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Preface

This work is a complete presentation of results about the definiteness of
discrete quadratic functionals related to discrete symplectic systems. The
definiteness is characterized via certain solutions (called conjoined bases) of
the corresponding symplectic system, and via implicit and explicit Riccati
matrix equations and inequalities. The motivation and history of this topic
are included in the introductory chapter.

The first chapter is devoted to preliminary results from the matrix theory,
in particular to properties of symplectic matrices and properties of Moore-
Penrose generalized inverse. Moreover, the discrete symplectic system and re-
lated discrete quadratic functionals are introduced there. The second chapter
contains definitions of some important matrices and an augmented symplec-
tic system, and several Picone-type identities. These objects are used in the
proofs in the third chapter which contains roundabout theorems with equiv-
alent conditions for the positivity and nonnegativity of discrete quadratic
functionals. At the end of each chapter there is a section with notes on the
literature.
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Chapter 0O

Introduction

This introductory chapter should respectively give the reader answers on
questions like: what is this work about and why are these things being
researched, who all has been involved in it, how are the presented results
proven, and what did the author herself.

0.1 Introduction and motivation

In the discrete calculus of variations and control problems, a quadratic func-
tional

N
Folr,u) = Z {xf AL Cray + 22} CL Bruy, + uf B{ Dyur }
k=0

arises as second variation [40]. It is useful to know whether it is nonnega-
tivite or positive or not, because its nonnegativity is a necessary optimality
condition, while its positivity is a sufficient optimality condition.

With the functional Fy we associate a linear system, called the discrete

symplectic system,
Lry1) _ A By T (S)
Up41 Cr D Uk

whose name is derived from the fact that its transition matrix is symplectic.
Its first equation, xry1 = Arxr + Bruyg, is called the equation of motion
and the pairs of vector sequences ({zo,x1,..., N1}, {to, wr,. .. unt1)}),
(usually denoted by (x,u)) that solve this equation on the discrete interval

1



2 CHAPTER 0. INTRODUCTION

|0, N] are called admissible. We are interested in definiteness of Fy on such
admissible pairs.
Discrete symplectic systems cover as a special case discrete Hamiltonian?

system
2\ [Ar Bk Tht1
> (@ S () ®
where in system (S) we have Ay := (I — Ap)7Y, By = (I — Ap) 7 By, Cp =

—Ck(l — Ak)_l, and Dy, = Ck(l — Ak)_lBk — Ag + 1.
Further, Sturm 2-Liouville® difference equation

n

Z(_ 1)VAV(TI<CV>AVyk+n—V) =0

v=0

is equivalent to the discrete Hamiltonian system with the transition matrix

0 1 0 0O ... 0 0
0 0 1 0 0 0
A, By 0 0 0 0 0 o
Cr —AL) r,(co) 0 0 0 0 0
0 r 0 —1 0 0
0 0o ... T}i”‘” 0O ... =1 0

The definiteness of F is investigated not on all possible pairs of admissible
(x,u), but on a subset of them, defined by some additional boundary condi-
tions on xy and x 1. The first type of these conditions, connected with Fy, is
xo = 0 = x4 1, and the functional is then called the functional with zero end-
points. Then there are more general types of functionals. One we get, when
we add to the sum in Fy two more quadratic terms, 2 Tpae and 2%, ey,
and the boundary conditions we define as Myxyg = 0 = Myxn,y. This is
called the functional with separated endpoints. When we add to the sum

ISir William Rowan Hamilton (* August 4, 1805, September 2, 1865) was an Irish
mathematician, physicist, and astronomer.

2Jacques Charles Francois Sturm (* September 29, 1803, f December 15, 1855) was a
French-Swiss mathematician.

3Joseph Liouville (x+ March 24, 1809, § September 8, 1882) was a French mathematician.
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in Fy just one quadratic term, but of double dimension, (y°, )TF (2xno1 )
and the boundary conditions we define as M (55, ) = 0, we get another
more general type of functional. It is called as the functional with general
endpoints. The latter one is used for example for problems with periodic
endpoints zp = xn1-

There are various conditions equivalent to the positivity or nonnegativity
for each type of the functional. They are usually collected together in one
theorem, which is called a Reid roundabout theorem. (See footnote 5 on page
4.) In this work we present together six Reid roundabout theorems, with
conditions for the positivity and for the nonnnegativity for all three types of
functionals.

Exempli gratia, we show here a characterization of the positivity and
nonnegativity of the discrete quadratic functionals via

4 the principal solution of (S) (for the functional with zero and general
endpoints) and via the natural conjoined basis of (S) (for the functional
with separated endpoints), where the principal solution and the natural
conjoined basis of (S) are the matrix solutions of (S) starting with the
initial values (0, I) and (I — Mo, Iy + M) respectively,

XX implicit Riccati* equations, involving the Riccati operator R|Q|p =
Qri1(Ar + BeQr) — (Cp + DrQp) and some other matrices,

4 the explicit Riccati equation R|Q|x = 0 (only for the positivity, for all
three types of the functional),

4 the Riccati inequality (only for the positivity, for the functional with
zero and separated endpoints),

Y4 the positivity and nonnegativity of certain perturbed functionals, e.g.
of the functional Fo(x,u) + afzol|* + Bllzni1]?.

0.2 History and literature

In 1992, L. Erbe and P. Yan introduced linear Hamiltonian difference systems
of the form (H) in [27]. The case when B is nonsingular was examined

4Jacopo Francesco Riccati (+ May 28, 1676, 1 April 15, 1754) was an Italian mathe-
matician.
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first, by C. Ahlbrandt, S. Chen, O. Dogly, L. Erbe, M. Heifetz, J. Hooker,
T. Peil, A. Peterson, J. Ridenhour and P. Yan, see [1-3, 21,2830, 49-51].
The term ”"Reid roundabout theorem” for a theorem which gives equivalent
conditions for disconjugacy of discrete Hamiltonian system, was first used
by C. Ahlbrandt in honour of W. T. Reid®, who studied this theory in the
continuous case, e.g. in [53-55]. The continous case was studied also by
W. A. Coppel, e.g. in [20] and W. Kratz, e.g. in [45] and lately in [47].

In 1996, M. Bohner proved in [9] a Reid roundabout theorem for the
case when By is allowed to be singular. Later it was extended to functionals
with general boundary conditions by M. Bohner in [10, 12|, by M. Bohner,
O. Dosly and W. Kratz in [17] and by R. Hilscher and V. Zeidan in [41,42].
It was proven with the use of an augmented symplectic system in dimension
2n, which was already known from the continuous case.

Meanwhile, in 1996, C. Ahlbrandt and A. Peterson showed in [4] that
discrete Hamiltonian systems are a special case of discrete symplectic systems
and, in 1997, M. Bohner and O. Dogly presented in [13] a Reid roundabout
theorem for discrete symplectic systems which gives equivalent conditions
for the positivity of discrete quadratic functional F with zero endpoints.
M. Bohner later generalized some of these results to variable endpoints in [11].
The discrete Picone® identity was used in the proofs in both cases. Another
possible approach is by diagonalizing the matrix representation of F, which
was used in [14] by M. Bohner and O. Dogly for the Hamiltonian system (H),
and in [35] by R. Hilscher for discrete symplectic system (S). This theory for
symplectic systems (positivity) was then completed in 2003 by R. Hilscher
and V. Zeidan in [40], where it is also shown that symplectic system (S) is
the Euler -Lagrange® (or Jacobi?) system for the given discrete quadratic
functional.

A characterization of the nonnegativity of F with zero endpoints was
derived in 2003 by O. Dosly, R. Hilscher and V. Zeidan in [24| and by

SWilliam Thomas Reid (x October 4, 1907, 1 October 14, 1977) was an American math-
ematician.

6Mauro Picone (x May 2, 1885, 1 April 11, 1977) was an Italian mathematician.

"Leonhard Euler (x April 15, 1707, f September 18, 1783) was a Swiss mathematician
and physicist.

8Joseph Louis Lagrange (x January 25, 1736, 1 April 10, 1813) was an Italian-French
mathematician and astronomer.

9Carl Gustav Jakob Jacobi (x December 10, 1804, { February 18, 1851) was a German
mathematician.
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M. Bohner, O. Dogly and W. Kratz in [18], and generalized to separated
endpoints by M. Bohner, O. Dogly, R. Hilscher and W. Kratz in [16], in the
latter by the diagonalization approach.

