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Klı́čová slova: hyperbolická geometrie, Möbiovy transformace, automorfnı́ funkce,
tok na horocyklech, Radonova transformace, gyro-teorie,
hyperbolické mozaiky
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Dissertation Abstract
The purpose of this dissertation thesis was to collect and introduce selected applications
of hyperbolic geometry which have appeared since the discovery of hyperbolic geometry.
The aim was to point out the importance of hyperbolic geometry in the development of
mathematics and physics and to make its applications accesible to the reader.

The text is divided into two chapters. In the first chapter we establish the theoretical
basis of the study of hyperbolic geometry. To introduce geometric objects as points and
lines we use the Poincaré half-plane model. Using the analogies of Euclidean geometry
and Möbius transformations we deduce the form of Riemannian metric in quite a natural
way.

In the second chapter we introduce the most important and interesting applications
of hyperbolic geometry. Each section starts with the historical context of the concrete
application, then we present a rough introduction of the application, in some cases we give
examples of the practical usage. The second chapter starts with what is probably the first
application of hyperbolic geometry which is credited to Lobachevsky, who used hyperbolic
geometry to compute some definite integrals. Analogous to Euclidean geometry, we
present how to find the center of mass in a hyperbolic triangle and we begin to ponder
the hyperbolic moment of inertia of a finite system of point masses. The next application
deals with a horocyclic flow, which is a part of the study of dynamical systems. Next we
discuss the role of hyperbolic geometry in the invention of automorphic functions, which
led to the uniformization theorem. Then we present an inquiry into the hyperbolic type of
Radon transform which found its use in electrical impedance imaging. We also introduce
to the reader gyro-theory, which enables the definition of algebraic tools for the study
of hyperbolic geometry and is important for the study of the theory of special relativity.
At the end, we also show the theory of groups and subgroups hidden behind some of
the graphics of the Dutch artist M. C. Escher, which actually are the tessellations of the
hyperbolic plane.



Abstrakt disertačnı́ práce
Cı́lem této disertačnı́ práce bylo shromáždit a představit vybrané aplikace hyperbolické
geometrie, které se objevily od jejı́ho vzniku až do dnešnı́ch dnů. Našı́m záměrem bylo
poukázat na význam hyperbolické geometrie v rozvoji matematiky a fyziky a zpřı́stupnit
čtenáři jejı́ aplikace.

Text je rozdělen do dvou kapitol. V prvnı́ kapitole je předložen teoretický základ
ke studiu hyperbolické geometrie. K zavedenı́ geometrických objektů jako jsou body
a přı́mky je použit Poincarého polorovinný model. Použitı́m analogiı́ s Euklidovskou
geometriı́ a pomocı́ Möbiových transformacı́ je pak přirozeným způsobem odvozen tvar
Riemannovy metriky.

Ve druhé kapitole jsou představeny nejdůležitějšı́ a nejzajı́mavějšı́ aplikace hyperbo-
lické geometrie. Každé téma začı́ná krátkým historickým úvodem a pokračuje stručným
popisem konkrétnı́ aplikace, přı́padně jsou uvedeny přı́klady praktického využitı́. Prvnı́
aplikace, která je v této kapitole zmı́něna, je zřejmě také historicky prvnı́ aplikacı́ hyper-
bolické geometrie. V této aplikaci Lobachevsky použil prostředků hyperbolické geome-
trie k výpočtu některých určitých integrálů. Dále je v analogii s euklidovskou geometriı́
ukázáno, jak najı́t těžiště hyperbolického trojúhelnı́ku, a začı́najı́ se tu rozvı́jet úvahy nad
hyperbolickým momentem setrvačnosti konečné soustavy hmotných bodů. Dalšı́ oddı́l
pojednává o roli hyperbolické geometrie při objevu automorfnı́ch funkcı́, které vedly k
uniformizačnı́mu teorému. Následujı́cı́ aplikacı́ je tok na horocyklech, který je součástı́
teorie dynamických systémů. Poté je zkoumána hyperbolická Radonova transformace,
tato transformace našla uplatněnı́ v elektrické impedančnı́ tomografii. Jako dalšı́ aplikace
je čtenáři představena takzvaná gyro-teorie, která umožňuje definovat algebraické nástroje
ke studiu hyperbolické geometrie a ke studiu speciálnı́ teorie relativity. Na konci této práce
je ukázána teorie grup a podgrup, která se skrývá za některými grafikami nizozemského
umělce M. C. Eschera. Tyto grafiky jsou ve skutečnosti mozaikami hyperbolické roviny.
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Introduction

The struggle of mathematicians to prove the fifth parallel postulate of Euclidean geometry
from the other four axioms lasted for centuries. Some of them finally admitted that it is
not possible and that the four axioms (which form absolute geometry) together with the
negation of the parallel postulate do not create a contradiction. This led to the discovery
of one of the non-Euclidean geometries, concretely: hyperbolic geometry. It was Gauss,
Lobachevsky and Bolyai who embraced this idea and independently developed hyperbolic
geometry in the first half of the nineteenth century. This early history of hyperbolic
geometry is very interesting, and as many books have already been written about this
problem, we therefore decided to focus on the applications of hyperbolic geometry and
the important role of hyperbolic geometry throughout history.

In the first chapter we establish the theoretical basis of the study of hyperbolic geometry.
We would need hundreds of pages to do it properly, which is the reason why we sometimes
use some well known properties without proof. We did not use the axiomatic approach
because it has been done many times and it seems a little pedantic for students and
inappropriate for the next study. Hyperbolic geometry is also often introduced in literature
using some of the models of hyperbolic geometry together with Riemannian metric,
without given reason from where and why it appeared. In our approach we also use one
of the models of hyperbolic geometry, namely the Poincaré half-plane model, to introduce
geometric objects as points and lines, but using the analogies with Euclidean geometry
and Möbius transformations we deduce the form of Riemannian metric.

In the second chapter we introduce some of the many applications of hyperbolic geo-
metry. Hyperbolic geometry has various applications in different fields of mathematics and
also in physics. Each section starts with the historical context of the concrete application,
then we present a rough introduction of the application, in some cases we give examples
of the practical usage.

We start the second chapter with what is probably the first application of hyperbolic
geometry, which is due to Lobachevsky, who used hyperbolic geometry to compute some
definite integrals. In an analogy with Euclidean geometry we present how to find the center
of mass in a hyperbolic triangle and define the moment of inertia of a system of two point
masses. The next application deals with a horocyclic flow, which is a part of the study
of dynamical systems. Next we discuss the role of hyperbolic geometry in the invention
of automorphic functions which led to the uniformization theorem. Then we present the
hyperbolic type of Radon transform which found its use in electrical impedance imaging.
We also introduce to the reader the gyro-theory which enables to define algebraic tools
for the study of hyperbolic geometry. At the end we also show the theory of groups and
subgroups hidden behind some of the graphics of the Dutch artist M. C. Escher, which are
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actually the tessellations of the hyperbolic plane.
We have gathered and made accessible to the reader various applications of hyperbolic

geometry which have appeared from the time hyperbolic geometry was discovered up
to the present days. This text might serve teachers who want to motivate students to
study hyperbolic geometry, or the students who are interested in hyperbolic geometry.
The applications are as diverse as they are complex; some of them can even be used for
teaching in high schools, while some of them are quite advanced.
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Chapter I

Introduction to hyperbolic geometry

1 Hyperbolic functions
Although the hyperbolic functions were invented long before hyperbolic geometry, we
present them, because they are involved in hyperbolic geometry, for example in the
formulation of the law of sines and the law of cosines in the hyperbolic plane. They
were introduced by the Italian mathematician Vincenzo Riccati (1707–1775) in 1757.
He studied these functions to obtain the roots of cubic equations; he also revealed the
relationship between the hyperbolic and the exponential functions. Daviet de Foncenex
(1734–1799) showed how to interchange goniometric and hyperbolic functions using the√
−1 in 1759. But the mathematician who is credited for the systematic development

and popularization of the hyperbolic functions is Heinrich Lambert (1728–1777). The
hyperbolic functions are important for many other mathematical and physical problems.

1.1 Graphical approach to derive hyperbolic functions
Hyperbolic functions are similar to goniometric functions (often called the circular func-
tions) in many aspects. Goniometric functions are defined using a unit circle, hyperbolic
functions can be defined on a unit hyperbola. First let us consider the unit circle x2+y2 = 1
and angle t in radian measure formed by the two radii. The area of the corresponding sector
of a circle is

t · π12

2π
=
t

2
.

Angle t is a double of the corresponding area.
The hyperbolic angle is defined similarly, as the double of the area of the hyperbolic

sector, formed by two radii of hyperbola and the hyperbolic arc x2−y2 = 1. By the radius
of hyperbola we mean the ray from the origin to the point of hyperbola. Considering the
hyperbolic arc, we use only the right branch of the hyperbola.

To define cosh t and sinh t we have to find such a radius of hyperbola, that the area
bounded by the radius, x-axis and hyperbola will be equal to t/2. The area of a region
bounded by x-axis, y-axis, hyperbola and the line y = const. is given by∫ y

0

√
1 + η2dη.
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Figure I.1: Hyperbolic sector

Using the integration by parts, where we set u =
√

1 + η2, v′ = 1, we get∫ y

0

√
1 + η2dη = y

√
1 + y2 −

∫ y

0

η2√
1 + η2

= y
√

1 + y2 −
∫ y

0

√
1 + η2dη −

∫ y

0

η2√
1 + η2

+

∫ y

0

√
1 + η2dη

= y
√

1 + y2 −
∫ y

0

√
1 + η2dη +

∫ y

0

dη√
1 + η2

and we can express∫ y

0

√
1 + η2dη =

1

2
y
√

1 + y2 +
1

2

∫ y

0

dη√
1 + η2

.

From this area we subtract the area 1
2
y
√

1 + y2 of the triangle above the radius, and we
express t as a double of the sector of the hyperbola

t =

∫ y

0

dη√
1 + η2

.

It holds
∫ y

0
dη√
1+η2

= ln(y +
√

1 + y2). We verify this equality by the derivation of the

right side of the equation(
ln(y +

√
1 + y2)

)′
=

1

y +
√

1 + y2

(
1 +

y√
1 + y2

)
=

1√
1 + y2

.

We have t = ln(y +
√

1 + y2) and we can express y in terms of t

y =
et − e−t

2
.
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By the substitution into the equation of a hyperbola we get the expression of a x

x =
et + e−t

2
.

Figure I.2: sinh and cosh as projections to axes

Then we have

cosh t =
et + e−t

2
sinh t =

et − e−t

2
,

as projections to axes in accordance with Euclidean case. Hyperbolic functions satisfy

(coshx)2 − (sinhx)2 = 1.

The proof of this equality is simple (by definition):

cosh2 x− sinh2 x =

(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
1

4

(
(e2x + 2exe−2x + e−2x)− (e2x − 2exe−x + e−2x)

)
= 1.

While the goniometric functions (cos t, sin t) , t ∈ [0, 2π] parametrize the unit circle,
the hyperbolic functions (cosh t, sinh t) , t ∈ [−∞,∞] parametrize unit hyperbola x2 −
y2 = 1, x > 0.

The following formulas could be verified again simply by the substitution of x and y:

sinh(x+ y) = sinh x cosh y + coshx sinh y,

cosh(x+ y) = cosh x cosh y + sinhx sinh y.

The remaining hyperbolic functions are defined in the same way as the remaining gonio-
metric functions, that is

tanhx =
sinhx

coshx
=
ex − e−x

ex + e−x
,

cothx =
1

tanhx
=
ex + e−x

ex − e−x
.
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Figure I.3: Graphs of hyperbolic functions

We can also define hyperbolic secant and cosecant as

sech x =
1

coshx
and csch x =

1

sinhx
,

respectively.
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2 Poincaré half-plane model
Hyperbolic plane and its geometry can be represented by models within the frame of Eu-
clidean space. We will start with one of those models, namely with the Poincaré half-plane
model (also called the upper half-plane model) of hyperbolic geometry. After introducing
the Möbius transformations, reflections in hyperbolic lines and the Riemannian metric in
our model, we will also mention other well known models of hyperbolic geometry. The

Figure I.4: Lines in Poincaré half-plane model

hyperbolic plane in this model is a half plane of the Euclidean space R2, but we can see
this space as a half of the complex plane C and so we have

H = {z ∈ C : Im(z) > 0}.

The boundary of this space is R, where by R we mean the real axis (it is not part of the
model). There are two types of hyperbolic lines in this model. Half lines perpendicular
to the boundary and semicircles with their endpoints on the boundary, as in figure I.4.

It can be proved that all axioms of hyperbolic geometry are satisfied. Recall that
hyperbolic geometry can be defined by using the same set of axioms as Euclidean geometry,
only the Parallel Postulate has to be replaced by its negation. We will not prove all these
axioms here but as an example we present the first axiom of the incidence and its proof.

1 Axiom. Given any two distinct points p, q ∈ H there exists a unique hyperbolic line l
passing through points p, q.

Proof. We defined hyperbolic lines in H in terms of Euclidean lines and Euclidean circles,
and so we will use our knowledge about Euclidean lines and Euclidean circles to examine
the hyperbolic lines. There are two following possibilities:

1) Let Re(p) = Re(q). Euclidean line L given by L = {z ∈ C : Re(z) = Re(p)} is
perpendicular to real axis R and passing through the points p, q. Then there is a unique
hyperbolic line l = H ∩ L.

2) Let Re(p) 6= Re(q) and let B be the bisector of Euclidean segment pq. Then every
center of an Euclidean circle passing through the points p, q lies onB. The Euclidean line
B is not parallel to R (because the real parts of points p, q are different). This means that
R and B intersect in a unique point c. Let K be the Euclidean circle with the center c and
the radius |c− p| = |c− q|. Then p ∈ K, q ∈ K and k = H ∩K is a unique hyperbolic
line passing through the points p, q.
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Concerning the definition of the parallel lines we will use the same definition which
can be used in Euclidean geometry. We say that two hyperbolic lines are parallel if they
are disjoint. But unlike Euclidean geometry, we have two types of parallel lines. As we
see in figure I.5 on the left, parallel hyperbolic lines can have a common endpoint on the
boundary R (the boundary is not a part of the model). On the right side of the picture
we see parallel hyperbolic lines, which do not have a common endpoint on the boundary,
parallel lines of this type are often called ultraparallel.

Figure I.5: Parallel lines

Now we will remind readers of the hyperbolic version of the Parallel Postulate. Let
l be a hyperbolic line and let p ∈ H be a point that does not lie on l, then there are at
least two hyperbolic lines that pass through p and are parallel to l. Consequently, there
are infinitely many such hyperbolic lines.

As it is easy to prove that this axiom holds in our model, we will not present the proof
here, but we will show an example of such hyperbolic lines in figure I.6.

Figure I.6:

We know that a Euclidean circle can be obtained from a Euclidean line by adding one
point, and similarly we can obtain a sphere from a Euclidean plane by adding one point (it
can be done using the stereographic projection). In our case, we can do such an extension
too by adding to C the point ∞ and we denote C∗ = C ∪ {∞}. Then a circle in C∗ is
either a Euclidean circle in C, or the union of the Euclidean line in C with {∞}. When
we use this extension for our model we shall not distinguish those two types of hyperbolic
lines we introduced, because they both will be parts of the Euclidean circles. In this case
we will denote the boundary of the model ∂H = R ∪ {∞}.
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3 Möbius transformations
We recall that a Möbius transformation f : C∗ → C∗ is a mapping defined by the formula

f(z) =
az + b

cz + d
or f(z) =

az̄ + b

cz̄ + d
,

where a, b, c, d ∈ C and ad − bc = 1. Also recall that by the C∗ we mean an extended
complex plane C∗ = C∪{∞}, which can be understood as a sphere, a Riemann sphere or
a complex projective line. Möbius transformations map generalized circles to generalized
circles in C∗. A generalized circle is either a circle or a line (a circle through the point at
infinity).

We denote Möb+ the set of all transformations defined by the first formula, and
Möb− as the set of all transformations defined by the second formula. Then we denote
Möb = Möb+ ∪Möb−. It can be easily verified that the set Möb together with the
composition of transformations form a group. It is also easy to see that

Möb+ ·Möb+ = Möb+, Möb+ ·Möb− = Möb−, Möb− ·Möb+ = Möb−,

Möb− ·Möb− = Möb+ .

This fact is often expressed by saying that Möb is a supergroup or that Möb is a Z2-graded
group. The above formulas show that Möb+ is a subgroup (It is even a normal subgroup),
while Möb− is not.

We will now consider the hyperbolic plane H = {z = x + yi ∈ C; y > 0}, where
∂H = R ∪ {∞}. Here we can introduce the following sets of transformations

Möb+(H) = {f ∈ Möb+; f(H) ⊂ H} and Möb−(H) = {f ∈ Möb−; f(H) ⊂ H},

and we set Möb(H) = Möb+(H) ∪Möb−(H). Möb+(H) is a subgroup (even a normal
subgroup) in Möb(H). It is well known (and can be easily proved) that

Möb+(H) =
{
f(z) =

az + b

cz + d
; a, b, c, d ∈ R, ad− bc = 1

}
,

Möb−(H) =
{
f(z) =

az + b

cz + d
; a, b, c, d ∈ iR, ad− bc = 1

}
.

Writing ai, bi, ci, di with a, b, c, d ∈ R instead of a, b, c, d, the last description can be
reformulated as follows.

Möb−(H) =
{
f(z) =

az + b

cz + d
; a, b, c, d ∈ R, ad− bc = −1

}
.

We shall introduce three properties of the Möbius group, which we will need later.
They are well known, therefore we state them without a proof.

• Möb(H) acts transitively on H.

• Möb(H) maps ∂H on ∂H.
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• Möb(H) acts triply transitively on ∂H = R ∪ {∞}.

The last property means that given three distinct points z1, z2, z3 ∈ ∂H and a second
set of distinct points w1, w2, w3 ∈ ∂H, there exists precisely one Möbius transformation
f(z) such that f(zi) = wi for i = 1, 2, 3.

Now we take a hyperbolic line l which is a Euclidean half-line orthogonal to ∂H r
{∞} = R with the equation x = u. We shall consider all transformations from Möb(H)
which preserve this line, that is such transformations f that f(l) = l. We denote the set
of all such transformations by H(l). It is obvious that H(l) is a subgroup of Möb(H).

We shall start with transformations from Möb+(H). The point (u, y) with y > 0 lies
on the line considered:

a(u+ yi) + b

c(u+ yi) + d
=

(au+ b) + ayi

(cu+ d) + cyi
=

=
1

(cu+ d)2 + c2y2
[(au+ b) + ayi][(cu+ d)− cyi] =

=
1

(cu+ d)2 + c2y2
[acu2 + adu− acuyi+ bcu+ bd− bcyi+ acuyi+ adyi+ acy2] =

=
1

(cu+ d)2 + c2y2
[(acu2 + adu+ bcu+ bd+ acy2) + (ad− bc)yi].

This means that we must solve the equation

acu2 + adu+ bcu+ bd+ acy2

(cu+ d)2 + c2y2
= u

acu2 + adu+ bcu+ bd+ acy2 = c2u3 + 2cdu2 + d2u+ c2uy2.

Because the last equation must be satisfied for every y > 0, we get ac = c2u. Now we
must distinguish two cases:

c 6= 0

Here we have a = cu and the last equation has the form

c2u3 + cdu2 + bcu+ bd = c2u3 + 2cdu2 + d2u

bcu+ bd = cdu2 + d2u

(d+ cu)(b− du) = 0.

From the equality ad− bc = 1 we easily get c(du− b) = 1, which shows that b− du 6= 0.
Consequently we have d = −cu. Then we have

ad− bc = 1

−c2u2 − bc = 1

b = −c
2u2 + 1

c
.
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In this case the Möbius transformation preserving the hyperbolic line l with x = u, which
we denote hc, has the form

hc =
cuz − c2u2+1

c

cz − cu
, where c ∈ R, c 6= 0 is arbitrary.

We denote the set of all such transformations by H(l)+
6=0.

c = 0

Here we have the equation

adu+ bd = d2a

d(au− du+ b) = 0.

The relation ad − bc = 1 shows that ad = 1. Therefore d = 1/a. The above equation
implies now

b =
1− a2

a
u.

We will denote the Möbius transformation under consideration ka, it has the form

ka =
az + 1−a2

a
u

1
a

, where a ∈ R, a 6= 0 is arbitrary.

We denote the set of all these transformations by H(l)+
0 .

If we take two transformations hc1 and hc2 we can compute the composition hc1hc2 .
We get

hc1hc2 = kc2/c1 .

Similarly we find
ka1ka2 = ka1a2 .

Hence we obtain
h−1
c = hc and k−1

a = k1/a.

The last result shows that H(l)+
0 is a group. Further computation shows that

hcka = hac.

Hence we get

hckahc = hachc

hckahc = k1/a

kahc = hck1/a

kahc = hc/a.

