(t)u(t), teT, (15

where the matrices B(t) and C(t) are Hermitian and Z — p(t) A(t) is invertible on T, are
also studied in the literature starting in [25,88-90]. Such systems are called linear Hamil-
tonian dynamic systems and were developed as the dynamic analogy of (1.3). Similarly
to the discrete case, it can be shown that (1.5) is a special case of symplectic system
(1.4).

In recent years, an increasing attention has been paid for the development of the
theory for symplectic systems on time scales. In this dissertation we present new contri-
butions to this theory. The text consists of five chapters (including this chapter) which are
organized as follows. In the next chapter we recall fundamental notions and necessary
parts from the time scale theory. In Chapter 3 we introduce and study the trigono-
metric and hyperbolic systems on time scales and in Chapter 4 we establish the Weyl—
Titchmarsh theory for symplectic systems on time scales. Moreover, the results presented
in both of these chapters are not only a unification of the discrete and continuous theory,
but they are new even in the discrete case. Finally, new results for the Sturm-Liouville
dynamic equations of the second order are given in Chapter 5. We characterize the do-
mains of the Krein—-von Neumann and Friedrichs extensions and introduce the concept of
critical operators on time scales. We also show the main parts of the Weyl-Titchmarsh
theory for these equations.

The motivation for the study of the topics presented in this dissertation and their
connection with the current literature are given in the introductory part of each of the
chapters.

1.1  Overview of author’s new results

This dissertation comprises of results which the author achieved as the PhD student
(jointly with his collaborators) in the years 2007-2011. More specifically, his new results
are the following:

e the qualitative theory of discrete trigonometric and hyperbolic systems, see [163],
and of trigonometric and hyperbolic systems on time scales (jointly with R. Simon
Hilscher), see [100] and Chapter 3,

e the Weyl-Titchmarsh theory for discrete symplectic systems with a spectral param-
eter appearing in the second equation (jointly with S. L. Clark), see [45], and for
symplectic systems on time scales (jointly with R. Simon Hilscher), see [145] and
Chapter 4,

e the characterization of the domains of the Krein—von Neumann and Friedrichs ex-
tensions for second order Sturm-Liouville dynamic equations, see [164] and Sec-
tion 5.1,

e the critical, subcritical, and supercritical operators of the second order Sturm-—
Liouville equations on time scales (jointly with P. Hasil), see [83] and Section 5.2.

_o_



Chapter 1. Introduction

Barring the results mentioned above, the author published (jointly with R. Simon
Hilscher) also a survey paper concerning the definiteness of the quadratic functionals
associated with symplectic systems, and a paper with a characterization of the Friedrichs
extension for the operators associated with the linear Hamiltonian differential systems,

see [A3,A4] on page 92.



A major task of mathematics to-day is to harmonize the
continuous and the discrete, to include them in one com-
prehensive mathematics, and to eliminate obscurity from
both.

ELAINE T. BELL, SEE [19, P. 13]

Chapter

TIME SCALE THEORY

The time scale calculus was established in Hilger’s doctoral dissertation [85] and pub-
lished (first time in English) in his paper [86]. His work dealt with the so-called measure
chains, which are ordered topological objects equipped with a measure. However, with
respect to [86, Theorem 2.1] any measure chain is isomorphic to some nonempty closed
subset of R, i.e, to a time scale, which is therefore the most illustrative and most ap-
propriate form of measure chains, see also [17, p. 241]. Fundamental results of the time
scale theory are presented in the following sections.

This theory unifies particularly the continuous and discrete calculi but also the quan-
tum calculus (g-calculus), the calculus on the Cantor set, and (generally) a calculus on
a set represented by a union of disjoint closed intervals. Consequently, it provides suit-
able tools for a study of differential, difference, and (generally) dynamic equations and
their systems under the unified framework. Exempli gratia, the coexistence of a union
of closed continuous intervals appears in hybrid dynamic systems (with applications
in engineering, see [78] and the references therein) or in impulsive differential equations
(developed in modeling impulsive problems, e.g., in physics, population dynamics, hiotech-
nology, pharmacokinetics, and industrial robotics, see [21,118]). Some applications of the
time scale calculus can also be found in economics, see, e.g., [13,15,29,152]. Moreover,
the study of the time scale theory can motivate (and really motivates) results being new

even in special cases of time scales (in particular in the continuous and discrete cases),
see, e.g., [91,95,96].

2.1 Basic notation

By definition, a time scale T is any nonempty closed subset of the real numbers R.
A bounded time scale T can be identified with the time scale interval [a, b]; :=[a, b]NT,
where a := minT, b := maxT, and [a, b] is the usual interval of real numbers. A time
scale unbounded above and below can be written as [a, 00); := [a,00)NT and (—oo, by :=
(—o0, b]NT, respectively, and an unbounded time scale is denoted by (—o0, c0); := RNT.
Similarly, we use the notation [a, b], for a discrete interval, where a,b € Z, i.e., [a, b], :=

_4_



Chapter 2. Time scale theory

[a, b]NZ. Open and half-open time scale intervals are defined accordingly.
The forward jump operator o : T — T is defined by

o(t):=inf{seT|s >t}

(and simultaneously we put inf@l := supT). The backward jump operator p : T — T is
defined by
p(t) :=sup{s e T|s <t}

(simultaneously we put sup @ := infT).

Let t € T. A point t > infT is said to be left-dense and left-scattered it p(t) =t
and p(t) < t, respectively, while a point t < supT is said to be right-dense and right-
scattered if o(t) = t and o(t) > t, respectively, see also Figure 2.1. In addition, if a is
a minimum of T, then p(a) = a, and if b is a maximum of T, then o(b) = b. The point t is
called isolated if it is right-scattered and left-scattered at the same time, and it is called
simply dense if it is either right-dense or left-dense (compare to [32, p. 2] and [33, p. 2]).
The forward graininess function p : T — [0, 00) is defined by p(t) := o(t) — t and the
backward graininess function v : T — [0, 00) by v(t) := t — p(t).

to th t t3 t4 t5

Figure 2.1: lllustration of time scale points.

2.2 Time scale derivative
For a better arrangement, we introduce for any time scale T the following notation

T {T\ {b}, if the point b is a left-scattered maximum of T,

T, otherwise.

For a function f : T — C it is possible to define the A-derivative of f at t € T¥
(denoted by f2(t)) in the following way

limg_,, 1= ¢ u(t) =0,
FA(t) = { ot Q (2.1)

fo(t)—f .
%, if p(t) > 0.

