
Masaryk University
Faculty of Science

Department of Mathematics and Statistics

Symmetries of Parabolic Geometries

Ph.D. Thesis

Lenka Zalabová
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Abstrakt. V této práci se budeme zabývat symetriemi parabolických
geometríı. Naš́ı hlavńı motivaćı jsou afinńı lokálně symetrické prostory. Va-
rieta s afinńı konex́ı je lokálně symetrická právě tehdy, když je jej́ı torze
nulová a křivost kovariantně konstantńı. Na tyto geometrie lze nahĺıžet
jako na konkrétńı př́ıpad reduktivńıch Cartanových geometríı. Parabolické
geometrie jsou jiným speciálńım př́ıpadem Cartanových geometríı. Nejsou
reduktivńı a jsou druhého řádu.

Budeme se zabývat zejména |1|–gradovanými parabolickými geometriemi.
Pro tyto geometrie je definice symetrie intuitivńı a odpov́ıdá klasickému
př́ıstupu. Dokážeme analogii klasických výsledk̊u a s využit́ım existuj́ıćı
teorie parabolických geometríı ukážeme nějaká daľśı omezeńı na křivost.

Věťsina symetrických |1|–gradovaných geometríı muśı být lokálně plochá.
Existuj́ı však i některé ‘zaj́ımavěǰśı’ př́ıpady geometríı, které mohou mı́t
symetrii v bodě ve kterém je nenulová křivost. S využit́ım teorie Weylových
struktur budeme hledat daľśı omezeńı na Weylovu křivost těchto př́ıpad̊u.
Nakonec ukážeme nějaké daľśı d̊usledky pro projektivńı a konformńı geome-
trie.

Abstract. We introduce and discuss symmetries for the so called para-
bolic geometries. Our motivation comes from affine locally symmetric spaces.
The manifold with affine connection is locally symmetric if and only if the
torison vanishes and the curvature is covariantly constant. These geometries
can be understood as the special case of reductive Cartan geometries. The
parabolic geometries represent another special case of the general Cartan
geometries. They are of second order and never reductive.

We are interested in |1|–graded geometries. In this case, the definition of
the symmetry is a generalization of the clasical one and follows the intuitive
idea. We show an analogy of the results from the affine locally symmetric
spaces and we get more curvature restrictions, which come from the general
theory of parabolic geometries.

Many types of symmetric |1|–graded geometries have to be locally flat.
There are also some ‘interesting’ types, which can carry a symmetry in
the point and still allow some nonzero curvature at this point. Our main
tool to study these examples is the theory of Weyl structures. We study
the Weyl curvature of |1|–graded geometries to get more restriction for the
‘interesting’ ones. Finally we show some corollaries in the projective and
conformal geometries.

c© Lenka Zalabová, Masaryk University, Brno, 2007
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Preface

Locally symmetric spaces are the well known and studied examples of
manifolds with rich additional structures. There mostly exists some restric-
tion on the geometry coming from existence of some special morphisms of
the structure. The best known examples are affine locally symmetric spaces
and Riemannian locally symmetric spaces.

The affine locally symmetric space is a manifold such that at each point,
there is a locally defined affine transformation which preserves the point
and its differential reverts whole tangent space in the point. Riemannian
locally symmetric spaces are affine locally symmetric spaces such that the
latter affine transformations are isometries of the metric. These spaces can
be equivalently characterized via curvature and torsion of the corresponding
connection. The aim of this work is to extend the classical concepts for a
wider class of geometries.

In the Chapter 1, we remind basic facts on the affine locally symmetric
spaces. We give basic definitions in Section 1 and show the basic property
of these spaces in a different way in Section 3.

One can consult [13] for more detailed study of affine and Riemannian
locally symmetric spaces. The classical approach to the symmetric and lo-
cally symmetric spaces can be also found in [10]. Further examples of general
geometries allowing symmetries have been studied only rarely. See [11] for
study of symmetries on Cauchy–Riemann manifolds and [16] for discussion
on projective symmetries on a manifold.

We would like to generalize the notion on symmetries for a manifold,
which carry a Cartan connection. These Cartan geometries involve many
types of geometries, affine connections and Riemannian manifolds are special
cases of them. We give basic facts about Cartan geometries in Section 2. Our
main reference will be [18].

There is no universal definition of symmetry for arbitrary Cartan geom-
etry, see Section 3. We are interested mainly in |1|–graded parabolic geome-
tries, which involve many types of interesting examples. The best known
ones are projective and conformal structures.

Parabolic geometries are special cases of Cartan geometries. The exis-
tence of the filtration and the associated gradation of the tangent bundle is
typical for them and we define the symmetry as an automorphism, which
reverts the smallest part of this filtration. The |1|–graded geometries are the
easiest ones. The smallest part of the filtration is equal to the whole tangent
space and the definition of symmetries coincides with the classical one.

We summarize basic facts about parabolic geometries in Chapter 2. More
detailed discussion and proofs can be found in [2, 5, 6, 19]. In Section 4,
we give basic definitions and describe general properties. In Section 5, we
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introduce our main tool to study the |1|–graded geometries – Weyl struc-
tures. They exist for all parabolic geometries and allow us to describe the
underlying structure on the manifold. We describe Weyl structures only in
the |1|–graded case, general theory can be found in [6]. In the Section 6
we give the main definition. We define symmetric parabolic geometry and
present the easiest examples – the homogeneous models.

In Chapter 3 we discuss the symmetric |1|–graded geometries. Motivated
by the affine case we would like to find some restriction on the curvature
of |1|–graded geometry carrying some symmetry. The crucial observation is
that all symmetric |1|–graded geometries are torsion free. One of the use-
ful features of the parabolic geometries is the unique normalization of the
Cartan connections providing full information on the curvature in terms
of its harmonic components. Moreover, the latter components are easily
computable via Lie algebra cohomologies, and in most of our examples the
harmonic part of the curvature appears in the torsion only. But there are
also some ‘interesting’ geometries such that this theory gives us no more in-
formation. We describe this in Section 8. For more information on harmonic
curvature see e.g. [5, 6, 21].

In Section 9, we return to the Weyl structures. We study the action of
symmetries on the Weyl structures. We show, that there exist so called fixed
Weyl structures, which are crucial for us. We also study the consequences
of the latter results for effective geometries.

In the Section 10 we show some stronger curvature restriction coming
from the existence of more then one symmetry in a point. We apply the re-
sults on some of the ‘interesting’ geometries. Namely, we deal with projective
and conformal geometry.

Our general approach in the Sections 9 and 10 was inspired by [16] who
studied the projective case in a classical setup of affine connections. Our
methods work for all |1|–graded parabolic geometries.

Acknowledgments. I would like to thank to my supervisor Jan Slovák for
his leading in the topic and the other discussion. I have learned most of
the topics from the forthcoming monography [7] by Andreas Čap and Jan
Slovák, as well as discussions with many nice colleagues, Vojtěch Žádńık in
particular. The financial support by the grant GACR 201/05/H005 has been
essential too.
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CHAPTER 1

Cartan geometries

In this chapter we first remind the classical definition of affine locally
symmetric spaces. In the next section we summarize basic facts about Car-
tan geometries and we establish the notation. Finally we return to the locally
symmetric spaces and we discuss them via the language of Cartan geome-
tries. More on the classical theory of affine symmetric spaces and affine
locally symmetric spaces can be found in [13, 10]. For more detailed dis-
cussion of Cartan geometries see [18].

1. Affine locally symmetric spaces

Let M be a manifold with a linear connection on the tangent bundle
given by a covariant derivative

∇ : X(M) × X(M) → X(M),

(ξ, η) 7→ ∇ξη.

We call a linear connection on the tangent bundle an affine connection.
Let us remind that the curvature R of the affine connection and its

torsion T are given by

R(ξ, η)(µ) = ∇ξ∇η(µ) −∇η∇ξ(µ) −∇[ξ,η](µ),

T (ξ, η) = ∇ξ(η) −∇η(ξ) − [ξ, η]

for all ξ, η, µ ∈ X(M). A smooth diffeomorphism f of M is called an affine
transformation of M if f preserves the affine connection, i.e.

(f∗∇)ξ(η) = f−1
∗ (∇f∗ξ(f∗η)) = ∇ξ(η).

If f is an affine transformation, then R and T are invariant with respect to
f , i.e. f∗R = R and f∗T = T . Now we remind the well known definition:

Definition 1.1. Let M be a manifold with an affine connection ∇.
A symmetry at x ∈M is an affine transformation sx defined on some neigh-
borhood U ⊆M, x ∈ U such that:

(i) sx(x) = x
(ii) Txsx = −idTxM .

A manifold M with an affine connection ∇ is called affine locally symmetric
space if there is some symmetry in each x ∈M .

There is the well known description of an affine locally symmetric space
given by its curvature and torsion, see [13]:

Proposition 1.2. The manifold M with an affine connection ∇ is affine
locally symmetric if and only if T = 0 and ∇R = 0.
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There is an equivalent way how to understand affine geometries. We take
the first order frame bundle p : P1M → M with structure group Gl(n,R),
where n is the dimension ofM . There is the canonical form θ ∈ Ω1(P1M,Rn)
given on the frame bundle, its value θ(u)(ξ) is given as the coordinate of the
projection Tp.ξ ∈ Tp(u)M in the frame u. This form is strictly horizontal
and Gl(n,R)–equivariant. In fact, we get a (first order) G–structure with
structure group Gl(n,R).

Next, there is a well known one to one correspondence between affine
connections ∇ on M and principal connections γ ∈ Ω1(P1M, gl(n,R)) on
the Gl(n,R)–structure. For fixed principal connection γ we take the induced
connection on TM . The tangent bundle is identified with P1M ×Gl(n,R) R

n

such that the pair [[u,X]] represents a vector with coordinates X in the
frame u. The principal connection γ together with the canonical form θ give
a 1–form

ω = θ + γ ∈ Ω1(P1M, a(n,R)),

where a(n,R) = R
n ⊕ gl(n,R). This form satisfies conditions on Cartan

connection and we will call it affine Cartan connection.
Further, there is the automorphism P1f of P1M uniquely corresponding

to the automorphism f of M and P1f automatically preserves the canonical
form θ. If f is an affine transformation, then P1f preserves the connection
γ and we get the automorphism of the affine Cartan connection.

It is easy to reformulate notions from affine symmetric spaces in the lan-
guage of affine Cartan connection. The general concept of Cartan connec-
tions covers all first order G–structures with chosen compatible connections.
We return to the affine locally symmetric spaces in Section 3.

2. Introduction to Cartan geometries

Let G be a Lie group, P ⊂ G a Lie subgroup, and write g and p for their
Lie algebras. A Cartan geometry of type (G,P ) on a smooth manifold M is
a principal fiber bundle p : G →M with structure group P , together with a
1–form ω ∈ Ω1(G, g) called a Cartan connection such that:

(1) (rh)∗ω = Adh−1 ◦ ω for each h ∈ P
(2) ω(ζX(u)) = X for each X ∈ p

(3) ω(u) : TuG −→ g is a linear isomorphism for each u ∈ G.

Here ζX ∈ X(G) denotes the fundamental vector field generated by X ∈ p.
A Cartan geometry is called split if and only if there is a fixed Lie

subalgebra g− ⊂ g such that g = g− ⊕ p as a vector space. A Cartan
geometry is called reductive if and only if g = g−⊕p is a fixed decomposition
on P–modules with respect to the adjoint action.

The homogeneous model for Cartan geometries of type (G,P ) is the
canonical P–bundle p : G −→ G/P endowed with the left Maurer–Cartan
form ωG ∈ Ω1(G, g).

Example 2.1. Affine geometry. Let G be the affine group A(n,R) =
{(

1 0
v A

)

| v ∈ R
n, A ∈ Gl(n,R)

}

. This group acts on every u ∈ R
n such that

u 7→ Au+ v. It can be realized using matrix multiplication as follows: If we
identify R

n with {( 1
u ) ∈ R

n+1 | u ∈ R
n} we have

(

1 0
v A

)

( 1
u ) =

(

1
Au+v

)

.
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The subgroup P is taken as the stabilizer of 0 ∈ R
n. It is isomorphic to

the general lineal group Gl(n,R) and the elements are of the form
(

1 0
0 A

)

∈

A(n,R). The Lie algebra of G is a(n,R) =
{(

0 0
w B

)

| w ∈ R
n, B ∈ gl(n,R)

}

and gl(n,R) =
{(

0 0
0 B

)

| B ∈ gl(n,R)
}

in this case. We can easily compute
that g = a(n,R) is split as R

n ⊕ gl(n,R), where g− = R
n and p = gl(n,R)

are Gl(n,R)–modules and geometries of this type are reductive. We have

Ad� 1 0
0 A

� (

0 0
w B

)

=
(

1 0
0 A

) (

0 0
w B

) (

1 0
0 A−1

)

=
(

0 0
Aw ABA−1

)

.

Homogeneous model is the affine plane R
n ≃ A(n,R)/Gl(n,R).

The curvature of a Cartan geometry is given by the curvature form
K ∈ Ω2(G, g) defined by the structure equation

K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)].

The third property of ω defines the so called constant vector fields ω−1(X) ∈
X(G) for every element X ∈ g. These generate the tangent bundle TG and
the curvature can be equivalently described by the curvature function κ :
G → ∧2g∗ ⊗ g, where

κ(u)(X,Y ) = K(ω−1(X)(u), ω−1(Y )(u)) =

= [X,Y ] − ω([ω−1(X), ω−1(Y )](u)).

If at least one of the arguments is vertical, then the curvature vanishes and
the curvature function may be viewed as κ : G → ∧2(g/p)∗⊗g. This function
is also right–equivariant, i.e. κ ◦ rg = g−1 · κ for all g ∈ P , where · is the
tensor product of the adjoint actions Ad∗ on (g/p)∗ induced from adjoint
action on g and Ad on g.

The torsion of the Cartan geometry is defined by the composition of the
values of the curvature function with the projection g → g/p. If the torsion
is zero, i.e. the values of κ are in ∧2(g/p)∗ ⊗ p, we call the Cartan geometry
torsion free.

A morphism of Cartan geometries of the same type from (G → M,ω)
to (G′ → M ′, ω′) is a principal bundle morphism ϕ : G → G′ such that
ϕ∗ω′ = ω. Further we will denote the base morphism of ϕ induced on M
as ϕ : M → M . Every morphism of Cartan geometries preserves constant
vector fields and then it preserves flows of constant vector fields, i.e. we have

Tϕ ◦ ω−1(X) = ω′−1(X) ◦ ϕ,

ϕ ◦ Fl
ω−1(X)
t (u) = Fl

ω′−1(X)
t (ϕ(u))

for all X ∈ g. In addition, the curvatures of the geometries K and K ′ are
ϕ–related and their curvature functions κ and κ′ satisfy κ = κ′ ◦ ϕ.

The Maurer–Cartan equation says that the curvature of homogeneous
model is zero. It can be proved, see e.g. [18]:

Theorem 2.2. If the curvature of a Cartan geometry of type (G,P ) van-
ishes, then the geometry is locally isomorphic with the homogeneous model
(G→ G/P,ωG).

Cartan geometry is called locally flat if the curvature κ vanishes. Homo-
geneous models are sometimes called flat models.
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We shall deal with the automorphisms of Cartan geometries. In the
homogeneous case, there is the famous Liouville theorem, see [18]:

Theorem 2.3. All (locally defined) automorphisms of the homogeneous
model (G→ G/P,ωG) are left multiplications by elements of G.

We define the kernel K of the geometry of type (G,P ) as the maximal
normal subgroup of G that is contained in P . The geometry is called effective
if the kernel is trivial and the geometry is called infinitesimally effective if
the kernel is discrete. Clearly the kernel of the geometry is discrete if and
only if there is no ideal of g contained in p.