We shall continue with transformation from Möb−(H). Here we have

a(u− yi) + b

c(u− yi) + d
=

1

(cu+ d)2 + c2y2
[(acu2 + adu+ bcu+ bd+ acy2)− (ad− bc)yi].
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This means we must solve the same equation as above:

acu2 + adu+ bcu+ bd+ acy2

(cu+ d)2 + c2y2
= u.

Hence we get the equation ac = c2u again. And again we distinguish two cases:

c 6= 0

Here we get a = cu and (d+ cu)(b− du) = 0. We have

ad− bc = −1

cdu− bc = −1

c(b− du) = −1,

and this shows that b− du 6= 0. We thus get d = −cu. Therefore we have

ad− bc = −1

−c2u2 − bc = −1

b =
1− c2u2

c
.

We denote the transformation which we get pc and we have

pc =
cuz̄ + 1−c2u2

c

cz̄ − cu
.

c = 0

Here we come to the equation

adu+ bd = d2u

d(au− du+ b) = 0.

From the relation ad − bc = −1 we get d 6= 0 and d = −1/a. Therefore from the last
equation we obtain

au+
1

a
u+ b = 0

b = −a
2 + 1

a
u.

We denote this transformation qa and thus we have

qa =
az̄ − a2+1

a
u

− 1
a

, a ∈ R, a 6= 0.

We shall compute the composition pc1pc2 . First let us notice that we have

pc(z) =
c2uz̄ + 1− c2u2

c2z̄ − c2u
.
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And the composition

pc1pc2(z) = pc1

(
c2

2uz̄ + 1− c2
2u

2

c2
2z̄ − c2

2u

)
=

=
c2

1u(c2
2uz + 1− c2

2u
2) + (1− c2

1u
2)(c2

2z − c2
2u)

c2
1(c2

2uz + 1− c2
2u

2)− c2
1u(c2

2z − c2
2u)

=

=
c2

2z + (c2
1 − c2

2)u

c2
1

=
c2
c1
z + ( c1

c2
− c2

c1
)u

c1
c2

=
c2/c1 + 1−(c2/c1)2

c2/c1
u

1
c2/c1

= kc2/c1 .

This immediately shows that p−1
c = pc.

Now let us compute the composition qa1qa2 . First let us notice that

qa(z) =
az̄ − a2+1

a
u

− 1
a

= −a2z̄ + (a2 + 1)u.

We have

qa1qa2(z) = qa1(−a2
2z̄ + (a2

2 + 1)u) = −a2
1(−a2

2z̄ + (a2
2 + 1)u) =

= −a2
1(−a2

2z + (a2
2 + 1)u) = (a1a2)2z + (1− (a1a2)2)u = ka1a2(z).

Thus we have proved the formula qa1qa2 = ka1a2 . This formula implies that q−1
a = q1/a.

We present the previous results in a following table. We present only those composi-
tions which we need.

hc1 ka1 pc′1 qa′1

hc2 kc2/c1 hc2/a1

ka2 ha1a2 ka1a2

pc′1 kc′2/c′1

qa′2 ka′1a′2

4 Reflection in a hyperbolic line
We shall work in the Poincaré half-plane model. We know that in this model we have
two kinds of hyperbolic lines, this difference is artificial and is caused by the choice of
the model. There are lines which are represented by Euclidean half-lines orthogonal to
the boundary ∂H = R ∪ {∞}. We shall denote them by the symbol l. The other ones are
represented by half-circles orthogonal to the same boundary. These we shall denote by
the symbol k.

Our first aim is to introduce in H an analogy of Euclidean reflection with respect
to a line. This seems to be almost impossible because we have neither the notion of
orthogonality nor the notion of distance at our disposal. But we shall see that the lack of
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this technique can be substituted by the presence of Möbius transformations. Our idea is
very simple. If l is a hyperbolic line defined by the equation x = u we define a reflection
Rl by

Rl(z) = −z̄ + 2u.

In fact, this is an ordinary Euclidean reflection, and we use the standard Euclidean structure
on H ⊂ C.

Our intention is to prove that the reflectionRl commutes with all elements of the group
H(l). First we shall prove that the reflection Rl commutes with hc. Let us recall first that

hc(z) =
cuz − c2u2+1

c

cz − cu
=
c2uz − c2u2 − 1

c2z − c2u
,

and we have

h−1
c Rlhc(z) = hcRlhc(z) = hcRl

(
c2uz − c2u2 − 1

c2z − c2u

)
=

= hc

(
− c2uz̄ − c2u2 − 1

c2z̄ − c2u
+ 2u

)
= hc

(
c2uz̄ − c2u2 + 1

c2z̄ − c2u

)
=

=
c2u · c2uz̄−c2u2+1

c2z̄−c2u − c2u2 − 1

c2 · c2uz̄−c2u2+1
c2z̄−c2u − c2u

=

=
c2u(c2uz̄ − c2u2 + 1) + (−c2u2 − 1)(c2z̄ − c2u)

c2(c2uz̄ − c2u2 + 1)− c2u(c2z̄ − c2u)
= −z̄ + 2u = Rl(z).

Now we are going to prove that the reflection Rl commutes with ka. Namely, we have

k−1
a Rlka(z) = k1/aRl(a

2z + (1− a2)u) = k1/a(−a2z̄ − (1− a2)u+ 2u) =

= k1/a(−a2z̄ + (1 + a2)u) =
1

a2
(−a2z̄ + (1 + a2)u) + (1− 1

a2
)u) =

= −z̄ + 2u = Rl(z).

Now we shall prove that Rl commutes with pc. We have

p−1
c Rlpc(z) = pcRlpc(z) = pcRl

(
c2uz̄ + 1− c2u2

c2z̄ − c2u

)
=

= pc

(
− c2uz + 1− c2u2

c2z − c2u
+ 2u

)
= pc

(
c2uz − 1− c2u2

c2z − c2u

)
=

=
c2u · c2uz̄−1−c2u2

c2z̄−c2u + 1− c2u2

c2 · c2uz̄−1−c2u2
c2z̄−c2u − c2u

=
c2z̄ − 2c2u

−c2
= −z̄ + 2u = Rl(z).

It remains to prove that Rl commutes with qa. We have

q−1
a Rlqa(z) = q1/aRlqa(z) = q1/aRl(−a2z̄ + (a2 + 1)u) =

= q1/a(a
2z − (a2 + 1) + 2u) = q1/a(a

2z − a2u+ u) =

= − 1

a2
(a2z̄ − a2u+ u) +

(
1

a2
+ 1

)
u = −z̄ + 2u = Rl(z).
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We are now going to introduce a reflection with respect to a hyperbolic line which is
in our model represented by a Euclidean half-circle. We denote this half-circle by k and
its endpoints by v′, v′′ (v′ < v′′) . Further, let us choose a hyperbolic line l, in our model
represented by a Euclidean half line with x = u. Our idea is the following. We choose
any S ∈ Möb(H) such that S(k) = l and we define

Rk = S−1RlS.

Such Möbius transformation exists. For example we can take

S(z) =

(
u− 1

v′−v′′
)
z +

(
v′

v′−v′′ − uv
′′)

z − v′′
.

This definition seems to depend on many choices. First, there are infinitely many
lines l, and even if we fix l, there are infinitely many such Möbius transformations S that
S(l) = k. But we shall see that our definition does not depend on all these choices. First we
will show that our definition does not depend on the choice of the Möbius transformationS.
Thus let us consider another element S ′ ∈ Möb(H). Then it is obvious that S ′S−l(l) = l,
and consequently S ′S−1 ∈ H(l). Similar to Rk we can define R′k = S ′−1RlS

′. Then we

R′k = S ′−1RlS
′ = S−1SS ′−1RlS

′S−1S = S−1(S ′S−1)−1Rl(S
′S−1)S =

= S−1RlS = Rk.

Here we have used the fact that S ′S−1 ∈ H(l), and consequently S ′S−1 commutes with
Rl.

Now we must prove that our definition of Rk does not depend on the choice of a line
l with x = u. We take two lines l1 with x = u1 and l2 with x = u2. Let T be a Möbius
transformation defined by T (z) = z + (u2 − u1) (translation). Now let S1 ∈ Möb(H)
be such that S1(k) = l1. We set S2 = TS1 and obviously S2(k) = l2. We denote
Rk1 = S−1

1 Rl1S1 and Rk2 = S−1
2 Rl2S2. Then we have

T−1Rl2T (z) = T−1Rl2(z + u2 − u1) = T−1(−z̄ − u2 + u1 + 2u2) =

= T−1(−z̄ + u1 + u2) = −z̄ + u1 + u2 − u2 + u1 = −z̄ + 2u1 = Rl1(z),

Rk2 = S−1
2 Rl2S2 = S−1

1 T−1Rl2TS1 = S−1
1 Rl1S1 = Rk1.

Summarizing, we can see that the reflection Rk is well defined. From the definition of Rk

we can see that it is an involutory mapping.
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5 Affine mappings
In Euclidean geometry, the mapping which preserves lines is affine mapping. We want to
show in this section, that in hyperbolic geometry the mapping which preserves hyperbolic
lines is from Möb(H). In this section we will follow the considerations of [21] by Jason
Jeffers, but we are in a different situation here, because we defined reflections in hyperbolic
lines in an unusual way and we did not introduce metric and isometries of the hyperbolic
plane yet.

We will continue to work in the Poincaré half-plane model of hyperbolic geometry and
we shall not distinguish lines which are Euclidean half-lines and lines which are Euclidean
half-circles. This means that a line l in H, which we will consider, may denote either of
them.

Let f : H→ H be a bijection which maps hyperbolic lines onto hyperbolic lines. We
remark that we assume nothing more about the mapping f , we do not assume even that
f is continuous.

First we notice that the inverse mapping f−1 maps also lines onto lines. Let l be a
line and let us take two distinct points z, z′ ∈ l. Then f−1(z) and f−1(z′) are two distinct
points, and there is exactly one line m such that f−1(z), f−1(z) ∈ m. Because f maps
lines onto lines, f(m) is a line passing through the points z and z′. But there is only one
line with this property, namely the line l. This means that f(m) = l and equivalently
f−1(l) = m.

5.1 Lemma. f preserves the betweenness relation. If X, Y, Z are three points lying on a
hyperbolic line l such that Y lies between the points X and Z, then on the hyperbolic line
f(l) the point f(Y ) lies between the points f(X) and f(Z).

Proof. We denote X̃ = f(X), Ỹ = f(Y ), Z̃ = f(Z). Let us assume that Ỹ does not lie
between X̃ and Z̃, and that for example Z̃ lies between X̃ and Ỹ as in figure I.7. First we

Figure I.7:

take three mutually non-intersecting lines l1, l2, l3 such that l1 (resp. l2, resp. l3) intersects
the line l at the point X (resp. Y , resp. Z). We denote also

l̃ = f(l), l̃1 = f(l1), l̃2 = f(l2), l̃3 = f(l3).

Now we can choose a line m̃ in such a way that m̃ intersects the lines l̃1 and l̃3 and does
not intersect the lines l̃ and l̃2. Then the line m = f−1(m̃) intersects the lines l1 and
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l3 and does not intersect the line l2, which is impossible. This contradiction proves the
lemma.

1 Corollary. If l is a hyperbolic line, then f maps a hyperbolic half-plane determined by
the line l onto a hyperbolic half-plane determined by the hyperbolic line f(l).

Proof. It is easy to see that two points X and Y lie in the same half-plane determined
by l if and only if the line m connecting the points X and Y either does not intersect the
line l or intersects the line l in a point Z which does not lie between the points X and Y .
According to the previous lemma we get the same configuration for the respective images
under f . Now the corollary easily follows.

5.2 Lemma. Let l1 and l2 be two hyperbolic lines which have a common endpoint. Then
their images f(l1) and f(l2) also have a common endpoint.

Proof. Let us assume that the lines f(l1) = l̃1 and f(l2) = l̃2 do not have a common
endpoint. We shall now use three more hyperbolic lines. First we take a line l̃ which
intersects both the lines l̃1 and l̃2. Then we can take two such lines m̃1 and m̃2 that both m̃1

and m̃2 intersect l̃1 and neither of them intersects l̃2. Moreover m̃1 and m̃2 are constructed
in such a way that they lie in different hyperbolic half-planes corresponding to the line l̃
as in the figure I.8. Now we introduce the lines

Figure I.8:

l = f−1(l̃), m1 = f−1(m̃1), m2 = f−1(m̃2).

The lines m1 and m2 lie in different half-planes corresponding to the line l, and conse-
quently one of them must intersect both l1 and l2. The same then holds for their images,
and this is a contradiction.

Because we work in the Poincaré half-plane model, there are many possibilities of
how the picture of the lines we used in this proof could look, and we present two more
pictures in figure I.9.

The last result enables us to extend the mapping f to the boundary ∂H. If x ∈ ∂H,
we take two lines having the common endpoint x. According to the previous lemma their
images also have a common endpoint x′. We then define the extended mapping f̃ by the
formula f̃(x) = x′. f̃ is a unique natural extension of mapping f : H→ H to H ∪ ∂H.

5.3 Lemma. Suppose that x1, x2, y1, y2 ∈ ∂H, and suppose that y1 and y2 together
separate x1 from x2 in ∂H. Then f̃(y1) and f̃(y2) together separate f̃(x1) from f̃(x2) in
∂H.
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Figure I.9:

Proof. Let lx and ly be the hyperbolic lines with endpoints x1, x2 and y1, y2, respectively.
Since y1, y2 together separate x1 from x2, the hyperbolic lines lx and ly must intersect.
But in that case f(lx) and f(ly) must also intersect. Consequently the endpoints f̃(y1)
and f̃(y2) of f(lx) together separate the endpoints f̃(x1), f̃(x2) of f(ly).

Figure I.10:

5.1 Proposition. The map f̃ |∂H is continuous on ∂H.

Proof. Let x ∈ ∂H, let f : H → H be a bijection which maps hyperbolic lines onto
hyperbolic lines and f̃ its natural extension to ∂H. We have f̃(x) ∈ ∂H and we know that
the f−1 also maps the hyperbolic lines onto hyperbolic lines. We take ε ∈ R, there exists
a unique hyperbolic line l with endpoints f̃(x) − ε, f̃(x) + ε. Now we will consider the
hyperbolic line f−1(l). There exist such δ ∈ R that for any x1 ∈ (x− δ;x+ δ) the points
x1, x are not separated by the endpoints of the hyperbolic line f−1(l) and consequently
f̃(x1), f̃(x) are not separated by the endpoints of l (figure I.11). We should consider
also special cases when x or f̃(x) are ∞, but the considerations are similar. The only
difference is that as an open neighbourhood of the point∞ we should take ∂H r 〈a, b〉,
where a, b ∈ R. In some cases it is also possible, that the hyperbolic line f−1(l) is a
Euclidean half-line, but it also does not affect our proceeding. f̃ |∂H is continuous at
every point x ∈ ∂H, which means f̃ is continuous.

For the proof of the next lemma we will need the following proposition.

5.2 Proposition. Let f : R → R be a continuous bijective mapping. Then f is strictly
monotone (i.e. strictly increasing or strictly decreasing).
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Figure I.11:

A proof of this proposition (which is relatively easy) can be found in the paragraph
4.2.2 in [7] . Let us mention the trivial fact that if we compose two strictly monotone
functions, then we are in the following situation:

f1 is strictly increasing, f2 is strictly increasing ⇒ f1 ◦ f2 is strictly increasing,
f1 is strictly increasing, f2 is strictly decreasing ⇒ f1 ◦ f2 is strictly decreasing,
f1 is strictly decreasing, f2 is strictly increasing ⇒ f1 ◦ f2 is strictly decreasing,
f1 is strictly decreasing, f2 is strictly decreasing ⇒ f1 ◦ f2 is strictly increasing.

Let us also notice that if f is strictly increasing (resp. decreasing), then f−1 is also strictly
increasing (resp. decreasing).

5.4 Lemma. Let l be a hyperbolic line, and let Rl denote the reflection with respect to l.
If f̃ preserves the endpoints of l, then fRl = Rlf .

Proof. Because f maps hyperbolic lines onto hyperbolic lines and f̃ preserves their
endpoints, it is obvious that f maps l onto itself. The same holds then for f−1. We
introduce the commutator g = fRlf

−1R−1
l = fRlf

−1Rl. Obviously g has a unique
extension g̃ to H ∪ ∂H. Because there is no problem with the extension of Rl, which we
shall denote by the same symbol, we have g̃ = f̃Rlf̃

−1Rl. First, we shall show that g
preserves all points of the line l. If z ∈ l, then

g(z) = fRlf
−1Rl(z) = fRlf

−1(z) = ff−1(z) = z.

We have used the fact that f−1(l) = l, and consequentlyRlf
−1(z) = f−1(z). We are now

able to describe the form of g. Because of the transitivity property on ∂H we may assume
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without a loss of generality that l is an imaginary axis with the endpoints 0 and∞. We
denote u = g̃(1), u ∈ ∂H.

f̃ |∂H fixes∞ (and also 0). Therefore we can consider its restriction f0 = f̃ |R : R→
R. We recall that R = ∂H − {∞}. f0 is continuous and bijective, and according to
the above proposition it is either strictly increasing or strictly decreasing. If we consider
a reflection Rl with respect to the line x = 0 (this time we denote its extension to
H ∪ ∂H and the restrictions of this extension to ∂H resp. to R by the same symbol),
we have Rl(x) = −x, which is a strictly decreasing function. Then it is obvious that
g0 = g̃|R = f0Rlf

−1
0 Rlff

−1 (no matter whether f is strictly increasing or strictly
decreasing) is strictly increasing. Because 0 < 1 we have 0 = g0(0) < g0(1) = u, that is
u > 0.

Figure I.12:

Now let us consider x ∈ ∂H, x < 0, and let m denote the hyperbolic line (Euclidean
half-circle) with endpoints x and 1. m intersects the imaginary axis in a point vi. Because
g̃ preserves all points of the imaginary axis, it is obvious that the hyperbolic line g(m)
intersects the imaginary axis in a point vi and has endpoints g̃(x) and u. From the
picture I.12 we get (using the standard relations of Euclidean geometry)

−x
v

=
v

1
,
−g̃(x)

v
=
v

u
.

Hence we obtain
g̃(x) =

x

u
for any x ∈ ∂H, x < 0.

We can see that g̃ act as a homothety with the coefficient 1/u (and the center in the origin)
for x ∈ ∂H, x < 0. In fact g̃ has to act as a homothety with coefficient 1/u for all points
from the left half of H, because we can consider any of these points to be an intersection
of two hyperbolic lines lying entirely in the left hyperbolic open half-plane. In the same
time we know that g preserves the points of the line l, then u has to be equal to 1 and g is
an identity mapping.

We obtain the same result if we consider x > 0.

1 Theorem. Let f : H → H be a bijective mapping which maps hyperbolic lines onto
hyperbolic lines. Then f is a Möbius transformation, i. e. an element from Möb(H).
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Proof. The extension f̃ maps the points 0, 1, and∞ onto points z0, z1 and z∞ ∈ ∂H. There
is a unique Möbius transformation h such that h(z0) = 0, h(z1) = 1, and h(z∞) = ∞.
Then hf̃(0) = 0, hf̃(1) = 1, and hf̃(∞) = ∞. Since any Möbius transformation maps
lines onto lines, we can assume from the very beginning that f̃(0) = 0, f̃(1) = 1, and
f̃(∞) =∞.

According to the preceding lemma if f̃ preserves the endpoints of a line l and if f
preserves a point z ∈ H, then

f(Rl(z)) = Rl(f(z)) = Rl(f(z)) = Rl(z).

This shows that f preserves also the point Rl(z). Now we take the hyperbolic triangle
with vertices 0, 1, and∞. f̃ preserves these three vertices and consequently preserves all
points of the three sides of this triangle. This means for example that f preserves the lines
x = 0 and x = 1. Using reflections with respect to these two lines, we can immediately
see that f preserves all points of the lines x = −1 and x = 2. Proceeding in this way, we

Figure I.13:

easily find that f preserves all points of the lines x = n, where n is any integer. Using
then reflection with respect to the third side of our triangle (the half circle) we shall see
that f̃ preserves the point 1/2 ∈ ∂H.

We denote k the hyperbolic line (Euclidean half-circle) with the end points 0 and 1.
Taking the straightening

S(z) =
z

z − 1
,

we can see that S ∈ Möb(H) and that S(k) = l, where l denotes the hyperbolic line
x = 0. Obviously

S−1(w) =
w

w − 1
.

We can now compute the reflection

Rk(z) = S−1RlS(z) = S−1Rl

(
z

z − 1

)
= S−1

(
− z̄

z̄ − 1

)
=

z̄

2z̄ − 1
.