Let us note that the value f2(b) is not well defined if b = max T exists and is left-scattered.
The usual differential rules take the form
(f = g)3(1) = 1(6) = g*(1), (2.2)
(Fg)™(t) = F(t) g(t) + (1) g™ (1) = FA(t) g° (1) + 1(£) (1)
We say that a function f(t) is A-differentiable on T* provided f2(t) exists for all t € T*.
The special cases of the A-derivative for T = R and T = Z are presented in Remark 2.2

below.
A function f(t) is said to be regressive on an interval | C T* if

1+ p(t)f(t)#0 forall t €/,



Chapter 2. Time scale theory

and an n x n matrix-valued function A: T — C"" is called regressive on | C T* if
T + p(t) A(t) is invertible for all t € [,

where 7 denotes an appropriate identity matrix. Analogously, we can also define v-
regressive scalar and matrix-valued functions. If an n x n matrix-valued function A is
A-differentiable and such that AAY is invertible, then the differentiation of the identity
AA~! =T yields

A2 = —(A)TTAP AT = —ATT AR (AN (2.4)

A function f : [a, bly — C™" is called regulated provided its right-hand limit f(t")
exists (finite) at all right-dense points t € [a, b]; and the left-hand limit f(t™) exists
(finite) at all left-dense points t € [a, b];. A function f is called rd-continuous (we write
f € Cug) on [a, by if it is regulated and if it is continuous at each right-dense point
t € [a,b)y. A function f is said to be piecewise rd-continuous (f € Cpq) on [a, b} if
it is regulated and if f is rd-continuous at all but possibly finitely many right-dense
points t € [a, b);. A function f is said to be rd-continuously A-differentiable (f € C},)
on [a, b]; if A exists for all t € [a, p(b)]: and A € C.q on [a, p(b)]:. A function f is said
to be piecewise rd-continuously A-differentiable (f € C:),.d) on [a, b}y if f is continuous
on [a, b]; and f2(t) exists at all except of possibly finitely many points t € [a, p(b)]r, and
A e Cprd 0N [a, p(b)lr. As a consequence we have that the finitely many points t;, at
which f2(t;) does not exist, belong to (a, b); and these points t; are necessarily right-
dense and left-dense at the same time. Also, since we know that fA(tl-*’) and fA(tl-_) exist
finite at those points, we replace the quantity f2(t;) by f2(t¥) in any formula involving
fA(t) for all t € [a, p(b)].

The introduced notation is possible to extend for an unbounded time scale [a, o), if
the conditions are satisfied on [a, b]; for every b € (a, 00)r. It is known that a composition
of a continuous function f with an rd-continuous (or piecewise rd-continuous) function, is

an rd-continuous (or piecewise rd-continuous) function. We note that if f2(t) exists, then
fo(t) = £(t) + p(t) (). (2.5)

Remark 2.1. For a fixed tg € [a, bly and an n x n matrix-valued function A € Cpq on
[a, bl; which is regressive on [a, to)r, the initial value problem

y? =A(t)y and y(to) = yo for t € T

1

has a unique solution y € C

[a, 00)r.

, on [a, bl; for any yo € C". Similarly, this result holds on

If not specified otherwise, we use a common agreement that vector-valued solutions
of a system of dynamic equations and matrix-valued solutions of a system of dynamic
equations are denoted by small letters and capital letters, respectively, typically by z(:)
or z(-) and Z(:) or Z(-), respectively.

2.3 Nabla calculus on time scales

It was shown in [39] that statements known in delta calculus can be equivalently formu-
lated for nabla calculus on time scales and vice versa via the so-called duality principle.
Hence, in this section we present fundamental parts of the nabla calculus in analogy of
the corresponding results presented in the previous sections for the delta calculus.
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For brevity, we define for any time scale T the set

T {T\ {a}, if the point a is a right-scattered minimum of T,
K =

T, otherwise.

For a function f : T — C we introduce the V-derivative of f at t € T, (denoted by fV (t))
as

lime_,; 1&=10 i y(e) = 0,
£t -—{ P (0 (2.6)

f(t)—fr .
f-i, if v(t) > 0.

Analogously, we note that the value ¥ (a) is not well defined if @ = min T exists and
is right-scattered. The fundamental differential rules for nabla calculus take the form

(f£9)¥(t) =1V (t) £ g7 (1), (2.7)
(fg)Y(t) = £Y(t) g(t) + °(t) g () = 7 (1) g°(t) + (1) gV (2). (2-8)
We say that a function f is V-differentiable on T,, if fV(t) exists for all t € T,.

Remark 2.2. One can easily see that for T =R we have
a(t)=t=p(t), pu(t)=v(t) =0, and F2(t) = Y (t) = f(t).
On the other hand, for T = Z the relations
aty=t+1, p(t)=t—1, p(t)=v(t)=1, 2 =f(t+1)—F(t), and ¥ = f(t) — f(t — 1)
hold true.

With respect to the definitions in the delta calculus, we can introduce the sets of
ld-continuous, piecewise ld-continuous, ld-continuously ¥V -differentiable, and piecewise
ld-continuously V -differentiable functions on [a, b} and write f € Cg, f € Cpg, f € cly,
and f € C|13lc|'
exists, then

respectively, on bounded or unbounded time scales. We note that if Y (t)

fP(t) = F(t) — v(t)fY (t). (2.9)

The following identities show the possibility how to interchange the V- and A-

derivatives. If f € C;rd on T¥, then the function f is also V-differentiable on T, and
it holds

Y (t) = (2.10)

lims_ ¢~ f2(s), if t is left-dense and right-scattered point,
2 (p(t)), otherwise.

Similarly, if f € C|13lcl on Ty, then the function f is as well as A-differentiable on T* and

we have

A lims_,¢+ fV(s), if tis right-dense and left-scattered point,
f2(t) = (2.11)

fV(o(t), otherwise.

Especially, if f2 and fV are continuous, we obtain f2(t) = fV(a(t)) and ¥ (t) = f(p(t)).
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2.4 Integration on time scales

Now, let ¢,d € T and ¢ < d. The A-integral and V-integral are defined in such a way
that they reduce to the usual Riemann integral in the continuous time case and to the
Riemann sum in the discrete time case, i.e.,

/Cdf(t)At:/Cdf(t)Vt:/Cdf(t) dt if T=R,

d d—1 d d
/f(t)Atsz(t) and /f(t)Vt: Y ) if T=1Z

t=c+1

The basic rules for the time scale A-integral have the standard form

/Cd f(s)As = /Ce f(s)As + [ed f(s)As, /Cd f(s)As = _[dc f(s)As, (2.12)

where ¢ < e < d. Analogous properties hold true for the time scale V-integral. The
fundamental result from the theory of time scale integrals says that for every piece-
wise rd-continuous (or ld-continuous) function there exists a A-antiderivative (or a V-
antiderivative). The rule for the integration by parts takes the following form. If f,g €

Clll_d, then we have

d d
[ f(0)g™(0) At = [F(1)g(0)] — [ (6)g° () At (213)

and, if f,g € Cllld, then

d d
/ f(1)g¥ (1) Vit = [F(t)g (D) —/ fY(t)g"(t) Vt. (2.14)