We can explain the meaning of the elements from the kernel in the
following way: On the homogeneous model, the automorphism given by the
left multiplication by element g induces the base automorphism ℓg : G/H →
G/H. It can be shown that the element g belongs to the kernel if and only
if ℓg = idG/H . Thus multiplication by elements from K covers identity on
G/P .

More generally, we can nicely describe the morphisms covering the fixed
base morphism via the kernel. It can be proved, see [18]:

Theorem 2.4. Let (G →M,ω) and (G′ →M ′, ω′) be Cartan geometries
of type (G,P ) and let us denote by K the kernel. Let ϕ1 and ϕ2 be morphisms
of these Cartan geometries such that they have the same base morphism
ϕ : M → M ′. Then there exists smooth function f : G → K such that
ϕ1(u) = ϕ2(u) · f(u) for all u ∈ G.

In particular, if the geometry is effective, then ϕ1 = ϕ2 and f is constant
on connected components of M for infinitesimally effective geometries.

The existence of the Cartan connection allows us to describe nicely the
tangent bundle TM of the base manifold. We have TM ≃ G ×P g/p, where
the action of P on g/p is the action Ad induced by the action Ad on g. The
identification is provided by the mapping

[[u,X + p]] 7→ Tp.ω−1(X)(u).

The tangent vector is equivalently given by so called frame form, the
P–equivariant mapping

s : G → g/p, s(u) = X + p,

which is exactly the vector [[u, s(u)]] ∈ Tp(u)M .
In the case of split geometry we can write TM ≃ G ×P g− for the Ad–

action on g− ≃ g/p. We have similar identifications for the cotangent bundle
and arbitrary tensor bundles.

The morphism ϕ of Cartan geometries by means of its base morphism
ϕ induces uniquely the tangent morphism Tϕ : TM → TM ′ and it can be
nicely written using the previous identification. We have

Tϕ([[u,X + p]]) = Tϕ ◦ Tp ◦ ω−1(X)(u) = Tp ◦ Tϕ ◦ ω−1(X)(u) =

= Tp ◦ ω′−1(X)(ϕ(u)) = [[ϕ(u),X + p]].

Again, similar computation works for the cotangent bundle and arbitrary
tensor bundles and can be rewritten in the language of frame forms. In the
sequel, we will use both descriptions of tensors and tensor fields.
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3. Symmetries on Cartan geometries

Let us return to the case of some manifold M with affine connection ∇.
We can easily reformulate the definition of affine locally symmetric space in
the language of affine Cartan geometries. We know that the manifold M of
dimension n with the affine connection ∇ corresponds to the Cartan geom-
etry (G → M,ω) of type (A(n,R), Gl(n,R)). Geometries of this type are
reductive and first order, we just have G ≃ P1M and the Cartan connec-
tion ω ∈ Ω1(P1M, a(n,R)) naturally divides itself into the canonical form
θ ∈ Ω1(P1M,Rn) and the principal connection γ ∈ Ω1(P1M, gl(n,R)). We
get the following definition:

Definition 3.1. The symmetry in x ∈M on the affine Cartan geometry,
i.e. on the Cartan geometry of type (A(n,R), Gl(n,R)), is the locally defined
diffeomorphism sx on M satisfying following conditions:

(i) sx(x) = x
(ii) Txsx = −idTxM

(iii) sx is covered by an automorphism ϕ of the affine Cartan geometry,
i.e. sx = ϕ on a suitable neighborhood of x.

The affine Cartan geometry is called locally symmetric if there exists some
symmetry in each x ∈M .

Obviously, the only possible covering ϕ of sx is P1sx. Our definition
clearly corresponds to the definition of the affine symmetry. It allows us
to discuss the proof of the Theorem 1.2 in the following way: Suppose that
there is a symmetry sx in x covered by an automorphism ϕ of the affine Car-
tan geometry. The curvature of the geometry is described by the Gl(n,R)–
equivariant function

κ : P1M → ∧2
R

n∗ ⊗ a(n,R).

It naturally splits into two Gl(n,R)–equivariant parts corresponding to the
torsion and curvature of the connection γ. We have

τ : P1M → ∧2
R

n∗ ⊗ R
n,

ρ : P1M → ∧2
R

n∗ ⊗ gl(n,R).

In fact, functions τ and ρ are the frame forms of the torsion T ∈ Γ(∧2T ∗M⊗
TM) and the curvature R ∈ Γ(∧2T ∗M ⊗ TM∗ ⊗ TM) of ∇. We use the
identification gl(n,R) ≃ R

n∗ ⊗ R
n.

The morphism ϕ in the point x satisfies

Tϕ([[u,X]]) = [[ϕ(u),X]] = [[uA,X]] = [[u,A−1X]]

for suitable transition matrix A ∈ Gl(n,R), where u is some fixed frame
in the fiber over x and the coordinates X ∈ R

n are arbitrary. The left
multiplication coincides in the affine case exactly with the adjoint action.
At the same time we have that Tϕ([[u,X]]) = [[u,−X]] holds in the frame u
and we get A−1X = −X.

The torsion function τ satisfies

τ(ϕ(u))(X,Y ) = τ(uA)(X,Y ) = A(τ(u)(A−1X,A−1Y ))
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and we know that left multiplication on R
n by the element A−1 changes the

sign of each Z ∈ R
n. Clearly, the left multiplication by element A changes

the sign too. The properties of κ give us

τ(u)(X,Y ) = τ(ϕ(u))(X,Y ) = −τ(u)(−X,−Y ) = −τ(u)(X,Y )

and the torsion has to vanish.
The same argument does not work for the curvature ρ. The values are

in ∧2
R

n∗ ⊗ R
n∗ ⊗ R

n and we get trivial identity

ρ(u)(X,Y )(Z) = ρ(ϕ(u))(X,Y )(Z) = −ρ(u)(−X,−Y )(−Z).

In the case of affine geometry, we can simply take the affine connec-
tion and study covariant derivatives of the curvature. The derivative ∇R is
described by a frame form

∇ρ : P1M → R
n∗ ⊗ ∧2

R
n∗ ⊗ R

n∗ ⊗ R
n

such that ∇ξR is simply given by the function ξhor · ρ : P1M → ∧2
R

n∗ ⊗

R
n∗ ⊗ R

n. Here ξhor is the horizontal lift of ξ ∈ X(M) with respect to γ.
For the function ∇ρ we have

∇Uρ(u)(X,Y )(Z) = ∇Uρ(ϕ(u))(X,Y )(Z) = −∇−Uρ(u)(−X,−Y )(−Z) =

= −∇Uρ(u)(X,Y )(Z)

and the covariant derivative of the curvature vanishes. In fact, we have got
one direction of the proof of the Proposition 1.2.

The opposite direction of the proof is more complicated and uses the
concept of normal coordinates for affine geometries. It is possible to extend
the symmetry from one point (in which is it uniquely given) to the neigh-
borhood of this point as the solution of the system of first order ordinary
differential equations. The choice of normal coordinates allows us to write
explicitly this system, which is a system of partial differential equations in
general. It uses a nice fact that in the normal coordinates, the geodesics
are only straight lines and symmetry turns them. The proof can be found
in [13].

Remark on the general case

We would like to formulate the definition of the symmetry for a Cartan
geometry of arbitrary type. We could generalize the definition for affine
Cartan geometries and define the symmetry in x on the Cartan geometry
(G →M,ω) of type (G,P ) as the base morphism ϕ of some automorphism
ϕ of G such that ϕ(x) = x and Txϕ|TxM = −idTxM . It seems to be nice and
simple, but it is not reasonable for general geometries.

As an example we take the contact geometries. We again start with
the classical approach and we describe the corresponding structure on the
manifold. A contact structure on the manifold M of dimension 2n + 1 is a
distribution HM ⊂ TM of codimension 1 such that the mapping

L : ∧2HM → TM/HM

induced by the Lie bracket is nondegenerate.
Suppose that there is some automorphism sx ofM respecting the contact

structure such that sx(x) = x and Txsx = −idTxM , i.e. some ‘symmetry’
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in x ∈ M . We then have Txs
H
x (L(ξ, η)) = L(Txsx(ξ), Txsx(η)) for all ξ, η ∈

X(M), where Txs
H
x denotes the morphism induced from Txsx on TxM/HxM .

Next, for any ξ, η ∈ Γ(HM) ⊂ Γ(TM) we have

L(Txsx(ξ), Txsx(η)) = L(−id(ξ),−id(η)) = L(−ξ,−η) =

= q([−ξ,−η]) = q([ξ, η])

in x, where q : TM → TM/HM is the projection. For the same vector fields
we simultaneously have

Txs
H
x (L(ξ, η)) = −idH(L(ξ, η)) = −idH(q([ξ, η])) = −q([ξ, η]),

where −idH is an automorphism of TxM/HxM induced from −id on TxM
and it is again only sign change. Thus our assumptions on sx imply q([ξ, η]) =
−q([ξ, η]) and the non–degeneracy of L gives us that q([ξ, η]) is not identi-
cally zero. The latter simple computation shows that we cannot require the
differential to be minus identity everywhere.

More generally, we encounter similar behavior on all filtered manifolds,
i.e. on manifolds with fixed sequence of distributions TM = T−kM ⊃ · · · ⊃
T−1M such that the Lie brackets of vector fields satisfy [ξ, η] ∈ T i+jM for
all ξ ∈ T iM and η ∈ T jM . The morphisms of filtered manifold respect the
filtrations and so their differentials may be required to be minus identity
only on the smallest subspace T−1M .

All parabolic geometries are geometrically defined as filtered manifolds
with some non–degeneracy conditions and often also some more structural
information. It turns out, that the concept of symmetries as above makes
good sense in general.

In this work, however, we shall be mainly interested in the special case of
parabolic geometries where the filtration is trivial, the so called |1|–graded
geometries. Then the definition completely reduces to the classical one. We
return to the definition of the symmetry after the introduction to parabolic
geometries, see Section 6.

We belive that our approach will be fruitful also for more general par-
abolic geometries. In particular, the contact parabolic geometries enjoy a
filtration of contact type and so all morphisms of such Cartan geometries
are morphism of the corresponding contact structures. Such symmetries have
not been studied much in the literature yet, see [11] for an example. We shall
come back to such problems elsewhere.
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CHAPTER 2

Basic facts on parabolic geometries

In this chapter we summarize basic facts on parabolic geometries. At
first, we remind definitions and results of the general theory. We give here
a complete list of |1|–graded geometries. Next, we recall our main tool for
studying |1|–graded geometries – the Weyl structures. Finally, we formulate
the necessary condition for existence of a symmetry on the |1|–graded geom-
etry. We finish this chapter with the discussion of homogeneous models. For
more detailed discussion of parabolic geometries see e.g. [6].

4. Parabolic geometries

Let g be a semisimple Lie algebra and k > 0. The |k|–grading on g is
the vector space decomposition

g = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk

such that [gi, gj ] ⊂ gi+j for all i and j (we understand gr = 0 for |r| > k)
and such that the subalgebra g− := g−k ⊕ · · · ⊕ g−1 is generated by g−1.
We will suppose that there is no simple ideal of g contained in g0. Each
gradation of g defines the filtration

g = g−k ⊃ g−k+1 ⊃ · · · ⊃ gk = gk,

where gi = gi ⊕ · · · ⊕ gk. In particular g0 and g0 =: p are subalgebras of g

and g1 =: p+ is a nilpotent ideal in p.
Let G be a semisimple Lie group with the Lie algebra g. The choice

of the group G and also the choice of the subgroups G0 ⊂ P ⊂ G (with
the prescribed subalgebras p and g0) impact the properties of the resulting
geometries. The obvious choice is this one:

G0 := {g ∈ G | Adg(gi) ⊂ gi, ∀i = −k, . . . , k},

P := {g ∈ G | Adg(g
i) ⊂ gi, ∀i = −k, . . . , k}.

It is the maximal possible choice, but we may also take the connected compo-
nent of the unit in these subgroups or anything between these two extremes.
It is not difficult to show for these subgroups, see [21]:

Proposition 4.1. Let g be a |k|–graded semisimple Lie algebra and G
be a Lie group with Lie algebra g.

(1) G0 ⊂ P ⊂ G are closed subgroups with Lie algebras g0 and p,
respectively.

(2) The map (g0, Z) 7→ g0 expZ defines a diffeomorphism G0×p+ → P .

The group P is a semidirect product of the reductive subgroup G0 and
the nilpotent normal subgroup P+ := exp p+ of P .
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A parabolic geometry is a Cartan geometry of type (G,P ), where G and
P are as above. If the length of the gradation of g is k, then the geometry
is called |k|–graded.

These geometries are always split, but never reductive. Furthermore,
under the assumption that there is no simple ideal of g contained in g0,
parabolic geometries are infinitesimally effective, but they are not effective
in general.

Example 4.2. Conformal Riemannian structures. We take the Cartan
geometry of the type (G,P ) where G = O(p + 1, q + 1) is the orthogonal
group and P is the Poincaré conformal subgroup. The group G exactly looks
like

G =
{

A
∣

∣

∣
A

(

0 0 1
0 J 0
1 0 0

)

A−1 =
(

0 0 1
0 J 0
1 0 0

)}

,

where J =
(

E 0
0 −E

)

is the standard product of signature (p, q). Its Lie algebra
is of the form

g =

{(

a Z 0
X A −JZT

0 −XT J −a

) ∣

∣

∣

∣

a ∈ R, X, Y T ∈ R
n, A ∈ o(p, q)

}

.

It can be written as the sum of three parts g = g−1⊕g0⊕g1, where g−1 ≃ R
n,

g0 ≃ R ⊕ o(p, q) and g1 ≃ R
n∗. These parts correspond to the block lower

triangular part, block diagonal part and block upper triangular part and give
exactly the gradation of g of the length |1|. The elements from the subgroup

G0 =
{(

λ 0 0
0 C 0
0 0 λ−1

)
∣

∣

∣
λ ∈ R − {0}, C ∈ O(p, q)

}

preserve this gradation. Elements from subgroup P = G0⋊exp g1 preserving
the filtration then look like

(

λ 0 0
0 C 0
0 0 λ−1

)

·

(

1 Z − 1

2
ZJZT

0 E −JZT

0 0 1

)

=

(

λ λZ −
λ

2
ZJZT

0 C −CJZT

0 0 λ−1

)

.

We get the |1|–graded geometry and its homogeneous model is the conformal
pseudosphere of the corresponding signature.

The curvature of parabolic geometries

The curvature function κ : G → ∧2g∗− ⊗ g is valued in the cochains for

the second cohomology H2(g−, g). This group can be also computed as the
homology of the codifferential ∂∗ : ∧k+1g∗− ⊗ g → ∧kg∗− ⊗ g, where

∂∗(Z0 ∧ · · · ∧ Zk ⊗W ) =

k
∑

i=0

(−1)i+1Z0 ∧ · · · î · · · ∧ Zk ⊗ Zi ·W+

∑

i<j

(−1)i+j [Zi, Zj ] ∧ · · · î · · · ĵ · · · ∧ Zk ⊗W

for all Z0, . . . , Zk ∈ g∗− ≃ p+ and W ∈ g. We use here the duality between

P–modules g− ≃ g/p and p+ given by the Killing form on g. The symbol î
denotes omission of corresponding Zi.

The parabolic geometry is called normal if the curvature satisfies

∂∗ ◦ κ = 0.
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If the geometry is normal, we can define the harmonic part of curvature
κH : G → H2(g−, g) as the composition of the curvature function and the
projection to the second cohomology group.

Thanks to the gradation of g, there are several decompositions of the
curvature of the parabolic geometry. One of the possibilities is the decom-
position into homogeneous components, which is of the form

κ =

3k
∑

i=−k+2

κ(i),

where κ(i)(u)(X,Y ) ∈ gp+q+i for all X ∈ gp, Y ∈ gq and u ∈ G.
The parabolic geometry is called regular if the curvature function κ

satisfies κ(r) = 0 for all r ≤ 0. The crucial structural description of the
curvature is provided by the following Theorem, see [21]:

Theorem 4.3. The curvature κ of a regular normal geometry vanishes
if and only if its harmonic part κH vanishes.