We have Rk(∞) = 1/2. Given that f̃(∞) = ∞, this implies that f̃(1/2) = 1/2. These
two facts together show that f̃ preserves also all points of the line x = 1/2. (But points
with y > 0 are not so important at the moment.) Using the above methods of reflections
we easily find that f̃ preserves all points of the form n/2, where n is any integer. And
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proceeding further we can find that f̃ preserves all points of the form n/2k, where n is any
integer and k is is any non-negative integer. All these points together represent a dense
subset of ∂H. Since f̃ |∂H is continuous on H, f̃ is an identity on ∂H. This means that
f̃(x) = x for any x ∈ H (including x = ∞). Consequently, f̃ preserves all points of the
hyperbolic line represented by Euclidean half-line with the end point x. Therefore f̃ is an
identity on H ∪ ∂H.

Returning to the notation at the beginning of the proof we have hf = I , and this
implies f = h−1. That is, f is a Möbius transformation.
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6 Metric space

6.1 Length of a curve
Our goal is to define the length of a curve in the hyperbolic plane. First we start with the
definition of a curve in the Euclidean plane R2. Let

ρ = (ρ1(t), ρ2(t)) : 〈a, b〉 → R2

be a differentiable function, which means that both functions ρ1(t), ρ2(t) are differentiable
on 〈a, b〉. The length l(ρ) of ρ is given by the formula

l(ρ) =

∫ b

a

√
(ρ′1(t))2 + (ρ′2(t))2dt.

Let us analyze the part under the square root. The vector ρ′(t) = (ρ′1(t), ρ′2(t)) is a tangent
vector of the curve ρ at the point ρ(t). The set of all tangent vectors in the Euclidean plane
at the point z we denote TzR2, analogically the set of all tangent vectors in hyperbolic
plane at point z we denote TzH. We call these sets tangent spaces at z. To every tangent
vector ρ′(t) = (ρ′1(t), ρ′2(t)) there is assigned the expression

(ρ′1(t))2 + (ρ′2(t))2.

Then we can assign a number v2
1 + v2

2 to every vector v = (v1, v2) from TzR2, or more
generally the quadratic form:

αv2
1 + βv1v2 + γv2

2.

Because of the generalization we want to make, we have to realize that the situation in
the Euclidean plane is too simple. The considered quadratic form does not depend on a
point z in the Euclidean case, but it is different in the hyperbolic case. To continue we
will consider a quadratic form at point z ∈ H

α(z)v2
1 + β(z)v1v2 + γ(z)v2

2.

If z = x+ iy, we could also write α(x, y) instead of α(z).
We want to find functions α(z), β(z), γ(z) such that the quadratic form is invariant

under all transformations from Möb(H).
Let us consider the point z ∈ H and the transformation m ∈ Möb(H). From the

tangent space TzH we take v = (v1, v2) and we map it by m to m(z), or more precisely to
tangent space Tm(z)H at point m(z). This image we denote m∗(v).

Now we will explain how this image is defined. First we can say that the mapping
m∗ : TzH→ Tm(z)H is a differential of mappingm at point z. Let us have a differentiable
curve ρ : 〈a, b〉 → H, such that

ρ(a) = z and
dρ(a)

dt
= v.

This means that the initial point is the point z and that the tangent vector of the curve at
the initial point is the vector v. The image of the curve ρ after the transformation m is mρ
and we define

m∗v =

(
d(mρ)(t)

dt

)
t=a

.
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Let us denote m∗v = (w1, w2). By the invariance of the aforementioned quadratic form
under transformation m we mean that for every point z ∈ H and every vector v ∈ TzH
the following equation holds

α(m(z))w2
1 + β(m(z))w1w2 + γ(m(z))w2

2 = α(z)v2
1 + β(z)v1v2 + γ(z)v2

2.

We are interested in those quadratic forms which are invariant under all transformations
from Möb(H).

One of these transformations from Möb(H) is m(z) = z + b, where b ∈ R. If we
write z = x+ iy, then we have m(x, y) = (x+ b, y). If we take our curve ρ, we see that
(mρ)(t) = (ρ1(t) + b, ρ2(t)) and

w1 =

(
d(ρ1(t) + b)

dt

)
t=a

=

(
dρ1(t)

dt

)
t=a

= v1,

w2 =

(
dρ2(t)

dt

)
t=a

= v2.

This means that in this case the mapping m∗ is identical. And invariance in this case
means that

α(x+ b, y)w2
1 +β(x+ b, y)w1w2 + γ(x+ b, y)w2

2 = α(x, y)v2
1 +β(x, y)v1v2 + γ(x, y)v2

2.

This means that for every point z = x+ iy ∈ H ((x, y); y > 0) and every b ∈ R it holds

α(x+ b, y) = α(x, y), β(x+ b, y) = β(x, y), γ(x+ b, y) = γ(x, y).

This means that α, β, γ depend only on y.
The next transformation from Möb(H) is m(z) = az, where a 6= 0, a ∈ R. This time

we have mρ(t) = (aρ1(t), aρ2(t)) and

w1 =

(
d(aρ1(t))

dt

)
t=a

= a

(
dρ1(t)

dt

)
t=a

= av1,

w2 =

(
d(aρ2(t))

dt

)
t=a

= a

(
dρ2(t)

dt

)
t=a

= av2.

In this case the invariance is expressed by the equation

α(ay)(av1)2 + β(ay)(av1)(av2) + γ(ay)(av2)2 = α(y)v2
1 + β(y)v1v2 + γ(y)v2

2.

and we get the following equations

α(ay) =
1

a2
α(y), β(ay) =

1

a2
β(y), γ(ay) =

1

a2
γ(y).

We have to consider that these equations hold for every a 6= 0, a ∈ R. Then we have

α(y) = α(y · 1) =
1

y2
α(1).
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And we have analogical results for β and γ. If we denote cα = α(1), cβ = β(1) and
cγ = γ(1), then we have

α(y) =
cα
y2
, β(y) =

cβ
y2
, γ(y) =

cγ
y2
.

The third transformation from Möb(H) which we consider is the simple transformation
given by m(z) = −z̄. We immediately see that m(x, y) = (−x, y) and m∗v = (−v1, v2).
And the condition of the invariance has the following form

cα
y2
v2

1 −
cβ
y2
v1v2 +

cγ
y2
v2

2 =
cα
y2
v2

1 +
cβ
y2
v1v2 +

cγ
y2
v2

2.

From where cβ = 0.
The last transformation from Möb(H) to be considered is given bym(z) = −1/z. We

have
−1

z
= − 1

x+ iy
= − x− iy

x2 + y2
= − x

x2 + y2
+ i

y

x2 + y2
.

and we can write

m(x, y) =

(
− x

x2 + y2
,

y

x2 + y2

)
.

Then we have got

w1 =

(
d

dt

)
t=a

(
− ρ1(t)

ρ1(t)2 + ρ2(t)2

)
=

= −ρ
′
1(a)(ρ1(a)2 + ρ2(a)2)− ρ1(a)(2ρ1(a)ρ′1(a) + 2ρ2(a)ρ′2(a))

(ρ1(a)2 + ρ2(a)2)2
=

= −v1(x2 + y2)− x(2xv1 + 2yv2)

(x2 + y2)2
=

x2 − y2

(x2 + y2)2
v1 +

2xy

(x2 + y2)2
v2,

w2 =

(
d

dt

)
t=a

(
ρ2(t)

ρ1(t)2 + ρ2(t)2

)
=

=
ρ′2(a)(ρ1(a)2 + ρ2(a)2)− ρ2(a)(2ρ1(a)ρ′1(a) + 2ρ2(a)ρ′2(a))

(ρ1(a)2 + ρ2(a)2)2
=

=
v2(x2 + y2)− y(2xv1 + 2yv2)

(x2 + y2)2
= − 2xy

(x2 + y2)2
v1 +

x2 − y2

(x2 + y2)2
v2.

And the condition of the invariance has the following form:

cα
(x2 + y2)2

y2

[
x2 − y2

(x2 + y2)2
v1 +

2xy

(x2 + y2)2
v2

]2

+

+cγ
(x2 + y2)2

y2

[
− 2xy

(x2 + y2)2
v1 +

x2 − y2

(x2 + y2)2
v2

]2

=

=
cα
y2
v2

1 +
cγ
y2
v2

2.

After the simplification and comparison of coefficients of v1 and v2 we have cα = cγ .
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We have found out that if the quadratic form under the consideration

α(z)v2
1 + β(z)v1v2 + γ(z)v2

2

is invariant under all transformations from Möb(H), then it must be of the form

c

y2
v2

1 +
c

y2
v2

2,

where c ∈ R. We use this quadratic form to define the length of the curve in the hyperbolic
plane H. Instead of ρ′1(t)2 + ρ′2(t)2 we shall write

c

ρ2(t)2
ρ′1(t)2 +

c

ρ2(t)2
ρ′2(t)2

under the radical. Letρ = (ρ1, ρ2) : 〈a, b〉 → H be a differentiable curve. We define the
hyperbolic length λ(ρ) of ρ as follows

λ(ρ) =

∫ b

a

√
c

ρ2(t)2
ρ′1(t)2 +

c

ρ2(t)2
ρ′2(t)2

=
√
c

∫ b

a

1

ρ2(t)

√
(ρ′1(t))2 + (ρ′2(t))2

=
√
c

∫ b

a

1

Im(ρ(t))
|ρ′(t)|dt,

(1)

where c > 0.

6.2 Geodesics
We are looking for a geodesic segment between the points (u, v1), (u, v2) ∈ H. For
simplicity we shall consider a curve representing a graph of a function

x = f(y), y ∈ 〈v1, v2〉, f(v1) = f(v2) = u.

The lengths of this curve can be expressed by the integral∫ v2

v1

√
f ′2 + 1

y
dy.

A curve of minimal lengths must satisfy the Euler-Lagrange equation known from the
calculus of variations. We denote

F (y, x, x′) =

√
x′2 + 1

y
.

Then we have ∫ v2

v1

F (y, f, f ′)dy =

∫ v2

v1

√
f ′2 + 1

y
dy.



35

The Euler-Lagrange equation has the form

∂F

∂x
− d

dy

∂F

∂x′
= 0.

We easily find that

∂F

∂x
= 0,

∂F

∂x′
=

1

y
· f ′√

f ′2 + 1
,

d

dy

∂F

∂x′
= − 1

y2
· f ′√

f ′2 + 1
.

So the Euler-Lagrange equation acquires the form

1

y2
· f ′√

f ′2 + 1
= 0.

This implies that f ′ = 0, and consequently the function f is constant. Using our boundary
condition, we get f(y) = u. We can see that the shortest curve connecting the points
(u, v1) and (u, v2) is a part of the hyperbolic line connecting these two points.

Now let us consider two points which do not lie on a vertical line. Then there is a
unique half-circle with the center on ∂H passing through these two points. Let x0 be its
center and ρ its diameter. Then these points have the coordinates

(x0 + ρ cosϕ1, ρ sinϕ1) and (x0 + ρ cosϕ2, ρ sinϕ2).

We shall consider curves connecting the above two points and having the form

(x0 + f(ϕ) cosϕ, f(ϕ) sinϕ), ϕ ∈ 〈ϕ1, ϕ2〉, r(ϕ1) = r(ϕ2) = ρ.

We need to express the length of the above curve in H. In accordance with the form of
the above curves we introduce the polar coordinates r and ϕ by the formulas

x = x0 + r cosϕ, y = r sinϕ.

Hence we get

dx = cosϕ · dr − r sinϕ · dϕ, dy = sinϕ · dr + r cosϕ · dϕ,
dx2 + dy2 = cos2 ϕ · dr2 − 2r cosϕ sinϕ · drdϕ+ r2 sin2 ϕ · dϕ2+

+ sin2 ϕ · dr2 + 2r cosϕ sinϕ · drdϕ+ r2 cos2 ·dϕ2 = dr2 + r2dϕ2,

dx2 + dy2

y2
=
dr2 + r2dϕ2

r2 sin2 ϕ
.

Now we can see that the lengths of the above curve is given by the formula∫ ϕ2

ϕ1

√
r′2 + r2

r sinϕ
dϕ.

This time we introduce the function

F (ϕ, r, r′) =

√
r′2 + r2

r sinϕ
.
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Then we have ∫ ϕ2

ϕ1

F (ϕ, r, r′)dϕ =

∫ ϕ2

ϕ1

√
r′2 + r2

r sinϕ
dϕ.

We can calculate

∂F

∂r
= − r′2

r2 sinϕ
√
r′2 + r2

,
∂F

∂r′
=

1

sinϕ
· r′

r
√
r′2 + r2

,

and
d

dϕ

∂F

∂r′
= − cosϕ

sin2 ϕ
· r′

r
√
r′2 + r2

The Euler-Lagrange equation has the form

− r′2

r2 sinϕ
√
r′2 + r2

+
cosϕ

sin2 ϕ
· r′

r
√
r′2 + r2

= 0

−r′2 sinϕ+ rr′ cosϕ = 0

r′(sinϕ · r′ − cosϕ · r) = 0.

Now we have two possibilities. Either r′ = 0, then the function r is constant and according
to our boundary condition there is r(ϕ) = ρ, or sinϕ · r′ − cosϕ · r = 0 and we get a
differential equation. We have

r′(ϕ)

r(ϕ)
=

cosϕ

sinϕ

(ln r(ϕ))′ = (ln sinϕ)′

ln r(ϕ) = ln sinϕ+ ln c

r(ϕ) = c sinϕ.

But it is easy to see that the second solution cannot satisfy our boundary conditions. This
means that the only admissible solution is r(ϕ) = ρ, and that the shortest curve connecting
our two points is an arc of a half-circle with its center on ∂H, i.e. a segment of a hyperbolic
line.

6.3 Hyperbolic distance of two points in H
Let us consider two points z1 = x1 + iy1, z2 = x2 + iy2 ∈ H. To establish the distance
between them we use the fact that the hyperbolic lines lie on the Euclidean lines or the
Euclidean circles which are perpendicular to R.

If x1 = x2, then the hyperbolic line passing through the points z1, z2 lies on a Euclidean
line, as shown in the figure I.14, and we can write z1 = x+ iy1, z2 = x+ iy2.

Next we consider a mapping (ρ1, ρ2) : 〈0, 1〉 → H given by

ρ1(t) = x

ρ2(t) = y1 + t(y2 − y1), t ∈ 〈0, 1〉 .
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Figure I.14:

The image of this mapping is a hyperbolic line between z1 and z2 and so the following
holds

d(z1, z2) = λ(ρ) =

∫ 1

0

1

y + t(y2 − y1)

√
(0)2 + (y2 − y1)2dt

= (y2 − y1)

∫ 1

0

dt

y1 + t(y2 − y1)

= (y2 − y1)
1

y2 − y1

[ln((y1 + t(y2 − y1))]10

= ln y2 − ln y1 = ln
y2

y1

.

If x1 6= x2, then the hyperbolic line given by points z1, z2 lies on a Euclidean circle as
in figure I.15. Let c and r respectively be the center and the radius of this circle (both are
easy to calculate).

Figure I.15:

We consider the mapping f : 〈α1, α2〉 → H, where αk are arguments of zk on the
interval 〈0, π), given by

f(t) = c+ reit.
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Its image is again the hyperbolic line between z1 and z2.
Because Im(f(t)) = r sin t (eit = cosx+ i sinx) and |f ′(t)| = |rieit| = r, we have

d(z1, z2) = λ(ρ) =

∫ α2

α1

1

sinx
dx.

First we will compute the indefinite integral∫
1

sinx
dx =

∫
sinx

1− cos2 x
dx =

t = cosx
dt = − sinxdx

=

∫
1

t2 − 1
dx

=

∫ 1
2

t− 1
−

1
2

t+ 1
dx =

1

2
ln |t− 1| − 1

2
ln |t+ 1|

= ln

√∣∣∣∣t− 1

t+ 1

∣∣∣∣ = ln

√∣∣∣∣cosx− 1

cosx+ 1

∣∣∣∣ = ln

√∣∣∣∣cosx− 1

cosx+ 1
· cosx− 1

cosx− 1

∣∣∣∣
= ln

√∣∣∣∣(cosx− 1)2

− sin2 x

∣∣∣∣ = ln

∣∣∣∣cosx− 1

sinx

∣∣∣∣ = ln | cotg x− cscx|

and now we can continue with the previous definite integral. We have∫ α2

α1

1

sinx
dx = [ln | cotg x− cscx|]α2

α1
= ln

∣∣∣∣cotg α2 − cscα2

cotg α1 − cscα1

∣∣∣∣.
It holds that cscαk = r

yk
and cotg αk = xk−c

yk
, by the substitution to the previous

equation we get

d(z1, z2) = ln

∣∣∣∣ x2−c−ry2
x1−c−r
y1

∣∣∣∣ = ln

∣∣∣∣(x2 − c− r)y1

y2(x1 − c− r)

∣∣∣∣.
6.4 Metric
We remind readers that a metric space is an ordered pair (M,d) where M is a set and d is
a function d : M ×M → R such that for any x, y, z ∈M we have

1. d(x, y) ≥ 0 for every x, y ∈ H, and d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x),
3. d(x, z) ≤ d(x, y) + d(y, z).

We would like to prove that the space H together with the mapping d defined in the
previous section is a metric space.

ad1) The first condition is obvious.

ad2) Let ρ : 〈a, b〉 → H, where ρ is a hyperbolic segment (either the Euclidean arc or
Euclidean segment) and consider the composition of ρwith the function σ : 〈b, a〉 → 〈a, b〉
given by h(t) = a+ b− t. It holds that (ρ ◦ σ)(a) = ρ(b) = y and (ρ ◦ σ)(b) = ρ(a) = x,
ρ ◦ σ is also a hyperbolic segment. By calculation we obtain
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λ(ρ ◦ σ) =

∫ b

a

1

Im((ρ ◦ σ)(t))
|(ρ ◦ σ)′(t)|dt

=

∫ b

a

1

Im(ρ(σ(t)))
|ρ′(σ(t))||σ′(t)|dt

= −
∫ a

b

1

Im(ρ(s))
|ρ′(s)|ds

=

∫ b

a

1

Im(ρ(s))
|ρ′(s)|dt = λ(ρ).

Consequently it holds that d(x, y) = d(y, x).

ad3) It is obvious that if the points x, y, z ∈ H lie on the same hyperbolic line and y
lies between x and z, it holds that d(x, z) = d(x, y) + d(y, z). In another case, it is easy
to see that d(x, z) < d(x, y) + d(y, z) because we know that the shortest path between x
and z lies on the hyperbolic line given by the points x, z.
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7 Models of hyperbolic geometry
By a model of hyperbolic geometry we mean a choice of space and the way of representing
geometric objects like points and lines. We already introduced the Poincaré half plane
model, now we will shortly introduce the rest of well-known models such as the Klein
model, Poincaré disc model, hemisphere model and the hyperboloid model. We should
mention that there are infinitely many models of hyperbolic geometry.

Generally we can define all those models as subsets of Rn, but we will define most of
them in dimension two and the hemisphere model and the hyperboloid model in dimension
three, to easily show the connection between them later on.

7.1 History
Finding models of hyperbolic geometry was a breaking point for this new branch of
geometry. It proved relative consistency of hyperbolic geometry, which means that if
Euclidean geometry is consistent, then also hyperbolic geometry is consistent. This
breaking point came in 1868 when Eugenio Beltrami (1835-–1900) published two papers,
where he showed that two-dimensional hyperbolic geometry can be studied on suitable
surfaces of constant negative curvature. He introduced the term pseudosphere of radius
R for the complete simply connected surface of curvature −1

R2 . In the second paper
Beltrami presented models of hyperbolic geometry. In 1871 Felix Klein (1849–1925)
reinterpreted one of those models in terms of projective geometry and popularized this
model, which is why this model carries his name now. It was he, who started to use the
term hyperbolic geometry for the geometry introduced by Lobachevsky. It is interesting
that a corresponding metric to the Poincaré disc model had already been noted by Riemann
and a metric for the Poincaré half plane model was used by Liouville.

7.2 Well known models of hyperbolic geometry

The Klein model

Figure I.16: Hyperbolic line in the Klein model
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The Klein model, also called the Klein-Beltrami model is defined in an open disc

K = {(x1, x2) : x2
1 + x2

2 < 1}.

The hyperbolic points of this model are the interior points of the open disc, the boundary
of the disc (which is not part of the model) is called the bounding circle. Hyperbolic lines
in this model are line segments contained in the disc with endpoints on the bounding circle
(figure I.16).

The associated Riemannian metric

ds2
K =

dx2
1 + dx2

2

1− x2
1 − x2

2

+
(x1dx1 + x2dx2)2

(1− x2
1 − x2

2)2
.

The Poincaré disc model

Figure I.17: Lines in the Poincaré disc model

The domain of the Poincaré disc model is the same as it is in the previous case

I = {(x1, x2) : x2
1 + x2

2 < 1}.