Moreover, if f and g are A- and V-differentiable functions, respectively, with continuous
derivatives, the formulas fcd hP(t)Vt = fcd h(t) At, fcd he(t)At = fcd h(t) Vt and identities
(2.14), (2.13) yield

| " 1090 At = (g (]! — | (090 v, 2.15)

d d
[ f(t)g7 (1) V't = [f(t)g(t)] — ] A(0)g() At. (2.16)

The Cauchy-Schwarz inequality is an important tool in the proofs of some statements
in the Weyl-Titchmarsh theory for symplectic systems presented in Chapter 4. For f, g €
Cprd we have

d d 172 d 112
/lf(t)g(t)|At={/ |f(t>|2At} {/ g(P At} . (217)

Finally, it is a known fact that for any function f and s € T the following identity

/S f(t)yVt = v(s)f(s) (2.18)
p(s)

holds true.
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2.5 Bibliographical notes

Excluding Hilger's doctoral dissertation and his first paper, the books [32,33] are the
fundamental references for theory of time scales. In addition, the concept of piecewise
rd-continuous functions and rd-continuously A-differentiable functions on time scales
was initiated in [92]. Special cases of (2.10) and (2.11) were proven in [14, Theorem 2.5
and Theorem 2.6], see also [32, Theorem 8.49] and [121, Theorem 4.8]. The statement
of Remark 2.1 is known from [86, Theorem 5.7] or [32, Theorem 5.8] and was also dis-
cussed in [96, Remark 3.8]. The existence of an antiderivative is known from [32, The-
orem 1.74 and Theorem 8.45]. ldentity (2.14) was proven in [32, Theorem 8.47(vi)] and
identity (2.13) in [32, Theorem 1.77(vi)]. For more details about the time scale integrals
see, e.g., [17,30,79]. The proofs of identities (2.15) and (2.16) follow from [33, Corollar-
ies 410 and 411]. Many classical inequalities (Holder, Cauchy-Schwarz, Minkowski,
Jensen etc.) were generalized on time scales in [1]. The proof of identity (2.18) can be
found in [33, Lemma 4.13]. Moreover, similar identities also hold for the A-integral, and
for the A- and V-integrals over [s, d(s)], see [33, Lemma 4.13].



One should always generalize.

CarL G. J. Jacosl, seE [48]

Chapter

TRIGONOMETRIC AND HYPERBOLIC
SYSTEMS ON TIME SCALES

In this chapter we study trigonometric and hyperbolic systems on time scales and proper-
ties of their solutions, the time scale matrix trigonometric functions Sin, Cos, Tan, Cotan,
and time scale matrix hyperbolic functions Sinh, Cosh, Tanh, Cotanh, which are all prop-
erly defined in this chapter. These trigonometric and hyperbolic systems generalize and
unify their corresponding continuous time and discrete time analogies, namely the sys-
tems known in the literature as trigonometric and hyperbolic linear Hamiltonian systems
and discrete symplectic systems. More precisely, the system of the form

X' =0 U, U =-0(tX, (3.1)

where t € [a, b}, X(t), U(t), and Q(t) are n x n complex-valued matrices and additionally
the matrix Q(t) is Hermitian for all t € [a, b}, is called a continuous trigonometric system.
Basic properties of this system can be found in [18,65, 134].

The discrete counterpart of (3.1) has the form

X1 = PiXie + QUi U1 = — Qi Xie + P U, (32)

where k € [a, b],, Xk, Uk, Pk, Qx are n x n complex matrices and, additionally, for all
k € [a, b, the following holds

PiPi + Qg Qx =T = PkPi + Ok O, (3.3)
PrQx and PrQf are Hermitian. (3.4)

System (3.2) is called a discrete trigonometric system and its basic properties can be
found in [5,26,157,162].
In a similar way we can define a continuous hyperbolic system as

X' =0 U, U =0()X, (3.5)

—-10-
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where t € [a, b], X(t), U(t) and Q(t) are n x n complex-valued matrices and, additionally,
the matrix Q(t) is Hermitian for all t € [a, b]. A system of this form was first studied
in [71].

A discrete hyperbolic system is defined as

Xiet1 = PiXie + OkUy, U1 = QkXie + P Uk, (3-6)
where k € [a, bl,, Xk, Uk, Pk, Ok are n x n complex matrices and, in addition to (3.4),
PP — QiQx =T = PP — Qe Q}

holds for k € [a, b];. The reader can get acquainted with these systems in [61,162].

The conditions for the coefficient matrices in (3.1), (3.5) or (3.2), (3.6) are set in such
a way so that the considered system is Hamiltonian or symplectic, respectively. That is,
for the relevant matrices

S(t) = (_Q(()t) Q(gt)) or  S(t) = ( Q(()t) Q(()t)) and
P. 0 . [P O
s={o p) o s=(o &)

we have the identities
ST +ITJS(t)=0 and S ITSk=J,

respectively, i.e., the matrix S(t) is Hamiltonian and Sy is symplectic.

The aim of this chapter is to unify and generalize the theories of continuous and
discrete trigonometric systems, as well as the theories of continuous and discrete hyper-
bolic systems. This will be done within the theory of symplectic dynamic systems defined
in the next section. We derive for general time scales T the same identities which are
known for the special cases of the continuous time T = R or the discrete time T = Z.

In the continuous time case the study of elementary properties of scalar and matrix
trigonometric functions goes back to the paper [24] of Bohl and to the works of Bar-
rett, Etgen, Dosly, and Reid, see [18,50-53,65,66,134]. Discrete time scalar and matrix
trigonometric functions were studied by Anderson, Bohner, and Dosly in [5,26-28], and
more recently by Dosla, Dosly, Pechancova, and Skrabakova in [49,60]. Parallel consid-
erations but for the hyperbolic systems, both continuous and discrete, can be found in the
works [61,71,162] by Dosly, Filakovsky, Pospisil, and the author. As for the general time
scale setting, scalar trigonometric and hyperbolic functions were defined in [32, Chap-
ter 3] by Bohner and Peterson and in [130] by PospiSil. Some properties of the matrix
analogs of the time scale trigonometric and hyperbolic functions were established in the
papers [54,131,132] by Doslg and Pospisil.

By the same technique as in [52], namely considering two different systems with the
same initial conditions, we establish additive and difference formulas for trigonometric
and hyperbolic systems on time scales. In particular, utilizing these identities in the
continuous time we derive n-dimensional analogies of many classical formulas which are
known for trigonometric and hyperbolic systems in the scalar case. The second purpose
of this chapter is to provide a concise but complete treatment of properties of time scale
matrix trigonometric and hyperbolic functions, as well as to point out to the analogies
between them.

—-11-



Chapter 3. Trigonometric and hyperbolic systems on time scales

3.1 Symplectic dynamic systems on time scales
A symplectic dynamic system on a time scale T is the first order linear system
XA = A X +B(tH)U, U =C(t)X +D(t) U, (S)

where X, U : T — C"", the coefficients are n x n complex-valued matrices such that
A,B,C,D € Cyrg on T, and the matrix

s0= (o) o) 7
satisfies
S (t) T + TS(t) + p(t) S*(t) TS(t) =0 (3.8)

for all t € T¥. This identity implies that the matrix Z + p(t) S(t) is symplectic. Since
every symplectic matrix is invertible, it follows that the matrix function S(:) is regressive
on T“. Consequently, the existence of a unique solution for any (vector or matrix) initial
value problem follows by Remark 2.1.