Moreover, if all homogeneous components of κ of degrees less than j van-
ish identically and there is no cohomology H2

j (g−, g), then also the curvature
component of degree j vanishes.

Another possibility is the decomposition of the curvature according to
the values:

κ =

k
∑

j=−k

κj

and in an arbitrary frame u we have κj(u) ∈ g− ∧ g− → gj. In fact, the
component κ− valued in g− is the torsion of the geometry.

In the case of |1|–graded geometries the decomposition by the homo-
geneity corresponds to the decomposition according to the values. The ho-
mogeneous component of degree 1 corresponds to the torsion while the ho-
mogeneous components of degrees 2 and 3 coincide with κ0 and κ1.

The curvature as a tractor valued form

Let (G →M,ω) be a Cartan geometry of type (G,P ). We can define the
adjoint tractor bundle AM as the associated bundle AM := G ×P g. The
Lie bracket on g defines a bundle map

{ , } : AM ⊗AM → AM

which makes any fiber of AM isomorphic with the Lie algebra g. For all
u ∈ G and X,Y ∈ g it is defined by

{[[u,X]], [[u, Y ]]} = [[u, [X,Y ]]].

More generally, let λ : G→ Gl(V ) be a linear representation. We define
the tractor bundle VM as the associated bundle VM := G×P V with respect
to the restriction of the action λ to the subgroup P . In the case of adjoint
representation Ad : G→ Gl(g) we get exactly the adjoint bundle.

Elements of the associated bundle and also the sections of the bundle are
called (adjoint) tractors. We have to start with the G–representation and
not only with the P–representation, see [3, 4] for explanation and complete
discussion of the theory of tractors and tractor calculi.
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The adjoint tractor bundle AM acts on an arbitrary tractor bundle
VM = G ×P V . For all u ∈ G, X ∈ g and v ∈ V we define the algebraic
action

• : AM ⊗ VM → VM

[[u,X]] • [[u, v]] = [[u, λ′X (v)]],

where λ′ : g → gl(V ) is the infinitesimal representation given by λ : G →
Gl(V ). If we take λ = Ad and λ′ = ad, we get exactly the bracket { , }. It
is sometimes called algebraic bracket.

The action is correctly defined because the G–action λ′ is equivariant
for the action Ad on g and for the action on L(V, V ) induced by λ. In fact,
any G–representation λ gives the natural bundle V on Cartan geometries
of fixed type and all P–invariant operations on representations give rise
to geometric operations on the corresponding natural bundles. Similarly,
the P–equivariant morphisms of representations give corresponding bundle
morphisms.

In this way, the projection π : g → g/p naturally induces the bundle
projection

Π : G ×P g = AM −→ TM = G ×P g/p

and we can see the adjoint tractor bundle as an extension of the tangent
bundle. We can easily see:

Proposition 4.4. The curvature function κ of a Cartan geometry can
be viewed as a smooth section of associated bundle G ×P (∧2(g/p)∗ ⊗ g) with
respect to the action coming from adjoint action of G, and equivalently as a
AM–valued two form κ ∈ Ω2(M,AM).

We get the torsion as the composition T := Π ◦ κ ∈ Ω2(M,TM).

Now, let us suppose that we have a |k|–graded parabolic geometry. The
filtration of g is P–invariant and gives us the filtration of the adjoint sub-
bundles

AM = A−kM ⊃ A−k+1M ⊃ · · · ⊃ AkM,

where AiM := G ×P gi. The bundle A0M is exactly the kernel of the pro-
jection Π. At the same time, we get the associated graded bundle

G ×P gr(g) = gr(AM) = A−kM ⊕A−k+1M ⊕ · · · ⊕ AkM,

where AiM = AiM/Ai+1M ≃ G×P gi/gi+1. Since the Lie bracket on gr(g) is
exp g1–invariant, there is the algebraic bracket on gr(AM) defined by means
of the Lie bracket. The latter bracket is compatible with the algebraic bracket
on the tractor bundle and we denote both by the same symbol. We have

{ , } : AiM ×AjM → Ai+jM.

For each parabolic geometry we have the identification TM ≃ G ×P g−,
where the action of P on g− ≃ g/p is coming from adjoint action. The
Killing form on g induces the duality between this P–module and p+ ≃ g1

and we get A1M ≃ G ×P p+ ≃ T ∗M. In fact, the Killing form gives the
pairing on gr(AM) such that A∗

i ≃ A−i.
We see that TM ≃ AM/A0M and we obtain the induced filtration of

the tangent bundle

TM = T−kM ⊃ T−k+1M ⊃ · · · ⊃ T−1M,
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where T iM ≃ AiM/A0M . The filtration is compatible with the bracket of
vector fields if and only if κ(T iM,T jM) ⊂ Ai+jM for all i, j < 0. Next, we
can easily see:

Proposition 4.5. The curvature κ of parabolic geometry is a section of
∧2(AM/A0M)∗ ⊗AM and then AM–valued 2–form on M .

The geometry is regular if and only if κ(T iM,T jM) ⊂ Ai+j+1M for all
i, j < 0. The geometry is torsion free if and only if κ(TM,TM) ⊂ A0M .
The Lie algebra codifferential defines natural mapping

∂∗ : ∧k+1A1M ⊗AM → ∧kA1M ⊗AM

which is homogeneous of degree zero and the geometry is normal if and only
if ∂∗(κ) = 0.

Again, the filtration of TM gives us the associated graded bundle

gr(TM) = gr−k(TM) ⊕ · · · ⊕ gr−1(TM),

where gri(TM) = T iM/T i+1M ≃ AiM. The action of P+ on G is free and
the quotient G/P+ =: G0 → M is principal bundle with structure group
G0 = P/P+. The action of P+ on gi/gi+1 is trivial and we have gi/gi+1 ≃ gi

as G0–modules. We get gri(TM) ≃ G0 ×G0
gi and gr(TM) ≃ G0 ×G0

g−.
For each x ∈ M , the space gr(TxM) is the nilpotent graded Lie algebra
isomorphic to the algebra g− with the bracket given by Lie bracket of vector
fields.

Underlying structures

In the first section, we described the well known correspondence between
all affine Cartan geometries and the affine connections on the base manifold.
In fact, there is the similar correspondence between all types of Cartan
geometries of first order and corresponding geometrical structures on base
manifolds. It can be described via theory of G–structures and can be found
in [12].

Parabolic geometries are not first order structures and the concept does
not work here, but there is a concept of underlying structures. It gives nice
description of structures on base manifolds coming from parabolic geome-
tries.

We define in general a filtered manifold as a manifold M together with
a filtration TM = T−kM ⊃ · · · ⊃ T−1M such that for sections ξ of T iM
and η of T jM the Lie bracket [ξ, η] is a section of T i+jM and we get an
associated graded bundle gr(TM) again.

On the associated graded bundle we obtain so called the Levi bracket

L : gr(TM) × gr(TM) → gr(TM).

It is induced by Γ(T iM)× Γ(T jM) → Γ(gri+j(TM)) which is the composi-
tion of Lie bracket of vector fields with the projection TiM → TiM/Ti+1M .
It depends only on the class in gri(TM) and gives

gri(TM) × grj(TM) → gri+j(TM).

For each x ∈ M , this makes gr(TxM) into the nilpotent graded Lie algebra
which is called the symbol algebra of the filtered manifold at the point x.

There is equivalent description of regular parabolic geometry, see [6]:
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Proposition 4.6. Let (G → M,ω) be a parabolic geometry of type
(G,P ). The geometry is regular if and only if the induced filtration of TM
makes M into the filtered manifold such that the bracket on each symbol
algebra coincides with algebraic bracket.

In particular, each symbol algebra is isomorphic to g−.

If we start with a regular parabolic geometry, we get exactly these data
on the base manifold:

• A filtration {T iM} of the tangent bundle such that each symbol
algebra is isomorphic to g−

• A reduction of structure group of the associated graded bundle
gr(TM) with respect to Ad : G0 → Autgr(g−) (the reduction is
trivial in the case G0 = Autgr(g−)).

We call these data the underlying infinitesimal flag structure.
The proof of the following equivalence between such infinitesimal flag

structures and regular normal parabolic geometries can be found in [21, 5]:

Theorem 4.7. Let M be a filtered manifold such that each symbol algebra
is isomorphic to g− and let G0 → M be a reduction of the frame bundle of
gr(TM) to the structure group G0. Then there is a regular normal parabolic
geometry (p : G →M,ω) inducing the given data.

If H1
ℓ (g−, g) are trivial for all ℓ > 0, then the normal regular geometry

is unique up to isomorphism.

The construction is functorial and the latter Theorem describes an equiv-
alence of categories.

|1|–graded geometries

In this case, the filtration of the tangent bundle is trivial. We need
only the reduction of gr(TM) to the structure group G0. The |1|–graded
geometries are automatically regular and we get the correspondence between
normal |1|–graded parabolic geometries and first order G–structures whose
structure groups G0 appear as the reductive part of a parabolic subgroup
P ⊂ G and g = g−1 ⊕ g0 ⊕ g1.

We give here survey on all |1|–graded geometries with the simple group
G. The classification of semisimple Lie algebras in terms of simple roots is
well known and for a given g there is a complete description of all parabolic
subalgebras, see [21, 6] for more details. The latter description allows to
classify all corresponding geometries. We list them all here together with
their non–zero components of the harmonic curvature (notice some overlaps
in low dimensions).

Aℓ : the split form, ℓ ≥ 2, the almost Grassmannian structures, g =
sl(p+ q,R), g0 = s(gl(p,R) × gl(q,R)), p+ q = ℓ+ 1. Moreover
p = 1, q = 2 or p = 2, q = 1 : the projective structures dim = 2,

one curvature of homogeneity 3
p = 1, q > 2 or p > 2, q = 1 : the projective structures dim > 2,

one curvature of homogeneity 2
p = 2, q = 2 : dim = 4, two curvatures of homogeneity 2
p = 2, q > 2 or p > 2, q = 2 : dim = pq, one torsion, one curva-

ture of homogeneity 2
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p > 2, q > 2 : dim = pq, two torsions
Aℓ : the quaternionic form, ℓ = 2p+1 > 2, g = sl(p+1,H). We have:

p = 1 : the almost quaternionic geometries, dim = 4, two curva-
tures of homogeneity 2

p > 1 : the almost quaternionic geometries, dim = 4p, one tor-
sion, one curvature of homogeneity 2

geometries modeled on quaternionic Grassmannians : two torsi-
ons

Aℓ : ℓ = 2p− 1 one type geometry for the algebra su(p, p). We have:
p = 2 : two curvatures of homogeneity 2
p > 2 : two torsions

Bℓ : the pseudo–conformal geometries in odd dimension ≥ 3. We
have:
ℓ = 2 : dim = 3, one curvature of homogeneity 3
ℓ > 2 : dim = 2ℓ− 1, one curvature of homogeneity 2

Cℓ : the split form, ℓ > 2, the almost Lagrangian geometries, one
torsion

Cℓ : one type of geometry corresponding to sp(p, p), 2p = ℓ, one tor-
sion

Dℓ : the pseudo–conformal geometries in all even dimensions ≥ 4
ℓ = 3 : dim = 4, two curvatures of homogeneity 2
ℓ > 3 : dim ≥ 6, one curvature of homogeneity 2

Dℓ : the real almost spinorial geometries g = so(ℓ, ℓ)
ℓ = 4 : one curvature of homogeneity 2
ℓ ≥ 5 : one torsion

Dℓ : the quaternionic almost spinorial geometries, g = u∗(ℓ,H), ℓ =
2m, one torsion

E6 : two exotic geometries with g0 = so(5, 5)⊕R and g0 = so(1, 9)⊕
R, one torsion

E7 : two exotic geometries with g0 = EI⊕R and g0 = EIV ⊕R, one
torsion

Let us remark, that in the low dimensional cases some of the algebras are
isomorphic and the corresponding geometries are in fact equal. In particular,
so(3, 3) ≃ sl(4,R), so(2, 4) ≃ su(2, 2), so(1, 5) ≃ sl(2,H) and so all the
four–dimensional conformal pseudo–Riemannian geometries are covered by
the corresponding A4–cases. Moreover, the spinorial geometries for D4 are
isomorphic to the conformal Riemannian geometries.

5. Weyl structures

We summarize here without proofs basic facts about this useful tool
to study parabolic geometries. Later, we will work only with |1|–graded
geometries and we give here most of the facts only for them. The complicated
general formulas, which are very nice and clear in our special case, are the
main reason for this simplification. General theory can be found in [6, 19].

Remind that there is the underlying bundle G0 := G/ exp g1, which is the
principal bundle p0 : G0 → M with structure group G0. At the same time
we get the principal bundle π : G → G0 with structure group P+ = exp g1.
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The Weyl structure σ for parabolic geometry (p : G →M,ω) is a global
smooth G0–equivariant section of the projection π : G → G0. We have the
following situation:

G π
// G0

σ
ii p0

// M

There exists some Weyl structure σ : G0 → G on an arbitrary parabolic
geometry. For two Weyl structures σ and σ̂ there exists exactly one G0–
equivariant mapping Υ : G0 → g1 such that

σ̂(u) = σ(u) · exp Υ(u)

for all u ∈ G0.
Consequently, if we fix one Weyl structure σ, then all Weyl structures are

exactly of the form σ ·exp Υ for all possible G0–equivariant functions Υ. Such
a function Υ can be equivalently taken as a P–equivariant mapping G → g1.
At the points σ(G0) it is given by the original G0–equivariant function and
the P–equivariancy gives the mapping elsewhere. This equivariant mapping
is a frame form of some 1–form on M , i.e. a section of A1M ≃ A1M .

We get that the number of these possible functions is equal to the number
of existing 1–forms Ω(M). The space of all Weyl structures is an affine space
modeled over the vector space of all 1–forms and in this way we can write
σ̂ = σ + Υ. Using the Campbell–Baker–Haussdorf formula, see [15, p. 40],
we compute

(σ + Υ) + Υ′ = (σ · exp Υ) · exp Υ′ = σ · (exp Υ · exp Υ′) =

= σ · exp(Υ + Υ′) = σ + (Υ + Υ′).

The choice of the Weyl structure σ induces the decomposition of all
tractor bundles into G0–invariant pieces. In particular, the adjoint tractor
bundle splits as

AM = TM ⊕ End(TM) ⊕ T ∗M.

Thus the algebraic bracket of a vector field with a 1–form becomes an en-
domorphism on TM .

Similarly, the choice of some Weyl structure σ allows us to define the G0–
equivariant 1–form σ∗ω on the bundle G0. Because we have the G0–invariant
decomposition g = g−1 ⊕ g0 ⊕ g1 we can decompose the form as

σ∗ω = σ∗ω−1 + σ∗ω0 + σ∗ω1.

The part σ∗ω−1 plays the role of the soldering form on the underlying bundle
G0 and for this reason is called the soldering form. It does not change if we
change the Weyl structure. The part

σ∗ω0 =: γσ ∈ Ω1(G0, g0)

defines the principal connection on p0 : G0 → M . Every connection coming
from some Weyl structure is called the Weyl connection (associated to the
Weyl structure σ). For two Weyl structures σ and σ̂ = σ · exp Υ we have
(γσ̂ − γσ)(u)(ξ) = [σ∗ω−1(ξ),Υ(u)] for u ∈ G0 and ξ ∈ X(G0).