The hyperbolic lines of the circle model are circular arcs orthogonal to the bounding
circle, including diameters. Unlike the Klein model, this model is conformal (which
means that the angle between two intersecting curves in the hyperbolic plane is the same
as the Euclidean angle in the model).

The Riemannian metric for this model is

ds2
I = 4

dx2
1 + dx2

2

(1− x2
1 − x2

2)2
.

The hemisphere model

The domain of the hemisphere model is the upper half of sphere S2

J = {(x1, x2) : x2
1 + x2

2 + x2
3 = 1 ∧ x3 > 0}.
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Figure I.18: The hemisphere model

The lines of the model are the intersections of J with planes perpendicular to the boundary
of J.

The Riemannian metric for this model is

ds2
J =

dx2
1 + dx2

2 + dx2
3

x2
3

.

The hyperboloid model

Figure I.19: The hyperboloid model

This model is also called the Lorentz model or the Minkowski model. The hyperbolic
plane is in this case represented by the upper half of two-sheet hyperboloid

L = {(x1, x2) : x2
1 + x2

2 − x2
3 = −1 ∧ x3 > 0}.

The lines of the model are the intersections of planes crossing through the origin with
L. This model is embedded in 3-dimensional Minkowski space, which is a model for
spacetime used in the special theory of relativity.
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The associated Riemannian metric for this model is

ds2
L = dx2

1 + dx2
2 − dx2

3.

Figure I.20: Stereographic projection

7.3 Connection between the models of hyperbolic geometry
All the models of hyperbolic geometry are isometrically equivalent. We could gain the

Figure I.21: Central projection and orthogonal projection

Poincaré disc model from the hemisphere model by stereographic projection from the
south pole of the sphere, as in figure I.20. The same projection connects these two models
with the Lorentz model. The hyperboloid model can be projected by the projection with
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Figure I.22: Stereographic projection

the center of S2 to the Klein model and then by orthogonal projection into the hemisphere
model as shows figure I.21.

The hemisphere model can be projected by stereographic projection with the center
on the boundary to the Poincaré half plane model.

These models of hyperbolic geometry are differentiable manifolds with a Riemannian
metric and associated geometric notions. A Riemannian metric ds2 on Euclidean space
Rn is a function that assigns to each point p ∈ Rn a positive definite symmetric inner
product on the tangent space at p. This inner product varies differentiably with the point
p. Given this inner product, it is possible to define standard geometric notions such as the
length of a vector, the angle between two vectors or the length of a path, as we did with
the Poincaré half plane model.

It is also possible to take one model with the given Riemannian metric (in our case it
would be the Poincaré half plane model) and using the isometries between the models to
calculate the Riemannian metrics in the rest of the models.
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8 Double cover
In this section we will use the generalization of one of the previous models ton−dimensional
space. It will be the hyperboloid model, in which it is easy to define the distance but it
would be difficult to derive the form of Riemannian metric here. Our intention here is
to show the connection between the group of isometries of the hyperbolic space and the
Lorentz group.

Let us consider real vector space Rn+1, x ∈ Rn+1, x = (x0, x1, . . . , xn). The quadratic
form is given by

q = x2
0 − x2

1 − · · · − x2
n.

Using the notation x = (t, y), where t = x0, y = (x1, . . . , xn), we can rewrite q in the
following way

q = t2 − ‖y‖2.

The bilinear form corresponding to the quadratic form q is defined by

b(x, x′) = 1
2
[q(x+ x′)− q(x)− q(x′)] = tt′ − 〈y, y′〉.

We define projective space as a set of all one-dimensional subspaces of Rn+1, P n =
P (Rn+1). Let ξ ∈ P n be a point in projective space x = (t, y) ∈ ξ. We define the
hyperbolic space as follows

Hn = {ξ ∈ P n, q(x) > 0;x ∈ ξ}.

From the equality q(ax) = a2q(x) we see that the positivity of q(ax) does not depend on
the choice of x ∈ ξ

Let [x] ∈ Hn be a point in Hn. Hence

x2
0 − x2

1 − · · · − x2
n > 0

and
x2

0 > x2
1 + · · ·+ x2

n.

Without the loss of generality we can identify Hn with points (x1, . . . , xn) such that
1 > x2

1 + · · · + x2
n. Actually for x0 6= 0 we have (x0, x1, . . . , xn) ∼ (1, x1

x0
, . . . , xn

x0
) and

the corresponding points in Hn are equal.
Consider two points ξ, ξ′ ∈ Hn in projective space, such that x ∈ ξ, x′ ∈ ξ′. It is easy

to see that
|b(x, x′)|√
q(x) ·

√
q(x′)

≥ 1

holds and we can define the distance between ξ and ξ′ by the relation

ρ(ξ, ξ′) = cosh−1 |b(x, x′)|√
q(x) ·

√
q(x′)

.

Consider the Lorentz groupG of all automorphisms ϕ : Rn+1 −→ Rn+1 which satisfy

(2) b(ϕx, ϕx′) = b(x, x′).
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The Lorentz group G is a subset of GL(n+ 1,R) := GL(Rn+1).
Let ξ ∈ P n be a point in projective space, v ∈ ξ and av ∈ ξ be two representatives of

ξ and ϕ(v) and ϕ(av) be its images, respectively. From (2) we get ϕ(av) = aϕ(v) and ϕ
induces the automorphism ϕ̃ : P n → P n.

If ϕ ∈ G ⇒ ϕ̃ is isometry of Hn. The mapping G −→ Iso(Hn) is a homomorphism
onto.

It is easy to see that the following lemma is true.

8.1 Lemma. If automorphismsϕ andψ induce the same automomorphism of P n then they
differ at most by a nonzero constant multiple. More precisely the following implication
holds:

ϕ̃ = ψ̃ ⇒ ∃c 6= 0 : ψ = cϕ.

Proof. Let ϕ : Rn+1 → Rn+1 be an automorphism, and let ϕ̃ : P n → P n be the
corresponding induced map of the projective space into itself. Let us assume that ϕ̃ = id.
Then there exists c ∈ R, c 6= 0 such that ϕ = cI .

For any vector v ∈ Rn+1 we have ϕ̃[v] = [v], and consequently there exists cv ∈ R,
cv 6= 0 such that ϕ(v) = cvv. In this way we get a mapping c : Rn+1 r {0} → R,
c(v) = cv. Let v and v′ be two linearly independent vectors. Then

cv+v′v + cv+v′v
′ = cv+v′(v + v′) = ϕ(v + v′) = ϕ(v) + ϕ(v′) = cvv + cv′v

′,

and this implies cv = cv+v′ = cv′ . Moreover if v and v′ are linearly independent, then
v′ = av, and we have

cv′av = cv′v
′ = ϕ(v′) = ϕ(av) = aϕ(v)acvv,

which implies again cv′ = cv. We can see that the function c is constant on Rn+1 r {0},
and we denote its constant value by c. Consequently, we have ϕ(v) = cv for any
v ∈ Rn+1 r {0}. But this equality obviously holds also for v = 0.

We prove that the kernel of the mapping Ω : G −→ Iso(Hn) defined by the formula
Ω(ϕ) = ϕ̃ is the set {Id,−Id}. Letϕ be from Ker(Ω). Thenϕ 7→ id and trivially Id 7→ id.
Using the previous Lemma we have ϕ = c Id. From (2) it follows

b(cId(x), cId(x′)) = b(x, x′)

c2b(x, x′) = b(x, x′)

c2 = 1

c = ±1.

Hence the kernel of this homomorphism is Id and − Id, so the mapping G → Iso(Hn) is
a double cover.
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9 Subgroups of the isometry group Iso(H)

As usual we denote H the hyperbolic plane. For our purposes we shall use the Poincaré
half plane model and the Poincaré disc model. The aim of the present section is to describe,
at least roughly, the rich variety of the properly discontinuous subgroupsG of the isometry
group Iso(H). Let us remind readers the definition of the properly discontinuous action
of a group.

Let X be a topological space and G a group which acts on X by homeomorphism.
This action is called properly discontinuous if for every x ∈ X , there is a neighborhood
U of x such that

∀g ∈ G (g 6= id)⇒ (gU ∩ U = ∅).

We recall that if a group G acts on a set X , we can introduce an equivalence relation
∼ on X:

x1 ∼ x2 if and only if there is g ∈ G such that x2 = gx1.

In this way the set X decomposes into equivalence classes. A subset F ⊂ X is called the
fundamental subset if it contains exactly one element from each equivalence class. We
can easily see that

g1F ∩ g2F = ∅ for g1 6= g2 and
⋃
g∈G

gF = X.

It is obvious that there are many possibilities in choosing a fundamental subset. In our
special case X = H and a G is a properly discontinuous subgroup G ⊂ Iso(H), and we
shall try to find nice fundamental sets.

For both the models mentioned above we have H ⊂ C. If M ⊂ H, we shall denote
by M̄ the closure of M in C, and by M̃ the closure of M in H. We have

M ⊂ M̃ ⊂ M̄ and M̃ = M̄ ∩H.

A subset D ⊂ H is called the fundamental domain if it has the following properties

• D is a domain, i. e. an open and connected set,

• there is a fundamental set F such that D ⊂ F ⊂ D̃,

• hyperbolic volume of ∂D = 0.

Here ∂D denotes the boundary of D, more precisely ∂D = D̃ ∩ ˜(H−D).
Recall that G is a properly discontinuous subgroup of Iso(H). We shall see that

fundamental domains are very often polygons. Here we mean polygons in hyperbolic
geometry and polygons in a slightly generalized sense. (Our polygons can have for
example a countable number of sides.) First we shall describe the construction of such a
polygon, though at the beginning it will not be clear that this polygon is a fundamental
domain. This construction is attributed to Dirichlet (1805–1859) in the case of Euclidean
geometry, and to Henri Poincaré (1854–1912) in the case of hyperbolic geometry. The
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relevant polygons are called then Dirichlet polygon and Poincaré polygon. We take a
point w ∈ H such that gw 6= w for any g ∈ G, g 6= 1. For g ∈ G we introduce the subsets

Lg(w) = {z ∈ H; ρ(z, w) = ρ(z, gw)},

where ρ denotes the metric in the hyperbolic plane H (depending, of course, on the model
under consideration). Obviously Lg(w) is the axis of the segment [w, gw], and it is known
that this axis is a (hyperbolic) line. Similarly we introduce a subset

Hg(w) = {z ∈ H; ρ(z, w) < ρ(z, gw)}.

It is easy to see that Hg(w) is an open halfplane in H, and it is known that it is convex (in
the framework of hyperbolic geometry, as any halfplane in H). Now we define a Poincaré
polygon D(w) by the formula

D(w) =
⋂

g∈G,g 6=I

Hg(w).

We shall not choose a straightforward study of the Poincaré polygon. We prefer a more
abstract approach, which is also much clearer. First we introduce the following definition.
A fundamental domain D ⊂ H is called locally finite if for any compact subset C ⊂ H
the set

{g ∈ G; gD̃ ∩ C 6= ∅}

is finite. We define convex fundamental polygon as a convex locally finite domain. This
definition naturally seems to be strange, because on a convex fundamental domain we see
nothing which would look polygonal. But later on, we shall see that a convex fundamental
polygon really must be a polygon in the above mentioned slightly generalized sense. It
can be proved that a Poincaré polygon is a convex fundamental polygon. We shall not
present a proof here. Instead, we shall sketch a proof of the fact that a convex fundamental
polygon really is a polygon.

Thus let us consider a convex fundamental polygon P ⊂ H, and let us consider a point
z ∈ P̃ . First we choose a closed (and consequently compact) neighborhood N ′ ⊂ H of
the point z. Because P is locally finite, we find only a finite number g1, . . . gr ∈ G of
elements such that

giP̃ ∩N ′ 6= ∅ for all i = 1, . . . , r.

But we shall not use all the elements g1, . . . gr. We shall consider only those elements gi
such that

z ∈ giP̃ .

For simplicity of notation let us suppose these are the elements g1, . . . gs, s ≤ r. Because
gs+1P̃ , . . . , grP̃ do not contain z, we can find a smaller compact neighborhood N of z
such that

z ∈ g1P̃ ∩ · · · ∩ gsP̃ and N ⊂ g1P̃ ∪ · · · ∪ gsP̃ .

It is obvious that there must be the identity transformation among the g1, . . . gs. Without
a loss of generality we may assume that g1 = I . If z ∈ ∂P̃ , then necessarily s ≥ 2.
Namely, if there were s = 1 we would have z ∈ N ⊂ g1P̃ = P̃ , which would contradict
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the fact that z belongs to the boundary of P̃ . This means that there is an element z′ ∈ P̃
such that z = g2z

′. Equivalently g−1
2 z = z′. Because g−1

2 is an isometry, it is obvious that
z′ ∈ ∂P̃ . We have thus proved the following very important fact:

(1) If z ∈ ∂P̃ , then there exists an element g ∈ G, g 6= I such that gz ∈ ∂P̃ .

Let g ∈ G be a nontrivial element (i.e. g 6= I). It is obvious that P̃ ∩ gP̃ is convex. But
P̃ ∩gP̃ cannot contain three noncollinear points. If this were the case, then P̃ ∩gP̃ ⊂ ∂P̃
would contain a nondegenerate hyperbolic triangle, and consequently the hyperbolic
volume of ∂P̃ would be positive. This shows that P̃ ∩ gP̃ is a hyperbolic segment. We
can introduce the following definition:

A side of a convex fundamental polygonP is any segment of the form P̃ ∩gP̃ provided
it has positive length. A vertex of a fundamental polygonP is a point P̃∩gP̃∩hP̃ provided
that the elements I, g, h ∈ G are mutually disjoint.

Concerning the sides and the vertices, the following facts can be proved

(2) P has at most a countable number of sides and vertices.

(3) A compact subset of H can be intersected only by a finite number of sides and
vertices.

(4) The boundary ∂P is a union of sides.

(5) Every vertex belongs to exactly two sides and represents an endpoint of each of
them.

Now we are going to introduce a notion of conjugation for the sides of a convex funda-
mental polygon P . We denote by G∗ a subset of G consisting of all elements g ∈ G such
that P̃ ∩ g(P̃ ) is a side (i. e. the intersection is not only a point or it is not empty). Further
we denote S the set of all sides of P . Obviously, we have a mapping

Φ : G∗ → S, Φ(g) = P̃ ∩ g(P̃ ).

From the definition of a side it is obvious that Φ is surjective. But it is easy to prove that
it is also injective. Let us assume that for two elements g, h ∈ G∗ we have Φ(g) = Φ(h),
or equivalently

P̃ ∩ g(P̃ ) = P̃ ∩ h(P̃ )

Applying ∩h(P̃ ) to both sides of the above equality, we get

P̃ ∩ g(P̃ ) ∩ h(P̃ ) = P̃ ∩ h(P̃ ).

If g 6= h, then on the left side we have a vertex, while on the right side we have a side.
This contradiction shows that g = h.

The inverse mapping Φ−1 : S → G∗ assigns to every side s ∈ S a unique element
gs ∈ G∗ such that

s = P̃ ∩ gs(P̃ ).
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To a side s we can assign another side s′ = P̃ ∩ g−1
s (P̃ ) = g−1

s (s). In this way we get
a mapping σ : S → S defined by the formula σ(s) = s′. This mapping is in fact based
on the inversion mapping g 7→ g−1 in the group G, which maps G∗ onto itself. From the
definition of σ it is obvious that σ is an involutive mapping, i.e. it satisfies σ2 = I . The
sides s and σ(s) are then called conjugate sides. Let us remark that we use the notion of
polygon in a rather general sense. Namely, it can happen that s = s′.

The following very important theorem holds:

The subset G∗ generates the group G.

There is an inversion to this theorem. Let us assume that there is given a polygon
P ⊂ H (in a generalized sense) and we again denote S the set of its sides. We assume
also that there are distinguished pairs of sides (s, s′) (among all sides of P ) and for each
such pair (s, s′) there exist the isometries gs and gs′ such that gs(s) = s′ and gs′(s′) = s.
(Then necessarily gs′ = g−1

s .)
Then we have the following result which is due to Poincaré.

The group generated by the elements gs, where s ∈ S is properly discontinuous.

The above discussion clarifies the variety of properly discontinuous subgroups of the
group of isometries of the hyperbolic plane H . All of them can be obtained starting from
a polygon in H together with the above mentioned conjugation of its sides.

1 Example. The group of the anharmonic ratios contains the following transformations:

I = z, U = −z + 1, T1 =
1

z
, T2 =

1

1− z
, T3 =

z − 1

z
, T4 =

z

z − 1

We let this group act on the upper half plane. The fundamental domain D of this group
is shadowed on the figure I.23.

Figure I.23:

The sides of the Poincaré polygon lying on the border of the upper half plane are con-
gruent under the transformation U and the sides the Poincaré polygon lying on semicircles
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(hyperbolic lines) are congruent under the transformation T3. U is a rotation through the
angle π about a point 1

2
and T3 is a rotation through the angle 2π

3
about an intersection of

the semicircles (we can not apply these transformations to the whole model). These are
the generators of the group, as we can see also from the following table.

I U T1 T2 T3 T4

I I U T1 T2 T3 T4

U U I T3 T4 T1 T2

T1 T1 T2 I U T4 T3

T2 T2 T1 T4 T3 I U

T3 T3 T4 U I T2 T1

T4 T4 T3 T2 T1 U I
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Chapter II

Applications of hyperbolic geometry

1 Lobachevsky’s first application of hyperbolic geometry
Nikolai Ivanovich Lobachevsky (1792–1856) presented his first paper on non-Euclidean
geometry, A concise outline of the foundations of geometry, on February 23, 1826 during
a session of the department of physics and mathematics at Kazan University. It was never
published or discussed publicly, so we don’t know its content. The first published paper
on non-Euclidean geometry was printed by a minor Kazan periodical and was rejected by
the St Petersburg Academy of Sciences.

Despite the fact that his ideas on this new geometry, which he called imaginary, were
mostly rejected, he continued to develop them. The summary of his results Geometrical
Investigations on the Theory of Parallels was published in Berlin in 1840. Lobachevsky’s
major work was completed in 1823 but was not published in its original form until 1909.

Using geometric interpretation in hyperbolic geometry, Lobachevsky computed the
volume of hyperbolic cones and pyramids in two ways. In one case he got a number in the
other case part of the result was an integral. By the comparison of those results he found
values of 50 concrete definite integrals. They are numbered by Lobachevsky I - L in the
third part of Lobachevsky’s Collected work ([23]). The integrals I-VIII have more general
form. There always appears an arbitrary function F which must fulfil some assumptions
but these are usually quite weak (we shall not specify them). We present some of the
integrals, following the numbering of Lobachevsky.

I. Let a, b be real numbers such that a2 > b2. Then we have∫ π

0

∫ π

0

(ex − e−x)F ′(a(ex + e−x) + b cosω(ex − e−x))dωdx =

=
−π√
a2 − b2

F (2
√
a2 − b2).

VI. Let a, b be real numbers. Then we have∫ ∞
0

∫ π

0

sinω(ex − e−x)2F (a(ex + e−x) + b cosω(ex − e−x))dωdx =

= 2

∫ ∞
0

(ex − e−x)2F ′((ex + e−x)
√
a2 − b2)dx.
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Here we can see that a two dimensional integral is expressed in terms of one dimensional
integral.

VII. Here a, b are real numbers such that a2 > b2 and it holds∫ ∞
−∞

x√
1 + x2

F (ax+ b
√

1 + x2)dx =

=
1

2
a

∫ ∞
0

(ex − e−x)2F
(1

2
(ex + e−x)

√
a2 − b2

)
dx.

In examples IX and X Lobachevsky describes integrals which represent solutions of
a partial differential equation.

IX. For the Laplace homogeneous equation

d2V

dx2
+
d2V

dy2
+
d2V

dz2
= 0

Lobachevsky finds a solution in the form

V =

∫ 2π

0

∫ ∞
0

x
(
eξ − e−ξ

)
f
(
y +

1

2
x
(
eξ − e−x

)
cosω, z +

1

2

(
eξ − e−ξ

)
sinω

)
dξdω+

+
d

dx

∫ 2π

0

∫ ∞
0

xF
(
y +

1

2
x
(
eξ − e−x

)
cosω, z +

1

2

(
eξ − e−ξ

)
sinω

)
dξdω,

where f and F are arbitrary functions of two variables.
X. Here we consider a partial differential equation for a function of four variables

x, y, z, t. It is the equation

d2V

dt2
=
d2V

dx2
+
d2V

dy2
+
d2V

dz2
.

Lobachevsky has found a solution in the form

V =

∫ 2π

0

∫ ∞
0

x(eξ − e−ξ)F
(
t+

1

2
x(eξ − e−ξ), y +

1

2
x(eξ − e−ξ) cosω,

z +
1

2
x(eξ − e−ξ) sinω

)
dξdω.

The remaining 40 integrals are quite concrete integrals. We present several of them
because they are of interest.