Analogously, we can define nabla time scale symplectic systems. Such systems were
studied in [97] with a surprising outcome that some results known for system (S) do not
coincide with parallel results obtained for nabla time scale symplectic systems even in
the special cases T =R and T = Z.

If T =R, then with A(t) := A(t), B(t) := B(t), and C(t) := C(t) system (S) corresponds
to linear Hamiltonian system (1.2) and the coefficient matrix

Alt) - B(t)

S(t) := (C(t) —A*(t)) satisfies now JS(t) + S*(t) J =0 for all t € [a, b],

i.e., the matrix S(-) is Hamiltonian. If T = Z, then system (S) with
A =T+ A(k), Bx:=DB(k), Ci:=C(k), and 7D :=TI+D(k)

is discrete symplectic system (1.1) and the matrix Sy := (ékk gﬁ ) is symplectic.

Identity (3.8) is in the block notation equivalent to (we omit the argument t € T)

B*—B+ u(B*D—-D*B) =0,
C"—CH+u(CA—A"C) =0,
A*+D+ pu(A*D - C*B) = 0.

This implies that the matrices B*(Z + pD) and C*(Z + pA) are Hermitian. By using the
fact that Z + p(t) S*(t) is symplectic as well, we can derive other equivalent identities

C—C"+up(CD*—DC*) =0,
B—B"+u(BA*— AB*) =0,
D+ A"+ u(DA* —CB*) = 0.

IfZ = (ﬁ) and 7 = (
is defined on T as

e

) are any solutions of system (S), then their Wronskian matrix

W[Z, Z)(t) := X*(t) U(t) — U*(t) X(t)

and the following is a simple consequence of the fact WA[Z,i](t) =0.

—12-
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Proposition 3.1. Let Z = (6) and Z = (g) be any solutions of (S). Then the Wronskian
W[Z,Z|(t) = W is constant on T.

A solution Z = () of (S) is said to be a conjoined solution if W[Z,Z|(t) = 0, ie,

X*(t)U(t) is Hermitian at one and hence at any t € T. Two solutions Z and Z are
normalized it W[Z,Z|(t) = Z. A solution Z is said to be a basis if rank Z(t) = n on T. It
is well known fact that for any conjoined basis Z there always exists another conjoined
basis Z such that Z and Z are normalized.

Proposition 3.2. Let Z be any solution of (S). Then rank Z(t) = r is constant on T.

Proof. Let ®(t) be a fundamental matrix of system (S), e, ¢ = (Z 2) where Z and

Z are normalized solutions. Then every solution of (S) is a constant multiple of ®(t),
that is, Z(t) = ®(t)M on T for some M € C*"*". If rank Z(ty) = r at some to € T, then
rank M = r. Consequently, rank Z(t) = r for all t € T. |

From Propositions 3.1 and 3.2 we can see that the defining properties of conjoined
bases of (S) can be prescribed just at one point tyg € T, for example by the initial condition
Z(tg) = Zo with £ JZy = 0 and rank £y = n.

Proposition 3.3. Two solutions Z and Z of system (S) are normalized conjoined bases if

and only if the 2n x 2n matrix ®(t) := (Z(t) Z(t)) is symplectic for all t € T.

It follows that Z = ()lj) and Z = ()5) are normalized conjoined bases if and only if
(suppressing the argument t € T)
XU~ UX =T = XU* - UX*, 39
XU=UX, X*U=UX, XX*=XX*, UU =U0U". '

The fact that the matrix ® is symplectic for all t € T implies that d~' = 7*®*7, and
thus from ®7 = (Z + pS) ® we get P T*O*T =7 + pS for t € T*. That is (suppressing
the argument t € T¥),
XU = XU =T +pA,  XX*—XOX* =B, 5.10)
U°X* —U°X* =T +pD,  U°U*— U°U* = yC. '

For a given point tg € T, the conjoined basis (g) of (S) determined by the initial

conditions )A((to) =0 and U(to) =T is called the principal solution at ty.

3.2 Time scale trigonometric systems

In this section we consider the system (S) on [a, b];, where the coefficient matrix takes
the form

P Q)
st = (—Q(t) P(t))

with n x n complex-valued matrices P, Q € C,q on [a, p(b)l;. Therefore, from (3.8) we
get that the matrices P and Q satisfy the identities (we omit the argument t)

Q" —Q+u(QP-PQ)=0, (3.11)
P +P+u(QQ+PP)=0 (3.12)
for all t € [a, p(b)]r, see also [32, p. 312] and [87, Theorem 7].

—13—
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Definition 3.4 (Time scale trigonometric system). The system
XA=Pt)X+Q(t)U, U =—-Q(t)X+P(t)U, (3.13)

where the coefficient matrices satisfy identities (3.11) and (3.12) for all t € [a, p(b)]r, is
called a time scale trigonometric system.

Remark 3.5. System (S) is trigonometric if its coefficients satisfy, in addition to (3.8)
the identity J*S(t) J = S(t) for all t € [a, p(b)];. Therefore, trigonometric systems are
also called self-reciprocal. Moreover, any symplectic system (S) can be transformed into
a trigonometric system.

Remark 3.6. Now, we compare the continuous time trigonometric system arising from
Definition 3.4, with the system (3.1) introduced at the beginning of this chapter. For
[a, bl; = [a, b], the time scale trigonometric system takes the form

X' =Pt)X +Q()U, U =—-0(t)X+P(t)U, (3.14)

where Q(t) is Hermitian and P(t) is skew-Hermitian, see (3.11) and (3.12) with gy = 0.
Now we use the special transformation to reduce the system (3.14) into (3.1), see [28,134].

More precisely, let H(t) be a solution of the system H" = P(t) H with the initial condi-
tion H*(a) H(a) = Z, i.e., the matrix H(a) is unitary. Now, we consider the transformation
X := H7(t) X and U := H*(t) U, which yields

X =H ) Q) H (U, U =—H"(t)Q(t) H(t) X.

Hence, this resulting system will be of the form (3.1) once we show that H*(t) = H™'(t)
for all t € [, b] But this follows from the calculation (H*H)’ = 0 and from the initial
condition on H(a). Now, we put Q(t) := H*(t) Q(t) H(t) which is Hermitian, so that

X' =0(t)U, U =-0(t)X.

Remark 3.7. Analogously, we consider the discrete case and show that the time scale
trigonometric system reduces for [a, b]y = [a, b], to system (3.2) introduced at the begin-
ning of this chapter. Upon setting Py :=Z +P(k) and Qi := Q(k) one can easily see that
identities (3.11) and (3.12) are in this case equivalent to the properties of P, and Qk in
(3.3)—(3.4).