0.3 Related topics

Other topics on discrete symplectic systems in the current literature include
trigonometric systems [5], discrete Priifer1® (trigonometric) transformation
[15], discrete hyperbolic systems and discrete hyperbolic transformation [26],
theory of generalized zeros [13|, conjugate intervals [40], coupled intervals
[43], Sturmian comparison results [25], and discrete eigenvalue problems [19].
In [56] it is shown that discrete Hamiltonian systems also have a symplectic
structure.

Let us further mention that there also exist variable stepsize symplectic

difference systems,
Xp
A
<uk> (A Bi\ [z
e \Cc Dpj\ug)’

see e.g. [24,40] which can be directly reduced to the system (S), and time
scale symplectic systems,

2\ (AL B\ [z

u)  \C@E) D)) \u)’
see e.g. [22,23,36]. In these two cases, the matrix I + p (4 8) is now sym-
plectic.

Also, it is demonstrated in [31-33,57| that symplectic difference schemes
are the best way for solving Hamiltonian systems numerically.

0.4 Methods of proofs

In the substantial proofs presented in this work we have to show equivalences
of certain statements. These are about the definiteness of a discrete quadratic
functional, and about existence and properites of certain matrix solutions of

9Ernst Paul Heinz Priifer (x+ November 10, 1896, § April 7, 1934) was a German math-
ematician.
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the associated discrete symplectic system (S) or a discrete Riccati equation
or inequality.

As all the problems are finite dimensional, most of the work is “playing
with matrices”, and using the properties of generalized inverses, symplectic
matrices, and projections.

Furthermore, we often use a discrete Picone-type identity to write a
quadratic functional in the form of a square and show that it is nonnega-
tive, and thus prove the sufficiency of a certain condition for the positivity or
nonnegativity. The necessity is proven by finding a pair on which the value
of the functional is zero or negative, assuming the condition does not hold.

In the proof of the roundabout theorem for the positivity of the fuctional
with separated endpoints we use a transformation to a functional with zero
endpoints, i.e. we add one zero element in front of the first one and one
zero element after the last one. The functional with general endpoints can
be transformed into an augmented functional in double dimension with sep-
arated endpoints.

0.5 List of author’s results

Author’s own results are (in order as they appear in the text):

o A new form of the Riccati quotient Q* for an augmented symplectic
system in dimension 2n and its relation to the the Riccati quotient )
for symplectic system in dimension n. (Lemmas 2.17, 2.19, page 31.)

o Identities about the relation between the value of a functional F on
a pair (x,u) to the value of the same functional F on another pair
(x,u) which satisfies given boundary conditions. (Theorem 2.31 with
Corollaries 2.33, 2.34, and Theorem 2.38 with Corollary 2.39, pages 36—
39.)

o A characterization of the positivity of the quadratic functional with
zero endpoints and with separated endpoints via the explicit Riccati in-
equality. (Statements (vi) and (vii) in Theorems 3.4, 3.14, pages 42, 50.
These results are published in [37] and were obtained jointly with
R. Hilscher.)

o A charecterization of the nonnegativity of the quadratic functional with
zero endpoints and with separated endpoints via the implicit Riccati
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equation. (Statement (iii) in Theorems 3.42, 3.43, pages 69, 70. These
results are contained in [39].)

o A characterization of the nonnegativity of the quadratic functional with
general endpoints via the principal solution of the corresponding sym-
plectic system. (Statement (ii) in Theorem 3.49, page 76. These results
are published in [37] and were obtained jointly with R. Hilscher.)

o A characterization of the positivity and of the nonnegativity of the
quadratic functional with general endpoints via the implicit Riccati
equation in terms of the nonaugmented Riccati operator. (Some parts
of Theorems 3.54, 3.55, page 81.)

o A characterization of the positivity and of the nonnegativity of all
three types of quadratic functionals via the positivity and the non-
negativity of a perturbed quadratic functional. (Some parts of Theo-
rems 3.58, 3.59, 3.64, 3.65, 3.70, 3.71, pages 84-92.)
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Chapter 1

Preliminaries

1.1 Notation and definitions

For any matrix A € R™*", by AT we denote the transpose of A. By Im A,
Ker A we denote respectively the image and the kernel of A, i.e. ImA =
{v eR"”:v= Acfor some c € R}, Ker A= {c e R": Ac = 0}. By rank A
we denote the dimension of Im A. By A* we do not denote the conjugate
transpose, but it is in this work a notation for certain matrix (matrices) in

R**%2" arising from a matrix A in R™*",

For integers a, b we denote the discrete interval {a,a -+ 1,...,b} by |a,b|.
In particular, we will use the intervals [0, N] and [0, N + 1].

Further we denote fk‘évﬂ = fny1 — fo, for a sequence { f ff;gl.

1.2 Matrices and matrix properties

In this section we present various properties of matrices that will be further
used when studying discrete symplectic systems. They are stated for real
matrices, but all hold for matrices with complex elements as well, when the
transpose of a matrix is replaced by the conjugate transpose.

For reader’s covenience, some of the proofs are included although all of
them can be found in the quoted literature.

9
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1.2.1 Moore-Penrose generalized inverse

For every real matrix A there is a unique matrix B satisfying the four equa-
tions

ABA= A, BAB-=B, (AB"=AB, (BA)" = BA. (1.1)

This unique matrix B is known as the Moore!-Penrose? inverse and we
denote it by Af. Some of its properties are

(ANT= A, (AN = (AN, Ker AT = Ker A”.

Remark 1.1. Since the matrix operations of the transpose and the Moore-
Penrose inverse are commutative, we denote by A'? when both are applied
to a matrix A.

Full-rank factorization. For every real matrix A € R™*" with rank A =
r > 0 there exist matrices ' € R™*" R € R™*" with rank F = rank R = r,
such that A = FR and this formula is called a full rank factorization of A.

Explicit formula for generalized inverse. If A € R™*" with rank A =
r > 0 has a full-rank factorization A = F R, then

A = RTY(RRTY"Y(FT )~ ET, (1.2)
This further implies
ATA = RY(RRTY™'R and AA" = F(FTF)~FT, (1.3)

The Moore-Penrose generalized inverse is a useful tool for describing the

relations between image and kernel of a matrix. The following conditions
hold

Ker A =Im(I — ATA), ImA = Ker(] — AAT), (1.4)
KerVC KW & W=WVV & W' =VvViviw, (1.5)
ImVCmW & V=WWV & VI =VIWwWw (1.6)

Lemma 1.2. Let A € R™" and b € R™. The equation Ax = b has a
solution if and only if AATS = b, and then all solutions have the form x —
Ath + (I — ATA)y for some v € R™. Consequently, if there exists at least one
solution x of Ax = b, then x = A'b is one of the solutions.

Proof. 1t follows from equivalences (1.4). O

'Eliakim Hastings Moore (x January 26, 1862, + December 30, 1932) was an American
mathematician.
2Sir Roger Penrose (x August 8, 1931) is an English mathematical physicist.
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1.2.2 Projection

A matrix A is called a projection, if A is symmetric and AA = A. Some of
its properties are

A=A" KerA=Im(I - A), ImA=Ker(l - A).

1.2.3 Other matrix properties
Lemma 1.3. For any real matriz A the following identity

(I +AATY =T — A1 + ATA)~' AT (1.7)
holds.

Lemma 1.4. If A € R™" is a real symmetric matrix with the smallest
eigenvalue Amin and the largest eigenvalue Apax, then for any vector v € R”?

we have
)\min ||U||2 S UTAU S )\max ||U||2 (18)

1.2.4 Symplectic matrices

Let n € N and J be a real 2n x 2n matrix, J = (_OI 5) Some properties of

J are
J'=gt——-g, J*=-I, detJ—1. (1.9)

Definition 1.5. A real 2n x 2n matrix S is called symplectic if STJS = J.

The simplest examples of symplectic matrices are the 2n x 2n matrices J
and /. In general, symplectic matrices can be characterized by the following.