XIV. For arbitrary α > 0 and β > 0 we have∫ β

0

ln

(
1 + cosω

√
sin2 α− sin2 β sin2 ω

1− cosω
√

sin2 α− sin2 β sin2 ω

)
dω =

= π ln

(
tg

1

2
α sin β +

√
tg 2 1

2
α sin2 β + 1

)
.
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XVII. For arbitrary real α, β we have∫ β

0

x sinx

(1− sin2 α sin2 x)
√

sin2 β − sin2 x
dx =

=

π ln

(
cosα+

√
1−sin2 α sin2 β

2 cosβ sin2 1
2
α

)
2 cosα

√
1− sin2 α sin2 β

.

In order to formulate the next results we shall need a function

L(x) = x ln 2− 1

2

∞∑
k=1

(−1)k

k2
sin 2kx.

XXVII. For 0 ≤ β < α ≤ π
2

we have∫ β

0

ln

(
1− sin2 x

sin2 α
dx =

)
= −2β ln sinα− L(

1

2
π − α + β)− L(

1

2
π − α− β) + 2L(

1

2
π − α).

XXXI. For arbitrary real α it holds∫ ∞
0

xdx

ex + e−x − 2 cos 2α
=
α ln 2− L(α)

sinα cosα
.
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2 Hyperbolic center of mass
This application is the case when mathematics and physics influence hyperbolic geometry.
The law of the lever was known already by Archimedes.

A hyperbolic law of the lever and the notion of a hyperbolic center of mass of two
point masses was formulated in the nineteenth century ([2], [3]). An axiomatic definition
of the center of mass of finite systems of point masses in Euclidean, hyperbolic and
elliptic n−dimensional spaces was proposed by Gal’perin ([13]), who also proved its
uniqueness using the Minkowski model. Employing gyrovector space techniques, Ungar
([46]) showed that in hyperbolic geometry the center of mass coincides with the point of
intersection of the medians.

The problem is still alive in the work of Stahl ([41]). It was newly used also in the
extension of the concept of the Centroidal Voronoi Tessellation from Euclidean space
to hyperbolic space ([16]), which can have new applications in geometric modeling,
computer graphics, and visualization.

In the following text we will define the hyperbolic center of mass of the hyperbolic
triangle. Next we will define the moment of inertia of a system of two point masses.

2.1 Point mass in the hyperbolic plane
If we consider a triangleABC with edges a, b, c and angles α, β, γ in the Euclidean plane,
we have the famous sine law

a

sinα
=

b

sin β
=

c

sin γ
.

Considering a triangle in a hyperbolic plane we get the sine law in the form

sinh a

sinα
=

sinh b

sin β
=

sinh c

sin γ
.

This parallel suggests that we should try to repeat some computations in the Euclidean
plane by similar computations in the hyperbolic plane substituting the quantities a, b, c by
the quantities sinh a, sinh b, sinh c. With this idea in mind, we shall in this section try to
develop the physical theory of the center of mass in the hyperbolic plane.

A point mass in a hyperbolic plane H will be an ordered couple (A,m), where A ∈ H
and m is a positive real number called the weight of the point mass. Similarly as in the
Euclidean case we define moment of point mass (A,m) with respect to the point X by the
formula

MX(A,m) = m sinh |AX|,
where |AX| denotes the distance of the point A from the point X in the hyperbolic plane.
(In other words the lengths of the segment AX .) We shall also define a moment of a
finite number of point masses (A1,m1), . . . , (An,mn) with respect to the point X . This
moment is defined by the formula

MX((A1,m1), . . . , (An,mn)) =
n∑
k=1

mk sinh |AkX|.
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Our next aim is to introduce the notion of the center of mass (called also centroid) for
point masses in a hyperbolic plane. The center of mass will be again a point mass (C,m).
We shall start with two point masses (A1,m1) and (A2,m2). Inspired by Euclidean
geometry we shall require

• The pointC lies on the segmentA1A2, and the moments of the point masses (A1,m1)
and (A2,m2) with respect to C are equal, i.e. m1 sinh |A1C| = m2 sinh |A2C|.

It is obvious that this condition determines the pointC uniquely. But the question remains:
which mass should be assigned to this point? In the Euclidean case the solution is easy.
Namely, to the potential center of mass C the mass m1 + m2 is assigned. We could try
the same in the hyperbolic case. But further consideration (which we shall not present
here) shows that the center of mass defined in this way does not have good properties.
Moreover, we know that in the Euclidean case if we take two of the three point masses
(A1,m1), (A2,m2) and (C,m), then the remaining point mass is the center of mass of the
first two ones. Let us examine this condition in the hyperbolic case. Let us take first the
point masses (A2,m2) and (C,m). If (A1,m1) is to be their center of mass, the following
condition must be satisfied

m sinh |CA1| = m2 sinh |A2A1|.

Similarly, staring with the point masses (A1,m1) and (C,m) we get

m sinh |CA2| = m1 sinh |A1A2|.

Multiplying the first equation by cosh |CA2| and the second equation by cosh |CA1| we
obtain the equations

m sinh |CA1| cosh |CA2| = m2 sinh |A1A2| cosh |CA2|
m cosh |CA1| sinh |CA2| = m1 sinh |A1A2| cosh |CA1|.

Now we recall the formula

sinh(x+ y) = sinhx cosh y + coshx sinh y.

Adding the two equations above we get

m sinh(|CA1|+ |CA2|) = sinh |A1A2|(m1 cosh |CA1|+m2 cosh |CA2|)
m = m1 cosh |A1C|+m2 cosh |A2C|.

This suggests defining the mass of the point C by the formula

m = m1 cosh |A1C|+m2 cosh |A2C|.

We shall now be more formal and we shall introduce on the set of point masses an algebraic
operation

(A1,m1) ∗ (A2,m2) = (C,m1 cosh |A1C|+m2 cosh |A2C|).

We recall that the point C lies on the segment A1A2 and satisfies m1 sinh |A1C| =
m2 sinh |A2C|.
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2.1 Proposition. The operation ∗ is commutative and associative.

Before we start with the proof we shall state the Menelaus and Ceva theorem and their
converses. First let us recall that if A,B,X are three distinct points on a hyperbolic line,
then their hyperbolic ratio is defined as follows.

1. h(A,X,B) = sinh |AX|
sinh |XB| if X lies between A and B,

2. h(A,X,B) = − sinh |AX|
sinh |XB| otherwise.

2 Theorem. (hyperbolic Menelaus theorem) Let l be a hyperbolic line which does not
pass though any point of a hyperbolic triangle ABC. Let us assume that l intersects the
line AB in a point P , the line BC in a point Q, and the line CA in a point R. Then

h(A,P,B)h(B,Q,C)h(C,R,A) = −1.

3 Theorem. (converse hyperbolic Menelaus theorem) LetABC be a hyperbolic triangle
and let P be a point on the hyperbolic line AB, Q on BC, and R on CA such that

h(A,P,B)h(B,Q,C)h(C,R,A) = −1.

Then the points P , Q, and R are collinear.

4 Theorem. (hyperbolic Ceva theorem) Let X be a point not on any side of a triangle
ABC. (We mean a hyperbolic triangle in a hyperbolic plane.) Let P denote the intersec-
tion of the line AB with the line CX , Q intersection of BC with AX , and R intersection
of CA with BX . Then

h(A,P,B)h(B,Q,C)h(C,R,A) = 1.

5 Theorem. (converse hyperbolic Ceva theorem) If a point P lies on a hyperbolic line
AB, Q on BC and R on CA with

h(A,P,B)h(B,Q,C)h(C,R,A) = 1.

and two of the lines AQ, BR and CP meet, then all these three lines are congruent.

Proof. (of the proposition) The commutativity is obvious. We shall prove the associativity.
Let us take three point masses (A1,m1), (A2,m2) and (A3,m3). We set

(C12,m12) = (A1,m1) ∗ (A2,m2),

(C23,m23) = (A2,m2) ∗ (A3,m3),

(C31,m31) = (A3,m3) ∗ (A1,m1).

We have

m1 sinh |A1C12| = m2 sinh |A2C12|,
m2 sinh |A2C23| = m3 sinh |A3C23|,
m3 sinh |A3C31| = m1 sinh |A1C31|.
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Figure II.1: Hyperbolic triangle in the Klein model of hyperbolic geometry

Hence we obtain

1 =
m1

m2

· m2

m3

· m3

m1

=
sinh |A2C12|
sinh |A1C12|

· sinh |A3C23|
sinh |A2C23|

· sinh |A1C31|
sinh |A3C31|

.

The converse Ceva theorem now implies that the three lines A1C23, A2C31 and A3C12 are
concurrent. There we denote a common intersection point C.

Next we shall try to prove that the point masses (C12,m12) and (A3,m3) have equal
moments with respect to the point C. This means that we must prove that

(m1 cosh |A1C12|+m2 cosh |A2C12|) sinh |C12C| = m3 sinh |A3C|.

We shall rewrite this condition in the form

sinh |C12C|
sinh |A3C|

=
m3

m1 cosh |A1C12|+m2 cosh |A2C12|
.

In the hyperbolic triangle C12A2A3 we shall apply the hyperbolic Menelaus theorem to
the hyperbolic line C23A1. We have then

h(A3, C, C12)h(C12, A1, A2)h(A2, C23, A3) = 1

sinh |A3C|
sinh |C12C|

· sinh |A1C12|
sinh |A1A2|

· sinh |A2C23|
sinh |A3C23|

= 1

sinh |C12C|
sinh |A3C|

=
sinh |A1C12|
sinh |A1A2|

· sinh |A2C23|
sinh |A3C23|

.

Hence we must prove

sinh |A1C12|
sinh |A1A2|

· sinh |A2C23|
sinh |A3C23|

=
m3

m1 cosh |A1C12|+m2 cosh |A2C12|
m1 cosh |A1C12| sinh |A1C12| sinh |A2C23|+m2 cosh |A2C12| sinh |A1C12| sinh |A2C23| =

= m3 sinh |A1A2| sinh |A3C23|.
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We shall use the relations

m1 sinh |A1C12| = m2 sinh |A2C12|, m3 sinh |A3C23| = m2 sinh |A2C23|.

We get

m2 cosh |A1C12| sinh |A2C12| sinh |A2C23|+m2 cosh |A2C12| sinh |A1C12 sinh |A2C23| =
= m2 sinh |A1A2| sinh |A2C23|

cosh |A1C12| sinh |A2C12|+ cosh |A2C12| sinh |A1C12| = sinh |A1A2|
sinh(|A1C12|+ |A2C12|) = sinh |A1A2|

sinh |A1A2| = sinh |A1A2|.

We have thus proved that the point masses (C12,m12) and (A3,m3) have equal moments
with respect to the point C. In other words the center of mass of the point masses
(C12,m12) and (A3,m3) has the form (C,m′). Similarly we can proceed with the couples
(C23,m23), (A1,m1) resp. (C31,m31), (A2,m2). The centers of masses of these couples
are (C,m′′) resp. (C,m′′′). Our last aim is to prove that m′ = m′′ = m′′′.

We have

m′ = (m1 cosh |A1C12|+m2 cosh |A2C12|) cosh |C12C|+m3 cosh |A3C|.

We shall use the hyperbolic cosine theorem in the hyperbolic triangles 4A1C12C and
4C12A2C. We have

cosh |CA1| = cosh |A1C12| cosh |C12C| − sinh |A1C12| sinh |C12C| cos(^CC12A1)

cosh |A2C| = cosh |A2C12| cosh |C12C| − sinh |A2C12| sinh |C12C| cos(π − ^CC12A1).

Hence we can continue with the above computation of m′

m′ = m1[cosh |CA1|+ sinh |A1C12| sinh |C12C| cos(^CC12A1)]+

+m2[cosh |A2C|+ sinh |A2C12| sinh |C12C| cos(π − ^CC12A1)] +m3 cosh |A3C| =
= m1 cosh |A1C|+m2 cosh |A2C|+m3 cosh |A3C|+

+ sinh |C12|[m1 sinh |A1c12| cos(^CC12A1)−m2 sinh |A2C12| cos(^CC12A1)] =

= m1 cosh |A1C|+m2 cosh |A2C|+m3 cosh |A3C|.

We have thus computed m′. But the symmetry of the last expression shows that we get
the same result when computing m′′ resp. m′′′. Consequently we have m′ = m′′ = m′′′.
This shows the associativity of the operation ∗.

Similar to a moment of a point mass (A,m) with respect to a point, we introduce a
moment with respect to an oriented hyperbolic line p. It is defined by the formula

Mp(A,m) = m sinh |A, p| if A is in the left half-plane of p,
Mp(A,m) = −m sinh |A, p| if A is in the right half-plane of p,

where |A, p| denotes the hyperbolic distance of the point A from the line p.
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Figure II.2: Lambert quadrilateral

6 Theorem. Let (A1,m1) and (A2,m2) be two point masses and let p be a line. Then

Mp((A1,m1) ∗ (A2,m2)) = Mp(A1,m1) +Mp(A2,m2).

Before we start with the proof of the above theorem, we shall recall the trigonometry
of the Lambert quadrilateral (also called Ibn al-Haytham–Lambert quadrilateral). It is a
quadrilateral which has three right angles and the fourth one is not right (and necessarily
acute). Let us consider such a quadrilateral ABCD. We denote the corresponding angles
α, β, γ and δ. Let α = β = δ = π/2 and γ 6= π/2. Then there is

sinh |BC| = cosh |CD| sinh |DA|.

If4ABC is a hyperbolic rectangular triangle with the right angle at the vertex C and the
angles α and β at the vertices A and B, then we have at our disposal the identity

sinh |BC| = sinh |AB| sinα.

Proof. The proof is obvious if A1 = A2. Therefore we shall assume that A1 6= A2. Then
there are two possibilities. Either the lines A1A2 and p are parallel or they intersect.
We shall consider first the case when these lines are parallel. Then there exists a line q
orthogonal to the both lines A1A2 and p. We denote (C,m) the center of mass of the

Figure II.3: The case when A1A2 and p are parallel

two point masses (A1,m1) and (A2,m2), P the intersection of the lines p and q, Q the
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intersection of lines A1A2 and q. We denote Ã1, Ã2 and C̃ the orthogonal projections of
the points A1, A2 and C onto the line p. If we apply the above formula for the Lambert
quadrilaterals PÃ1A1Q, PC̃CQ, and PÃ2A2Q we get the following formulas

sinh |Ã1A1| = cosh |A1Q| sinh |QP |
sinh |C̃C| = cosh(|A1Q|+ |CA1|) sinh |QP |

sinh |Ã2A2| = cosh(|A1Q|+ |CA1|+ |A2C|) sinh |QP |.

We have m = m1 cosh |A1C| + m2 cosh |A2C|. Thus in order to prove our theorem we
must show that there is

(m1 cosh |A1C|+m2 cosh |A2C|) sinh |CC̃| = m1 sinh |A1Ã1|+m2 sinh |A2Ã2|.

Using the above formulas we easily get

(m1 cosh |A1C|+m2 cosh |A2C|) cosh(|A1Q|+ |CA1|) =

= m1 cosh |A1Q|+m2 cosh(|A1Q|+ |CA1|+ |A2C|).

Using now the formula cosh(x+ y) = coshx cosh y + sinhx sinh y we obtain

m1 cosh2 |A1C| cosh |A1Q|+m1 cosh |A1C| sinh |A1Q| sinh |A1C|+
+m2 cosh |QA1| cosh |A1C| cosh |CA2|+m2 sinh |QA1| sinh |A1C| cosh |CA2| =

= m1 cosh |A1Q|+
+m2 cosh |QA1| cosh |A1C| cosh |CA2|+m2 sinh |QA1| sinh |A1C| cosh |CA2|+
+m2 sinh |QA1| cosh |A1C| sinh |CA2|+m2 cosh |QA1| sinh |A1C| sinh |CA2|.

Omitting the same expressions on both sides we have

m1 cosh2 |A1C| cosh |A1Q|+m1 cosh |A1C| sinh |A1Q| sinh |A1C|+
= m1 cosh |A1Q|+

+m2 sinh |QA1| cosh |A1C| sinh |CA2|+m2 cosh |QA1| sinh |A1C| sinh |CA2|.

Now we shall use the relations

cosh2 |A1C| = 1 + sinh2 |A1C|, m2 sinh |CA2| = m1 sinh |A1C|.

The last equation will have the form

m1 cosh |A1Q|+m1 cosh |A1Q| sinh2 |A1C|+m1 cosh |A1C| sinh |A1Q| sinh |A1C| =
m1 cosh |A1Q|+m1 sinh |QA1| sinh |A1C| cosh |A1C|+m1 cosh |QA1| sinh2 |A1C|,

which is an obvious equality. We have thus proved the first part of the theorem.
Now we shall consider the case when the lines A1A2 and p intersect. We denote P

their intersection point and ω the angle of both lines. Then using the rectangular triangles
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Figure II.4: The case when A1A2 and p intersect

PA1Ã1, PCC̃ and PA2Ã2 we get the relations

sinh |A1Ã1| = sinh |PA1| sinω
sinh |CC̃| = sinh(|PA1|+ |A1C|) sinω

sinh |A2Ã2| = sinh(|PA1|+ |A1C|+ |CA2|) sinω.

We are to going prove the identity

(m1 cosh |A1C|+m2 cosh |A2C|) sinh |CC̃| = m1 sinh |A1Ã1|+m2 sinh |A2Ã2|.

Using the above identities we can rewrite it in the form

(m1 cosh |A1C|+m2 cosh |A2C|) sinh(|PA1|+ |A1C|) =

= m1 sinh |PA1|+m2 sinh(|PA1|+ |A1C|+ |CA2|).

Using the formulas for cosh(x+ y) and sinh(x+ y) we get now

m1 cosh2 |A1C| sinh |PA1|+m1 cosh |A1C| sinh |A1C| cosh |PA1|+
+m2 cosh |A1C| cosh |CA2| sinh |PA1|+m2 sinh |A1C| cosh |CA2| cosh |PA1| =

= m1 sinh |PA1|+
+m2 cosh |A1C| cosh |CA2| sinh |PA1|+m2 sinh |A1C| sinh |CA2| sinh |PA1|+
+m2 sinh |A1C| cosh |CA2| cosh |PA1|+m2 cosh |A1C| sinh |CA2| cosh |PA1|.

Simplifying we get the relation

m1 cosh2 |A1C| sinh |PA1|+m1 cosh |A1C| sinh |A1C| cosh |PA1| =
= m1 sinh |PA1|+

+m2 sinh |A1C| sinh |CA2| sinh |PA1|+m2 cosh |A1C| sinh |CA2| cosh |PA1|.

Now we eliminate m2 using the identity

m2 sinh |CA2| = m1 sinh |A1C|.
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We get

m1 cosh2 |A1C| sinh |PA1|+m1 cosh |A1C| sinh |A1C| cosh |PA1| =
= m1 sinh |PA1|+

+m1 sinh2 |A1C| sinh |PA1|+m1 cosh |A1C| sinh |A1C| cosh |PA1|.

We again simplify and obtain

cosh2 |A1C| sinh |PA1| = sinh |PA1|+ sinh2 |A1C| sinh |PA1|
(cosh2 |A1C| − sinh2 |A1C|) sinh |PA1| = sinh |PA1|

sinh |PA1| = sinh |PA1|.

This finishes the proof.

2.2 Moment of inertia
We consider two point masses (A1,m1) and (A2,m2) and we shall consider the segment
A1A2 as a curve ϕ : 〈0, a〉 → H parametrized by an arc. Here a = |A1A2|, and we have

ϕ(0) = A1, ϕ(a) = A2, |ϕ(s1), ϕ(s2)| = |s1 − s2|.

Let ξ ∈ 〈0, a〉 be such that the point ϕ(ξ) is the center of mass of the two point masses
(A1,m1) and (A2,m2). Then we have

m1 sinh ξ = m2 sinh(a− ξ)
m1 sinh ξ = m2(sinh a cosh ξ − cosh a sinh ξ)

(m1 +m2 cosh a) sinh ξ = m2 sinh a cosh ξ

tgh ξ =
m2 sinh a

m1 +m2 cosh a
.

The last formula determines the center of mass under consideration.
If (A,m) is a point mass, we can define its moment of inertia with respect to a point

X by the formula

IX(A,m) = m sinh2 |AX|
2

.

If there is given a system S = {(Ai,mi)}ki=1 of mass-points we define moment of inertia
of this system with respect to a point X by the formula

IX(S) =
k∑
i=1

mi sinh2 |AiX|
2

.