Now, we turn our attention to solutions of the general time scale trigonometric system.

Lemma 3.8. The pair (ij) solves the time scale trigonometric system in (3.13) if and only

if the pair (_%) solves the same system. Equivalently ()‘{) solves (3.13) if and only if

( *ﬁ ) does so.

The following definition extends to time scales the matrix sine and cosine functions
known in the continuous time from [18, p. 511] and in the discrete case from [5, p. 39].

Definition 3.9. Let s € [a, b]; be fixed. We define the n x n matrix-valued functions sine
(denoted by Sins) and cosine (denoted by Cos;) as

Sing(t) ;== X(t) and  Coss(t) := U(t),

respectively, where the pair ()lj) is the principal solution of system (3.13) at s, i.e,, it is
given by the initial conditions X(s) = 0 and U(s) = Z. We suppress the index s when
s = a, i.e., we denote Sin := Sin, and Cos := Cos,.

— 14—
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Remark 3.10. (i) The matrix functions Sins and Coss are n-dimensional analogs of the
scalar trigonometric functions sin(t — s) and cos(t — s).

(i) When n =1 and P = 0 and Q@ = p with p € Cq, the matrix functions Sing(t)
and Cosg(t) reduce exactly to the scalar time scale trigonometric functions sin,(t, s) and
cosp(t, s) from [32, Definition 3.25].

(iif) In the continuous time scalar case and when P = 0, ie., system (3.13) is the
same as (3.1), the solutions Sin(t) = sin fat Q(t)dt and Cos(t) = cos fat Q(t)dr. Similar
formulas hold for the discrete scalar case, see [5, p. 40].

Remark 3.11. By using Lemma 3.8, the above matrix sine and cosine functions can be
alternatively defined as Coss(t) := X(t) and Sins(t) := —U(t), where (g) is the solution
of system (3.13) with the initial conditions )~((s) =7 and D(s) =0.

By definition, the Wronskian of the two solutions (giﬁ) and ( _a‘)';) is W(t) = W(a) =

Z. Hence, (g‘l’lf) and ( _(S:(L)';) form normalized conjoined bases of system (3.13) and

bit) = Cos(t) —Sin(t))

Sin(t) Cos(t) (3.15)

is a fundamental matrix of (3.13). Therefore, every solution ({}) of (3.13) has the form
X(t) = Cos(t) X(a) — Sin(t) U(a) and U(t) = Sin(t) X(a) + Cos(t) U(a)

for all t € [a, b];. As a consequence of formulas (3.9) and (3.10) we get the following.

Corollary 3.12. For all t € [a, b]; the identities

Cos* Cos + Sin* Sin = Z = Cos Cos* + Sin Sin*, (3.16)
Cos™ Sin = Sin* Cos, Cos Sin* = Sin Cos”* (3.17)

hold, while for all t € [a, p(b)]; we have the identities
Cos? Cos* +Sin? Sin* =7 + P, Cos’? Sin* —Sin? Cos* = Q.

The following result is a matrix analog of the fundamental formula cos?(t)+sin(t) = 1

for scalar continuous time trigonometric functions, see also [32, Exercise 3.30]. Here || : ||F

1
is the usual Frobenius norm, ie., ||V = (X2 v5)?, see [23, p. 346]
Corollary 3.13. For all t € [a, b]ly we have the identity
2 2
[|Cos||z + ||Sin||z = n. (3.18)
Proof. Since for arbitrary matrix V € C"*" the identity tr (V*V) = H VHzF holds, equation
(3.18) follows directly from (3.16).
Corollary 3.14. For all t € [a, p(b)]r we have
Cos™ Cos* + Sin® Sin* = P, (3.19)
Sin® Cos* — Cos” Sin* = Q. (3.20)

—15—
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Proof. Since (a‘g) is the solution of system (3.13), we have

Sin® = P Sin +0QCos and Cos? = —QSin+P Cos.

If we now multiply the first of these two identities by the matrix Sin* from the right and
the second one by Cos™ from the right, and if we add the two obtained equations, then
formula (3.19) follows. In these computations we also used (3.16)(ii) and (3.17)(ii). Similar
calculations lead to formula (3.20). |

Remark 3.15. If the matrix Cos and/or Sin is invertible at some point t € [a, bl;, then, by
(3.16) and (3.17), we can write

Cos™" = Cos* + Sin* Cos* ' Sin*,  Sin™" = Sin* + Cos* Sin*~" Cos* . (3.21)

Next we present additive formulas for matrix trigonometric functions on time scales.
This result generalizes its continuous time counterpart in [66, Theorem 1.1] to time scales.

Theorem 3.16. For t,s € [a, by we have

Sing(t) = Sin(t) Cos*(s) — Cos(t) Sin*(s), (3.22)
Coss(t) = Cos(t) Cos™(s) + Stn(t) Sin*(s), (3.23)
Sin(t) = Sins(t) Cos(s) + Coss(t) Sin(s), (3.24)
Cos(t) = Coss(t) Cos(s) — Sing(t) Sin(s). (3.25)

Proof. We set
V(t) := Sin(t) Cos*(s) — Cos(t) Sin*(s),  Y(t) := Cos(t) Cos*(s) 4 Sin(t) Sin*(s).
Then we calculate
VA(t) = Sin®(t) Cos*(s) — Cos®(t) Sin*(s) = P(t)V(t) + Q(t) Y (1),
YA(t) = Cos®(t) Cos*(s) + Sin®(t) Sin*(s) = —Q(t) V/(t) + P(t) Y (1),

where we used (3.10)(ii) and (3.17)(ii) at t. The initial values are V(s) = 0 and Y(s) =
where we used (3.16)(ii) and (3.17)(ii) at s. Hence, equations (3.22) and (3.23) follow from
the uniqueness of solutions of time scale symplectic systems. That is V/(t) = Sing(t) and
Y(t) = Coss(t). Note that equations (3.22) and (3.23) can be written as

Cos*(s) Sin*(s)

(Sins(t) Coss(t)):(Sln(t) Cos(t)) _Sin*(s) Cos*(s)] "

(3.26)

where the 2n x 2n matrix on the right-hand side equals to CT)_1(5) and the matrix (T)(s) is
defined in (3.15). Multiplying equality (3.26) by ®(s) from the right, identities (3.24) and
(3.25) follow. |

Remark 3.17. With respect to Remark 3.10 for the scalar continuous time case, identities
(3.22)—(3.23) are matrix analogues of

sin(t — s) = sin(t) cos(s) — cos(t) sin(s), cos(t — s) = cos(t) cos(s) + sin(t)sin(s),
while identities (3.24)—(3.25) are matrix analogues of

sin(t) = sin(t — s) cos(s) + cos(t — s)sin(s), cos(t) = cos(t — s) cos(s) — sin(t — s) sin(s).

—-16-
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Interchanging the parameters t and s in (3.22) and (3.23) yields expected properties
of the matrix trigonometric functions.