Lemma 1.6. If S has n x n block entries A, B,C,D, i.e. if S =(}5), then
S s symplectic if and only if one of the following equivalent conditions is
satisfied

ATC =CTAB"D =D"B, ATD - C"B =1, (1.10)
St = (_’;T jff) , (1.11)

S~ is symplectic, (1.12)

ST = <é§ IC);> is symplectic, (1.13)

DCt = D", ABT = BAT  DAT —CBT = I (1.14)
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Proof. We can see it from the following calculations

T _
8T8 = <BTC—DTA ~D'B + B'D

s-1g DI'A-B'C D'™B-B"™D\ (I 0
C\=CTA+ ATC -C"B+ATD/) 1)’

L [ADT —BCT —ABT 4 BAT\ (I 0
SS ( (o 1)

—CTA+ ATC ATD—CTB><O 1>j

cDT —pCT —CBT + DAY

—BAT + ABT —-BCT+ ADT\ [0 I _ 7
~DA" + BBT —-DCt +cDT) o

T T T T
S_lTjS_1<CD DC CB +DA><0 1>j.

STST = (
—ADT + BCT  ABT — BAT

Next two lemmas describe some properties of the eigenvalues and the
determinant of a symplectic matrix.

Lemma 1.7. If A € C is an eigenvalue of a symplectic matrix S, then % 18
also an eigenvalue of S. Consequently, if A =1 or A = —1 is an eigenvalue
of S, then its multiplicity is even.

Proof. From Definition 1.5 we get J1STJ = S~ ie. ST and S7! are
similar and thus have the same spectrum. So if A is an eigenvalue of S, then
it is also an eigenvalue of S™!, and then % is an eigenvalue of S. O

From Definition 1.5 and (1.9) we can see that (det §)*> = 1. The next
lemma shows that the determinant of a symplectic matrix is actually 1.

Lemma 1.8. If S is a symplectic 2n X 2n matriz, then detS = 1.

Proof. Let A1, ..., Ag, be the eigenvalues of S, including multiplicities. Since
the eigenvalues appear in pairs A and % and, since A = —1 has an even
multiplicity (provided it is an eigenvalue at all), it follows that detS =
Al Aoy = 1L O

Remark 1.9. When n = 1, we have in the above lemma if and only if, i.e.
a matrix § = (¢ %) is symplectic if and only if detS =ad—bc= 1.
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The following lemma shows how to perturb a symplectic matrix S in
order to obtain a new symplectic matrix S.

Lemma 1.10. Let S be a symplectic 2n X 2n matriz and define S . =S+ R
with R = (5 9). The matriz S is symplectic if and only if GTA and H'B
are symmetric, and the identity H' A = B'G holds.

Proof. We have

STTIS = (S+ R TS +R)=8"TS+STTR+R' TS + R"IR
ATG — GTA  ATH — GTB>

_ T T _
—j+5 jR+R j5j+<BTG_HTA BTH—HTB

Hence, STJS = J if and only if HTA = B'G and GTA and H'B are sym-
metric. O

1.3 Discrete symplectic systems

Let N € N and let X, € R, U, € R™™ be real n x n matrices and
xr € R” and u, € R™ be real vectors, for k € [0, N + 1| and S = (é‘: gZ)
be a symplectic 2n x 2n matrix for k € [0, N]. The pair of matrix sequences
({Xo, X1,..., Xny1}, {Uo, Ui,...,Uny1)}) we denote by (X, U) and the pair
of vector sequences ({xo,xl, ces N1 b {uo, ug, ,UN+1)}> we denote by
(x,u).

In order to simplify the formulae, we sometimes omit the index k, when
the formula holds for any k € [0, N + 1].

Definition 1.11 (Discrete symplectic system). The system
X1 = AeXp + BelUp,  Upyr = Co X + DilUp, k€ [0, N (S)
is called a discrete symplectic system.

System (S) can be written as a vector or matrix system

Tht1 T Xk+1 Xp
= = N|.
<Uk+1> St <Uk> o <Uk+1> St <Uk> o kel0.N] (5)

Remark 1.12. As every symplectic matrix is invertible (see Lemma 1.6),
system (S) has unique solutions for arbitrary initial point ky € [0, N] and
initial values at kg.
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Remark 1.13. If a pair (X, U) is a matrix solution of (S), then
Xpe = DI Xpy1 — BiUpyy, Ui = =CF X1 + AL Uk (1.15)

This follows from (1.11).

Uk
shows that if (X,U) and (X, U) are solutions of (S), then W} is constant
and, thus, we can write Wy = W. The matrix W is called a Wronskian 3 of
the solutions (X, U) and (X, U).

_ T _ _
Denote W, .= <¥k> J (é’z) = X,?Uk - U,?Xk. The following theorem

Theorem 1.14 (Wronskian identity). If (X,U) and (X,U) solve (S),
then Wy, is constant on [0, N + 1].

Proof. We show that Wy, = Wy, for k € [0, N|. We have

- T o\ T SN T
Xit1 Xyt Xp T Xp Xp Xp
— - S. IS = ,
<Uk+1> J <Uk+1> <Uk> kTS <Uk Uk J Uk
and this implies Wy 1 = Wy = W is constant everywhere on [0, N + 1]. O

Definition 1.15 (Conjoined basis). A matrix solution (X, U) of (S) is
called a conjoined solution if (g}’:)Tj (g}’:) =0, i.e. if X}Uj symmetric on
[0, N + 1]. If, moreover, rank <)l§:> = rank (X7, UF) = n, then it is called a

conjoined basis.

Remark 1.16. Because of Theorem 1.14, and from the fact that (é’:ﬁ)
is obtained from (g}’:) via the multiplication by an invertible matrix (and
vice versa), it is enough to check the properties of a conjoined basis at one
index k, in particular at the initial point & = 0, since then they hold for all
ke l0,N+1].

Definition 1.17 (Normalized conjoined bases). Two conjoined bases
_ oNT
(X, U) and (X, U) are called normalized conjoined bases if (g:) J (é’:) —

3Josef Hoéné-Wronski (+ August 23, 1778, 1 August 8, 1853) was a Polish eccentric
philosopher of mathematics.
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Remark 1.18. The identity X7U — UTX = I implies that rank () =
rank (X ) = n.

Lemma 1.19. Solutions (X,U) and (X,U) are normalized conjoined bases
if and only if the matriz (X X)) is symplectic.

Proof. From (1.10) we have that <)§ X is symplectic if and only if
Xv=vrx, X'Uv-=0"X, X'Uu-U"X-1, (1.16)

which, by using Remark 1.18, is the definition of normalized conjoined bases.
O

From other properties (1.10)—(1.14) of symplectic matrices we further get
that (X, U) and (X, U) are normalized conjoined bases if and only if

XXT=XXT, U0 =0U", UXT-OxT-1  (117)
_ T L
X X xXT [T . .
<U U) - <XT UT> is symplectic, (1.18)
- -1
X X U ST .
<U U) - <_UT XT > is symplectic. (1.19)

These equivalent conditions further imply that
rank (X X) =rank (U U) = n. (1.20)

Lemma 1.20. For any conjoined basis (X,U) there exists another conjoined
basis (X, U) such that (X,U) and (X,U) are normalized conjoined bases.

Proof. We take the (unique) solution (X, U) of (S) with X, = Up(X{ Xo +
UlUs) ™Y, Uy = —Xo(XI X + ULU)™t. Then (X,U) and (X,U) are nor-
malized conjoined bases. 0J

Definition 1.21. The solution (X,U/) of (S) with Xo = 0, ﬁg = [ is called
the principal solution of (S). The solution (X, U) of (S) with Xo =1, Uy =0
is called the associated solution of (S).

Remark 1.22. The solutions (X, ) and (X,U) from Definition 1.21 are

normalized conjoined bases of (S), and (g: g}’:) = S,_1Sk_y... 8y for all
k e [1, N + 1]. Sometimes they are called the special normalized conjoined

bases of (S).
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Remark 1.23. In the literature another associated solution of (S) is often
used, namely the solution (X, ) of (S) with Xy = —I, Uy = 0. Then (X, U)
and (X, U) are normalized conjoined bases (in the opposite order compared
to Definition 1.21). See e.g. [11,17,40].

For any normalized conjoined bases (X,U) and (X,U) we can write Sy
in terms of these solutions.

Lemma 1.24. Let (X,U) and (X,U) be normalized conjoined bases of (S).
Then _ . .
S, — <Xk+1 Xk+1> <Uk — Xk >
F U1 U ) \-UE X[
More specifically,

A = X UF — Xe il UL, By = =X X+ Xt XE,
Ck — Uk+1Ug - Uk+1Ug, Dk — —UkJrng + U]ﬁLng.

Lemma 1.25. Let (X,U) be a conjoined basis of (S) and letk € [0, N]|. The
following conditions are equivalent.