We shall consider now moments of inertia of the system S of two points (A1,m1) and
(A2,m2) with respect to points of the segment A1A2. Taking a point ϕ(s) ∈ A1A2 we
have

Iϕ(s)(S) = m1 sinh2 s

2
+m2 sinh2 a− s

2
.
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This is a function defined on the interval 〈0, a〉, and we denote it f(s). We can compute

f ′(s) = m1 sinh
s

2
cosh

s

2
−m2 sinh

a− s
2

cosh
a− s

2
= m1 sinh

s

2
cosh

s

2
−

−m2

(
sinh

a

2
cosh

s

2
− cosh

a

2
sinh

s

2

)
·
(

cosh
a

2
cosh

s

2
− sinh

a

2
sinh

s

2

)
=

=
1

2
m1 sinh s−m2 sinh

a

2
cosh

a

2
cosh2 s

2
+m2 sinh2 a

2
sinh

s

2
cosh

s

2
+

+m2 cosh2 a

2
sinh

s

2
cosh

s

2
−m2 sinh

a

2
cosh

a

2
sinh2 s

2
=

=
1

2
m1 sinh s− 1

2
m2 sinh a cosh2 s

2
+

1

2
m2 sinh2 a

2
sinh s

+
1

2
m2 cosh2 a

2
sinh s− 1

2
m2 sinh a sinh2 s

2
=

=
1

2

[
m1 +m2 sinh2 a

2
+m2 cosh2 a

2

]
sinh s− 1

2
m2 sinh a

[
cosh2 s

2
+ sinh2 s

2

]
=

=
1

2
[m1 +m2 cosh a] sinh s− 1

2
m2 sinh a cosh s.

It is obvious that the equation f ′(s) = 0 has a unique solution η. This solution is
determined by the equation

tgh η =
m2 sinh a

m1 +m2 cosh a
.

tgh η > 0 and this implies that η > 0. Further we have

0 < m1 sinh a

m2 sinh a cosh a < m1 sinh a+m2 sinh a cosh a

m2 sinh a <
sinh a

cosh a
· (m1 +m2 cosh a)

m2 sinh a

m1 +m2 cosh a
< tgh a

tgh η < tgh a

η < a.

We can see that η ∈ (0, a) is the unique point in 〈0, a〉 such that f ′ vanishes. Further we
have

f ′(0) = −1

2
m2 sinh a < 0

f ′(a) =
1

2
m1 sinh a > 0.

This shows that f ′(s) < 0 on 〈0, η) and f ′(s) > 8 on (η, a〉. Consequently the function f
is decreasing on the interval 〈0, η〉 and increasing on 〈η, a〉. This shows that the function
f on the interval 〈0, a〉 attains its minimum at the point η.
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We have η = ξ and this shows that the function Iϕ(s)(S) (moment of inertia of a system
S of two point masses (A1,m1) and (A2,m2)) considered on the segment A1A2 attains
its minimum at the center of inertia of the system S. This suggests that one should try to
prove the Lagrange theorem about the minimum of the moment of inertia.
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3 Theory of automorphic functions
One of the most significant results achieved in mathematics in the nineteenth century
was the creation of the theory of automorphic functions. It was also the first significant
application of non-Euclidean geometry. The study of Riemann surfaces from this point
of view eventually led to the proof of the famous uniformization theorem.

3.1 The beginnings
H. Poincaré was inspired by the work of German mathematician I. L. Fuchs (1833–1902),
who in his papers from the years 1880 to 1881 ([10], [11], [12]) considered the second
order linear differential equations

d2y

dz2
+ P (z)

dy

dz
+Q(z)y = 0,

where P , Q are rational functions of complex variable z.
Functions, which we now called automorphic, appeared only marginally in his work,

but Poincaré noticed them and began to study their properties.
A competition was arranged by the Académie des Sciences in Paris in 1878, the theme

was To improve in some important way the theory of linear differential equations in a single
independent variable (Perfectionner en quelque point important la théorie des équations
differéntielles linéaires á une seule variable indépendante). Poincaré submitted his paper
in the end of May, just a few weeks after he had read one of Fuchs’s papers. Poincaré’s
memoir had two parts, the second one dealt with automorphic functions. Before the
closing date of the competition Poincaré wrote three supplements, which document his
discovery that the non-Euclidean geometry plays an important role in this field. First prize
went to someone else, but Poincaré’s essay was awarded second prize.

Let us recall the definition of an automorphic function. The linear fractional transfor-
mation f : C→ C is defined by the formula

T (z) =
az + b

cz + d
,

where a, b, c, d ∈ C and ad− bc 6= 0. (We omit the description of the standard extension
C∗ = C ∪ {∞}.) Let G be a group, with multiplication being the composition of
transformations, consisting of (some but not all) linear fractional transformations, and let
R ⊂ C be a region (open connected set) such that for every T ∈ G there is T (R) ⊂ R. A
meromorphic function f defined on R is called an automorphic function with respect to
the group G if we have

f(T (z)) = f(z) for every T ∈ G and every z ∈ R.

(In other words, the function f is invariant with respect to all transformations from the
group G.)

It should be mentioned that such a group G is called properly discontinuous if for
any point z0 ∈ R and its open neighborhood U such that for any T ∈ G, T 6= 1 there is
T (U) ∩ U = ∅.
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Poincaré realized that the transformations which he used for the definition of auto-
morphic functions are the same as transformations of the hyperbolic plane. However, he
began to develop the theory of automorphic functions as a generalization of trigonometric
and elliptic functions.

Let ω, ω′ ∈ C be linearly independent over R, then the Weierstrass function

f(z) = P(z) =
1

z2
+
∑
Ω6=0

[
1

(z − Ω)2
− 1

Ω2

]
,Ω = mω + nω′,Ω 6= 0

is an example of elliptic functions (also called doubly periodic functions). The periods of
this functions are ω and ω′, so the function is invariant under transformations of the form

Tm,n(z) = z +mω + nω′;m,n ∈ Z.

It is obvious that these are linear fractional transformations and that together they form a
group. It can also be easily seen that this group is properly discontinuous. Topologically,
factoring the complex plane by this group we obtain a torus.

3.2 From the correspondence
Poincaré wrote to Fuchs after submitting the first text for the competition. They discussed
some problems, and Poincaré asked Fuchs for permission to name these functions Fuchsian
functions after him. Fuchs was very pleased and agreed.

In June 1881, after reading some of Poinceré’s papers on Fuchsian functions, Klein
started corresponding with Poincaré. He pointed out that these functions first appeared in
the work of H. A. Schwarz (1843—1921). Poincaré acknowledged that if he had known
of Schwarz’s work he would probably have named these functions differently, but he
refused to rename them. The same day he named a new class of functions after Klein.
Klein continued to protest against both names. Eventually the name Fuchsian functions
didn’t spread (the name automorphic functions started to be used by Klein and gained
wide currency). From the correspondence it is also clear that Poincaré was not aware of
the Riemann mapping theorem, which Bernhard Riemann (1826–1866) published in his
dissertation in 1851.

The Riemann mapping theorem: For every simply connected open proper subset U
of the complex plane C exists a biholomorphic (bijective and holomorphic) mapping f ,
from U onto the open unit disk D

f : U → D, where D = {z ∈ C : |z| < 1}.

The condition that the open set U is simply connected means that it does not contain
“holes”. The mapping f is conformal (angles are preserved). In one of the letters Klein
wrote to Poincaré that the new methods of non-Euclidean geometry seemed to work only
when the group in question acted on a disc. In reply Poincaré wrote that it is possible to
take the upper-half space (x, y, z) : z > 0 with plane (x, y) as a boundary and polygons
bounded by arcs which were the intersections of hemispheres with the centeres on the
boundary.
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The first attempt of Poincaré to use Fuchsian functions to prove the uniformization
theorem was not successful. Klein suggested a route to uniformization in his paper Neue
Beiträge, but for years there was not given correct proof. The importance of this problem
indicates the fact that it was stated by Hilbert as the 22nd of his 23 famous mathematical
problems under the title Uniformization of analytic relations by means of automorphic
functions.

3.3 Uniformization theorem
We remind readers the definition of the Riemann surface. LetX be a topological space and
(U,ϕ) a chart, whereU is an open subset ofX andϕ : U → ϕ(U) ⊂ C is homeomorphism
onto a open subset of C. We want the following condition to hold. Let (U,ϕ), (V, ψ) be
two charts such that U ∩ V 6= ∅, then the map

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ),

where ϕ(U ∩ V ) and ψ(U ∩ V ) are open subsets of C, is holomorphic.
The Riemann surface is a topological space X together with the charts (Ui, ϕi) such

as

(i)
⋃
Ui = X

(ii) ψ ◦ ϕ−1 is holomorphic for every i, j.

The Riemann surface is a complex manifold of a complex dimension one.
Let us recall also the definition of a cover. Let X̃ and X be two Riemann surfaces,

and π : X̃ → X a holomorphic mapping. We say that π is a cover if each point x̃ ∈ X̃
has an open neighborhood U such that V = π(U) is an open neighborhood of the point
x = πx̃, and the restriction

π|U : U → V

is biholomorphic. We say that a cover π : X̃ → X is a universal cover if for every cover
σ : Y → X there is a cover ρ : X̃ → Y such that π = σ ◦ ρ,

X̃
ρ→ Y

σ→ X.

It is well known that every Riemann surface has a universal cover. Moreover a cover
π : X̃ → X is universal if and only if the topological space X̃ is simply connected. The
case of simply connected Riemann surfaces is a most interesting one for us.

The uniformization theorem: Every simply connected Riemann surface is conformally
equivalent with

• the complex plane C,

• the Riemann sphere C∗ = C ∪ {∞} (complex plane with a point),

• or the disc D = {z ∈ C : |z| < 1}.

Satisfactory proof of this theorem was accomplished independently in 1907 by Poincaré
and Paul Koebe (1882 – 1945).
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3.4 The importance of non-Euclidean geometry
The uniformization theorem classifies all Riemann surfaces according to their universal
cover into three classes, thus reducing many aspects of study of Riemann surfaces to the
study of plane, sphere and disk. Depending on the discrete groups that act on these spaces,
the case of the disc is the most interesting one. If we consider only compact Riemann
surfaces, then the complex plane covers only a torus and the Riemann sphere covers only
itself. The remaining compact Riemann surfaces (spheres with two or more handles) are
covered by a disk.

Figure II.5: Spheres with two and three handles
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4 Flow
The theory of surfaces of constant negative curvature have been investigated around the
turn of the twentieth century by F. Klein and H. Poincaré in connection with a complex
function theory. The theory of the geodesics on such surfaces was developed later by P.
Koebe in his famous memoirs Über die Uniformisierung der algebraischen Kurven. This
theory was purely topological.

Geodesic and and horocyclic flow on a Riemann surface was studied by G. A. Hedlund
([18]), E. Hopf ([20]) and others in the 1920’s and 1930’s, when the measure-theoretical
point of view became dominant after the discovery of ergodic theory. Geodesic flows
are still of current interest since they are an important class of dynamical systems and
they provide connections between several fields as ergodic theory, Riemann geometry and
algebraic topology.

We will introduce geodesic and horocyclic flow in the hyperbolic plane in this section.

4.1 Geodesic flow
Let X be a topological space, and let {ht; t ∈ R} be a 1-parameter system of homeomor-
phisms of X , then we say that {ht; t ∈ R} is a flow if there is

hthu = ht+u for every t, u ∈ R.

In other words we can say that t 7→ ht is a homomorphism of the additive group of the real
numbers into the group of all homeomorphisms of X . Let M be a Riemannian manifold
(for us most often a hyperbolic plane) endowed with a Riemannian metric g. In the tangent
bundle TM we can consider a subbundle SM consisting of unit vectors. In other words

SM = {v ∈ TM ; g(v, v) = 1}.

This bundle SM will play a role of the space X . We shall define first the geodesic
flow. For simplicity we shall assume that the Riemannian manifold is complete (i.e. any
geodesic line can be prolonged up to infinity). Let v ∈ SxM , that is v is a unit tangent
vector of the manifold M at x. Let γv(s) (s is the arc lengths) be the unique geodesic
determined by the vector v. In other words γv(s) is a geodesic such that

γv(0) = x, and
dγv(0)

ds
= v.

Now we set

ht(v) =
dγ(t)

dt
.

4.2 Geodesic and horocyclic flow in the hyperbolic plane
In the case when M = H (the Poincaré half plane model of the hyperbolic plane) this
definition can be described in the following way. Let v ∈ SxH. That is, v is a unit (with
respect to the hyperbolic metric) vector at x ∈ H. We take the hyperbolic line γ oriented
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in the direction of the vector v. Along this line we move by the lengths t, let us say we
arrive to a point y. The tangent vector of γ at y is defined to be the vector ht(v). From
this construction it is obvious that for t, s ∈ R we have ht(hs(v)) = ht+s(v).

While the above construction works for any Riemannian manifold, the construction of
horocyclic flows is possible only for the hyperbolic plane (and some related homogeneous
Riemannian manifolds). We shall deal only with the Poincaré half plane model H. The
flow we are going to construct will act again on the space SH of the unit tangent vectors
on H. The general idea is the following. Let z ∈ H and let v be a vector at z. There are
two horocircles passing through z such that v is orthogonal to C at z. We fix horocircle C
with inward normal v (the construction for the other case is analogous). The vector ht(v)
is then defined in the following way. We move along C in a clockwise direction by the
lengths t (if t is positive, otherwise in a counterclockwise direction). We arrive at a point
Ht(z). At this point we take a unit inward normal to C. This normal is defined to be the
vector ht(v). Here again it is easy to see that for t, s ∈ R we have ht(hs(v)) = ht+s(v).

Figure II.6: Construction of horocyclic flow

We shall now present a relatively simple way of defining horocyclic flows. Let us take
two horocircles passing through the point i ∈ H such that i = (0, 1) is their normal at i.
These are the horocircles

C0 = {z = z0 + z1i; z1 = 1} (Euclidean line parallel to ∂H),

C1 = {z = z0 + z1i; z
2
0 + (z1 −

1

2
)2 =

1

22
(circle with center at 1

2
i and radius 1

2
).

We shall consider the group Möb+(H) of Möbius transformations. These are transforma-
tions of the form

f(z) =
az + b

cz + d
, where a, b, c, d ∈ R and ad− bc = 1.

First let us investigate the subgroup

Möb+
0 (H) = {f ∈ Möb; f(C0) = C0}.



72

We take z = z0 + i. We get

az + b

cz + d
=

(az + b)(cz̄ + d)

|cz + d|2
=
ac|z|2 + adz + bcz̄ + bd

|cz + d|2
=

=
ac|z|2 + (ad+ bc)z0 + i+ bd

|cz + d|2
=
ac|z|2 + (ad+ bc)z0 + bd

|cz + d|2
+

i

|cz + d|2
.

Obviously f ∈ Möb+
0 (H) if and only if

1

|cz + d|2
= 1

|cz + d|2 = 1

|(cz0 + d) + ci|2 = 1

c2z2
0 + 2cdz0 + d2 + c2 − 1 = 0.

Since the last equation must be satisfied for any z0 there must be c = 0, d = ±1, and
consequently a = ±1. Thus we obtain

f(z) = z + b.

Usually we shall write t instead of b. This way we find

Möb+
0 (H) = {f ; f(z) = z + t, t ∈ R}.

If we express this transformation in the matrix form we get the matrix(
1 t
0 1

)
.

In the hyperbolic plane H let us consider a curve γ(t) = (γ0(t), γ1(t)) = z + t, where
z = z0 + i and t ∈ 〈0, t0〉. We have γ′(t) = (1, 0) and |γ′(t)|/|γ1(t)| = 1. Consequently

length(γ(t), t ∈ 〈0, t0〉) =

∫ t0

0

1dt = t0.

Next we shall investigate the group

Möb+
1 (H) = {f ∈ Möb+; f(C1) = C1}.

The equation of the circle C1 can be rewritten in the form

z2
0 + (z1 −

1

2
)2 =

1

22

z2
0 + z2

1 − z1 = 0

zz̄ +
i

2
(z − z̄) = 0.
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We have

az + b

cz + d
· az̄ + b

cz̄ + d
+
i

2

[
az + b

cz + d
− az̄ + b

cz̄ + d

]
=

=
|az + b|2

|cz + d|2
+
i

2
· aczz̄ + adz + bcz̄ + bd− aczz̄ − bcz − adz̄ − bd

|cz + d|2
=

=
1

|cz + d|2
·
[
|az + b|2 +

i

2

[
ad(z − z̄)− bc(z − z̄)

]]
=

=
1

|cz + d|2
·
[
|az + b|2 +

i

2
(z − z̄)

]
.

We can see that f(z) lies on C1 if and only if

|az + b|2 +
i

2
(z − z̄) = 0.

Because z ∈ C1, it satisfies the equation

zz̄ +
i

2
(z − z̄) = 0.

Now we can see that f(z) ∈ C1 if and only if

|az + b|2 = |z|2.

Taking z = 0 ∈ C1 we easily find that b = 0. Then the above equation has the form
|a|2 · |z|2 = |z|2. Hence we get a = ±1. Because ad− bc = 1, we get

f(z) =
z

cz + 1
or f(z) =

−z
cz − 1

.

Finally we can see that

Möb+
1 (H) = {f ; f(z) =

z

tz + 1
, t ∈ R}.

Again expressing our transformation in the matrix form we have(
1 0
t 1

)
.

As before, let us similarly consider a curve γ(t) = z
tz+1

, where z ∈ C1 and t ∈ 〈0, t0〉.
We have

z

tz + 1
=
z(tz̄ + 1)

|tz + 1|2
=
t|z|2 + z

|tz + 1|2
=
t|z|2 + z0

|tz + 1|2
+

z1

|tz + 1|2
i

γ′(t) = − z2

(tz + 1)2

|γ′(t)|
|γ1(t)|

=
|z|2

|tz + 1|2
· |tz + 1|2

z1

=
|z|2

z1

= 1.
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Here we have used the equation z2
0 + z2

1 − z1 = 0. We have

length(γ(t), t ∈ 〈0, t0〉) =

∫ t0

0

1dt = t0.

We shall now investigate the isotropy group G(i) of the element i ∈ H, i.e. all
elements f ∈ Möb+(H) such that f(i) = i. We have

ai+ b

ci+ d
= i

ai+ b = di− c,

which implies a = d and c = −b. Moreover 1 = ad− bc = a2 + b2. There exists a unique
ϕ ∈ 〈0, 2π) such that a = cosϕ and b = sinϕ. We can see that

G(i) =

{
f ∈ Möb+(H); f(z) =

cosϕ · z + sinϕ

− sinϕ · z + cosϕ
, ϕ ∈ 〈0, 2π)

}
.

Notice that the group Möb+(H) operates transitively on the hyperbolic plane H.
Obviously, it is enough to map the element i ∈ H on any element w = w0 + w1i ∈ H.
For this purpose it suffices to take the transformation

f(z) =

√
w1z + w0√

w1

1√
w1

.

Of course, this is not a unique transformation with this property. It is easy to see that any
other such transformation has the form f ◦ g, where g ∈ G(i).

The group Möb+(H) acts not only on H, but also on the space SH of unit vectors on
H. If v = v0 + v1i is a vector at the point w = w0 + w1i, then an element f ∈ Möb+(H)
maps the vector v to the vector

Dwf(v) at the point f(w).

Here (Dwf)(v) denotes the differential of f at the pointw. Let us calculate this differential.
We take a curve γ(t), t ∈ (−ε, ε) such that γ(0) = w and γ′(0) = v. We have then(

d

dt

)
t=0

f(γ(t)) =

(
aγ(t) + b

cγ(t) + d

)′
t=0

=
γ′(0)

(cγ(0) + d)2
=

v

(cw + d)2
.

If we take fϕ ∈ G(i) then its differential at the point i has the form

Difϕ(v) =
v

(− sinϕ · i+ cosϕ)2
=

(sinϕ · i+ cosϕ)2v

| − sinϕ · i+ cosϕ|4
= (sin 2ϕ·i+cos 2ϕ)v = ei·2ϕv.

Taking at the point i the vector v = i there exist two elements ϕ, ϕ + π ∈ 〈0, 2π) such
that

Difϕ(i) = v = Difϕ+π(i).
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But an easy computation shows that fϕ = fϕ+π. Consequently we can say that there exists
a unique element k ∈ G(i) such that Dk(i) = v.

We want to show that the action of the group Möb+(H) acts on SH simply transitively.
This means that if v is a vector at a point w and ṽ is a vector at a point w̃, then there
exists a unique element f ∈ Möb+(H) such that f(w) = w̃ and Dwf(v) = ṽ. Obviously
it suffices to show that for each vector v at a point w there exists a unique element
f ∈ Möb+(H) such that f(i) = w and Dif(i) = v (we recall that i ∈ H is a point and
i ∈ SH is a vector at i). First we take an element h ∈ Möb+(H) such that h(i) = w. Now
we take differential Dih

−1 of the inverse transformation at the point w, and we consider
the vector Dih

−1(v) at the point i. Now we take the unique element k ∈ G(i) such that
Dik(i) = Dih

−1(v). We set f = hk. Then

Dif(i) = Di(hk)(i) = DihDik(i) = DihDih
−1(v) = v.