Corollary 3.18. Let t,s € [a, bly. Then
Sing(t) = —Sini(s) and Coss(t) = Cosj(s). (3.27)

Remark 3.19. In the scalar continuous time case with Q(t) = 1, the formulas in (3.27)
have the form

sin(t —s) = —sin(s —t) and cos(t —s) = cos(s — t).
Consequently, if we let s = 0, we obtain
sin(t) = —sin(—t) and  cos(t) = cos(—t),

so that Corollary 3.18 is the matrix analogue of the statement about the parity for the
scalar functions sine and cosine.

Next we wish to generalize the sum and difference formulas for solutions of two time
scale symplectic systems. This can be done via the approach from [52]. This leads to
a generalization of several formulas known in the scalar continuous case. Observe that,
comparing to Theorem 3.16 in which we consider one system and solutions with different
initial conditions, we shall now deal with two systems and solutions with the same initial
conditions. Consider the following two time scale trigonometric systems

XA =Py(t) X+ Qu(t) U, UP = —Quy(t) X + Py (t) U (3.28)

with initial conditions X3(a) = 0 and U)(a) = Z, where i = 1,2. Denote by Sin(;(t) and
Cos;)(t) the corresponding matrix sine and cosine functions from Definition 3.9. Put

Sin*(t) := Sing)(t) Cosy)(t) = Cosi)(t) Sinfy (1), (3.29)
Cos™(t) := Cos)(t) Cos(y)(t) F Sing)(t) Sinjy(1). (3.30)

Theorem 3.20. Assume that Py and Q) satisfy (3.11) and (3.12). The pair Sin* and Cos*
solves the system

X% = Poy(t) X + Quy(t) U + XPpy (1) & UQy 1)

+ () [P (e) (XP(6) = UQp(8)) + Qu(e) (FXQp(8) + UPy(0) |
U = =Qu)(t) X + Py(t) U F XQy(t) + UR(1)

+ () [~ Qe (t) (XP3y () = UQp(8)) +Py(t) (FXQpy(6) + UP(1)) ] |

L (331)

with the initial conditions X(a) =0 and U(a) = Z. Moreover, for all t € [a, b]; we have
Sin* (Sin®)" + Cos® (Cos™)" =T = (Sin*)” Sin* + (Cos™)” Cos*, (3.32)
Sin* (Cosi)* = Cos* (S'mi)*, (S'mi)* Cos™ = (Cosi)* Sin* . (3.33)

Proof. All the statements in this theorem are proven by straightforward calculations. In
these we use the identities, see (2.5),

S'lnﬁ) = Sil1(1) +u S'mﬁ) = Sinm +u (7)(1) Sinm —I—Q(1) COS(1)) )
COSG) = COS(1) +u COS%) = COS(1) +u (—Q(n Sil1(1) —I—Pm COS(1)) ,
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time scale product rule (2.3), and system (3.28) for i = 1,2. Then it follows that the pair
Sin® and Cos™ solves the system (3.31) and Sin*(a) = 0, Cos™(a) = 7.

Next we show identity (3.32). From the definitions of Sin" and Cos", from the first
identity in (3.16) for i = 1, and from the second identity in (3.17) for i = 2 we get

Sin* (Sin*)" + Cos™ (Cos™)™ = Sinp (Cosz‘z) Cos() + Sin(y Sil1(2)) Sinfy
+ COS(1) (COS?Z) COS(Z) + S'ankz) S'ln(z)) COSEK”
= Cos1) Cos(y) + Sinu) Sin(y, =Z.

The other identities in (3.32) are shown in analogous way. Similarly, by using (3.16) and
(3.17) for i = 1,2 one can show that all the identities in (3.33) hold true. |

Remark 3.21. The properties in (3.32) and (3.33) of solutions Sin* and Cos™ of system
(3.31) mirror the properties in (3.16) and (3.17) of normalized conjoined bases of (S).

. int H .. . .
However, the two pairs ( a‘)} ) and ( g(‘)‘;_ ) are not conjoined bases of their corresponding

systems, because these systems are not symplectic.

Remark 3.22. In the continuous time case the assertion of Theorem 3.20 was proven
in [52, Theorem 1]. On the other hand, the discrete form is new. The details can be found
in [163, Theorem 3.14].

When the two systems in (3.28) are the same, Theorem 3.20 yields the following.
Corollary 3.23. Assume that P and Q satisfy (3.11) and (3.12). Then the system
XB = P(t)X+ Q(t) U+ XP*(t) + UQ*(t)
+ u(t)[P(t)(XP*(t) + UQ*(t)) + Q(t) (—XQ*(t) + UP*(t))],
US = —Q(t) X + P(t) U — XQ*(1) + UP*(1)
+ (6)] ~QUO(XP* () + UQ* (1) + P()(~XQ(8) + UP*(1)) |

with the initial conditions X(a) = 0 and U(a) = Z possesses the solution
X =2SinCos* and U = Cos Cos* — Sin Sin*,

where Sin and Cos are the matrix functions in Definition 3.9. Moreover, the above ma-
trices X and U commute, i.e., XU = UX.

Proof. The statement follows from Theorem 3.20 in which we take P1) =P =P, Q) =
Q) = Q, and Sin(y) = Sin(y = Sin, Cos(y) = Cos(y) = Cos. Finally, from (3.16) and (3.17)
we get that XU — UX = 0. |

Remark 3.24. The previous corollary can be viewed as the n—dimensional analogy of
the double angle formulas for scalar continuous time goniometric functions

sin(2t) = 2sin(t)cos(t) and  cos(2t) = cosz(t) - S'L|12(t).
In the continuous time case, the content of Corollary 3.23 coincides with [65, Theorem 1.1].

On the other hand, this result is new in the discrete case, see [163, Corollary 3.16].
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Corollary 3.25. For all t € [a, b]; we have the identities

Sing) Sinpy = % (Cos™ — Cos"), (3.34)

Cosp1) Cospy) = % (Cos™ + Cos"), (3.35)
1

Sing) Cospy = 5 (Sin~ +Sin®) . (3.36)

Proof. Subtracting the two equations in (3.30) we obtain Cos™ — Cos" = ZS'anS'LnE"z)
from which formula (3.34) follows. Similarly, from identities

Cos™ + Cos" = 2Cos(1) Cos; and  Sin~ 4 Sin* = 2 Sing) Cosy),
we obtain (3.35) and (3.306). ]

Remark 3.26. In the scalar continuous time case identities (3.34)—(3.36) correspond to

sin(t) sin(s) = % [cos(t — s) — cos(t + s)],
cos(t) cos(s) = % [cos(t — s) + cos(t + s)],
sin(t) cos(s) = % [sin(t — s) + sin(t + s)].

The next definition is a natural time scale matrix extension of the scalar trigonometric
tangent and cotangent functions. It extends the discrete matrix tangent and cotangent
functions known from [5, p. 42] to time scales.