(1.21)

Ker X1 € Ker Xy, (1.22)
Xi = Xi X[ Xig, (1.23)
B, = X1 X[, 1 B (1.25)

Proof. From condition (1.5) we have the equivalence of conditions (1.22) and
(1.23), and from condition (1.6) we have the equivalence of conditions (1.24)
and (1.25). Now let condition (1.23) hold and let (X, /) be such that (X, U)
and (X, U) are normalized conjoined bases of (S). (It exists by Lemma 1.20.)
Using identity (1.23) in the formula for By in (1.21) and the symmetry of
X1 X, see formula (1.17), we get

B = —Xepn XL Xi 0 X + X X = X (X = X0 X XD,

which implies condition (1.24).
Conversely, from identities (1.15) and (1.25) and symmetry of X[, Uiy
we have

X =D} X1 — BL Ui = (D = B{X[ T UL D) Xy,

which implies condition (1.22). The proof is complete. O
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Condition (1.22) is called the kernel condition and it plays an important
role in the definition of a focal point. (See Section 3.1.) In this definition,
there is also a matrix P, which we introduce in the next lemma.

Lemma 1.26. If (X,U) is conjoined basis of (S) with Ker X, C Ker Xi
for some k € |0, N|, then the matriz

P = Xp X[, By, ke[0,N], (1.26)
18 symmetric.
Proof. From the formula for B in (1.21) and from (1.23) we get
P = Xp X} X X — X XJ X XY
k— AN MkH13 g kN 1M1k
- Xle? - XkX£+1Xk+1Xg+1X£11Xga

where (X,U) and (X,U) are normalized conjoined bases of (S). The last
matrix is symmetric due to the symmetry of X, X} and X1 X[, . O

1.4 Admissible sequences
Definition 1.27. A pair (z,u) satisfying

Tpyp1 = Apxg + Brup  for k € [0, N, (1.27)
is called admissible. Equation (1.27) is called the equation of motion.

Remark 1.28. Sometimes we use a more precise term and we say that a pair
(x,u) is admissible with respect to (A, B), or that (z,u) is (A, B)-admissible.

For a given u and g, the equation of motion gives us a unique x such that
the pair (x,u) is admissible. This is the content of the next lemma, which
uses certain controllability matrices. First we define the transition matrices

<I>k7j = Ak—lAk_Q R Aj for k >j and q)k,k = I

Since the matrices Ay may be in general singular, ®; ; may also be in general
singular. Next, we define the controllability matrices

GO = O, Gk = <CI)]€7180 CI)]CQBl c. @hk_lBk_Q Bk_1> € Rnx(nk)
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and the restriction operator Tj, : RV R by
U Uo
Tou:— : with w:=1 : [. (1.28)
Ug—1 UN
In fact, 7, is the kn x (N + 1)n matrix 7, = (I;mxkn Oan<N+1_k)n) and
TN+1 — I

Lemma 1.29. A pair (z,u) is admissible if and only if
xr = (Pro GiTr) <f¢0> for all k € [0, N + 1] (1.29)

with the (N + 1)n-vector u defined in (1.28).
Proof. We have

Zo
U

Ay 4 Boue = Ax (Pro GiTr) < > + By,

= (Prr10 Grr1Tetr) <ZO> :

which implies the equivalence. O

Now we state an important lemma. It says that kernel condition (1.22) on
|0, N] implies the image condition, i.e. x; € Im X}, holds for all k € [0, N + 1]
and for an admissible (&, u) with zp € Im Xj.

Lemma 1.30. If (X,U) is conjoined basis of (S) with Ker Xi 1 C Ker X
for all k € [0, N] and (z,u) is admissible with xo € Im Xy, then x, € Im X}
for allk € [0, N + 1].

Proof. 1t suffices to show that xp € Im X implies 2,1 € Im X,y Let
xr = Xgc. Then

Tip1 = Apxy + Brug = ApXie + BpUgc + Bi(uy, — Uge)
= Xgp10 + Belug — Uge) = Xgpae + X,iHBk(Uk — Ukc)],

where we used (1.25). Thus, xr1 € Im X . O
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1.5 Discrete quadratic functional

For a pair (x,u) and symplectic 2n X 2n matrices S = (é‘: g’; ), ke [0, N],

we define the discrete quadratic functional

N
Folr,u) = Z {af AL Cray + 22} CL Bruy, + uf B Dy }. (1.30)
k=0

By using the last identity in (1.10), we can write Fy(x,u) in the equivalent
form

Folr,u) = Z {(Akxk + Byu) T (Crpry, + Dyug) — x;‘guk} (1.31)

k=0

Lemma 1.31. If (x,u) is a solution of (S) and (x,u) is admissible, then

N+1
Folr,u) = apwmel, (1.32)
N
_ _7T_ N _ _ _ _
.}E‘o(%,u) e $guk‘0 H -+ Z$Z+1(Ck$k + Dkuk — uk+1), (133)
k=0
Folaw + &,u+ @) =abw) " 22lw] )+ Folz, ). (1.34)

Proof. Identities (1.32) and (1.33) can be directly seen from (1.31). For
(1.34), we have

Folr +z,u+u) = Fola,u) + Folx,u) + Folz,u) + Folz,u).
Now the two middle terms are equal, because

(Aki’k + Bkﬁk)T(Ckl’k -+ Dkuk) — ij;fuk
= (Arzr + Brwe) " (CeZie + Ditie) — x U,

and together with the first term they can be simplified as in (1.32). O

Another way how to write Fy(x,u) for an admissible (x,u) is to replace
Byuyg in the last two terms in (1.30) by w1 —Agrr. There exists a symmetric
n X n matrix &, such that B,{Dk = B,{&Bk, for example &, = BkBLDkBL.
Denote by

G (Agsk,ztk —ATC, Cf - A{gk> | L35)

Cr — Ep Ak Ex
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Lemma 1.32. If (x,u) is admissible, then
ARy x
F = g " 1.36
e =3 () o) (130

Proof. This follows by a direct computation. O

1.5.1 Functionals with boundary conditions

Let Mg, M1 be real n xn projections and [j, I} be symmetric n x n matrices
satisfying I, = (I — M) [ (I — M,;), i = 0,1, and let M be real 2n x 2n
projection and I' be symmetric 2n x 2n matrix satisfying I' = (I — M) ' (1 —
M). We consider respectively

& the functional with zero endpoints,
N
Folr,u) = Z {xfflgckxk + 2zt Cl B + ufB,szuk} :
k=0
Ty — O,l’]\prl — O,

O the functional with separated endpoints,

F(x,u) = 2 Tozo + 2 Dievi + Folz,u), (1.37)
Moo = O,M1$N+1 =0,

& the functional with general endpoints,

Remark 1.33. The functional with zero endpoints is a special case of the
functional with separated endpoints, when My = M| = I and [, = I} = 0.

Remark 1.34. The functional with separated endpoints is a special case of
the functional with general endpoints, when M = (”30 /\21 ) and I' = (1;0 191 )
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The following lemma is a modification of Lemma 1.29.

Lemma 1.35. A pair (x,u) is admissible and Mg xo = 0 if and only if
2 = (Pro(l — Mo) GiTi) <f¢0> for all k € [0, N + 1], (1.39)

with (N + 1)n-vector u defined in (1.28).

Proof. 1t follows from Lemma 1.29. O

1.6 Notes

Various matrix properties can be found in [7]. The theory of the Moore-
Penrose inverse including Lemma 1.2 is from [6], and Lemma 1.3 is from [34].
The properties of symplectic matrices can be found in [4,7,48]. In particular,
Lemmas 1.7, 1.8 are from [48], while Lemma 1.10 is from [19,37].

Discrete symplectic systems were introduced in [4]. Most of Section 1.3
is from [13], Lemma 1.25 is from [4,46], while Section 1.4 is from [13,40].
Finally, Lemma 1.32 can be found in [35] or [37].



22

CHAPTER 1. PRELIMINARIES



Chapter 2

Various important tools

2.1 Picone identity

A Picone-type identity is used when we want to write a quadratic functional
F in the form of a square and to show that F is nonnegative. (Which happens
quite often in the proofs of roundabout theorems in the next chapter.) The
Picone identity was discovered by M. Picone [52]. We present here its discrete
version, introduced in [9] for Hamiltonian systems (H) and in [13] for discrete
symplectic systems. Furthermore, in the next section we present a generalized
version involving a parameter o € R”, which will be particularly useful for
functionals with general endpoints.