It remains to prove that the transformation f is uniquely determined. Let f and f̃ be two
transformations such that

f(i) = w, Dif(i) = v and f̃(i) = w, Dif̃(i) = v.

We shall consider the transformation k = f̃−1f . Obviously k(i) = i, which means that
k ∈ G(i). MoreoverDik(i) = ei·2ϕi = i, then ei·2ϕ = 1 and we have ϕ = 0, π, 2π, 3π, . . .
and the computation shows that f0 = fπ = f2π = . . . = id. The above unicity result then
implies that k is the identity mapping, and consequently f = f̃ .

Now it is easy to see that the following theorem holds.

7 Theorem. The mapping κ : Möb+(H)→ SH defined by the formula κ(f) = Df(i) is
a bijection.

We denote now

H0
t (z) =

z + t

0 · z + 1
and H1

t (z) =
z + 0

tz + 1

for t ∈ R. Obviously H0
t ∈ Möb+

0 (R) and H1
t ∈ Möb+

1 (R). h0
t and h1

t denote the
corresponding differentials.

We can now introduce the horocyclic flows. As usual let w ∈ H be a point and v
a unit vector. Then there exists a unique element f ∈ Möb+(H) such that Df(i) = v.
Any element f ∈ Möb+(H) is an isometry and consequently it maps horocircles onto
horocircles. C0 and C1 are the unique horocircles passing through the point i such that
the vector i is normal at the point i to the horocircle. Consequently f(C0) and f(C1) are
the unique horocircles passing through the point w such that the vector v is normal at the
point w to the horocircle. We shall define two horocyclic flows k0

t and k1
t by the formulas

k0
t v = Dfh0

t (Df)−1 and k1
t v = Dfh1

t (Df)−1.

Here Df is the differential at the point H0
t (i) resp. H1

t (i). We can easily see that k0
t and

k1
t are really flows. Namely, we have

k0
sk

0
t (v) = Dfh0

t (h
0
s(h

0
t )
−1(Df)−1(Dfh0

t (Df)−1(v))) = Dfh0
t+s(Df)−1(v) = k0

t+s(v).
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Similarly we can prove that k1
sk

1
t = k1

t+s.
If we use the bijection between the group Möb+(H) and the space SH of unique

vectors, we can see that the above two flows have the form

f 7→ fH0
t and f 7→ fH1

t , t ∈ R.

Another possibility is to use the two-sheeted covering p : SL(2;R) → Möb+(H). We
can introduce two flows(

a b
c d

)
7→
(
a b
c d

)(
1 t
0 1

)
,

(
a b
c d

)
7→
(
a b
c d

)(
1 0
t 1

)
.

The projections of these two flows are the two flows on Möb+(H) introduced above.
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5 Radon transform
Inversions to Radon transform have many applications in medical and geophysical imag-
ing. Euclidean inverse Radon transform is used namely in CT-scan, PET for two-
dimensional imaging and in SPECT for 3D imaging. Inverting Radon transform is just
one of the steps in reconstructing the desired image, but the basic one. We will focus on
applications of hyperbolic Radon transform and its inversion.

The inversion of hyperbolic Radon transform found its use in the electrical impedance
imaging where the internal conductivity, permittivity or impedance profile of an object of
interest is reconstructed from boundary (surface) measurements of voltages and current
fluxes. High-conductivity materials allow the passage of both direct and alternating cur-
rents; high-permittivity materials allow only the passage of alternating currents. These
properties are important because different tissues have different conductivities and per-
mittivities. There are three main fields using this idea, the names of these techniques
differ a little bit, but mathematically they are equivalent.

Electrical impedance tomography (EIT) is a method used in medical imaging. Con-
ducting electrodes are attached to the skin and small alternating currents are applied to
two or more of the electrodes. The resulting electrical potentials are measured, and the
process may be repeated for numerous different configurations of the applied current. The
measurements are sent to a computer to perform the reconstruction and display the image.
EIT is used for monitoring the lung function (the air has a large conductivity contrast to
the other tissues in the thorax), the detection of skin cancer and breast cancer and for the
location of epileptic foci. This method is relatively new so EIT devices are not widely
used yet, but they have big advantages compared to other medical methods (which can
gain required results), they are noninvasive, small and inexpensive.

Electrical resistivity tomography (ERT) is a geophysical technique for imaging sub-
surface structures from electrical measurements made at the surface, or by electrodes
in one or more boreholes. ERT measures electrical resistivity in soil and rock, and
allows investigators to view two- or three-dimensional electrical resistivity images of
the subsurface on a computer terminal within minutes of retrieving data. It has been
successfully demonstrated on monitoring the remediation processes, detecting potential
leaks under high level waste tanks, measuring moisture movement in fractured rock, and
for verifying the effectiveness of subsurface barriers.

Electrical resistance tomography is used in industrial process imaging for obtaining
information about the contents of process vessels and pipelines. Multiple electrodes are
arranged around the boundary of the vessel at a fixed location. The electrodes make
electrical contact with the fluid inside the vessel, but do not affect the flow or movement
of materials. A typical application is real time monitoring of multicomponent flows within
process engineering units. It could be used in any process where the main continuous
phase is at least slightly conducting and the other phases and components have different
values of conductivity.

Parabolic and hyperbolic Radon transform are also efficient interpolators and are used
in seismic data processing and image analysis.
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5.1 Radon transform in Euclidean space
Let us consider the Euclidean space Rn and a function f on it. We recall that support of
f is the subset

supp f = {x ∈ Rn; f(x) 6= 0}.

If we take a C∞-differentiable function with compact support then for any hyperplane
(not necessarily passing through the origin) we can define a number

f̂(ξ) =

∫
ξ

f(x)dm(x),

where m denotes the Euclidean measure on ξ. If we denote Ln the set of all hyperplanes
in Rn, we thus get a function f̂ on Ln, which is called Radon transform of the function
f . Now, we are going to show that from the function f̂ we are able to reconstruct the
original function f . In order to obtain the value f(x0) we must consider a set Ln(x0)
consisting of all hyperplanes passing through the point x0. We can see that Ln(x) is an
(n−1)-dimensional surface. Namely, any hyperplane passing through x0 can be described
by the equation

(a, x− x0) = 0,

where a 6= 0. Without any loss of generality we may assume that ||a|| = 1. Obviously, the
set {a ∈ Rn; ||a|| = 1} is an (n − 1)-dimensional sphere Sn−1 in Rn, and consequently
an (n − 1)-dimensional surface provided with a Euclidean measure. But it is clear that
the same hyperplane can be described by two equations

(a, x− x0) = 0 and (−a, x− x0) = 0.

Identifying the antipodal points of Sn−1 we obtain a new (n− 1)-dimensional surface. In
fact, this is an (n − 1)- dimensional projective space Pn−1. But the antipodal mapping
a 7→ −a of the sphere Sn−1 onto itself is an isometry, and consequently the Riemannian
metric on Sn−1 induces a Riemannian metric on Pn−1. In this way we obtain on Ln(x) a
Euclidean measure which we denote µ(ξ). For a function ϕ we define a transform

ϕ̌(x) =

∫
x∈ξ

ϕ(ξ)dµ(ξ).

At this moment we introduce no name for this transform.

5.2 Radon transform in hyperbolic space
The goal of this section is to introduce the Radon transform in the hyperbolic plane. Radon
transform can be introduced in a hyperbolic space of any dimension. But the treatment of
the radon transform in a hyperbolic plane is simpler and for the applications we have in
mind we need it in this form. Here, by the hyperbolic plane we mean the Poincaré disc
model. In the hyperbolic plane H we consider a hyperbolic line ξ. We know that such a
line is a circular arc orthogonal to the boundary circle of H. The set of all hyperbolic lines
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in H we denote by Ξ. If f is a function defined on H we define its Radon transform as a
function on Ξ by the formula

f̂(γ) =

∫
γ

f(x)dm(x),

where m denotes the hyperbolic measure on ξ. Let us notice that from a formal point of
view the definitions of the Radon transform look the same. But in the first case we use the
measure induced by the Euclidean metric, and in the second case the measure induced by
the hyperbolic metric. The difference can be easily seen if we write the integrals explicitly.
If we parametrize ξ as (γ1(t), γ2(t)), t ∈ (a, b), then we have in the Euclidean case∫ b

a

f(t)
√
γ′1(t)2 + γ′2(t)2dt,

and in the hyperbolic case (here we use the Poincaré disc model)∫ b

a

f(t)

√
γ′1(t)2 + γ′2(t)2

1− (γ1(t)2 + γ2(t)2)
dt.

On the other hand let us assume that there is given a function g on the set Ξ. Then we
want to define a function ǧ on H. Let us take a point z ∈ H. We consider the tangent
space TzH to the hyperbolic plane. (It consists of vectors having an origin at z and is
isomorphic with R2.) We endow this vector space with the hyperbolic (positive definite)
scalar product. Namely, we set

〈u, v〉z =
(u, v)

(1− (z, z))2
,

where (·, ·) denotes the standard Euclidean product in R2. Now we take a unit circle S1
z in

TzH. If n is an element of this circle then there is a unique hyperbolic line ξ(n) passing
through z and having n as its unit normal at z. Then we set

ǧ(x) =

∫ 1

z

g(ξ(n))dµ(n),

where µ(n) denotes the measure on S1
z induced by the above defined hyperbolic scalar

product.
Until now our considerations were completely parallel to the Euclidean case. Instead

of points in the Euclidean plane we had points in the hyperbolic plane, and instead of
Euclidean lines we had hyperbolic lines. But the hyperbolic plane enables one more
construction. Namely, instead of the hyperbolic lines we can take horocycles. We recall
that horocycles are circles tangent from inside to the bounding circle of H. The set of all
horocycles we denote by E. Again, if f is a function on H, we define a function f̂ on E.
If η ∈ E is a horocycle, we set

f̂(η) =

∫
η

f(x)dm(x),
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where m denotes the measure on η induces from the hyperbolic metric on H. Because the
function f is defined on H, its restriction is not defined on the whole horocycle η. More
precisely, it is not defined at the tangent point of the horocycle with the bounding circle of
H. But this single point is a zero measure set and consequently the integral is well defined.
The function f̂ is called horocyclic Radon transform of the function f . Here also, we can
proceed in the converse direction. If g is a function on the set E of horocycles, we can
define a function ǧ on H. We proceed exactly in the same way as above. If we take an
element n ∈ S1

x, there is exactly one horocycle η(n) passing through z and having n as
its outer normal. Then we define

ǧ =

∫
S1
z

g(η(n))dµ(n),

where µ has the same meaning as above.
In all cases we shall call the correspondence g 7→ ǧ dual Radon transform. Let us

mention that if we construct an inverse of the Radon transform, then the dual Radon
transform plays the main role.
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6 Gyrovector Spaces
This section deals with the modern history of hyperbolic geometry in relation to Einstein’s
special theory of relativity. The main part of the text introduces the theory of gyrogroups
and gyrovector spaces, which provide algebraic tools for the study of relativistic physics
and hyperbolic geometry.

6.1 History
The special theory of relativity was introduced by Albert Einstein (1879–1955) in 1905.
When Herman Minkowski (1864–1909) began pondering over the structure of Lorentz
groups in 1907 he noticed that geometrical relations between velocity vectors measured
in inertial frames of reference are not Euclidean, but hyperbolic. He did not exploit this
insight and reformulated the Einstein relativity in terms of a space of four-dimensional
space that is named after him.

Mathematicians like V. Varičak (1865–1942) and E. Borel (1871–1956) tried to inau-
gurate a non-Euclidean style of relativity, but their approach was neglected for a long time.
Applications of hyperbolic geometry in relativity physics had minor results mainly due
the fact that the employment of vector algebra in hyperbolic space was not possible. The
following years added nothing significant to this approach. However, in 1988 Abraham
A. Ungar started to build the gyrogroup theory, the first algebraic structure of this kind
involving Einstein’s addition. This theory establishes harmony between the hyperbolic
geometry and the original formulation of special relativity theory by Einstein.

6.2 Theory of relativity
It is well known that in the theory of relativity no velocity can exceed the velocity of
light. Then, even without other knowledge of the theory of relativity, it is obvious that
the addition of velocities can not work as in classical mechanics. Classically, if an inertial
system S1 is moving with velocity u with respect to an inertial systems S0, and an inertial
system S2 is moving with velocity v with respect to inertial system S1, then the inertial
system S2 is moving with velocity u+ v with respect to the inertial system S0 (we recall
that u and v are vectors).

In relativity theory the situation is much more complicated. The simplest situation
arises when all inertial systems move in the same direction. Then we can choose a unit
vector e in this direction, and the velocities can be expressed in the form u = a1e and
v = a2e. The velocity of S2 with respect to S0 is then w = ae, where

(1) a = a1 ⊕ a2 =
a1 + a2

1 + a1a2
c2

.

Mathematically, we can take here velocities as real numbers a from the interval (−c, c), or
equivalently as real numbers satisfying |a| < c (c denotes the velocity of the light). First
of all we have

−a1a2 ≤ |a1a2| < c2 which implies c2 + a1a2 > 0.
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Then we have

(c+ a1) (c+ a2) > 0⇐⇒ c2 + ca1 + ca2 + a1a2 > 0⇐⇒ a1 + a2

1 + a1a2
c2

> −c,

(c− a1) (c− a2) > 0⇐⇒ c2 − ca1 − ca2 + a1a2 > 0⇐⇒ a1 + a2

1 + a1a2
c2

< c.

We have thus proved that

|a| =
∣∣∣∣ a1 + a2

1 + a1a2

∣∣∣∣ < c

and consequently the binary operation called Einstein’s addition

(a1, a2) 7→ a1 + a2

1 + a1a2
c2

is well defined. We can easily see that this operation is commutative and that 0 ∈ (−c, c)
is a neutral element with respect to this operation. A short computation shows also that
the operation is associative. This shows that the interval (−c, c) with this operation is a
commutative group.

In the standard relativity situation, relativistically admissible velocities are elements
of the open ball R3

c with radius c being the vacuum speed of light

R3
c = {v ∈ R3; ‖v‖ < c}.

The formula for the Einstein addition of velocities u ⊕ v has a much more complicated
form

w = u⊕ v =
1

1 +
(u, v)

c2

{
u+

1

γu
v +

1

c2

γu
1 + γu

(u, v)u
}

for all u, v ∈ R3
c , where (u, v) is a standard scalar product and γu is the Lorentz factor

given by the formula

γu =
1√

1 +
‖u‖2

c2

.

It is possible to prove again that ‖w‖ < c, but the situation here is more complex,
so the proof is more complicated. An investigation shows that R3

c with respect to the
operation ⊕ is neither commutative nor associative, which means that R3

c does not carry
a group structure. In fact, this algebraic structure was properly decoded only recently by
A.A.Ungar. The main notion here is the notion of gyrogroup.

6.3 ”Gyro” theory
Most books on the special theory of relativity show Einstein’s addition only for parallel
velocities, in which case it is both commutative and associative. The breakdown of
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commutativity and associativity in the general case is repaired by Thomas’s precession 1.
If we denote the relative rotation generated by two relative velocities u, v ∈ R3

c as
gyr[u, v] : R3

c → R3
c , it holds that

u⊕ v = gyr[u, v](v ⊕ u).

The generalization of this precession is called the Ungar gyration and the previous rela-
tion is known as the gyrocommutative law. Although not recognized as such, this relation
appeared in early literature on special relativity, for example in [40]. The gyroasociative
law is a recent discovery of Ungar, made in 1988 (presented in [42] and in [43]). Using
gyration he wrote the following left and right gyroassociative laws:

u⊕ (v ⊕ w) = (u⊕ v)⊕ gyr[u, v]w,

(u⊕ v)⊕ w = u⊕ (v ⊕ gyr[v, u]w).

Ungar uses the prefix ”gyro” to emphasize analogies with clasic notions and builds a
whole gyrogroup theory.

We recall first that a grupoid is a non-empty set A together with a binary operation
A× A→ A, which we shall denote by (a1, a2) 7→ a1a2. An automorphism of a grupoid
A is a mapping ϕ : A→ A such that ϕ(a1a2) = ϕ(a1)ϕ(a2) for all a1, a2 ∈ A.

The groupoid (G,⊕) is a gyrogroup if its binary operation satisfies the following
axioms: In G exists a unique element, 0, called the identity element, satisfying

0⊕ a = a⊕ 0 = a,

for all a ∈ G. For each a in G exists a unique inverse 	a in G, satisfying

(	a)⊕ a = a⊕	a = 0,

and we use the notation a⊕ (	b) = a	 b, for a, b ∈ G.
There exists a mapping gyr[u, v] ∈ Aut(G,⊕) such that the following hold for all

u, v, w ∈ G :

u⊕ (v ⊕ w) = (u⊕ v)⊕ gyr[u, v]w,

(u⊕ v)⊕ w = u⊕ (v ⊕ gyr[v, u]w),

gyr[u, v] = gyr[u⊕ v, v],

gyr[u, v] = gyr[u, v ⊕ u],

	(u⊕ v) = gyr[u, v](	v 	 u),

gyr−1[u, v] = gyr[v, u].

It can be proved that the self-map gyr[u, v], u, v ∈ G of G is given by the equation

gyr[u, v]w = 	(u⊕ v)⊕ (u⊕ (v ⊕ w)).

1The Thomas precession of relativity physics is a rotation that has no classical counterpart. It has been
used by Ungar in his theory of gyro-groups, where he suggests the prefix “gyro” to emphasize analogies
with classical notions. Thomas gyration is an isometry of hyperbolic geometry that any two points of the
geometry generate. Obtained analogies allow the unification of Euclidean and hyperbolic geometry and
trigonometry.
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In the case of Einstein gyrogroup (R3
c ,⊕) it is possible to express gyr[u, v]w as a linear

combination of u, v and w

gyr[u, v]w = a00w +
1

c2
{α11 (u,w) + α12 (v, w)}u

+
1

c2
{α21 (u,w) + α22 (v, w)} v,

(2)

where

a00 = 1

a11 =
γ2
u

γu⊕v

1− γv
1 + γu

a12 =
γuγv (1 + γu + γv + 2γu⊕v − γuγv)

(1 + γu) (1 + γv) (1 + γu⊕v)

a21 = − γuγv
1 + γu⊕v

a22 =
γ2
v

γu⊕v

1− γu
1 + γv

.

6.4 Einstein gyrovector space
Some commutative groups allow the introduction of scalar multiplication turning them
into vector spaces. Similarly, some gyrocommutative gyrogroups allow the introduction
of scalar multiplication, transforming them into gyrovector spaces. One of those cases is
the Einstein gyrovector space.

The motivation for scalar multiplication is as follows. Let β = v/c, v ∈ (−c, c), then
we have the Einstein addition (1) of normalized velocities in R1

c given by

β1 ⊕ β2 =
β1 + β2

1 + β1β2

.

We could express

β =
(1 + β)− (1− β)

(1 + β) + (1− β)

β ⊕ β =
2β

1 + β2
=

(1 + β)2 − (1− β)2

(1 + β)2 + (1− β)2

β ⊕ β ⊕ β =
β + 2β

1+β2

1 + β 2β
1+β2

=
β3 + 3β

3β2 + 1
=

(1 + β)3 − (1− β)3

(1 + β)3 + (1− β)3

β ⊕ . . .⊕ β︸ ︷︷ ︸
r

= β ⊕ ((r − 1)⊗ β) = β ⊕ (1 + β)r−1 − (1− β)r−1

(1 + β)r−1 + (1− β)r−1 =

. . . =
(1 + β)r − (1− β)r

(1 + β)r + (1− β)r
,(3)
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suggesting an Einstein multiplication r ⊗ β of normalized relativistically admissible
velocities in the form (3), where r could be any real scalar r ∈ R. The triple (R1

c ,⊕,⊗)
forms a vector space. The pedagogical use of exotic looking vector spaces such as
(R1

c ,⊕,⊗) was pointed out by Carchidi in [5].
The Einstein scalar multiplication by a scalar is then given by

(4) r ⊗ v = c
(1 + ‖v‖/c)r − (1− ‖v‖/c)r

(1 + ‖v‖/c)r + (1− ‖v‖/c)r
v

‖v‖

which transforms an Einstein gyrogroup (R3
c ,⊕) into a gyrovector space (R3

c ,⊕,⊗).
An Einstein gyrovector space (R3

c ,⊕,⊗) is an Einstein gyrogroup (R3
c ,⊕) with scalar

multiplication given by (4) where r ∈ R and r ⊗ 0 = 0 with the notation v ⊗ r = r ⊗ v.
The Einstein scalar multiplication does not distribute over Einstein addition, which

means r ⊗ (v1 ⊕ v2) 6= (r ⊗ v1) ⊕ (r ⊗ v2). However it has all the other properties of a
vector space. For any positive integer n and for all r, r1, r2 ∈ R and v ∈ R3

c :

n⊗ v = v ⊕ ...⊕ v n terms,
(r1 + r2)⊗ v = r1 ⊗ v ⊕ r2 ⊗ v Scalar distributive law,

(r1r2)⊗ v = r1 ⊗ (r2 ⊗ v) Scalar associative law,
r ⊗ (r1 ⊗ v ⊕ r2 ⊗ v) = r ⊗ (r1 ⊗ v)⊕ r ⊗ (r2 ⊗ v) Monodistributive law.