There is a similar description for all induced connections on associated
bundles. Let V be a vector space with the left action λ of group G0 and
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denote ∇σ the connection induced from γσ on G0 ×G0
V . These connec-

tions are called Weyl connections, too. If ∇σ and ∇σ̂ are Weyl connections
corresponding to the structures σ and σ̂ = σ · exp Υ, then we have

∇σ̂
ξ (s) = ∇σ

ξ (s) + {ξ,Υ} • s

for ξ ∈ X(M) and s ∈ Γ(G0 ×G0
V ). Here • is the algebraic action derived

from λ. In the case of the tangent bundle we get

∇σ̂
ξ (η) = ∇σ

ξ (η) + {{ξ,Υ}, η}

for any ξ, η ∈ X(M).
The positive component σ∗ω1 =: P

σ is called Rho–tensor (associated to
the Weyl structure σ). This tensor is the analogy of the Rho–tensor from
the conformal geometry and for ξ ∈ X(M) and P

σ, P
σ̂ corresponding to σ

and σ̂ = σ · exp Υ it transforms in the following way:

P
σ̂(ξ) = P

σ(ξ) + ∇σ
ξ (Υ) +

1

2
{Υ, {Υ, ξ}}.

Finally, we remark that the form σ∗ω−1 + γσ ∈ Ω1(G0, g−1 ⊕ g0) de-
fines the Cartan connection on the G0–bundle G0 for any σ and we get the
reductive Cartan geometry (G0 → M,σ∗ω−1 + γσ), which is of first order.
Equivalently, we have a G0–structure G0 → M with canonical form σ∗ω−1

and with the chosen principal connection γσ.

Action of automorphisms on Weyl structures

Let ϕ : G → G′ be a morphism of parabolic geometries. Then there exists
exactly one underlying morphism ϕ0 : G0 → G′

0 such that ϕ0 ◦ π = π′ ◦ ϕ.
If ϕ : G → G is an automorphism, then we have exactly one automorphism
ϕ0 : G0 → G0 satisfying ϕ0 ◦ π = π ◦ ϕ. If we fix a Weyl structure σ, the
pullback

σ̂ = ϕ−1 ◦ σ ◦ ϕ0 =: ϕ∗σ

clearly is again some Weyl structure, because it is a composition of G0–
equivariant mappings and then it is also G0–equivariant. If the morphism
ϕ is globally defined, then the resulting section is also globally defined. In
fact, we are in the following situation.

G
π //

ϕ

��

G0

ϕ0

��

σ̂ii

p0 // M

G
π // G0σii

p0 // M

Here σ and σ̂ are in general two different Weyl structures. There has to exist
exactly one Υ such that ϕ∗σ = σ + Υ.

Next, we shall check the compatibility of the affine structure on the
Weyl structures with the pullback operation. Recall that for any 1–form Υ
we have ϕ∗Υ = Υ ◦ ϕ0.

Proposition 5.1. Let ϕ be an automorphism of G and let ϕ0 be the
induced automorphism of G0. Then

ϕ∗(σ + Υ) = ϕ∗σ + ϕ∗Υ
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holds for all Weyl structures σ and all 1–forms Υ, i.e. the pullback over ϕ
respects the affine structure on the space of Weyl structures.

Proof. The definition of the affine structure is (σ + Υ)(u) = σ(u) ·
exp Υ(u) = (σ · exp Υ)(u) for all u ∈ G0 and we have the following compu-
tation:

ϕ∗(σ · exp Υ)(u) = ϕ−1 ◦ (σ · exp Υ) ◦ ϕ0(u) =

= ϕ−1
(

σ(ϕ0(u)) · exp Υ(ϕ0(u))
)

=

= ϕ−1
(

σ(ϕ0(u))
)

· exp Υ(ϕ0(u)) =

= ϕ∗σ(u) · expϕ∗Υ(u)

Again, the definition gives ϕ∗σ(u) · expϕ∗Υ(u) = (ϕ∗σ + ϕ∗Υ)(u). �

If we take σ such that ϕ∗σ = σ + Υ, we can write

ϕ∗(σ + Υ′) = ϕ∗σ + ϕ∗Υ′ = σ + Υ + ϕ∗Υ′.

Further, let ϕ0 be an automorphism of G0 induced by ϕ and let σ be an
arbitrary Weyl structure. It is an easy computation to show that its Weyl
connection satisfies

ϕ∗
0γ

σ = γϕ∗σ = γσ+Υ.

The same idea works for induced connections coming from Weyl struc-
tures on associated bundles. In fact, the pullback over an arbitrary auto-
morphism of parabolic geometry permutes all Weyl structures and also con-
nections defined via Weyl structures.

If there is some Weyl structure σ such that ϕ∗σ = σ, then we have
γσ = ϕ∗

0γ
σ and we get a connection, which is invariant with respect to ϕ0.

Curvatures of Weyl connections

Let (G → M,ω) be a |1|–graded geometry, K its curvature form and κ
its curvature function. If we choose some Weyl structure σ, we can compute
σ∗κ = κ ◦ σ : G0 → ∧2g∗−1 ⊗ g. Thanks to the G0–invariant decomposition

of the tensor ∧2g∗−1 ⊗ g, which depends only on the decomposition of the
algebra g, we get

σ∗κ = σ∗κ−1 + σ∗κ0 + σ∗κ1.

Similarly, we have the pullback σ∗K. We will not distinguish between the
curvature K (resp. σ∗K) and its frame form κ (resp. σ∗κ).

Using the defining formula for the curvature of the Cartan connection
we have for all ξ, η ∈ X(G0)

σ∗κ−1(ξ, η) = dσ∗ω−1(ξ, η) + [σ∗ω−1(ξ), σ
∗ω0(η)] + [σ∗ω0(ξ), σ

∗ω−1(η)],

σ∗κ0(ξ, η) = dσ∗ω0(ξ, η) + [σ∗ω0(ξ), σ
∗ω0(η)]+

[σ∗ω−1(ξ), σ
∗ω1(η)] + [σ∗ω1(ξ), σ

∗ω−1(η)],

σ∗κ1(ξ, η) = dσ∗ω1(ξ, η) + [σ∗ω1(ξ), σ
∗ω0(η)] + [σ∗ω0(ξ), σ

∗ω1(η)].

Next, for the fixed Weyl structure σ we get the principal connection γσ =
σ∗ω0 on the G0–structure (p0 : G0 → M,θ), where θ = σ∗ω−1. We also get
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associated connections ∇σ. We can easily compute the curvature and the
torsion of γσ. We have

τσ(ξ, η) = dθ(ξ, η) + [θ(ξ), γσ(η)] + [γσ(ξ), θ(η)],

ρσ(ξ, η) = dγσ(ξ, η) + [γσ(ξ), γσ(η)]

for all ξ, η ∈ X(G0). Let us remark, that the form τσ + ρσ describes the
curvature of first order Cartan geometry (G0 →M,σ∗ω−1 + γσ).

The two 2–forms are horizontal and can be understand as forms on M .
Clearly, they describe the curvature Rσ ∈ Γ(∧2TM∗ ⊗ End0(TM)) and the
torsion T σ ∈ Γ(∧2TM∗ ⊗ TM) of associated connection on tangent bundle.
In general, we have TM ≃ gr(TM) via the isomorphism given by the choice
of σ.

We can easily reinterpret the curvature and the torsion of Weyl connec-
tion via the function σ∗κ. Clearly, the torsion corresponds to the part σ∗κ−1.
This part comes from the torsion of ω and does not depend on the choice of
Weyl structure, because it is the lowest part of the decomposition. Then all
Weyl connections share the same torsion and we will denote it by T .

The part σ∗κ0 is the frame form of so called Weyl curvature W σ of
the connection ∇σ. Comparing σ∗κ0 with ρσ leads to the following relation
between curvature of the Weyl connection and its Weyl curvature

W σ(ξ, η) = Rσ(ξ, η) + {ξ,Pσ(η)} + {Pσ(ξ), η}

for all ξ, η ∈ X(M). If we change Weyl structure, then the Weyl curvature
transforms in the following way

W σ̂(ξ, η) = W σ(ξ, η) + {Υ, T (ξ, η)}

for all ξ, η ∈ X(M) and σ̂ = σ · exp Υ. Clearly, if the Weyl connection is
torsion free (and then all Weyl connections), then the Weyl curvature does
not depend on the choice of the Weyl structure.

We should remark that the part σ∗κ1 corresponds to the so called
Cotton–York tensor

Y σ(ξ, η) = (∇σ
P

σ)(ξ, η) − (∇σ
P

σ)(η, ξ) + P
σ(T (ξ, η))

of the connection ∇σ for all ξ, η ∈ X(M). If we change the Weyl structure,
then we get the following formula for change of the Cotton–York tensor

Y σ̂(ξ, η) = Y σ(ξ, η) + {Υ,W σ(ξ, η)} +
1

2
{Υ, {Υ, T (ξ, η)}}

for all ξ, η ∈ X(M) and σ̂ = σ · exp Υ.
We can shortly write that σ∗κ corresponds to

T +W σ + Y σ = T +Rσ + ∂P
σ + Y σ,

where ∂ is the Lie algebra cohomology differential. It can be shown that if for
one (and then for any) Weyl connection the torsion, the Weyl–curvature and
the Cotton–York tensor vanish, then the manifold is as a parabolic geometry
locally isomorphic to the homogeneous model.

Next, let ϕ be an automorphism of the parabolic geometry. Then its
curvature is invariant with respect to ϕ. If we choose a Weyl structure σ
such that ϕ∗σ = σ, then Weyl–curvature, Rho–tensor and other part of the
curvature are invariant with respect to the underlying morphism ϕ0.
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Finally, we remark that all these objects are straight analogy of the
well known objects from conformal geometry. More on this theory, which
generalizes classical objects from the conformal geometry, can be found in
[6] or in [3, 4].

Normal Weyl structures

Finally, we shall introduce special cases of Weyl structures which are
closely related to normal coordinate systems for affine geometries.

For any u ∈ G, there is a local diffeomorphism Φu : g− → M from the
neighborhood of 0 to neighborhood of p(u) defined by

Φu(X) = p ◦ Fl
ω−1(X)
1 (u).

This mapping is called normal coordinates at u.
Each normal coordinates define a normal Weyl structure on any para-

bolic geometry as follows: Let Φu be normal coordinates defined on some
neighborhood U ⊂ g−, 0 ∈ U . Over Φu(U), there is a unique G0–equivariant
section σu such that

Fl
ω−1(X)
1 (u) ⊂ σu(G0).

This section is called normal Weyl structure at u ∈ G and can be equivalently
defined as the only G0–equivariant section satisfying

σu ◦ π ◦ Fl
ω−1(X)
1 (u) = Fl

ω−1(X)
1 (u).

Clearly, normal Weyl structures are in general defined only locally and
can be used only for the study of local properties of the geometry. We prove:

Proposition 5.2. Let ϕ be automorphism of G and σ be a normal Weyl
structure. The pullback ϕ∗σ is again some normal Weyl structure.

Proof. We have the following computation:

ϕ∗σ ◦ π ◦ Fl
ω−1(X)
1 (u) = ϕ−1 ◦ σ ◦ ϕ0 ◦ π ◦ Fl

ω−1(X)
1 (u) =

= ϕ−1 ◦ σ ◦ π ◦ ϕ ◦ Fl
ω−1(X)
1 (u) =

= ϕ−1 ◦ σ ◦ π ◦ Fl
ω−1(X)
1 (ϕ(u)) =

= ϕ−1 ◦ ϕ ◦ Fl
ω−1(X)
1 (u) =

= Fl
ω−1(X)
1 (u)

Clearly, the pullback ϕ∗σ again satisfies the conditions on normal Weyl
structures. �

6. Symmetries on geometries

From the Section 3 we know, that it is quite difficult to find a universal
definition of the symmetry for arbitrary Cartan geometry. In the case of
parabolic geometries, the most reasonable possibility is to take the following
definition:

Definition 6.1. Let (G →M,ω) be a parabolic geometry. The symme-
try at the point x is a locally defined diffeomorphism sx on M such that:

(i) sx(x) = x
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(ii) Txsx|T−1
x M = − idT−1M

(iii) sx is covered by an automorphism ϕ of the Cartan geometry, i.e.
sx = ϕ on some neighborhood of x.

The geometry is called (locally) symmetric if there is a symmetry at each
point x ∈M .

In other words, symmetries revert by the sign change only the smallest
subspace in the filtration, while their actions on the rest are completely de-
termined by the algebraic structure of the symbol algebra. It clearly resolves
the problem with contact structures discussed in the end of first chapter.

In the case of |1|–graded geometries, however, the filtration is trivial
and so we have T−1M = TM . Thus the definition of the symmetries of
|1|–graded geometries follow completely the classical intuitive idea.

Next, we will always work only with locally defined automorphisms. We
will omit ‘locally’ and we will say only ‘symmetric’ geometry. We will denote
ϕ an automorphism of Cartan geometry covering some symmetry and ϕ the
corresponding symmetry. We have the following Lemma:

Lemma 6.2. If there is a symmetry in some x on a |1|–graded geometry
of type (G,P ), then there exists an element g ∈ P such that

Adg(X) = −X

for all X ∈ g−1, where Ad denotes the action on g−1 induced from the
adjoint action.

All such elements g are of the form g = g0 expZ, where g0 ∈ G0 such
that Adg0

(X) = −X for all X ∈ g−1 and Z ∈ g1 is arbitrary.

Proof. Let ϕ cover some symmetry in a point x ∈ M . The symmetry
ϕ preserves the point x and hence the morphism ϕ preserves the fiber over
x. Let u be an arbitrary fixed point in the fiber over x. There is an element
g ∈ P such that ϕ(u) = u · g. We will study the action of this g on g−1.

Let ξ ∈ X(M) be a vector field on M . In the point x we have

Tϕ.ξ(x) = − idTxM (ξ(x)) = −ξ(x).

Using the identification TM ≃ G ×P g−1 we have ξ(x) = [[u,X]] for some
X ∈ g−1. In the chosen frame u we then have

Tϕ([[u,X]]) = [[u,−X]],

because the symmetry changes the sign of the coordinates X in the frame u.
The equivariancy gives in the fiber over x

Tϕ([[u,X]]) = [[ϕ(u),X]] = [[ug,X]] = [[u,Adg−1(X)]].

Comparing the coordinates in the frame u gives us the action of element
g ∈ P on g−1. We have Adg(−X) = X and the action of element g is the
change of the sign for all elements from g−1.

Next, because g ∈ P we have g = g0 expZ for some g0 ∈ G0 and Z ∈ g1,
see Proposition 4.1. We have Adg0 exp Z(X) = −X for all X ∈ g−1. But the
action of the component expZ is trivial while the action of g0 preserves the
gradation, i.e. Adg0

= Adg0
, and the element g0 satisfies Adg0

(X) = −X. �
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In fact, it is possible to formulate the latter Lemma also for other types
of geometries, which are not necessarily |1|–graded parabolic. More precisely,
similar fact can be shown for all Cartan geometries (G → M,ω) that carry
an automorphism ϕ such that ϕ(x) = x and Tϕ|TxM = −idTxM in some
x ∈ M (i.e. the symmetry ϕ reverts the whole TxM). In all these cases we
have:

Lemma 6.3. Let (G → M,ω) be a Cartan geometry of type (G,P ) such
that there is a symmetry in x, which reverts the whole TxM . Then there is
an element g ∈ P such that

Adg(X + p) = −(X + p)

for all X + p ∈ g/p, where Ad is the action induced on the factor from the
adjoint action.

Proof. In fact, the proof is the same as in the case of Lemma 6.2. For
any ξ ∈ TM ≃ G×P g/p we can write ξ(x) = [[u,X+p]] for some u ∈ p−1(x)
and X + p ∈ g/p. We then have

Tϕ([[u,X + p]]) = [[ϕ(u),X + p]] = [[ug,X + p]] = [[u,Adg−1(X + p)]].