First we introduce a symmetric matrix ¢ (which is closely related to
matrix solutions of discrete symplectic system), a Riccati operator R[Q)], and
another symmetric matrix P, because they all appear in the Picone identity.

2.1.1 Matrix

For every pair (X,U) of n x n matrices with XU symmetric there exists
symmetric n X n matrix ) such that

QX = UX'X. (2.1)
There are several possible ways how to define the matrix Q).

e Let
Q= UXT+(UXNH(I - XXT). (2.2)

23
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To show that the matrix @ is symmetric we have to use only the symmetry
of XTU and XX

o If rank(X”,UT) = n, then there exists a pair (X,U) such that X™U is
symmetric and XTU — UTX = I, see Lemma 1.20. Then we can define

Q= UX'—(UX'X —U)(I - XTX)UT. (2.3)

This definition of the matrix ¢ was introduced in [9] and it is more popular.
(Used e.g. in [13], [18], [37].)

e Sometimes it suffices to have a symmetric matrix @ with
xTox = x"'u, (2.4)
which follows from (but is not equivalent to) (2.1). Then we can define
Q= XXTUXT. (2.5)

o If the matrix X is invertible, then all previous definitions reduce to ) =
Ux-1.

2.1.2 Riccati operator and matrix P

Definition 2.1. For symmetric matrices Qg, k € [0, N|, we define the discrete
Riccati operator R|Q)]y associated with the symplectic system (S) by

RIQlk = Qr1(Ar + BrQr) — (Cr + DiQx). (2.6)

Lemma 2.2. If (X,U) is a conjoined basis of (S) and identity (2.1) holds
for Qr, Xi, Uk, and Qiy1, Xgy1, Ukyr in place of Q, X, U, then

XL RIQ) X =0

X (Ar + BeQy) " R[Qli Xk = 0.

If moreover Ker Xy 1 C Ker X, then

RIQ| Xy = 0. (2.7)
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Proof. 1t is a consequence of the identity
RIQ1i Xk = Upa (X Xiey1 — DX[ X, (2.8)
the symmetry of XU, and Lemma 1.25. O

Remark 2.3. Equation (2.7) is sometimes called an implicit discrete Riccati
matriz equation. For another proof of equation (2.7) in Lemma 2.2 see [13].

Lemma 2.4. If (X,U) is a conjoined basis of (S) and identity (2.4) holds
for Qr, Xi, Uk, and Qry1, Xer1, Upt1 in place of Q, X, U, then

Xg+1R[Q]ka = (Xg+1Qk+l — Ug+1)8k(Qka — Ug).
Proof. The following calculation

XL RIQXk = XA [Qer1 X1 — Ukt + (Qra B — Di)(Qr Xy — Ug)]
= X QX — Up) + (Xg+1Qk+1 — U;?H)Bk(Qka — Uy)

implies the identity. 0
For symmetric n x n matrices @y we define a symmetric matrix
Pk = ’DgBk — BngJrlBk (29)

The next lemma shows that if kernel condition (1.22) holds, then the matrix
P is equal to the matrix P defined by (1.26).

Lemma 2.5. If (X,U) is a conjoined basis of (S), Ker Xy C Ker Xy and
(2.1) holds for Qr, Xk, Uk, and Qpy1, Xiy1, U1 in place of Q, X, U, then

Pk — kanglBk

Proof. From (1.25) we have

P (Dg - BngJrl)XkJrlX;JrlBk
= (Df Xeyr — B{Upy) X[\ B = X X[ |, By,
and hence P, = I, holds. O

Remark 2.6. As the matrix Py is symmetric, Lemma 1.26 is a corollary of
Lemma 2.5.
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2.1.3 Picone identity

Lemma 2.7. Let (x,u) be admissible, Q. symmetric for k € [0, N + 1], and
wy = up — Qpay for k € [0, N]. Then for k € [0, N| we have

x;;FA;;FCkxk + 2 x;‘ngTBkuk 4 uflS’nguk — A(x;f@kxk) — w,{Pkwk

= a2 (Ak + BeQi) " R|Qlrxr — 22, RQwv, (2.10)
and
(’Dg — Bg@k+1) L1 — Tk + Pkwk — BgR[Q]k$k (2.11)

Proof. Let ax = (Ag + BrQr) . and ¢ := (C + DrQx) xr. Then we have

Arxr, + Brue = (Ae + BeQr) o + Brwi = ap + Brwi = Try1,
Ck$k + Dkuk — (Ck + Dka) Tk + Dkwk — Ck + Dkwk.

Now we prove identity (2.10) by showing

at AT Crap 2 2L Cl Brug + ul BY Dy
— (Apxr + Beue) (Crxr + Drur) — 2} up
— al cp + wl B Dywy + 2wl Bl er — 21 Qray,
= (af + 2wy, Bi)or + wi By, Dywy. + Ay Qrerr)
— (ax + Brwe) " Qppr (ar + Brwy)
= (CL;{ + QWEBk)(Ck — Qry10k)
+ wi (BL Dy — B{ Q1 Be)wy, + Alxf Qpiry)
= (af — 224, )(Qrrax — ) + wi Prwg + A(ryg Qrir)
= ol (Ap + BrQp) — 2xf+1]TR[Q]kxk 4w Prwy, + Azl Q).

Finally we prove identity (2.11) by showing

(Df— B Qrr1) k1= (D — By Quir ) (Ax + BeQur)xr + Prws
= [I + BiCi + DL BrQr— B Qg1 (A + BeQu)|e+ Prwy
— x5, — B R[Qlpxr + Prwy.

This completes the proof of this lemma. O
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Lemma 2.8. Let the assumptions from Lemma 2.7 hold and let (X,U) be
a conjoined basis such that xx € Im X and xgy1 € Im Xy (. Assume that
identity (2.1) holds for Qr, Xi, Ur and Qgy1, Xei1, Ukp1 in place of Q, X, U.
Then

xr ATCray, + 22T CFBrug, + ul B Dyur — Azl Qray) — wi Prwy, = 0.
If moreover Ker Xy 1 C Ker Xg, then
(DE — BYQpp1) Try1 = 71 + Prwy. (2.12)
Proof. 1t follows from Lemma 2.2 and Lemma 2.7. 0J

Theorem 2.9 (Picone identity). If (X,U) is a conjoined basis of (S) and
(x,u) is admissible with xx € Im Xy for k € [0, N + 1|, then

N
T N+1 T
Folx,u) = $ka$k‘o + E Wi, Prwg,
k=0
where wy, = up — Qrirr, Pr = B,{Dk — B,{Qkﬂl’a’k, and Q are symmetric

matrices with QX = UkX,iXk,

Proof. 1t follows directly from Lemma 2.8. O

2.2 Generalized Picone identity

In this section we describe a transformation of the system (S) introduced in
Section 1.3 into dimension 4n. Thus we get a new bigger symplectic system,
a quadratic functional, etc. and among other things also a new Picone-type
identity.

2.2.1 Augmented symplectic system
First let us define the 2n x 2n matrices

. (1 0 . (0 0 . {0 0 . (I 0
Ap = <0 Ak>’ By = (0 Bk>’ Cr = (0 ck>’ Dy = <0 Dk>’

(2.13)
and the 4n x 4n matrix J; == (% ¥).



28 CHAPTER 2. VARIOUS IMPORTANT TOOLS

*

Lemma 2.10. The matriz S} == (?: g’%) is symplectic, i.e. ST TFS) = T}

Proof. We have

«T % 0 0 *« Tyt 0 0
* Tyt I O *T g% O O
T yx *T g% I 0 o I 0
ATD: — B = (o Ao, —crs,) = o 1) (2.16)
This together with (1.10) imply the statement. O

Let X, Ur, QF be real 2n x 2n matrices, k € [0, N+ 1]. Then the system
Xepn = AXg + BUg, Uy = X+ DU, k€0, N] (5%)

is an augmented discrete symplectic system.
We denote by R*[Q*] the corresponding augmented Riccati operator, i.e.

RQ] = Qi (Ap + BrQp) — (Cp + DrQy).- (2.17)

Lemma 2.11. A pair (X*,U*) is a solution of (S*) if and only if X* =
(gg )%) and U* = (1\[]4 ][}[), where K, L, M, N are constant matrices and where
(X, U), (X,U) are solutions of (S).