Definition 3.27. Whenever Cos(t) and Sin(t) is invertible, we define the matrix-valued
functions tangent (we write Tan) and cotangent (we write Cotan), by

Tan(t) := Cos™'(t) Sin(t) and Cotan(t) := Sin~'(t) Cos(t), respectively.

Remark 3.28. Analogous results concerning Tan(t) and Cotan(t) which are presented
below, we can get by using the definitions

ﬂﬁ(t) := Sin(t) Cos™'(t) and (?(Ra/n(t) := Cos(t) Sin~'(t).

Theorem 3.29. Whenever Tan(t) is defined we get

Tan*(t) = Tan(t), (3.37)
Cos™'(t) Cos* () — Tan?(t) = T. (3.38)

Moreover, if Cos(t) and Cos’(t) are invertible, then
Tan®(t) = [Cos?(t)]”" Q(t) Cos* ' (t). (3.39)
Proof. From (3.17) it follows that
Tan* — Tan = Cos™ ' (Cos Sin* — Sin Cos*) Cos*™' = 0,
while from (3.16) and (3.37) we get

7 = Cos [ Cos™" Sin Sin* Cos*™! +I) Cos* = Cos (Tan2 —|—I) Cos™,
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which can be written as equation (3.38). In order to show (3.39) we note that if Cos(tp)
and Cos’(tp) are invertible, then TanA(to) exists and, by (3.16), (2.4), (3.21), and (3.37), we
obtain

A
Tan® = (Cos_1 S'Ln) = — (Cos?) ™" Cos™ Cos™" Sin+ (Cos?) " Sin®
— (Cos®) ' Q (— Sin Cos™" Sin + COS) — (Cos®)™' Q Cos* .
Therefore (3.39) is established. ]

Similar results as in Theorem 3.29 can be shown for the matrix function cotangent.

Theorem 3.30. Whenever Cotan(t) is defined we get

Cotan*(t) = Cotan(t), (3.40)
Sin~'(t) Sin*~(t) — Cotan?(t) = T. (3.41)

Moreover, if Sin(t) and Sin’(t) are invertible, then
Cotan®(t) = —[Sin®(t)] " Q(t) Sin*~'(¢). (3.42)
Proof. It is analogous to the proof of Theorem 3.29. |

Remark 3.31. In the scalar case n = 1 identities (3.37) and (3.40) are trivial. In the scalar
continuous time case, identities (3.38), (3.41), (3.39), and (3.42) take the form

t

cosZ(s) tan’(s) =1, S'Ln12(5) — cotan®(s) =1, with s :/GQ(T) dr,
t o /_ Q(t) t N /_ —Q(t)
(tan/aQ(L)dz) = e’ (cotan CIQ(L)CIL) =

compare with Remark 3.10 (iii). The discrete versions of these identities can be found
in [5, Corollary 6 and Lemma 12].

Remark 3.32. In the continuous time case with Q(t) = Z, i.e., when system (3.1) is X’ = U,
U’ = —X and hence it represents the second order matrix equation X”+ X = 0, the matrix
functions Sin, Cos, Tan, and Cotan satisfy

Sin’ = Cos, Cos' = —Sin, Tan’ = Cos ' Cos*~', Cotan’ = —Sin~'Sin*'.

The first two equalities follow from the definition of Sin and Cos, while the last two
equalities are simple consequences of (3.39) and (3.42).

Next, similarly to the definitions of the time scale matrix functions Sin(;), Cos, for
i =1,2, Sin*, and Cos* from (3.28)-(3.30) we define the following functions

Tan(t) := Cosyy) (t) Sing (1), Cotan((t) := Sing'(t) Cosy(t),
Tar* () := [Cos™(1)] ' Sin*(t), Cotar®(t) := [Sin*(t)] ' Cos*(1).

Remark 3.33. It is natural that the matrix-valued functions Tan® have similar proper-
ties as the function Tan. In particular, the first identity in (3.33) implies that Tan* are
Hermitian. Similarly, the functions Cotan® are also Hermitian.
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The results of the following theorem are new even in the special case of continuous
and discrete time, see [163, Theorem 3.26].

Theorem 3.34. For all t € [a, b]y such that all involved functions are defined we have
(suppressing the argument t)

Tan(y £ Tanp) = Tan) (Cotan(z) + Cotanm) Tan(), (3.43)
Tang) = Tanp) = Cosa} Sin* COSZ‘Z_)1, (3.44)
Cotan(y) = Cotangp) = Cotan(1) (Twn(z) +T1n(1)) Cotanyy), (3.45)
Cotan(y) = Cotan(p) = + SLn Sln— SLn (3.406)
Tan® = Cos(z (I F Taanwn ) ! (Tanm iTan(z)) Cosfz), (3.47)

Cotan® = SLn (Cotan + Cotan ))71
X (Cotan Cotan(2 ) Sm (3.48)

Proof. For identity (3.43) we have
Tangy = Tanp) = Cos Sm (Sln 2 Cos(p) + Sm Cos ) Cos(_z; Sinp)
= Tanm (Cotan(z) + Cotan“)) Tan(z)

The equations in (3.44) follow from the fact that Tan(y is Hermitian, i.e,
Tang) = Tanp) = Cosa; (S'an Cosz‘z) + Cos(y) S'an‘z)) Coszk{)1 = Cosa; Sin® Coszk{)1

The proofs of identities (3.45) and (3.46) are similar to the proofs of (3.43) and (3.44).
Next, by using the fact that Tan() are Hermitian, we obtain from (3.44) the identity

Tangy £ Tanp) = Cos(_Z; (Tani)* (Cos—) Cosm ,
from which we eliminate Tan™. That is, with (Tani)* = Tan® and TanZ‘,-) = Tan() we have
Tan™ = (Cosi)f1 Cosy) (Tanz"” iTanE"Z)) Cosy

-1
= [Cos () (I ¥ Cosa; Sing) Siny Cosz‘z_)1 ) Cos{z)] Cos) (Tan) = Tan(y) Cosy)
—Cos (I F Tang) Tangz ) ! (Tanm iTan(z)) Cos?‘z) )

Therefore, the formulas in (3.47) are established. The identities in (3.48) follow from (3.47)
by noticing that Tan™ Cotan® = T and by using Cotanfi) = Cotan. ]

Remark 3.35. Consider the system (3.13) in the scalar continuous time case with P(t) =0
and Q(t) = 1, or equivalently system (3.1) with Q(t) = 1. Then the identities in (3.43)
and (3.44) have the form

cotan(s) &+ cotan(t) _ sin(t +s)
cotan(t) cotan(s)  cos(t) cos(s)

’

tan(t) + tan(s) =

identities (3.45) and (3.40) reduce to

tan(s) £ tan(t)  sin(s £ t)
tan(t) tan(s)  sin(t) sin(s)’

cotan(t) &+ cotan(s) =
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In addition, it is common to write (3.43) and (3.45) as

tan(t) & tan(s)
tan(t)tan(s) = + .
cotan(t) = cotan(s)