This is equal to −ξ(x) = [[u,−(X + p)]] and it gives that g−1 is exactly
the element we are looking for. Then also g acts by the change of the sign
on g/p and satisfies the equation. �

The Lemma 6.3 works for example for affine geometry. It says that there
exists an element A ∈ Gl(n,R) such that AdA(X) = AX = −X for all
X ∈ R

n on the affine locally symmetric space, i.e. on symmetric Cartan
geometry of type (A(n,R), Gl(n,R)), see Example 7.2. Conversely, it does
not work for parabolic contact structures.

Remark 6.4. Suppose that there is an element g satisfying the cor-
responding condition from Lemmas on the geometry of given type. If some
element differs from g by a conjugation by an element from P , then it has the
same property. If g corresponds to the frame u ∈ p−1(x), then the element
h−1gh for h ∈ P corresponds to the frame uh ∈ p−1(x).

7. Homogeneous models

The previous Lemmas give us an efficient tool to study symmetries on
homogeneous models. We have:

Proposition 7.1. All symmetries of the homogeneous model (G →
G/P,ωG) at the origin o = eP are induced exactly by the left multiplica-
tions by elements g ∈ P satisfying the conditions from the latter Lemmas
for the geometry of appropriate type (G,P ).

Moreover, if there is a symmetry in the origin o, then the homogeneous
model is symmetric.

Proof. All automorphisms of G/P are exactly left multiplications by
elements from G, see Proposition 2.3. We look for elements from G, which
give symmetries. Let us denote λg the left multiplication by element g and
suppose, that λg covers some symmetry in the origin. Then the element g
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must belong to P . We make similar computation as in the proofs of previous
Lemmas.

Let ξ ∈ X(G/P ) be a vector field. In the origin of the homogeneous
model we have ξ(o) = [[e,X]] for some X ∈ g/p ≃ g− and we get

Tλg([[e,X]]) = [[ge,X]] = [[g,X]] = [[e,Adg−1(X)]].

It equals to −ξ(o) = [[e,−X]] and the element g must satisfy the conditions.
If there is a symmetry in the origin, we can use the conjugation to get

symmetry in each point hP ∈ G/P . If λg covers a symmetry in the origin o
for some g ∈ P , then λhgh−1 covers some symmetry in the point hP . �

Examples

Now we present some examples. We will simply look for elements from
the latter Proposition to find possible symmetries.

We start with the affine geometry. This is not a parabolic geometry
but our definition of the symmetry recovers the classical one and the latter
Proposition holds. Then we give some |1|–graded examples.

Example 7.2. Affine geometry. We have G = A(n,R), the affine group,
and P = Gl(n,R). Their algebras are g = a(n,R) and p = gl(n,R), see
Example 2.1.

We look for elements
(

1 0
0 A

)

∈ A(n,R) satisfying
(

1 0
0 A

) (

0 0
w 0

) (

1 0
0 A

)−1
=

(

0 0
−w 0

)

for all ( 0 0
w 0 ) ∈ g− ≃ R

n. Consequently,
(

1 0
0 A

) (

0 0
w 0

)

=
(

0 0
−w 0

) (

1 0
0 A

)

and thus
(

0 0
Aw 0

)

=
(

0 0
−w 0

)

. We can see that there is only one element sat-

isfying this equality and this is
(

1 0
0 −E

)

, the conjugation by another element
of P gives trivial change.

This matches the well known fact on the classical symmetric spaces.
There can exist only one symmetry in each point on the affine (locally)
symmetric space. The symmetry corresponds to the element we found above.
The homogeneous model is the affine plane R

n ≃ A(n,R)/Gl(n,R). This
clearly is a symmetric space and the symmetry in the origin is given by the
left multiplication by

(

1 0
0 −E

)

.

Example 7.3. Projective structures. We can make two reasonable choices
of the Lie group G with the |1|–graded Lie algebra sl(m+1,R). We can con-
sider G = Sl(m+1,R). Then the maximal P is the subgroup of all matrices
of the form

(

d W
0 D

)

such that 1
d = detD for D ∈ Gl(m,R) and W ∈ R

m∗, but
we take only the connected component of the unit. It consists of all elements
such that detD > 0.

In this setting, the group G acts on rays in R
m+1 and P is the stabilizer

of the ray spanned by the first basis vector. Clearly, with this choice G/P
is diffeomorphic to the m–dimensional sphere. The subgroup G0 contains
exactly elements of P such that W = 0, and this subgroup is isomorphic to
Gl+(m,R).

The second reasonable choice is G = PGl(m + 1,R), the quotient of
Gl(m+1,R) by the subgroup of all multiples of the identity. This group acts
on RPm and as the subgroup P we take the stabilizer of the line generated by
the first basis vector. Clearly G/P is diffeomorphic to RPm. The subgroup
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G0 is isomorphic to Gl(m,R), because each class in G0 has exactly one
representant of the form

(

1 0
0 D

)

.
We can make the computation simultaneously and then discuss the cases

separately. We have g =
{(

−tr(A) Z
X A

)
∣

∣

∣
X,ZT ∈ R

m, A ∈ gl(m,R)
}

and

elements from g−1 look like
(

0 0
X 0

)

. The adjoint action of a =
(

b 0
0 B

)

on

V =
(

0 0
X 0

)

is Ada V = b−1BX. We look for elements
(

b 0
0 B

)

such that
BX = −bX for each X. It is easy to see that B is a diagonal matrix and
that all elements on the diagonal are equal to −b. Thus we may represent
the prospective solution as

(

1 0
0 −E

)

.
Now, we discuss the choice G = Sl(m + 1,R) with G/P ≃ Sm. The

element has the determinant ±1 and the sign depends on the dimension of
the geometry. If m is even, then the element gives a symmetry but if m
is odd, then there is no symmetry on this model. The reason is obvious –
our choice of the groups has lead to the oriented sphere with the canonical
projective structure (represented e.g. by the metric connection of the round
sphere metric) and the obvious symmetries are orientation preserving in the
even dimensions only.

In the case of G = PGl(m+ 1,R), the above element always represents
the class in G0 and thus yields the symmetry. In both cases, all elements
giving symmetry are of the form

(

1 W
0 −E

)

for all W ∈ R
m∗.

These two choices of the group G correspond to projective structures on
oriented and non–oriented manifolds. The non–oriented projective geome-
tries can be symmetric, the homogeneous models are symmetric. The ex-
istence of a symmetry on the oriented projective geometry depends on its
dimension. Only the even–dimensional geometries can be symmetric. Sym-
metric odd–dimensional oriented projective geometry does not exist.

Example 7.4. Almost quaternionic structures. Now we take almost
quaternionic structures, we have g = sl(m + 1,H). There are again two
interesting choices of the groups. We can choose G = Sl(m + 1,H) with
the canonical action on H

m+1. The parabolic subgroup P is the stabilizer
of the quaternionic line spanned by the first basis vector in H

m+1. Then
G0 =

{(

a 0
0 A

) ∣

∣ |a|4 detR A = 1
}

.
Next, we can take G = PGl(m + 1,H), the quotient of all invertible

quaternionic linear endomorphisms by the subgroup of real multiples of iden-
tity. Let P be the (factor of the) stabilizer of the quaternionic line spanned
by the first basis vector. The subgroup G0 consists of classes in P of block
diagonal matrices which are represented by matrices of the form

(

a 0
0 A

)

such
that 0 6= a ∈ H and A ∈ Gl(m,H).

We have g−1 =
{(

0 0
X 0

) ∣

∣ X ∈ H
m

}

and we look for elements
(

q 0
0 B

)

such
that BX = −Xq for each X. Again, such an element must be diagonal and
the elements on the diagonal of B are equal to −q. Suppose that q = a+bi+
cj+dk. If we choose X = ( i

0 ) we get (−a−bi−cj−dk)i = −i(a+bi+cj+dk),
thus −ai+ b+ ck− dj = −ai+ b− ck+ dj and so c = d = 0. Then the choice
X =

(

j
0

)

gives that q has to be real. We again get the element
(

1 0
0 −E

)

.
In the case of PGl(m + 1,H), this element clearly represents the class

giving symmetry. In the case of Sl(m+ 1,H) it should again depend on the
dimension of the manifold. But the real dimension equals to 4m and also in
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this case, the symmetry is well defined. All elements giving symmetries look
like

(

1 W
0 −E

)

for all W ∈ H
m∗.

Example 7.5. Conformal Riemannian structures. There is a lot of pos-
sible choices of the corresponding group and we show only the most common
one. The usual choice is G = O(p + 1, q + 1) and P the Poincaré conformal
group, see Example 4.2.

The adjoint action of some b =
(

λ 0 0
0 C 0
0 0 λ−1

)

∈ G0 on arbitrary V =
( 0 0 0

X 0 0
0 −XT J 0

)

∈ g−1 is AdbV = λ−1CX and we require λ−1CX = −X. Thus

we look for λ ∈ R \ {0} and C ∈ O(p, q) such that CX = −λX for each
X ∈ R

p+q. Clearly, C has to be diagonal and all elements on the diagonal
have to be equal to 1 or −1 because detC is equal to 1 eventually −1. We

get two elements satisfying all conditions:
(

−1 0 0
0 E 0
0 0 −1

)

and
(

1 0 0
0 −E 0
0 0 1

)

.

Both elements belong to O(p+1, q+1) and their left multiplications give
symmetries on homogeneous model. This two elements differ in the multi-
plication by element −E. The choice G = O(p+ 1, q + 1) gives not effective
geometry and the kernel of this geometry is {±id}. Thus our elements differ
in multiplication by some element from the kernel. Left multiplication by
elements from the kernel induce identity on the base manifold and then this
two elements give the same symmetry. All elements inducing some symmetry

are of the form
(−1 Z 0

0 E −JZT

0 0 −1

)

and
(

1 Z 0
0 −E −JZT

0 0 1

)

for all Z ∈ R
p+q∗.

It is possible to take an effective model, e.g. to start with PO(p+1, q+1),
the factor of orthogonal group by its center. With this choice we clearly get
exactly one element from G0 satisfying the condition, which is the class

represented by the element
(

−1 0 0
0 E 0
0 0 −1

)

. It is the analogy to the choice G =

PGl(m+ 1) in the projective case.
We could take only effective geometries but we will rather work with all

infinitesimally effective geometries to include standard choices of groups for
all |1|–graded parabolic geometries. It brings no complications. We return
to the discussion of the efficiency of geometries in more general setting in
Section 9.

Example 7.6. Almost Grassmannian structures. We have g = sl(p +
q,R) and we first take G = Sl(p + q,R). This group acts on R

p+q and the
subgroup P is the stabilizer of R

q. Elements of G0 = S(Gl(p,R)×Gl(q,R))
look like

(

C 0
0 D

)

where detC · detD = 1. The homogeneous model is the

Grassmannian of p–dimensional subspaces of R
p+q.

The algebra g consists of block elements
(

X Y
Z W

)

with block size p and
q where tr(X) + tr(W ) = 0 and elements of g−1 are those with X,Y,W
vanishing.

The adjoint action of some
(

S 0
0 T

)

∈ G0 on
(

0 0
V 0

)

∈ g−1 is TV S−1 and
we look for S and T such that TV = −V S for all V ∈ L(Rp,Rq). The
properties of matrix multiplication give that T and S are diagonal, elements
on the diagonal of T are equal, elements on the diagonal of S are equal
and elements on the diagonal of T are equal to minus elements from S.
The condition on determinant gives that only elements

(

E 0
0 −E

)

and
(

−E 0
0 E

)

satisfy all latter restrictions.
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We have to discuss the dependence on p and q to resolve whether some
of these two elements belong to Sl(p + q,R) and give a symmetry. We get
some symmetry if at least one of p and q is even. If only p is even, then
all symmetries are given by elements

(

−E X
0 E

)

for all X ∈ L(Rq,Rp). If only

q is even, then all symmetries are given by elements
(

E X
0 −E

)

for all X ∈
L(Rq,Rp). If both sizes are even, then all latter elements give symmetries.
If p and q are odd, then there is no symmetry.

The situation where p and q are both even looks similar to the situation
in some latter examples of non–effective models. In this special case, the
geometry has nontrivial kernel, too. This is of the form {

(

E 0
0 E

)

,
(

−E 0
0 −E

)

}.
Clearly, the second element belongs to the group Sl(p + q,R) if and only
if p and q are both even (or odd, but this case is not interesting). In this
case, there are two different elements giving the same symmetry and these
two elements differ by the multiplication by −E. Again, we can take G =
PSl(p + q,R) instead of Sl(p + q,R) to get effective geometry. With this
choice, each symmetry is given by exactly one class represented by some
latter element.

Let us point out some observations coming from these examples. The
existence of symmetry on the homogeneous model depends on the choice of
the groups. We know, that if there is no element satisfying the condition
from Lemma 6.2, then the homogeneous model of the corresponding type
is not symmetric. In addition, none of the Cartan geometry of the same
type is symmetric. Let us mention the oriented projective structures in odd
dimension. These Cartan geometries cannot be symmetric. If we forget the
orientation (i.e. if we consider different groups) then we get geometries which
can be symmetric.

Remark on generalized geodesics

There is an equivalent definition of affine (locally) symmetric space. The
symmetry in x on the manifold M with linear connection ∇ can be defined
as an automorphism of some neighborhood U ⊂ M, x ∈ U , which turns
the parametrized geodesics of ∇ going through x around this point. The
manifold with affine connection is symmetric if there is a symmetry in each
point x ∈M .

The affine geodesic is uniquely given by the 1–jet, i.e. the point and
the direction. Also in every point, there is only one geodesic in each direc-
tion and the reverting is given uniquely. The image of the geodesic going in
some direction is the geodesic going through the same point in the reversed
direction. The question is following: Is this mapping the affine transforma-
tion? There can exist at most one symmetry, exactly the latter mapping.
It corresponds to the fact, that affine structures are of first order and each
(auto)morphism is uniquely given by its 1–jet in one point. If we prescribe
the symmetry on this Gl(n,R)–structure by its 1–jet, then we look for a
connection, which is invariant with respect to our symmetry. This approach
leads to classical results, see [13].

Analogies of the affine geodesics for parabolic geometries (p : G →M,ω)
and more generally for all split Cartan geometries are generalized geodesics.
They are defined as follows:
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Definition 7.7. The generalized geodesic on a split Cartan geometry
(p : G →M,ω) is a parametrized curve in M given as the projection of the

flow line of a horizontal vector field, i.e. cu,X := p ◦ Fl
ω−1(X)
t (u) with u ∈ G

and X ∈ g−.

In the affine case we get exactly affine geodesics of corresponding linear
connection. More detailed discussion on generalized geodesics can be found
in [8, 23].

Clearly, our definition of symmetry gives that symmetries are exactly
those automorphisms, which revert the ‘classes’ of generalized geodesics
through the point in one direction. More precisely, the symmetry maps some
generalized geodesic in some direction to some generalized geodesic in the
reversed direction.

Generalized geodesics on parabolic geometries are given by its higher
jets. In particular, in the |1|–graded case, all geodesics are given by its 2–jet
in one point. The condition of symmetry prescribes only the point and the
direction and there can exist several different geodesics. There is a certain
freedom in the last coordinate of their assigned 2–jets. In this case, it is not
reasonable to define the symmetry by reverting of this curves. The symme-
tries do not only revert each geodesic in the fixed direction, but also mix
all of them together. It corresponds to the fact that parabolic geometries
are second order structures and their morphisms are given by 2–jets in one
point.

We can illustrate this situation on the Riemannian and the conformal
sphere. The Riemannian sphere is the unit sphere with the metric induced
from the Euclidean space. It can be realized as a homogeneous model of first
order Cartan geometry, see [18]. Generalized geodesics, which are exactly
geodesics of the Levi-Civita connection, are all great circles. Each symmetry
in some point has to revert all great circles going through the point. It maps
the circle onto the same circle with the reversed orientation.