Proof. The following identities

* * krrk M > N =
imply the statement. -

Lemma 2.12. Pairs (X,U) and (X,U) are normalized conjoined bases of
(S) if and only if the pair (X*,U*), defined by

X* = <)O( )I(> U* = <_UI 8) (2.18)

is conjoined basis of (S*).
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01

Proof. We have rank (. ) = rank < X X) = 2n. Furthermore, X*TU* =
U0

B I)f&[{pU %;g) and this is a symmetric matrix if and only if (X,U) and

(X, U) are normalized conjoined bases of (S). O

Remark 2.13. We often use the conjoined basis defined by the principal
solution (X, U) and the associated solution (X, U) of (S),

S A U e (=10
oo (U D) e (7). 19

Lemma 2.14. Let a, B € R and define 2n-vectors

Ty = <§;>, kelo,N+1], wuy:= <§Z>, ke [0, N].

Then (z*,u*) is admissible w.r.t. (A*, B*) if and only if (x,u) is admissible
w.r.t. (A, B).

Proof. We have Ajx} + Biu; = (éﬁk) (2 ) + (o Bk) (52) = (At Brun )
and ( g 8o, ) = (@rsy ) if and only if the equation Agxy + Brug = Tgq1

holds. O

Let A* B* C*,D* be the 2n x 2n matrices defined in (2.13). Then we
introduce the following quadratic functional

N
Fola'ut) =Y {ai" AT Ciat + 22" G Biug + ui By Dyu;,
k=0

Lemma 2.15. Let zj == (2¢),k € [0,N + 1] and v} := (&), k € [0, N],
where oy, Br, Tk, uk are arbitrary n-vectors. Then F§(x*,u*) =

Proof. Tt follows from identities (2.14) and (2.15). O

2.2.2 Big matrix Q"

In this subsection, let (X,U) and (X,U) be normalized conjoined bases of
(S) and let X* and U* be the 2n x 2n matrices defined in (2.18).
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Lemma 2.16. The following identities hold

ot - —X'X ) X
T\ XTI+ XTXXTX) (I 4+ XTX)LXT( — XX
(2.20)
and ;
X'X 0
*f vk
XX ( 0 1)' (2.21)

Proof. The four properties of the generalized inverse in (1.1) can be easily
verified by a direct computation. O

Let @) be a symmetric matrix and define

. (XTQX - XTU UT - XTQ
Q ( 00X o > (2.22)

Lemma 2.17. Let the matriz Q* be defined by (2.22). Then Q* is symmetric
and

(i) QX = UX'X if and only if Q*X* = U X" X*,
(i) XTQX = UTX if and only if X*TQ*X* = U*TX*,

Proof. The symmetry of Q* follows from the symmetry of Q and X7U. The
equivalence in (i) is obtained from

vor (XTUXTX —QX)— XX 0 ostes  [—XTX 0
QX< QX ﬁ’UxinXTXO’

where we used identities (1.16) for a conjoined basis and identity (2.21). The
equivalence in (ii) follows from

XTox XTU Urx UTX -1
*T e yk - v *T v x - T
XTeX <UTX XTU>’ v <UTX 0TxX >

This completes the proof. O

Remark 2.18. Similarly as in Subsection 2.1.1, we could define

QF = U XM 4 (U X*NT(I — X*X*), (2.23)
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or

QF = U XM 4 (U X*X* — UM (I — X XHUT, (2.24)
However, in the next lemma we prove that all symmetric matrices Q* with
Q*X* = U*X*TX* have the form (2.22), and thus these definitions can differ

in fact only by the (right lower corner) matrix Q. The most often used
definition is again the one with the matrix Q) as defined by (2.3).

Lemma 2.19. Let Q* = <5T g) be a symmetric 2n X 2n matriz. Then
O*X* = U X X* if and only if Q = XTQX — XTU, Q =U" — XTQ, and
QX =UXTX.

Proof. The statement follows from

QX QT 1 QX UX'X U
Namely, QX = UXTX, O = U - QX, and using this in the right upper
corner of the above identity yields the rest. O

Lemma 2.20. Let Q* be defined by (2.22) and R*|Q*] be defined by (2.17) .
Then

Xg+1R[Q]@Xk —XEJAR[Q];C _Xlal

RQ |, = < CRIOI X, ROk > = < 7 >R[Q]k (—Xe 1),
(2.25)

RYQeX: — (‘X%gg:xk 8) . <_)§5+1> RIQL (X 0), (2.26)

XiE RQ X = (X’?HRO[Q]’“X’“ 8) — <X’?+1> R[QLk (X 0). (2.27)

Proof. 1t can be directly computed from the definition of R*[Q*] and X*. O
Lemma 2.21. Let Q* be defined by (2.22). Then
RIQr =0 <  R[Q =0, (2.28)

R* [Q*]kXZ =0 <« R[Q]ka =0, (2.29)
XL RQXE =0 & X RQkXe = 0. (2.30)
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Proof. 1t is a corollary of previous Lemma 2.20. O

Lemma 2.22. Let Qf = (%4, ) be a 2n x 2n matriz and let Py = B{I D} —
BiTQr, Bt Then

pr (0 0 (00
F\0 BIDiw—BlQuBe) \0 Pp)’

Proof. We compute

A (oa)(00) -0 s al)6s) e

0 0
= X 2.32
(osﬂ%_ggmﬁg (2.32)
Hence, the identity is proven. O

Remark 2.23. We often use the matrix Q* defined by (2.22) with the asso-
ciated solution (X, U) of (S), i.e. with Xy = I and Uy = 0, instead of (X, U),
and then we put

O — <XT§2X - XTU 0T - XTQ> . (2.33)

U—QX Q

2.2.3 Generalized Picone identity

The following two lemmas show the relation between the image and the kernel
conditions for a conjoined basis of (S) and the corresponding conjoined basis
of (5*).

Lemma 2.24. Let x* := (5 ) be a 2n-vector and X* be the 2n X 2n matriz
defined in (2.18). The following statements are equivalent.

(i) 2* € Im X*, (i) - XaecImX, (i) a+ UTr € Im X7,

Proof. First we show (i) < (ii), then (ii) = (iii), and finally (iii) = (i).

i) & (%) = (%Y%) for some (§) € R* & d = aand
r=Xc+Xa & zr—XaelmX <& (ii).

i) & r=XctXa = Ulx=U"'XctUTXa & Ulx=
XTUct (XTU - Da <« Ulzta=XTUc+Ua) < ().

i) < Uz+a=XT"d = XUTz+ Xa = XXTd <
(XUT —DNax+ Xa=XXTd & X{U'z—-XTd)=r—-Xa <& (i).
Thus, all equivalences are proven. O
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Lemma 2.25. Let (X,U) and (X,U) be normalized conjoined bases of (S)
and (X*,U*) be the conjoined basis of (S*) defined by (2.18) via (X,U) and
(X,U). Then

Ker X;, , C Ker X <« KerX;;; C KerX. (2.34)

Proof. We have (4) € Ker X} < 0 = X} (4) = (xuix0) & v =0,u €
Ker Xj. This yields the equivalence in lemma. O

Lemma 2.26. Let (X, U) and (X,U) be normalized conjoined bases of (S)
and (X*,U*) be the conjoined basis of (S*) defined by (2.18) via (X,U) and
(X,U), and let Ker X}, € Ker Xi. Then

0 0 0 0
% . * v ¥t % o

Proof. Identity (2.35) can be computed directly with the use of Lemma 2.16
and identity (1.25), applied to the augmented matrices B; and X}, as the
kernel conditions for X and X* are equivalent by Lemma 2.25. O

Lemma 2.27. Let (X,U) and (X,U) be any normalized conjoined bases of
(S). For any admissible (x,u) and symmetric Qr on [0, N + 1] and for any
a € R™ we have

T
oL ALCytn + 227CT By + ul B Dy— { (2) 0 (2) } — i Puine
— (l’k — XkOZ)T(Ak + Bka)TR[Q]k(l’k — XkOé)
=2 (2x 41 — Xpp10)" RIQi(e — Xpar)
for all k € |0, N|, and the identity

(DF — BLQri1) wey1 = 2 + Pty + BE (U1 — Qe 1 Xp1) @
— BgR[Q]k(l’k — XkOé)

holds, where ), = up — Upae — Qi) — Xpa)), Pp = BEDy — BLQy 1By, and
Q; is defined by (2.22) with the matriz Q.