Computation with these formulas is difficult. For this reason some parts of Ungar’s
proofs were performed by computer algebra programs like MACSYMA, MAPLE and
MATHEMATICA.

The goal of the following section is to describe and explain the Riemannian metric in
the Einstein gyrovector space. We start with a simple observation. Let f be a smooth
function defined in a neighborhood of a point a ∈ R. Then in a sufficiently small
neighborhood U of 0 ∈ R we have a function f(a+ h)− f(a). We can see that(

d

dh

)
h=0

[f(a+ h)− f(a)] =
df(a)

dh
.

We have not specified the type of the function f . It would be natural to assume that f is a
scalar function. Notice, however, that the above formula holds even in the case where f
is a vector valued function (e.g. a function with values in R3).

Moreover, the above formula holds even in the case where f is a function of more
variables. Let us assume that f is defined in a neighborhood of a ∈ Rn. Then the function
f(a+ h)− f(a) is defined in a neighborhood of 0 ∈ Rn, and in this case we have(

∂

∂hi

)
h=0

[f(a+ h)− f(a)] =
∂f(a)

∂ui
,

where h = (h1, . . . , hn) and i = 1, . . . , n.
Without specifying too many details, let us assume that n = 2, and f is a function with

values in R3. It is well known that such a function describes a 2-dimensional surface in
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the 3-dimensional space R3. (To be more precise, provided the derivatives ∂f(a)/∂u1 and
∂f(a)/∂u2 are linearly independent for any a in the definition domain of f .) We recall that
in this situation we can define the Riemannian metric of the surface under consideration
at the point f(a) by the formulas

gij(a) =

(
∂f(a)

∂ui
,
∂f(a)

∂uj

)
, i, j = 1, 2.

It may happen that f = (f 1, f 2, 0), which means that the image of f lies in R2. This is
not forbidden, but in fact this means that f parametrizes a plane. This parametrization
may even be quite complicated (that is, components gij of the Riemannian metric are
quite complicated), nevertheless we will finally find that the surface under consideration
is a part of a plane, because all the possible curvatures (computed from gij) are zero.
This means that from the point of view of the classical theory of surfaces this situation is
not at all interesting. The only natural and acceptable parametrization of the plane under
consideration would be the mapping f : R2 → R2, where f = I is the identity.

A much more interesting situation appears when we consider e.g. the Einstein gyrovec-
tor space R2

c . Here we again take f = I , and instead of the (non-interesting) difference
(a+ h)− a = h we take the difference

(a+ h)	 a.

We denote as usual h = (h1, h2), and we define

Xi(a) =

(
∂[(a+ h)	 a]

∂hi

)
h=0

, i = 1, 2.

(Evidently, we have no right to call this expression a partial derivative.) In the standard
way we now define

gij(a) = (Xi(a), Xj(a)), i, j = 1, 2,

where (·, ·) is the scalar product in R2. A computation (not very easy) shows that

g11(a) = c2 c2 − a2
2

(c2 − a2
1 − a2

2)2
, g22(a) = c2 c2 − a2

1

(c2 − a2
1 − a2

2)2
,

g12(a) = g21(a) = c2 a1a2

(c2 − a2
1 − a2

2)2
.

It is well known that this is the Riemannian metric in the Klein-Beltrami model of
hyperbolic geometry. In a way, we can say that Einstein gyrovector space coincides with
the Klein-Beltrami model of hyperbolic geometry. Gyrovector spaces provide a setting
for hyperbolic geometry in the same way that vector spaces provide a setting for Euclidean
geometry. In fact, the gyrovector space approach enriches the Klein-Beltrami model with
the ability to multiply elements of the hyperbolic plane (resp. hyperbolic space of arbitrary
dimension) by real numbers. In two dimensions, Einstein gyrovector space is coincident
with the Klein-Beltrami disc model of hyperbolic geometry.
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Figure II.7:

The gyrolines (or hyperbolic lines) in this model are line segments contained in the
disc. We could express the geodesic segment joining two given points a and b as in
figure II.7 by Einstein’s addition and Einstein’s scalar multiplication as

a⊕ (	a⊕ b)⊗ t, 0 ≤ t ≤ 1,

and the hyperbolic distance separating those two points as ‖a	b‖. In both cases we can see
an analogy with the Euclidean spaces. The cosine of the angle α between two gyrovectors
	a⊕ b and 	a⊕ c (figure II.8) is defined by the inner product of the corresponding unit
gyrovectors

cos(α) =
	 a⊕ b
‖ 	 a⊕ b‖

·
	 a⊕ c
‖ 	 a⊕ c‖

.

Figure II.8:

The sine of the hyperbolic angle α is defined by the equation

sinα = ±
√

1− cos2 α.
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For a triangle in the Einstein gyrovector space with sides A, B, and C and with
respective angles α, β, γ opposite to these sides, we have the hyperbolic law of cosines
and the hyperbolic law of sines

‖1/2⊗ C‖2

c
=
‖1/2⊗ A‖2

c
⊕ ‖1/2⊗B‖

2

c
	 1

2c

‖A‖‖B‖ cos γ

1−
‖A‖‖B‖ cos γ

2c2

γA‖A‖
sinα

=
γB‖B‖
sin β

=
γC‖C‖
sin γ

.

In the case γ = π/2 we obtain from the hyperbolic law of cosines a hyperbolic
Pythagorean theorem:

(5)
‖1/2⊗ C‖2

c
=
‖1/2⊗ A‖2

c
⊕ ‖1/2⊗B‖

2

c
,

where the addition ⊕ of constants is executed according to (1). We see that Einstein’s
addition captures these laws in a form similar to that which we are familiar with from
Euclidean trigonometry.

We now introduce the notion of gyrovector space isomorphism.

1 Definition. Let (G,⊕G,⊗G) and (H,⊕H ,⊗H) be two real gyrovector spaces. A
bijective mapping f : G → H is called gyrovector space isomorphism if the following
conditions are satisfied

1. f(u⊕G v) = f(u)⊕H f(v),

2. f(r ⊗g u) = r ⊗H f(u),

for every u, v ∈ G and r ∈ R. If G and H are inner product gyrovector spaces, then we
suppose that

(iii) ||f(u)||H = ||u||G.

We recall that in gyrovector space it always holds that

1⊗G u = u, r1 ⊗G (r2 ⊗G u) = (r1r2)⊗G u

for every u ∈ G and r1, r2 ∈ R. This shows that for any r 6= 0 the maping G →
G defined by u 7→ r ⊗G u is bijective and the corresponding inverse mapping is the
mapping u 7→ r−1 ⊗G u. Unfortunately, in the gyrovector spaces there is no formula for
r⊗G (u⊕G v), and consequently the mapping u 7→ r⊗G u is not in general a gyrovector
space isomorphism. (Notice that this also holds for ordinary vector spaces.)

Taking a gyrovector space (G,⊕,⊗) and s 6= 0, we can define a new gyrovector space
(Gs,⊕s,⊗s) by the formulas

Gs = G, u⊕s v = s−1⊗ ((s⊗ u)⊕ (s⊗ v)), r⊗s u = s−1⊗ (r⊗ (s⊗ u)) = r⊗ u.
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This new gyrovector space Gs is isomorphic with the original space G. Namely, we can
define an isomorphism f : Gs → G by the formula f(u) = s ⊗ u. Then the formula
defining ⊕s can be rewritten in the form

s⊗ (u⊕s v) = ((s⊗ u)⊕ (s⊗ v)),

which says that f(u ⊕s v) = f(u) ⊕ f(v). Similarly, the formula defining ⊗s can be
rewritten in the form

s⊗ (r ⊗s u) = r ⊗ (s⊗ u),

which this time says that f(r ⊗s u) = r ⊗ f(u).
Now we take the 2-dimensional Einstein gyrovector space (R2

c ,⊕E,⊗E), where as
usual R2

c = {u ∈ R2; ||u|| < c}. We take s = 1/2, and define a new gyrovector space
(GM ,⊕M ,⊗M), where GM = G1/2, ⊕M = ⊕1/2, and ⊗M = ⊗1/2. This new gyrovector
space will be called the Möbius gyrovector space, which also explains our notation. A
computation shows that

u⊕M v =
(1 + 2

c2
(u, v) + 1

c2
||v||2)u+ (1− 1

c2
||u||2)v

1 + 2
c2

(u, v) + 1
c2
||u||2||v||2

.

We shall simplify this formula. First we set c = 1, and secondly we shall treat u, v ∈ R2

as complex numbers. We get then

u⊕M v =
(1 + 2(u, v) + ||v||2)u+ (1− ||u||2)v

1 + 2(u, v) + ||u||2||v||2
=

=
(1 + uv̄ + vū+ |v|2)u+ (1− |u|2)v

1 + uv̄ + vū+ |u|2|v|2
=

(1 + uv̄)(u+ v)

(1 + uv̄)(1 + vū)
=

u+ v

1 + ūv
.

In the Möbius gyrovector space we can proceed in the same way as in the Einstein
gyrovector space. Formally, we shall use the same expression (a + h) 	 a as in the
Einstein gyrovector space. The main difference, however consists in the fact that this time
	 denotes subtraction in the Möbius gyrovector space and not in the Einstein gyrovector
space. We define again

Xi(a) =

(
∂[(a+ h)	 a]

∂hi

)
h=0

, i = 1, 2, and

gij(a) = (Xi(a), Xj(a)), i, j = 1, 2.

This time computation gives

g11(a) =
c4

(c4 − r4)2
[(c2 + r2)2 − 4c2a2

2], g22(a) =
c4

(c4 − r4)2
[(c2 + r2)2 − 4c2a2

1],

g12(a) = g21(a) =
c4

(c4 − r4)2
a1a2,

where r2 = a2
1 + a2

2. It is not difficult to verify that in this way we obtain a Riemannian
metric in the Poincaré model of hyperbolic geometry.
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Figure II.9:

The unique Möbius geodesic a ⊕M (	a ⊕M b) ⊗M t in the Poincaré disc model that
passes through given points a and b is shown in figure II.9. The hyperbolic distance
separating these points can be written in terms of Möbius addition as d(a, b) = ‖a	 b‖ .
The cosine of the Möbius angle α between two gyrovectors	a⊕ b and	a⊕ c is defined
by the equation

cos(α) =
	 a⊕ b
‖ 	 a⊕ b‖

·
	 a⊕ c
‖ 	 a⊕ c‖

.

Correspondingly, the sine of the hyperbolic angle α is defined by the equation

sinα = ±
√

1− cos2 α.

For a triangle ∆abc in a Möbius gyrovector space with sides A = 	b⊕ c, B = 	c =
⊕a, and C 	 a⊕ b and with respective angles α, β, γ opposite to these sides, we have the
hyperbolic law of sines

γ2
A‖A‖
sinα

=
γ2
B‖B‖
sin β

=
γ2
C‖C‖
sin γ

and the hyperbolic Pythagorean theorem

‖C‖2

c
=
‖A‖2

c
⊕ ‖B‖

2

c
.

If we set c = 1 as is usual, we obtain

‖C‖2 = ‖A‖2 ⊕ ‖B‖2

which corresponds completely with the Euclidean Pythagorean theorem.

Gyrogroup theory is a new step in the history of the application of hyperbolic geom-
etry to relativistic physics. This aproach to hyperbolic geometry shares analogies with
Euclidean geometry, and the Thomas precession is the missing link between these two
geometries.
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7 Hyperbolic geometry in art
The first works of art based on hyperbolic geometry were the graphics of Dutch artist M.
C. Escher (1898–1972). His four graphics, which he called Circle limits, would probably
have never occurred without the influence of mathematicians.

7.1 The Euclidean case
In the 1920s Escher started to be interested in the regular division of the Euclidean plane.
During the following years he created many mosaics of the Euclidean plane and used them
in a unique way in his pictures.

Figure II.10: Reptiles 1943

Mainly due to graphics containing a regular division of the Euclidean plane, math-
ematicians, especially crystallographers, noticed his work. His mosaics drew attention
mainly due to their polychromatic symmetries.2

7.2 Triangle tessellation
Escher stayed in contact with mathematicians, of whom one of the most significant was
H. S. M. Coxeter (1907–2003). They met for the first time in Amsterdam in 1954 at
the International Congress of Mathematicians, where there was an exhibition of Escher’s
work. During the following years Coxeter reacted to Escher’s new prints, recommending
literature, and he used some of Escher’s works in his publications about symmetry. In
1958 he sent Escher a print of his text Crystal Symmetry and Its Generalizations. Escher
didn’t understand the mathematical text, but he was captured by a picture of the triangle
tessellation of Poincare’s disc model of hyperbolic geometry.

He was shocked, for he had long been considering the problem of creating a mosaic
within a circular disc, whose motif would decrease in size towards the edge. Finally he

2Escher’s notebook dated from the year 1942 contains practically all the 2-, 3-, 4- and 6-color rotational
two-dimensional groups.
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Figure II.11: Triangle tessellation

had found the solution, and he was able to create Circle limit I thanks to a picture similar to
figure II.11. Escher included Circle limit I in his reply to Coxeter, which in turn shocked
Coxeter.

The first triangular tiling of the hyperbolic plane occurred in the work of H. A. Schwarz
when he studied the solutions of hypergeometric differential equations. He discovered
triangle functions defined on a triangle inside the unit disc with lines or arcs of circles
orthogonal to the unit circle as sides. They were then continued as analytic functions to
the whole of the unit disk by reflecting the triangle along the sides until they filled the
unit disk (the triangle and its various reflections form a tessellation of the disk). Over a
hundred years it became a kind of folk art among mathematicians to create these figures.

Although Escher did not understand the mathematics in Coxeter’s text, he was able
to reconstruct the hyperbolic triangle tessellation and combined with utilizing his expe-
riences from the Euclidean case, to create more interesting mosaics of the hyperbolic
plane. Concerning the triangle tessellation, he probably used a compass and straightedge
construction which was known to mathematicians, but never written down until a quite
recent paper by Chaim Goodman-Strauss. We shall sketch this method for creating a
triangle tessellation.

7.3 Compass and straightedge construction
With a given fixed circle C (for us it will be the boundary circle) the center of a circle
orthogonal to C is called its pole. The locus of all poles of circles through the interior
point of C is a straight line called the polar of that point.

The first step of creating {p, q} tessellation is to construct a regular Euclidean p−gon,
bounding circle and the fundamental triangle. We see this being made for {6, 4} tessella-
tion in figure II.12. After every construction we could create images of a new hyperbolic
line under reflections in those sides of the fundamental triangle which lie on diameters.

In next steps, we use the fact that the Poincaré model is conformal (we add some



93

Figure II.12: First steps of the construction

Figure II.13: External web of poles and polars

hyperbolic line by rotating the existing one). And also we use some other basic construc-
tions, such as, for example, given two points in the disc, the center of the orthogonal arc
through them is the intersection of their polars. As we see in figure II.13, we get quite
near to the boundary after a few steps.

For a detailed description of the compass and straightedge construction of a triangular
tessellation based on the notion of poles and polars refer to the paper by Goodman-
Strauss [15].

7.4 The hyperbolic triangle groups
Now we will define groups of transformations of the hyperbolic plane and corresponding
triangular fundamental domains such as all the images of the fundamental domain under
those transformations cover the hyperbolic plane (in our case the Poincaré disk). Such
groups we call hyperbolic triangle groups.
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Let k, l,m be integers satisfying the condition of hyperbolicity

1/k + 1/l + 1/m < 1; k, l,m ≥ 2

and let ABC be a hyperbolic triangle with interior angles π/k, π/l, π/m (figure II.14).
The corresponding group T ∗(k, l,m) is generated by reflections in sides of this triangle.
Reflection in AC will be symbolized by No. 1, reflection in AB by No. 2 and reflection
inBC by No. 3. It is clear that couples 12, 32, 31 are anticlockwise rotations with centers
A, B, C respectively and it is satisfied

(12)k = (32)l = (31)m = I.

Figure II.14: Fundamental triangle

The subgroup T (k, l,m) of T ∗(k, l,m) generated by these rotations (two of them are
sufficient) has index 2 in T ∗(k, l,m). The fundamental domain of the group T (k, l,m)
is double sized, formed by the original triangle and the image under the reflection in one
of his sides. The groups T (k, l,m) (of orientation preserving isometries) are sometimes
called von Dyck groups.3

Figure II.15: Fundamental triangle for the group T ∗(6, 2, 4)

To get the tessellation as in figure II.11 we just move the vertex A of the fundamental
triangle to the center of the disk and choose k = 6, l = 2 and m = 4 (figure II.16). If we

3For example the group T (7, 3, 2) is interesting because it has the smallest hyperbolic area (defect) of
it’s fundamental domain 2π(1− 1

k −
1
l −

1
m ) = 2π

21 . This group is also important in the theory of Riemann
surfaces. It contains a normal subgroup of index 168 which is the fundamental group of a Klein’s quartic,
the surface with the highest possible order automorphism group for the genus 3.
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consider the coloring of the tessellation, then the group that generates this tessellation is
T (6, 2, 4) and it’s fundamental region is one black and one white triangle.

Of course, there are other different subgroups of the group T ∗(k, l,m) and the funda-
mental domain does not need to be necessarily the triangle or the union of some triangles.
That is a moment where Escher used his knowledge and experience of creating tessella-
tions of the Euclidean plain. Having the group T (k, l,m) or some other subgroup of the
group T ∗(k, l,m) we can modify the corresponding fundamental region.

Figure II.16: Fundamental domain for Circle limit I

The group T ∗(6, 2, 4) can serve as basic for Escher’s Circle limit I and Circle limit IV.
For example, Circle limit I is generated by the subgroup 〈1, 23, 1212〉 (we remind that 1
is reflection, 23 and 1212 are rotations) and the fundamental region is a half of the black
fish and a half of the white fish, see figure II.16. Here we can see how the modification of
the fundamental domain is connected to generators of the corresponding group.

Figure II.17: Circle limit I and Circle limit IV

But we will focus on Circle limit III (see the picture on the left side of figure II.18),
which is interesting for the coloring, and we will discuss the possibilities of another
coloring. It may seem that in the case of Circle limit III the circular arcs passing through
the backbones of the fish are lines of hyperbolic geometry but it is not so. That is because
they do not form the right angle with the bounding circle but approximately 78◦, they are
equidistant curves to hyperbolic lines.4

4For each hyperbolic line and a given hyperbolic distance, there are two equidistant curves, one on each
side of the line, whose points are at that distance from the given line.
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Figure II.18: Circle limit III and it’s computer made imitation

Important hyperbolic lines of this pattern can be seen at the computer-made picture on
the right side of figure II.18.

Circle limit 3 (when we do not consider the coloring) is generated by the group
T (4, 3, 3) and the fundamental domain of this group is one fish. Circle limit 3 is colored
by four different colors (for the full-color image see electronic version of this dissertation),
which means that Escher found the subgroup which has an index 4 in T (4, 3, 3). We can
determine this subgroup for example by focusing on the fish of the same color. Then we
look for symmetries that map one particular fish (it is better to choose one of the closest
to the center) to the others. Thus we can find the subgroup

S1 = 〈23, 1213, 13213231〉 .

It is not as easy as it may seem. This work was made by Peter Herfort in [19]. If we
apply this subgroup to the dark green fish it produces the set of all green fish. The cosets
corresponding to yellow fish, blue fish and red fish are 12S, 31S, 1231S, respectively.

The subgroups corresponding to these cosets are

S2 = 12S21 = 〈1321, 12121321, 121321323121〉 ,

S3 = 31S13 = 〈312313, 3213, 2132〉 ,

S4 = 1231S1321 = 〈1231231321, 123213121, 31〉 .

Then the cosets of subgroups S2, S3, S4 are

• S2, 12S2, 123121S2, 12123121S2,

• S3, 3213S3, 31S3, 32S3,

• S4, 12321321S4, 123121S4, 1231S4,

respectively. So we have 3 other possible coloring with four colors of Circle limit III.
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7.5 Computer programs
It is clear that Escher did not have computers at his disposal. Therefore it is astonishing how
accurate his graphics are. However today we have plenty of computer algorithms, which
create hyperbolic mosaics. Some allow us to produce computer renditions of Escher’s
Circle limits or to vary them in some way, for example by translation or by changing the
basic triangular group. Some algorithms are designed to make a new hyperbolic mosaics
and they contain a step where fundamental domain of selected group can be modified. It
is convenient that an algorithm works in such a way that it does not redraw the motives
several times. The number of motives grows exponentially from the center towards the
boundary and unsuitable algorithms would create an exponential number of copies.
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