The situation is very different in the case of conformal sphere. The con-
formal sphere is the homogeneous model of conformal geometry of positive
definite signature, see Example 4.2. On this |1|–graded parabolic geometry,
generalized geodesics going through one point are all (parametrized) circles
going through this point. The symmetry in the point maps each circle going
through the point in some direction onto another circle going in the opposite
direction. There are many different possibilities.

Remark 7.8. There is the well known fact, that all morphisms of the
conformal sphere are exactly all mappings, which maps circles onto circles.
In our special case we can simply say, that all symmetries in one point are
exactly the morphisms, which in addition map each circle going through the
point onto some circle going in the opposite direction.
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CHAPTER 3

Symmetric |1|–graded geometries

In this chapter, we formulate main results on symmetries on |1|–graded
geometries. In Section 8 we summarize, which types of geometries have to be
locally flat if they are symmetric and which types can carry some symmetry
in the point and still allow some nonzero curvature at this point. In the
Section 9 we return to Weyl structures. We discuss Weyl structures fixed by
the symmetries, which play an important role later. We also discuss sym-
metries on effective geometries. In the Section 10 we show some corollaries
of previous results for projective and conformal geometries. The motivation
for the Section 10 and partly for Section 9 is the article [16]. The author
treats the projective case in more classical way there.

8. Torsion restrictions

We would like to find some restriction on the curvature of |1|–graded
geometry coming from the existence of the symmetry. The following Propo-
sition is fundamental.

Proposition 8.1. Symmetric |1|–graded parabolic geometries are tor-
sion free.

Proof. Let us choose an arbitrary x ∈ M on a |1|–graded geometry
of type (G,P ) and let ϕ cover some symmetry in x. The symmetry ϕ fixes
x and thus ϕ preserves the fiber over x. The curvature function satisfies
κ = κ ◦ ϕ and we have

κ(u) = κ(ϕ(u)) = κ(u · g) = g−1 · κ(u)

for appropriate g ∈ P . The torsion is identified with the part κ−1 and we
have the same equation for this correctly defined component (we have just
to keep in mind the proper action of P on the quotient space g−1 ≃ g/p).
We compare κ−1 in the frames u and ϕ(u) from p−1(x). We arrive at

κ−1(ϕ(u))(X,Y ) = κ−1(u · g)(X,Y ) = g−1 · κ−1(u)(X,Y ) =

= Adg−1(κ−1(u)(AdgX,AdgY )) =

= −κ−1(u)(−X,−Y ) = −κ−1(u)(X,Y ),

because g is exactly the element from Lemma 6.2 which acts as −id on g−1.
This is equal to κ−1(u)(X,Y ) and we obtain κ−1(u)(X,Y ) = −κ−1(u)(X,Y )
for all X,Y ∈ g−1. Thus κ−1(u) vanishes and this holds for all frames u ∈
G, p(u) = x. The torsion then vanishes in x.

If the geometry is symmetric, then there is some symmetry in all x ∈M .
Then κ−1 vanishes in all x ∈M and the geometry is torsion free. �
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The latter Proposition is the analogy of the classical result for the affine
(locally) symmetric space. Moreover, in the case of normal |1|–graded geome-
tries, we get as a corollary of the general theory on harmonic curvature the
following Theorem.

Theorem 8.2. Let (G → M,ω) be a normal |1|–graded parabolic geom-
etry such that its homogeneous components of the harmonic curvature are
only of degree 1. If there is a symmetry at a point x ∈ M , then the whole
curvature vanishes in this point.

In particular, if the geometry is symmetric than it is locally isomorphic
with the homogeneous model.

Proof. The existence of a symmetry forces κ−1 to vanish, see Proposi-
tion 8.1. If all harmonic curvature is concentrated to this homogeneity, then
the whole curvature κ has to vanish, see Theorem 4.3. Then the geometry
is locally flat, see Theorem 2.2. �

Using the overview of all |1|–graded geometries (see the page 15) we can
easily list all types of geometries satisfying the condition in the previous
Theorem.

Corollary 8.3. The following symmetric normal |1|–graded geometries
always have to be locally flat:

• almost Grassmannian geometries such that p > 2 and q > 2
• geometries modeled on quaternionic Grassmannians (but not the

almost quaternionic ones)
• geometries for the algebra sp(p, p) where p > 2
• all geometries coming from the algebras of types Cℓ

• spinorial geometries in the Dℓ types with ℓ > 4
• all exotic geometries.

The crucial point in the above considerations was the odd homogeneity
degree of the components in harmonic curvatures. We can use similar argu-
ment for all geometries where the only available homogeneity is three (see
the overview on the page 15):

Proposition 8.4. The following symmetric normal geometries are lo-
cally flat:

• conformal geometries in all signatures of dimension 3
• projective geometries of dimension 2.

Proof. First we prove that κ1 is zero. Suppose that ϕ covers a symme-
try in x ∈M. In arbitrary frame u over x we have

κ1(ϕ(u))(X,Y ) = κ1(u · g)(X,Y ) = g−1 · κ1(u)(X,Y ) =

= Adg−1(κ1(u)(AdgX,AdgY )) =

= Adg−1(κ1(u)(−X,−Y )) = Adg−1(κ1(u)(X,Y ))

and this is equal to κ1(u)(X,Y ).
We know that the action of g on g−1 is −id. We have that g1 is dual

to g−1 with respect to the Killing form and the adjoint action of P on
g1 is then the dual action of the adjoint action on g−1. The action of the
element g on g1 is then the dual action of −id and it is again −id. We get
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κ1(u)(X,Y ) = −κ1(u)(X,Y ) for all u over x and therefore κ1 vanishes in x.
If we have a symmetry in each point, then κ1 vanishes.

By Theorem 4.3 and our list of the features of all |1|–graded geometries,
the geometries in question have no homogeneous parts of curvature of degree
1 and 2. They have only one homogeneous harmonic part of degree 3. This
component belongs to κ1 and therefore has to vanish. But then the harmonic
part of curvature κH vanishes and so the curvature κ vanishes and the
geometries are locally flat. �

The curvature of a symmetric |1|–graded geometry looks like κ = κ0

and its lowest part κ0 : G → g∗ ∧ g∗ ⊗ g0 is a correctly defined (quotient)
object. Unfortunately, comparing κ0(u) with κ0(ϕ(u)) does not give us any
new information. Indeed,

κ0(ϕ(u))(X,Y ) = κ0(u · g)(X,Y ) = g−1 · κ0(u)(X,Y ) =

= Adg−1(κ0(u)(−X,−Y )) = Adg−1(κ0(u)(X,Y ))

is equal to κ0(u)(X,Y ) for all X,Y ∈ g−1. Since g0 ⊆ gl(g−1) ≃ g∗−1 ⊗ g−1,
and the action on g−1 and g∗−1 is −id, the action of g on the tensor is
obviously trivial.

Again, we can easily find all remaining |1|–graded normal parabolic
geometries allowing some component of harmonic curvature of homogeneous
degree 2 (see the overview on the page 15). These are just four lines of ex-
amples:

• projective geometries of dim > 2
• conformal Riemannian geometries in all signatures of dim > 3
• almost quaternionic geometries
• almost Grassmannian structures such that p = 2 or q = 2.

We should remind that all the other geometries allowing curvature in our
list above are in fact isomorphic with some of these four types.

9. Weyl structures and symmetries

We discuss here the behavior of Weyl structures with respect to the
action of some symmetry in x on a |1|–graded geometry. We start with the
Proposition which is essential for us.

Proposition 9.1. Let (G → M,ω) be a |1|–graded geometry. Suppose
that there is a symmetry ϕ in x ∈M covered by the automorphism ϕ. There
is a Weyl structure σ such that

ϕ∗σ|p−1

0
(x) = σ|p−1

0
(x),

i.e. the pullback of σ along ϕ equals to the same structure σ over x.

Proof. Let us choose arbitrary Weyl structure σ̂ : G0 −→ G and com-
pute the pullback of this structure along ϕ. We get another Weyl structure
ϕ∗σ̂ = σ̂ + Υ. The Weyl structure σ̂ + 1

2Υ then satisfies (see Section 5 for
notation)

ϕ∗(σ̂ +
1

2
Υ) = ϕ∗σ̂ + ϕ∗ 1

2
Υ = σ̂ + Υ +

1

2
ϕ∗Υ.
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Now we show that

ϕ∗Υ(u) = (Υ ◦ ϕ0)(u) = −Υ(u)

holds for all u ∈ p−1
0 (x) ⊂ G0. We have that ϕ0 : G0 → G0 preserves p−1

0 (x)
and in fact, it is equal to the right action of some suitable element from G0.
It is exactly the element g0 from Lemma 6.2 corresponding to the frame u.
Thanks to the equivariancy and the fact that the values of Υ are in g1, the
dual of g−1, the action of the suitable element changes the sign and we get
(Υ ◦ ϕ0)(u) = Υ(ug0) = −Υ(u).

The latter fact gives

σ̂ + Υ +
1

2
ϕ∗Υ = σ̂ + Υ −

1

2
Υ = σ̂ +

1

2
Υ

and if we put all together we get ϕ∗(σ̂ + 1
2Υ) = σ̂ + 1

2Υ. The morphism ϕ

then preserves the Weyl structure σ := σ̂+ 1
2Υ in the fiber over x ∈M . �

Remark 9.2. We know that in p−1(x) ⊂ G, the morphism ϕ is equal
to the right multiplication by some suitable element from P . Clearly, the
points from the fiber that are simultaneously in σ(G0) are exactly points for
which ϕ is equal to the right multiplication by an element from G0.

In the sequel, we call any such Weyl structure fixed Weyl structure (for
ϕ in x). In fact, the next Lemma shows that in the fiber p−1

0 (x), the fixed
Weyl structure in x is unique.

Lemma 9.3. Let ϕ be an automorphism covering some symmetry in x
on a |1|–graded geometry and let σ, σ̄ be two different fixed Weyl structures
for ϕ in x. Then σ and σ̄ are equal in the fiber over x.

Proof. Let σ, σ̄ be different fixed Weyl structures for ϕ in x. We know
that σ̄ = σ + Υ for some nonzero Υ : G0 → g1. In the point x we get

σ̄ = ϕ∗σ̄ = ϕ∗(σ + Υ) = ϕ∗σ + ϕ∗Υ = σ + ϕ∗Υ.

The relation σ + Υ = σ + ϕ∗Υ implies Υ = ϕ∗Υ in x. Because ϕ∗Υ = −Υ
holds in the fiber over x we have that Υ vanishes in x. �

In general, we know nothing about (the difference between) the fixed
Weyl structure σ and ϕ∗σ over the neighborhood of x. Nevertheless, the
latter facts allow us to prove the following Theorem.

Theorem 9.4. Suppose that ϕ covers some symmetry in x on a |1|–
graded geometry. There is exactly one normal Weyl structure σ such that

ϕ∗σ = σ

over some neighborhood of x.

Proof. Let σ be an arbitrary fixed Weyl structure in x, i.e. let ϕ∗σ = σ
in the fiber over x. We take the normal Weyl structure at σ(v) = u defined
on a suitable neighborhood U ⊂ M of x. Here v ∈ p−1

0 (x) ⊂ G0. We then
have the Weyl structure σu such that

σu(v) = σ(v) for p0(v) = x,

σu(p ◦ Fl
ω−1(X)
1 (σ(v))) = Fl

ω−1(X)
1 (σ(v)) otherwise.
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Pullback of this Weyl structure is again some normal Weyl structure. But
we know that σ and σu are equal in x and we have ϕ∗σu = σu in x. Then
ϕ∗σu has to be the original normal Weyl structure σu and we get ϕ∗σu = σu

over U .
Finally, the resulting normal structure does not depend on the choice of

the fixed Weyl structure σ, because all these structures are equal in x, see
Lemma 9.3. �

Actually, we have some analogy of the fact from affine locally symmetric
spaces. On the first order structures, there is the classical concept of normal
coordinates and the symmetry clearly respects it. In these coordinates the
symmetry only reverts the straight lines going through the point.

On parabolic geometries, there can exist many different normal coordi-
nate systems. They are given by the choice of the (second order) frame in
the fiber. We showed that on |1|–graded geometry carrying some symmetry
in x, there is exactly one coordinate system in x such that the (covering
of the) symmetry only reverts the straight lines going through the point in
these coordinates.

Remark 9.5. Simultaneously, we get that on some neighborhood of x,
the pullback with respect to the covering ϕ of the symmetry ϕ in x permutes
together all fixed Weyl structures in x. (They are all equal only in the fiber
over x.) Clearly, ϕ∗σ is again fixed Weyl structure in x because ϕ∗σ = σ
implies ϕ∗(ϕ∗σ) = ϕ∗σ in x. In addition, there is at least one Weyl structure
such that the pullback over ϕ preserves this structure on its place in the
neighborhood of x (we constructed the normal one above).

If we start with the fixed normal Weyl structure σu, then for any σu +Υ
we have

ϕ∗(σu + Υ) = ϕ∗σu + ϕ∗Υ = σu + ϕ∗Υ

over some neighborhood of x. Consequently, all Weyl structures σ such that
ϕ∗σ = σ on some neighborhood of x differ from σu by some Υ satisfying
Υ = ϕ∗Υ on the neighborhood.

symmetries on effective geometries

We know, that each covering of some symmetry in x has some fixed
Weyl structure in x. Let us take two different automorphisms that cover
two different symmetries in x. We ask, whether the corresponding fixed
Weyl structures in x can be equal. We start with one useful Lemma.

Lemma 9.6. Let φ be an automorphism of a |1|–graded geometry (G →
M,ω) such that its base morphism φ preserves some x ∈M . If there is some

u ∈ p−1(x) such that φ(u) = u · h for some h ∈ G0 and Adh(X) = X for all
X ∈ g−, then φ = idM on some neighborhood of x.

Proof. We have φ(x) = x and we use the normal coordinates at u ∈

p−1(x) to describe the neighborhood of x. Any point from the suitable neigh-

borhood of x can be written as p ◦Fl
ω−1(X)
1 (u) for suitable X ∈ g−1 and we
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have

φ ◦ p ◦ Fl
ω−1(X)
1 (u) = p ◦ φ ◦ Fl

ω−1(X)
1 (u) = p ◦ Fl

ω−1(X)
1 (φ(u)) =

= p ◦ Fl
ω−1(X)
1 (uh).

The equivariancy of ω and the fact that Adh = Adh for h ∈ G0 gives that

the curve p◦Fl
ω−1(X)
t (uh) coincides with the curve p◦Fl

ω−1(Ad
h−1X)

t (u). (See
[8, 23] for details on generalized geodesics.)

The action of h is trivial and then the action of h−1 is trivial too. We
have

p ◦ Fl
ω−1(X)
1 (uh) = p ◦ Fl

ω−1(Ad
h−1X)

1 (u) = p ◦ Fl
ω−1(X)
1 (u).

This holds for all X ∈ g− and φ is the identity on M locally. �

Let us remark that if some h ∈ G0 acts trivially on g−1, then it acts
trivially on the whole g because the action of elements from G0 on g =
g−1 ⊕ g0 ⊕ g1 respects the gradation, while the action on g0 ≃ g∗−1 ⊗ g1

and g1 ≃ g∗−1 is induced from trivial action on g−1 and thus trivial. So the
elements h we use here are exactly elements from the kernel of the adjoint
action on g.

In addition, we defined parabolic geometries as infinitesimally effective
geometries and in this case the kernel K of the geometry is discrete. Then
thanks to the smoothness of the multiplication we have

exp(−tX)k exp(tX) = k

for all k ∈ K and X ∈ g and the differentiating in t = 0 gives Tρk.X −
Tλk.X = 0 and thus Adk(X) = X. Then K lies in the kernel of the adjoint
action and among others it then lies in G0. Thus K equals to the kernel of
the adjoint action because the latter subgroup is normal and so contained in
K. The elements h ∈ G0 from the latter Lemma are exactly elements from
the kernel of the geometry.