Proof. Let (x,u) be admissible. Then the pair (Z,%), where T = x5 —
Xra and g = up — Upa, is admissible. The desired identity follows from
Lemma 2.7 applied to the pair (%, %), where we used Lemma 1.31. O
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Theorem 2.28 (Generalized Picone identity). Let (X,U), (X,U) be
normalized conjoined bases of (S). If there exists o € R™ such that (x,u) is
admissible with x, — Xpa € Im Xy, for k € [0, N + 1], then

win - (5) o (2)

where Wy, = up — Upa — Qplwy, — Xpa), Pe = BEDy, — BEQr 1B, and Q* is
defined by (2.22) with a symmetric matriz Q such that Qu Xy = U X[ Xy
If moreover Ker Xy 1 C Ker X, then

(’Dg — BngJrl)(l’qul — Xk+10[) = Tk — XkOé + Pkﬁ}k (237)

N+1 N
+ ) ] P, (2.36)
k=0

0

There are (at least) three possible ways of how to prove this theorem. We
show here one proof that is via the augmented system (S*) and one that uses
identity (1.34) of Lemma 1.31. Another proof can be based on Lemma 2.27.

Proof 1 of Theorem 2.28. We define the pair (z* u*) asin Lemma 2.14. Then
(x*,u*) is admissible w.r.t. (A* B*) and z* € Im X* by Lemma 2.24. The
pair (X*, U*), defined by (2.18) via normalized conjoined bases (X, U) and
(X, U), is a conjoined basis of (S*), by Lemma 2.12. Then from the Picone
identity (Theorem 2.9) we get

N+1 T
* * *\ * * *
fo(l"au)*l"k k| JFE r Prwg,

where w} = v} — Qix}, P = BiI'D} — B,’QTQ,’;HB,’;, and @)} are symmetric
matrices with Q; X} = U;X*TX* Further, P} = (83Tpk BT Qk+16k> by
Lemma 2.22 and w;l Piw; = @i Ppiy, with @, = (0, Dw} = up — Upa —
Qi(r, — Xpa). Finally, by Lemma 2.15, we have Fy(x,u) = Fi(x*, u*).

Identity (2.37) is obtained from Lemma 2.8 applied to the augmented system
(5*), and from Lemma 2.25. O

Proof 2 of Theorem 2.28. We define a pair (%,4) by & = = — Xa, @ =
u — Ua. Such a pair is admissible and &y € Im X}, for k € [0, N + 1] by the
definition of ¥ and assumption. Thus, the Picone identity holds for (&, )
and we have from Theorem 2.9
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Simultaneously, by Lemma 1.31, we have

N+1

Fol#, @) = Folx,u) + o' X' Upa éVH — 2zl U 0

Identity (2.36) then follows from

T
<a> Qr <a> = 7#7'Q% — o' XTUa + 227 Ua,
Tk Tk

where Q7 is defined by (2.22). Identity (2.37) is obtained from Lemma 2.8
applied to (Z,@). O

Remark 2.29. For @ = 0 we get the statement of Theorem 2.9.

2.3 Other identities

In this section we present identities describing the relation between the value
of a functional F on a pair (x,u) to the value of the same functional F on an-
other pair (x,u) which satisfies given boundary conditions. These identities
are used later in Section 3.4 when showing the definiteness of a perturbed
quadratic functional. It is also possible to use them in the proofs of round-
about theorems for functionals with general endpoints.

2.3.1 Identity for zero endpoints

Recall that (X, U) is the principal solution of (S), ie. (Xo, Up) = (0,1), and
(X, U) is the associated solution of (S), i.e. (Xo,Up) = (I,0).

Lemma 2.30. Let (x,u) be admissible with xn,1 — XN+1xo S ImXN+1,
Then the pair (x,u), defined by

Xp = l’k—Xkl’o—XkC, Up = Up — 0kl’o—ﬁkc,
. 5 (2.3%)
where ¢ == Xy (v — Xni120),

15 admissible and g = 0 = Ty 1.

Proof. The admissibility of (z,u) follows from the fact that it is a sum of
the admissible pairs (x,u), (—Xxg, —Ux), and (=Xc¢,—~Uc). Furthermore,
Tog = Xg — Xol’o — X()C = 0 and i’NJrl = TN41 — XN+1$O — XN+1C — O, by
Lemma 1.2. [
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Theorem 2.31. Let (x,u) be admissible with xny1 — XN+1xO S ImXN+1,
Then

Folz,u) = <xN+1> Qi1 ( +1> + Fo(z,u), (2.39)

where (Z,u) is defined by (2.38) and Q* is defined by (2.33) with the matriz
Q= XXTUXT,

There are again more possible ways how to prove this theorem. We show
here one longer, but more direct proof, where we use only identity (1.34),
and one shorter, for which we in addition need the augmented quadratic
functional introduced in the previous section.

Proof 1 of Theorem 2.31. From identity (1.34) we have

Folz,w) = (Xzo + X&) (Upzo + Ukc) Vi

N+1
N

+ 22 (Upo + Upce + Fo(x, u).

This is further equal to
Folz,u) = (Xnp1wo + Xnp10) (Un 1o + Unyrc) — alc + Fo(, )
= T)N(]j\;JrlﬁNJrll’o + 2 l’gﬁﬁJrlXNJrlC -+ CTXJJ\;JA&NJAC -+ fo(i’, ’[L)
— < > (XNHUN“ XN“UN“) < > + Folz, w). (2.40)
X9 Zo

UN+1XN+1 XN+1UN+1

Now, since (4, ) = (‘XJTH}XNH X;r\é+1> (2n0: ), the first term in identity (2.40)

is equal to (g;NH) QN+1 (2x0y ), where

v (—Xnp 1 XNHXNHUNHXNH Un 1 —Xnin 1
QNH*

I 0 UNJrl XN+1UN+1 I 0
_ <XJT/+1QN+1XN+1 - )N(NHUNH UJ€+1 - XN+1QN+1>
Uny1— OQni1i Xt Qn+1 ’
Where QN+1 - XN+1XL+1ﬁN+1X]T\[+1. |:|

Proof 2 of Theorem 2.31. We define augmented pairs (x*, u*) :== ((%°),(2))
and (2%,0) = (2= X7 ()t = 07 (5)) = ((9),(5)). We have 2

x
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Ty — 0 and XN+1( o) = (enxt1). By Lemma 2.15, Fo(z,u) = F(x*, u*)
and Fo(x,u) = Fi(x*, u*). From identity (1.34) we further have

T
%k k c o« T 77 c
Fr(x* u) = <$O> XTur <$O>
0

T
. To * Zo T
(Y awa () v,

where Q% is a symmetric matrix with X7, Q8 Xi = Xd Uk O

N+1
PR )

Remark 2.32. In the second proof we showed even more, in particular
we proved that identity (2.39) holds for any symmetric matrix QN4 with

HQ]\,HX]*\,Jrl X]’(,j:rlUNJrl The matrix Q% defined by (2.33) with the
matrix Qni1 = XN+1XN+1UN+1XN+1 in right lower corner has this property

by Lemma 2.17, as Qn+1 is the matrix defined by (2.5) via XN+1 and Unt1
in place of X and U, it is symmetric, and XN+1QN+1XN+1 XN+1UN+1

Corollary 2.33. Let (x,u) be admissible with 1 — XNon =0. Then
Folr,u) = xOT)N(]T[HﬁNHxO + Folx,u), (2.41)
where (x,u) is defined by
Ty = 2 — XpXo, U = g — Uro. (2.42)
Proof. 1t follows from (2.40), because in this case ¢ = 0. O

Corollary 2.34. Let (z,u) be admissible and let Ker Xy C Ker Xy for all
k € |0, N|. Then identity (2.39) from Theorem 2.31 holds.

In proof of this corollary we use the following lemma.

Lemma 2.35. Let (x,u) be an admissible pair and let Keer+1 C Ker X,
for all k € [0, N]. Then x, — Xpxo € Im Xy, for all k € [0, N + 1]

Proof. We use Lemma 1.30 with the conjoined basis (X, /) and the admis-
sible pair (z), — Xyto, up — kao) For k = 0 we have 1y — Xozo = 0 € ImXO,
and thus, by Lemma 1.30, the inclusion holds for all k € [0, N +1] . O

Proof of Corollary 2.34. From Lemma 2.35 with & = N + 1 we get an11 —
Xni1xo € Im X1 and hence, the statement of Corollary 2.34 follows from
Theorem 2.31. O
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Remark 2.36. It is possible to use the generalized Picone identity to prove
identity (2.39) from Corollary 2.34 with Q* defined by (2.33) with a symmet-
ric matrix @ such that QX UX1X. In the proof we need the assumption
Ker Xk+1 C Ker Xy for all k € [0, N], hence this way of proof cannot be used
for Theorem 2.31 itself.