Finally, the identities in (3.47) and (3.48) correspond in this case to

cotan(t) cotan(s) F 1
cotan(s) % cotan(t)

tan(t £ s) = tan(t) £ tan(s) and cotan(t+s) =
1 tan(t) tan(s)

3.3 Time scale hyperbolic systems

In this section we define time scale matrix hyperbolic functions and prove analogous
results as for the trigonometric functions in the previous section. In particular, we derive
time scale matrix extensions of several identities which are known for the continuous
time scalar hyperbolic functions. The proofs are similar to the corresponding proofs for
the trigonometric case and therefore they will be omitted. We wish to remark that some
results from this section have previously been derived in the unpublished paper [131] by
Z. Pospisil. We now present these results for completeness and clear comparison with
the corresponding trigonometric results established in Section 3.2, as well as we derive
several new formulas for time scale matrix hyperbolic functions.
Consider system (S) on [a, b]; with the matrix

where P,Q € C,q on [a, p(b)ly are n x n complex-valued matrices satisfying for all
t € [a, p(b)]; the following identities

Q* — Q + p(Q*P — P*Q) = 0, (3.49)
P+ P* + (PP — Q*Q) = 0, (3.50)

see also [131, p. 9] and [87, Theorem 8].

Definition 3.36 (Time scale hyperbolic system). The system
XE=Pt)X+Q(t)U, UL =Q(t)X +P(t)U, (3.51)

where the matrices P(t) and Q(t) satisfy identities (3.49) and (3.50) for all t € [a, p(b)]:,
is called a time scale hyperbolic system.

Remark 3.37. The above time scale hyperbolic system is in general defined through two
coefficient matrices P and Q. However, in the continuous time case we can use the same
transformation as in Remark 3.6 and write the hyperbolic system from (3.51) in the form
of (3.5). Similarly, by using the same arguments as in Remark 3.7, in the discrete case
we can write the above hyperbolic system in the form (3.6).

Remark 3.38. In the discrete case it is known that the matrix Py is necessarily invertible
for all k € [a, b, see [61, identity (12)] or [162, Remark 67]. Similarly, in the general time
scale setting we have that identity (3.50) implies (Z + pP*) (Z + pP) = T+p? Q*Q > 0, that
is, the matrix Z + pP is invertible. And then (3.49) yields that Q (Z + pP)~" is Hermitian.
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Remark 3.39. Similarly to Remark 3.5, symplectic system (S) can be written as a time

scale hyperbolic system if there exist normalized conjoined bases Z = (6) and Z = ( g )

of system (S) such that XX* is positive definite.

Lemma 3.40. The pair (ﬁ) solves system (3.51) if and only if the pair (%) solves the

same hyperbolic system.

Following [131, Definition 2.1], we define the time scale matrix hyperbolic functions.
See also the discrete version in [61, Definition 3.1] or [162, Definition 32].

Definition 3.41. Let s € [a, b]; be fixed. We define the n x n matrix valued functions
hyperbolic sine (denoted by Sinhs) and hyperbolic cosine (denoted by Coshg) as

Sinhg(t) ;== X(t) and  Coshs(t) := U(t),

respectively, where the pair (ﬁ) is the principal solution of system (3.51) at s, i.e, it is

given by the initial conditions X(s) = 0 and U(s) = Z. We suppress the index s when
s = a, iL.e.,, we denote Sinh := Sinh, and Cosh := Coshs.

Remark 3.42. (i) The matrix functions Sinhg and Coshs are n-dimensional analogs of the
scalar hyperbolic functions sinh(t — s) and cosh(t — s).

(it) When n =1 and P = 0 and Q = p with p € Cy4, the matrix functions Sinh(t)
and Cosh(t) reduce exactly to the scalar time scale hyperbolic functions sinh,(t, s) and
cosh,(t, s) from [32, Definition 3.17].

(i) In the continuous time scalar case and when P = 0, i.e., system (3.51) is the same
as (3.5), we have Sinh(t) = sinh fat 9(t)dt and Cosh(t) = cosh f;Q(T) dz, see [71, p. 12].
Similar formulas hold for the discrete scalar case, see [61, equations (27)—(28)].

Since the solutions (£%") and (i) form normalized conjoined bases of (3.51),

1;
osh

D(t) = Cf)sh(t) Sinh(t)
Sinh(t) Cosh(t)
is a fundamental matrix of (3.51). Therefore, every solution (ﬁ) of (3.51) has the form

X(t) = Cosh(t) X(a) + Sinh(t) U(a) and U(t) = Sinh(t) X(a) + Cosh(t) U(a)

for all t € [a, bl;. As a consequence of formulas (3.9) and (3.10) we get for solutions of
time scale hyperbolic systems the following, see also [131, Theorem 2.1].

Corollary 3.43. For all t € [a, b]; the identities

Cosh™ Cosh — Sinh* Sinh = T = Cosh Cosh* — Sinh Sinh*, (3.52)
Cosh™ Sinh = Sinh* Cosh,  Cosh Sinh* = Sinh Cosh* (3.53)

hold, while for all t € [a, p(b)]; we have the identities
Cosh? Cosh* — Sinh? Sinh* =Z + pyP, Sinh? Cosh* — Cosh? Sinh* = pQ.
Now we establish a matrix analog of the formula cosh?(t)—sinh?(t) = 1, see also [131,

Theorem 2.1], as well as the formulas from [131, Theorem 2.5].
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Corollary 3.44. For all t € [a, b]; the identity
HCosthF — HS‘thzF =n
holds, while for all t € [a, p(b)]; we have
Cosh® Cosh* — Sinh® Sinh* = P,  Sinh® Cosh* — Cosh® Sinh* = Q.

Remark 3.45. It follows from identity (3.52) that the matrix Cosh(t) is invertible for all
t € |a, b];. Moreover, if Sinh(t) is invertible at some t, then from (3.52) and (3.53) we
obtain

Cosh™! = Cosh* — Sinh* Cosh*~ ' Sinh*, Sinh~" = Cosh* Sinh*~! Cosh* — Sinh* .

The following additive formulas are established in [131, Theorem 2.2]. They are proven
in a similar way as in Theorem 3.16.

Theorem 3.46. For t,s € [a, b]; we have

Sinhg(t) = Sinh(t) Cosh*(s) — Cosh(t) Sinh*(s), (3.54)
Coshs(t) = Cosh(t) Cosh*(s) — Sinh(t) Sinh*(s), (3.55)
Sinh(t) = Sinhs(t) Cosh(s) + Coshs(t) Sinh(s), (3.56)
Cosh(t) = Coshg(t) Cosh(s) + Sinhs(t) Sinh(s). (3.57)

Remark 3.47. With respect to Remark 3.42 for the scalar continuous time case, identities
(3.54)—(3.55) are matrix analogues of

sinh(t — s) = sinh(t) cosh(s) — cosh(t) sinh(s),
cosh(t — s) = cosh(t) c