Proposition 9.7. Let ϕ and ψ be two coverings of two (in general dif-
ferent) symmetries in x on a |1|–graded geometry sharing the same fixed
Weyl structure σ in x, i.e. ϕ∗σ|p−1

0
(x) = σ|p−1

0
(x) = ψ∗σ|p−1

0
(x). Then

ψ(u) = ϕ(u) · h

for all u over some suitable neighborhood of x and for some h from the kernel
of the geometry.

Proof. Suppose that ϕ∗σ = σ and ψ∗σ = σ in x. Then we have ϕ−1 ◦
σ ◦ ϕ0 = ψ−1 ◦ σ ◦ ψ0 and this is equivalent with the fact that

(ψ ◦ ϕ−1) ◦ σ(v) = σ ◦ (ψ0 ◦ ϕ
−1
0 )(v)

holds for each v ∈ p−1
0 (x). The morphism ϕ0 preserves the fiber over x and

in fixed v is equal to the right multiplication by some k ∈ G0 such that
Adk(X) = −X for all X ∈ g−1. The morphism ψ0 also coincides in v with
the action of some g ∈ G0 satisfying Adg(X) = −X for all X ∈ g−1. We can
accordingly write

(ψ ◦ ϕ−1) ◦ σ(v) = σ(v)h,
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where h = k−1g acts trivially on g−1, because we have

AdhX = Adk−1AdgX = Adk−1(−X) = X.

Thus element u = σ(v) ∈ p−1(x) is exactly element from the fiber with the
property, that (ψ ◦ ϕ−1)(u) = u · h where h ∈ G0 acts trivially on g−1 and
Lemma 9.6 gives that

ψ ◦ ϕ−1 = idM .

The Theorem 2.4 gives, that ψ ◦ϕ−1(u) = idG ·f(u) holds for some func-
tion f over some neighborhood of x. According to our definition of parabolic
geometries, they are always infinitesimally effective and the function f has
to be constant. The value of f has to be the latter element h ∈ G0, which
clearly belongs to the kernel. We have ψ◦ϕ−1(u) = uh on some neighborhood
of x. If we apply the automorphism ϕ first, we get ψ ◦ ϕ−1(ϕ(u)) = ϕ(u)h
over some suitable neighborhood of x. This implies ψ(u) = ϕ(u)h. �

As an easy consequence of the latter facts we get the following Proposi-
tion on symmetries.

Proposition 9.8. Let ϕ and ψ be two coverings of two symmetries in
x ∈ M on a |1|–graded geometry which share the same fixed Weyl structure
in x. Then ϕ = ψ on some neighborhood of x, i.e. they cover the same
symmetry on the base manifold M .

Proof. One can use the proof of Proposition 9.7. We have ψ ◦ ϕ−1 =
idM on some neighborhood of the point x and then clearly ϕ = ψ on the
neighborhood of x. �

In particular, if ϕ covers some symmetry, then clearly ϕ−1 covers some
symmetry, too. Moreover, ϕ and ϕ−1 share the same fixed Weyl structure
in x because if we have ϕ∗σ = σ, then we also have

(ϕ−1)∗ϕ∗σ = (ϕ−1)∗σ

and simultaneously we get

(ϕ−1)∗ϕ∗σ = (ϕ ◦ ϕ−1)∗σ = id∗σ = σ.

We then get (ϕ−1)∗σ = σ in x. Thus ϕ and ϕ−1 cover the same symmetry.

Corollary 9.9. Each symmetry ϕ in x ∈M on a |1|–graded geometry
is involutive.

Remark 9.10. There is an equivalent definition of the symmetry on the
manifold, see [16] or [13]. One can define symmetry in x as a (locally de-
fined) involutive automorphism such that the point x is the isolated fixed
point of this automorphism. Symmetries defined in this manner clearly sat-
isfy the condition on the differential and they are symmetries in our sense.
Conversely, the Corollary 9.9 says that our symmetries correspond to the
latter definition.

If we start with an effective geometry, we in addition have following
consequences of Proposition 9.7:
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Corollary 9.11. Let ϕ and ψ cover two symmetries in x on some
effective |1|–graded geometry and suppose that they share the same fixed
Weyl structure in x. Then ϕ = ψ over the neighborhood of x. In addition,
each covering of some symmetry is involutive.

Proof. From the proof of Proposition 9.7 we get that (ψ◦ϕ−1)◦σ(v) =
σ(v) holds in the case of effective geometries. The rest follows immediately
from the formula. �

Clearly, there can exist more then one covering of one symmetry in x in
general. If we suppose that two automorphisms cover the same symmetry,
then the Theorem 2.4 directly says, that they differ by a multiplication by
some element from the kernel. We can show the statement opposite to the
Proposition 9.7.

Lemma 9.12. Suppose that ϕ and ψ cover the same symmetry in x on
a |1|–graded geometry. Then they share the same fixed Weyl structure in x.

Proof. We have ψ(u) = ϕ(u) ·h over some suitable neighborhood of x,
where h belongs to the kernel. Then clearly their underlying automorphisms
on G0 satisfy ψ0(v) = φ0(v) · h for v ∈ G0. Suppose that ϕ∗σ(v) = ϕ−1 ◦ σ ◦
ϕ0(v) = σ(v) for all v ∈ p−1

0 (x). We have

ψ∗σ(v) = (ψ−1 ◦ σ ◦ ψ0)(v) = ϕ−1(σ ◦ ψ0(v)) · h
−1 =

= (ϕ−1 ◦ σ ◦ ϕ0)(v) · h · h−1 = ϕ∗σ(v) = σ(v)

for all v ∈ p−1
0 (x) and they share the same fixed Weyl structure σ in x. �

Among others, this two coverings then share the same fixed normal Weyl
structure on the neighborhood of x. If we put all together, we get:

Corollary 9.13. Each symmetry ϕ in x allows exactly one fixed Weyl
structure in x. It does not depend on choice of the covering of the symmetry
ϕ. The symmetry can have several coverings, but all of them differ by the
multiplication of some element from the kernel and all of them share in the
fiber over x the same fixed Weyl structure in x.

Since the fixed Weyl structure in x does not depend on the choice of
the covering of the symmetry, we can speak about fixed Weyl structure in
x corresponding to the symmetry ϕ.

Remark 9.14. The effectiveness of the geometry depends on the par-
ticular choice of the groups G and P . In concrete examples, this amounts
to matrix computation of all elements in G0 which act trivially on g−1 (and
thus on g). Although we could restrict ourselves to effective geometries, there
are standard choices, which give well known geometries and which are not
effective in general. We show some examples:

Example 9.15. Projective geometries. We take both possible choices of
groups together and finally we discuss each of them, see Example 7.3. We

look for all
(

d 0
0 D

)

such that
(

d 0
0 D

) (

0 0
X 0

) (

d 0
0 D

)−1
=

(

0 0
X 0

)

for all X ∈ R
m.

We then solve
(

d 0
0 D

) (

0 0
X 0

)

=
(

0 0
X 0

) (

d 0
0 D

)

and this is equivalent to DX =

dX. There are two possible solutions:
(

1 0
0 E

)

and
(

−1 0
0 −E

)

.
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In the case G = PGl(m + 1,R) these two elements represent the same
class, the unit element. In the case G = Sl(m + 1,R) the first element is
the unit and we should discuss the second element. The elements from G0

look like
(

d 0
0 D

)

where detD = 1
d is positive. For the element

(

−1 0
0 −E

)

we
have that if m is odd, then D = −E has the negative determinant and
the whole element is not contained in G0. If m is even, then the whole
element is not contained in G because its determinant is negative. In both
cases of projective geometries, only the unit acts trivially. We have effective
geometries and each possible symmetry has exactly one covering.

Example 9.16. Conformal geometries. We take the standard choice

of group, see Example 4.2. We look for elements
(

λ 0 0
0 C 0
0 0 λ−1

)

∈ G0 such that

(

λ 0 0
0 C 0
0 0 λ−1

)( 0 0 0
X 0 0
0 −XT J 0

)

=
( 0 0 0

X 0 0
0 −XT J 0

) (

λ 0 0
0 C 0
0 0 λ−1

)

holds for all X ∈ R
p+q. We have the equation CX = λX and there are

two possible solutions:
(

1 0 0
0 E 0
0 0 1

)

and
(

−1 0 0
0 −E 0
0 0 −1

)

. The first solution is the

unit. The second element also belongs to the group G0 ⊂ O(p + 1, q + 1).
They clearly form the kernel of the geometry. Each possible symmetry has
exactly two possible coverings. See Example 7.5 to compare this with the
homogeneous model.

10. Further curvature restrictions

We know that if there exists a symmetry in one point on the homo-
geneous model, then there are many symmetries in any point of the base
manifold. We would like to study the following question: How many (differ-
ent) symmetries can exist in one point on a geometry, which is not locally
flat?

In the Section 8 we showed that in many cases, if there exists some
symmetry in x, than the geometry has zero curvature in x. But there are
some exceptions. All geometries which have some homogeneous component
of harmonic curvature of degree 2 may carry symmetries and need not to be
locally flat.

The curvature of these geometries looks like κ = κ0 : G → ∧2g∗−1 ⊗ g0.

If we choose some Weyl structure σ, we can take the decomposition σ∗κ0 =
σ∗κ0 + σ∗κ1. The Weyl curvature

σ∗κ0 : G0 → ∧2g∗−1 ⊗ g0

does not change, if we change the Weyl structure, because it is the lowest
part of decomposition. Next we will use W for it (instead of W σ). This part
corresponds to the interesting part of the whole curvature and we should
concentrate on it.

Suppose, that ϕ covers some symmetry in x. Let us remind that for
any Weyl structure σ we have ϕ∗σ = σ + Υ and similar fact holds for
all connections coming from Weyl structures. See Section 5 for details. We
should also remind, that all ideas in this section do not depend on the choice
of the covering of the symmetry, see Section 9.
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We will study algebraic actions and covariant derivatives of the Weyl
curvature W with respect to Weyl connections.

Lemma 10.1. Let σ be an arbitrary Weyl structure on a |1|–graded geom-
etry and let ϕ be a symmetry in x covered by some ϕ. Then

{ξ,Υ} •W + 2∇σ
ξW = 0

holds in x for all ξ ∈ X(M), where Υ is defined by ϕ∗σ = σ + Υ.

Proof. We take ∇σ
ξW (η, µ) for each ξ, η, µ ∈ X(M). We compute the

pullback of the connection with respect to the symmetry ϕ in the point x.
In the point x we have

(ϕ∗∇σ)ξW (η, µ) = (Tϕ⊗ Tϕ−1).∇σ
Tϕ.ξW (Tϕ.η, Tϕ.µ) = −∇σ

ξW (η, µ)

for each ξ, η, µ ∈ X(M).
Next, we have ϕ∗σ = σ + Υ for some Υ and it gives

(ϕ∗∇σ)ξW (η, µ) = ∇σ+Υ
ξ W (η, µ)

for each ξ, η, µ ∈ X(M).
If we put it together, we get that the following identity

−∇σ
ξW (η, µ) = ∇σ+Υ

ξ W (η, µ)

holds in x. Using the formula for change of Weyl connection we can rewrite
it as

−∇σ
ξW (η, µ) = ∇σ

ξW (η, µ) + ({ξ,Υ} •W )(η, µ).

This holds in the point x for each ξ, η, µ ∈ X(M) and therefore it gives
exactly the equation. �

As an easy consequence we get the following Proposition.

Proposition 10.2. Let ϕ be some symmetry in x on a |1|–graded geom-
etry. There exists a Weyl connection ∇σ such that ∇σW = 0 in x. The
connection corresponds to the fixed Weyl structure in x.

Proof. Let σ be the fixed Weyl structure in x. Then in the point x, we
have ϕ∗σ = σ for a covering ϕ of the symmetry ϕ and the connection ∇σ is
invariant with respect to the symmetry ϕ in x.

We use the Lemma 10.1. In this case, we have Υ = 0 in x thanks to
the invariance and the algebraic bracket from the expression in the latter
Lemma has to vanish for all ξ ∈ X(M). But then 2∇σ

ξW = 0 holds for all ξ
and then ∇σW = 0. �

In fact, this is an analogy of the result from affine symmetric spaces.
There is only one connection given on the affine geometry and we know that
its curvature is covariantly constant with respect to it.

In our case, there is a class of interesting connections and we showed
that there is at least one connection such that the Weyl curvature, which is
equal for all Weyl structures in this case, is covariantly constant with respect
to it.

Using all latter facts we show some algebraic restriction on the Weyl
curvature of symmetric |1|–graded geometries.
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Proposition 10.3. Assume there are two different symmetries in x on
a |1|–graded geometry. Then

{ξ,Υ} •W = 0(1)

holds in x for any ξ ∈ X(M) and one fixed 1–form Υ given by the fixed Weyl
structures of the mentioned symmetries.

Proof. Let us take two different symmetries ϕ and ψ with coverings ϕ
and ψ. In the point x, the symmetries have different fixed Weyl structures,
see Section 9. Let σ be fixed Weyl structure in x for ϕ, i.e. ϕ∗σ = σ in x.
Then σ cannot be fixed for symmetry ψ and we have ψ∗σ = σ + Υ, where
Υ is nonzero in x.

The Lemma 10.1 and Proposition 10.2 give that

∇σ
ξW = 0,

{ξ,Υ} •W + 2∇σ
ξW = 0

hold for all ξ ∈ X(M). If we put it together, we get exactly the required
expression. �

The expression (1) can be equivalently written in the following way.

Corollary 10.4. If there are two different symmetries in x on a |1|–
graded geometry, then

{{ξ,Υ},W (η, µ)(ν)} −W ({{ξ,Υ}, η}, µ)(ν) −

W (η, {{ξ,Υ}, µ})(ν) −W (η, µ)({{ξ,Υ}, ν}) = 0
(2)

holds in x for any ξ, η, µ, ν ∈ X(M) and one fixed 1–form Υ, which is given
by the fixed Weyl structures of mentioned symmetries.

Proof. The expression {ξ,Υ} •W is of the type ∧2T ∗M ⊗T ∗M ⊗TM
for any field ξ and we evaluate it on vector fields η, µ and ν. We get:

({ξ,Υ} •W )(η, µ)(ν) = {{ξ,Υ},W (η, µ)(ν)} −W ({{ξ, η}, η}, µ)(ν) −

W (η, {{ξ,Υ}, µ})(ν) −W (η, µ)({{ξ,Υ}, ν}).

It gives exactly the required formula. �

Suppose that there are several symmetries in x. If we choose one, then we
get the restriction (1) (resp. (2)) for any Υ, which is given by the fixed Weyl
structure of the chosen symmetry and the fixed Weyl structure of any other
symmetry. Clearly, for higher number of symmetries we get more conditions
and there is higher chance that we get some stronger restriction on the Weyl
curvature.

Extremal cases are symmetric homogeneous models. All symmetries (in
o) are all left multiplications by g0 expZ for suitable g0 ∈ G0 and arbitrary
Z ∈ g1. Then we get the previous restriction for all possible Υ. We know
that the curvature of homogeneous model vanishes and W = 0 is also the
only possible solution, that satisfies {ξ,Υ} •W = 0 for all ξ and Υ.

Now, we can ask how many symmetries we need to get some better
restriction on the Weyl curvature and then on the whole curvature of some
geometry, which is not locally flat. The exact form of the algebraic bracket,
which is in the restrictive condition, is different in each geometry and we
take some concrete geometries and study the latter question for them.
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Projective geometries

We shall use the conventions introduced in Example 7.3. We start with
a small Lemma which works for all projective structures in general.

Lemma 10.5. In the projective geometry

{{ξ,Υ}, η} = Υ(ξ) · η + Υ(η) · ξ

holds for any vector fields ξ, η and any 1–form Υ.

Proof. For
(

0 0
X 0

)

and
(

0 0
Y 0

)

in g−1 and
(

0 Z
0 0

)

in g1 we have
[(

0 0
X 0

)

,
(

0 Z
0 0

)]

=
(

−ZX 0
0 XZ

)

,
[[(

0 0
X 0

)

,
(

0 Z
0 0

)]

,
(

0 0
Y 0

)]

=
[(

−ZX 0
0 XZ

)

,
(

Y 0
0 0

)]

=
(

0 0
X·ZY +Y ·ZX 0

)

.

Here ZY and ZX correspond to the evaluation of a 1–form on a vector field
and we get directly the bracket. �

Remark 10.6. Let us remind that from this we can explicitly write the
formula for the change of Weyl connections in the projective geometry, see
Section 5. For two Weyl structures σ and σ̂ = σ + Υ we have

∇σ̂
ξ (η) = ∇σ

ξ (η) + Υ(ξ) · η + Υ(η) · ξ

for all ξ, η ∈ X(M). This is exactly the formula for two projectively equiva-
lent affine connections.

Now, we can start the discussion on symmetries on projective geometries.
At first, we rewrite the expression (2). Applying the formula for the bracket
we have:

Υ(ξ) ·W (η, µ)(ν) + Υ(W (η, µ)(ν)) · ξ −

Υ(ξ) ·W (η, µ)(ν) − Υ(η) ·W (ξ, µ)(ν) −

Υ(ξ) ·W (η, µ)(ν) − Υ(µ) ·W (η, ξ)(ν) −

Υ(ξ) ·W (η, µ)(ν) − Υ(ν) ·W (η, µ)(ξ) = 0

After some arrangements we get:

Υ(W (η, µ)(ν)) · ξ = 2Υ(ξ) ·W (η, µ)(ν) + Υ(η) ·W (ξ, µ)(ν) +

Υ(µ) ·W (η, ξ)(ν) + Υ(ν) ·W (η, µ)(ξ)
(3)

Lemma 10.7. Suppose that there exist two different symmetries in x on
a projective geometry and let Υ be given as in the proof of Proposition 10.3.
Then in the point x we have

Υ(W (η, µ)(ν)) = 0

for any η, µ, ν ∈ X(M), i.e. the values of W are in kernel of Υ.

Proof. We start with the expression (3) which holds thanks to the
assumption and Proposition 10.3. The 1–form Υ is nonzero in x because it
is given by two fixed Weyl structures corresponding to different symmetries
in x. We evaluate the 1–form Υ on the expression. We have

Υ(W (η, µ)(ν)) · Υ(ξ) = 2Υ(ξ) · Υ(W (η, µ)(ν)) + Υ(η) · Υ(W (ξ, µ)(ν)) +

Υ(µ) · Υ(W (η, ξ)(ν)) + Υ(ν) · Υ(W (η, µ)(ξ))
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and we get

−Υ(W (η, µ)(ν)) · Υ(ξ) = Υ(η) · Υ(W (ξ, µ)(ν)) +

Υ(µ) · Υ(W (η, ξ)(ν)) +

Υ(ν) · Υ(W (η, µ)(ξ)).

(4)

It works in x for any ξ and we choose such that Υ(ξ) 6= 0. Any vector field
can be then written as the sum of some multiple of ξ and some field from
ker Υ. We now divide the computations into the cases when any of η, µ, ν is
in ker Υ or when it is not in ker Υ and we can take it as equal to ξ. We have
to discuss all possibilities:

If η, µ, ν ∈ ker Υ, then we get from (4) that −Υ(W (η, µ)(ν)) · Υ(ξ) = 0.
Because Υ(ξ) is nonzero, we get Υ(W (η, µ)(ν)) = 0.

In the case µ, ν ∈ ker Υ and η = ξ we have

−Υ(W (ξ, µ)(ν)) · Υ(ξ) = Υ(ξ) · Υ(W (ξ, µ)(ν))

and again, because Υ(ξ) is nonzero we get Υ(W (ξ, µ)(ν)) = 0. The other
cases when two of the fields are in the kernel of Υ and one is not there work
similarly. We always get 2Υ(ξ) ·Υ(W (η, µ)(ν)) = 0 for corresponding choice
of fields.

Further cases are analogical. If one of the fields is in ker Υ and the other
two are equal to ξ, we get from (4) that

3Υ(ξ) · Υ(W (η, µ)(ν)) = 0

for corresponding choice of fields. The case when all fields are equal to ξ is
trivial. �

Consequently, we have the following equation:

0 = 2Υ(ξ) ·W (η, µ)(ν) + Υ(η) ·W (ξ, µ)(ν) +

Υ(µ) ·W (η, ξ)(ν) + Υ(ν) ·W (η, µ)(ξ).
(5)

Proposition 10.8. Suppose that there exist two different symmetries in
x on the projective geometry. Then W vanishes in x.

Proof. We use the equation (5). Here Υ is again given by the two fixed
Weyl structures of corresponding symmetries and it has to be nonzero in x.
We choose some ξ such that Υ(ξ) 6= 0 and we divide the proof into the cases
when any of the field η, µ and ν is in ker Υ and when we can take it as equal
to the field ξ.

If η, µ, ν ∈ ker Υ, then (5) gives 2Υ(ξ) ·W (η, µ)(ν) = 0. If η, µ ∈ ker Υ
and ν = ξ, then we get

0 = 2Υ(ξ) ·W (η, µ)(ξ) + Υ(ξ) ·W (η, µ)(ξ) = 3Υ(ξ) ·W (η, µ)(ξ).

In both cases, we get W (η, µ)(ν) = 0 for the corresponding choices of fields
because Υ(ξ) is nonzero. If η, ν ∈ ker Υ and µ = ξ, then we get

3Υ(ξ) ·W (η, ξ)(ν) = 0

and analogical result we get for the case µ, ν ∈ ker Υ and η = ξ.
If η ∈ ker Υ and µ = ξ = ν, then we get

4Υ(ξ) ·W (η, ξ)(ξ) = 0.
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The case µ ∈ ker Υ and η = ξ = ν is analogical. The case η = µ = ξ is
trivial. We again get W (η, µ)(ν) = 0 for corresponding choices of fields.

This works for all ξ /∈ ker Υ and for arbitrary η, µ, ν. But thenW vanishes
on some open subset and then it has to vanish everywhere. �

Now we can show:

Theorem 10.9. Let (G → M,ω) be a projective geometry and suppose
that there exist two different symmetries in x. Then the curvature vanishes
in x.

If there are two different symmetries in each point, then the geometry is
locally flat.

Proof. We know that if there is some symmetry in x, then the torsion
vanishes in x, see Proposition 8.1. Existence of two different symmetries in
x kills the Weyl curvature in x and then κ = κ1. But κ1 has to vanish too,
we use the same argument as in the proof of Theorem 8.4. Then the whole
curvature vanishes in x.

If there are two different symmetries in each point, then the curvature
vanishes in all points and the geometry is locally isomorphic with homoge-
neous model. �

We can nicely reformulate the latter Theorem in following way.

Corollary 10.10. For projective geometries, there can exist at most
one symmetry in each point where the curvature does not vanish.

Conformal geometries

Let us first remark that the conformal structure of signature (p, q) on the
manifold M can be viewed as an equivalence class of pseudo Riemannian
metrics such that two metrics are equivalent if and only if they differ by
a multiplication by a smooth positive function. It is convenient to write
ĝ = Ω2g for two metrics from the class.

The values of the metrics in the point x ∈M form a ray in S2T ∗
xM and

we get a bundle such that its sections are exactly the metrics from the con-
formal class. It is a ray subbundle of S2T ∗M , i.e. a principal subbundle with
structure group R+. The conformal metric is thus a section of the bundle
of rays in S2

0T
∗M ⊂ S2T ∗M , the subspace of regular symmetric forms. It is

usually denoted as g, but we shall use the usual letter g instead in the rest of
this section. The conformal metric is a weighted tensor, thus we may use g in
order to raise or lower indices on the cost of adding the appropriate weights.
In particular, the same applies if the metric is understood as isomorphism
between the tangent and cotangent bundles, and no weight is added if both
the conformal metric and its inverse are used together. For example, for a
given vector ξ, the evaluation g(ξ, ξ) provides rather a density of weight two
than a number (but its (non)vanishing is well defined anyhow).

The computations will be performed in the setting of Example 4.2. We
again start with a small Lemma on the bracket which holds for conformal
geometry in general.
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Lemma 10.11. In conformal geometry

{{ξ,Υ}, η} = Υ(ξ) · η + Υ(η) · ξ − g(ξ, η) · g−1(Υ)

holds for any vector fields ξ, η and any 1–form Υ.

Proof. For
( 0 0 0

X 0 0
0 −XT J 0

)

and
( 0 0 0

Y 0 0
0 −Y T J 0

)

in g−1 and
(

0 Z 0
0 0 −JZT

0 0 0

)

in

g1 we have
[(

0 0 0
X 0 0
0 −XT J 0

)

,

(

0 Z 0
0 0 −JZT

0 0 0

)]

=

(

−ZX 0 0
0 XZ−JZT XT J 0
0 0 ZX

)

,

[(

−ZX 0 0
0 XZ−JZT XT J 0
0 0 ZX

)

,

(

0 0 0
Y 0 0
0 −Y T J 0

)]

=

=

(

0 0 0
ZY ·X+ZX·Y −JZT ·(XT JY ) 0 0

0 −ZY ·XT J−Z(X)·Y T J+Y T JX·Z 0

)

.

Here ZX and ZY correspond to the evaluation of a 1–form on a vector field,
(XTJY ) is the evaluation of the standard scalar product on X and Y and
JZT is dual to Z with respect to the standard product. �

Remark 10.12. Again, from this we can explicitly write the formula
for the change of Weyl connection in conformal geometry. For two Weyl
structures σ and σ̂ = σ + Υ and for all ξ, η ∈ X(M) we have

∇σ̂
ξ (η) = ∇σ

ξ (η) + Υ(ξ) · η + Υ(η) · ξ − g(ξ, η) · g−1(Υ).

This is exactly the classical formula for the change of the connection under
a conformal rescaling of a metric.

Now, we start the discussion of symmetries. In the conformal geometry,
the expression (1) can be rewritten in the following way: If we apply the
formula for the bracket, we get

Υ(ξ) ·W (η, µ)(ν) + Υ(W (η, µ)(ν)) · ξ − g(ξ,W (η, µ)(ν)) · g−1(Υ) −

Υ(ξ) ·W (η, µ)(ν) − Υ(η) ·W (ξ, µ)(ν) + g(ξ, η) ·W (g−1(Υ), µ)(ν) −

Υ(ξ) ·W (η, µ)(ν) − Υ(µ) ·W (η, ξ)(ν) + g(ξ, µ) ·W (η, g−1(Υ))(ν) −

Υ(ξ) ·W (η, µ)(ν) − Υ(ν) ·W (η, µ)(ξ) + g(ξ, ν) ·W (η, µ)(g−1(Υ)) = 0.

Some rearrangements give

Υ(W (η, µ)(ν)) · ξ − g(ξ, (W (η, µ)(ν)) · g−1(Υ) =

= 2Υ(ξ) ·W (η, µ)(ν) + Υ(η) ·W (ξ, µ)(ν) +

Υ(µ) ·W (η, ξ)(ν) + Υ(ν) ·W (η, µ)(ξ) −

g(ξ, η) ·W (g−1(Υ), µ)(ν) −

g(ξ, µ) ·W (η, g−1(Υ))(ν) −

g(ξ, ν) ·W (η, µ)(g−1(Υ)).

(6)

Proposition 10.13. Suppose that there exist two different symmetries
in x on a conformal geometry. Let Υ be given by the corresponding fixed
Weyl structures as in the proof of Proposition 10.3 and suppose that |Υ|g is
nonzero. Then W vanishes in x.
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Proof. We can use the equation (6) thanks to the assumptions and
Proposition 10.3. Let us choose ξ such that Υ = g(ξ,−), i.e. ξ = g−1(Υ). If
we put it into the expression (6) we get

Υ(W (η, µ)(ν)) · g−1(Υ) − g(g−1(Υ), (W (η, µ)(ν)) · g−1(Υ) =

= 2Υ(g−1(Υ)) ·W (η, µ)(ν) + Υ(η) ·W (g−1(Υ), µ)(ν) +

Υ(µ) ·W (η, g−1(Υ))(ν) + Υ(ν) ·W (η, µ)(g−1(Υ)) −

g(g−1(Υ), η) ·W (g−1(Υ), µ)(ν) −

g(g−1(Υ), µ) ·W (η, g−1(Υ))(ν) −

g(g−1(Υ), ν) ·W (η, µ)(g−1(Υ)).

Simultaneously, we have that the form g(g−1(Υ),−) = g(ξ,−) is just Υ and
the expression reduces heavily. We get

2Υ(g−1(Υ)) ·W (η, µ)(ν) = 0.

The assumption is that Υ(g−1(Υ)) = g(g−1(Υ), g−1(Υ)) = |Υ|g is nonzero.
But then we get W (η, µ)(ν) = 0 for all η, µ, ν ∈ X(M) in x and it gives that
W = 0 in x. �

Theorem 10.14. Let (G → M,ω) be a conformal geometry of arbitrary
signature and suppose that there exist two different symmetries in x. Let Υ
be given by the corresponding fixed Weyl structures and suppose that |Υ|g is
nonzero. Then the curvature vanishes in x.

If there are two such different symmetries in each point, then the geom-
etry is locally flat.

Proof. We use exactly the same ideas as in the projective case, see
Theorem 10.9. If there is some symmetry in x, then the torsion vanishes
in x, see Proposition 8.1. Existence of two different symmetries satisfying
the assumption on corresponding Υ kills the Weyl curvature in x and then
κ = κ1. But κ1 has to vanish too, we use the same argument as in the proof
of Theorem 8.4, and the whole curvature vanishes in x.

If there are two such different symmetries in each point, then the cur-
vature vanishes in all points and the geometry is locally isomorphic with
homogeneous model. �

As an easy consequence of the latter Theorem we get:

Theorem 10.15. Suppose that there exist two different symmetries in x
on a conformal geometry of positive definite signature or negative definite
signature. Then the curvature vanishes in x.

If there are two different symmetries in each point, then the geometry is
locally flat.

Proof. If the geometry is of positive definite signature, then the corre-
sponding Υ have nonzero length (if Υ itself is nonzero). The same property
holds for the negative definite signature. The rest follows from the latter
facts. �
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Further geometries

The list of interesting |1|–graded geometries, see page 31, includes two
more items – the almost Grasmannian and the almost quaternionic geome-
tries. We shall study these examples in detail elsewhere. Let us conclude
with low dimensional cases, where they coincide with the already discussed
ones.

Theorem 10.16. Suppose that there exist two different symmetries in x
on an almost quaternionic geometry of (real) dimension 4. Then W vanishes
in x and thus the whole curvature vanishes in x.

If there are two different symmetries in each point, then the geometry is
locally flat.

Proof. In fact, the geometry in the question is isomorphic to the con-
formal geometry of dimension 4 of positive definite signature (see p. 15).
The rest follows from the Theorem 10.15. �

Theorem 10.17. Suppose that there exist two different symmetries in
x on an almost Grassmannian structure of a dimension 4 (such that p =
q = 2). Let Υ be given by the corresponding fixed Weyl structures and sup-
pose that Υ has maximal rank. Then W vanishes in x and thus the whole
curvature vanishes in x.

If there are two such different symmetries in each point, then the geom-
etry is locally flat.

Proof. In fact, the geometry in the question is isomorphic to the con-
formal geometry of dimension 4 of indefinite signature (2, 2) (see p. 15). The
condition on rank corresponds to the condition on the length of Υ from the
conformal case. The rest follows from the Theorem 10.14. �
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[6] A. Čap, J. Slovák, Weyl Structures for Parabolic Geometries, Math. Scand. 93, (2003),
53–90.
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