From Theorem 2.9 we get Fo(z, 1) = Son o wi Prwg, where wy, = iy —
Qki’k — (Uk — 0k$0) — Qk(l’k — X}Cl’o) — (ﬁkc— QkaC) The kernel condition
Ker XkH C Ker X}, implies Pk(ﬁkc — Qkf(kc) = 0, and hence, with the use
of Lemma 2.35, identity (2.39) follows from Theorem 2.28.

2.3.2 Identity for separated endpoints

Recall that the matrices Mg, M are defined in Section 1.5.1 and X*, U* are
defined in (2.19).

Lemma 2.37. Lel (x,u) be an admissible pair with Mixy 1 —XN+1Moxo c
Im Xn, 1. Then the pair (x,u), defined by

Tp = T — XkMoxo - Xkc, U = Uk — Uk/\/lol“o - OkC; (2 43)
where ¢ .= )A(]TVH(MlxNH — Xn1Moxo),

18 admissible and Moxg = Myixrni1 = 0.

Proof. The admissibility of (z,u) follows from the fact that it is a sum of
the admissible pairs (x,u), (=X Moxg, —UMoyxg), and (—Xe,—Uc). Fur-
thermore, ro = (I — My)xo, and xy41 = (I — My)xrny1, by Lemma 1.2. O

Theprem 2.38. Let (xr,u) be admissible with Mixyy1 — XN+1Moxo c
Im Xy 1. Then

Fola, u) fo(x,u)—< Mozo >TQ*< Mozo ) (2.44)

Mll’NJrl M1$N+1
T
Zo ok Okt Moz
+ 2 Ui X
<$N+1> N+1N+ M1$N+1 ’

where (z,u) is defined in (2.43) and Q" is a symmetric matriz with
XNLQ X;(/H X;ﬂlUNH
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Proof. We define augmented pairs (z*,u*) = ((%2),())) and (z*, u*) =
(x* — X (g ) 0t = U* (Mozo)> = ((U-Mo)mo) (£)). Then we have

(
X* Moo
N Moxo Mizng )’

C _ XTX )(Jr Mol’o :X*T Mo$o
Moxg M1$N+1 N+l M1$N+1 '

By Lemma 2.15, Fo(x,u) = Fj(z*, u*) and Fo(z,u) = Fj(x*, u*). From

identity (1.34) we further have
N+1 .
T [ rx
+2x,; Uy <M0x0>

T
c T 1 c
70 () S50 (0t 0
+ Fy(z*,u") (2.45)

_ Moo TQ* Moo
Mizn g N Mizn g

2o\ Moz
0 Pk kT 040 S GARTA
+ 2 <xN+l> UNJrlXNJrl <M1$N+1> + f ( )7

where Q| is a symmetric matrix with X HQNHX]’(,Jrl = XNHU]’(,H. ]

and

N+1

Corollary 2.39. Let (x,u) be admissible with Myxn 1 — XNH/\/loxo = 0.
Then

.}E‘o(%,u) = (MOZCO)TX]]\;+1UN+1MOZCO+2$%+10N+1M0$0 +fo(f,fb), (246)
where (x,u) is defined by

Tp = T — Xk./\/lol’o, Up = Up — 0kMO$O- (247)
Proof. 1t follows from (2.45), because in this case ¢ = 0. O
2.4 Notes

The Picone identity in Subsection 2.1.3 is from [13]. The transformation
from Subsection 2.2.1 can be found in [17,40,42] and Lemma 2.16 is from [§].
Formula (2.22) for Q* as well as Lemmas 2.19-2.21, 2.27 are new and some
of them will appear in [39]. Section 2.3 is new.
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Chapter 3

Definiteness of quadratic
functionals

In this chapter we characterize the definiteness of discrete quadratic func-
tionals in terms of the nonexistence of focal points of conjoined bases of
the corresponding symplectic system (S), and implicit and explicit Riccati
equations and inequalities. The positivity of F can be characterized also
in terms of conjugate intervals, as it is done e.g. in [40], but we omit this
characterization here.

In Section 3.1 we deal with the positivity of quadratic functionals and in
Section 3.2 with the nonnegativity of quadratic functionals. In both sections,
we consider respectively functionals with zero endpoints, with separated end-
points, and with general (or jointly varying) endpoints. All functionals
are defined in Subsection 1.5.1. In Section 3.3 we compare various forms
of implicit Riccati equations for all types of discrete quadratic functionals.
Section 3.4 is devoted to perturbation conditions for the nonnegativity and
positivity of quadratic functionals.

The functional F is nonnegative (or nonnegative definite) if it takes non-
negative values on all admissible pairs (z,u) satisfying the given boundary
conditions, while F is positive (or positive definite) if it takes positive values
on all such admissible pairs (x,u) with x # 0. Considering the nonnegativity
and positivity of F, we will always assume that the corresponding pairs (x, u)
are admissible without specifying this any further.

41
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3.1 Positivity of quadratic functionals

We begin this section with the focal point definition for conjoined basis of

(S).

Definition 3.1. A conjoined basis (X, U) of (S) has a focal point in the
interval (m,m + 1] if one of the following conditions hold.

(i) Ker X, 11 € Ker X,,,
(i) Ker X1 C Ker X, and Py, := X;n X[, B # 0.

Remark 3.2. If Ker X,,,;; C Ker X,,,, then F,, is symmetric, by Lemma 1.26,
and F,, = Py, by Lemma 2.5.

Remark 3.3. According to the definition of a focal point, a conjoined basis
(X, U) of (S) has no focal points in the interval (m,m + 1] if and only if

the kernel condition Ker X,, 11 C Ker X,,,
and the P-condition P, >0
hold. In particular, conditions on no focal points in (0, N + 1| are widely

used.

3.1.1 Functional with zero endpoints

In this section we state and prove a roundabout theorem for the positivity of
the functional with zero endpoints, together with several auxiliary lemmas.

Theorem 3.4. The following statements are equivalent.
(i) Fo(x,u) >0 over xo =0, xny41 =0, and x Z 0.
(ii) The principal solution (X,U) of (S) has no focal points in (0, N + 1].
(iii) The implicit Riccati equation
R[QIGr =0, k€[0,N],

has a symmetric solution Q on [0, N + 1] such that P, = BI D, —
BLQy 1B, >0 for all k € [0, N|.
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(iv) There exists a conjoined basis (X,U) of (S) such that Xy is invertible
forallk € [0, N + 1], and P, = XkajilBk >0 on [0, N].

(v) There exists a symmetric solution Qy on |0, N+1] of the explicit Riccati
equation

R[Qlk = Qr1(Ax + BrQr) — (Cx + DrQr) =0, k€ [0,N], (3.1)
with

Ai + BoQy invertible and (A + BeQr) " 'Br >0, ke [0,N]|. (3.2)

(vi) The system

Xk+1 = .Aka + BkUk,

3.3
Ny = X ((Uppr — G Xy = DyU,) <0, k€0, N] (3:3)

has a solution (X, U) such that X,?Uk 15 symmetric and Xy s invertible
Jor all k € [0, N + 1] and P, = X, X;-,Bx > 0 on [0, N].

(vii) There exists a symmetric solution Qr on [0, N + 1] of the Riccati in-
equality
RIQI(Ar + ByQy) ™' <0, kel0,N] (3.4)

such that condition (3.2) holds.

Now we separate these statements into several independent lemmas. The
proof of Theorem 3.4 is postponed to page 47. In Lemmas 3.5, 3.7, 3.8, we
number the corresponding statements accordingly to Theorem 3.4.

Lemma 3.5. The following statements are equivalent.
(i) Fo(x,u) >0 over xg =0, xnyy1 =0, and v #Z 0.
(ii) The principal solution (X,U) of (S) has no focal points in (0, N + 1].
This lemma is a corollary of the following one.

Lemma 3.6. Let (X,U) be a conjoined basis of (S). The following state-
ments are equivalent.

(i) Folw,u) + dIXTUsd > 0 over xg = Xod, xn 1 =0, and x £ 0.
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(i) (X,U) has no focal points in (0, N + 1].

The necessity of the kernel condition and the P-condition is shown by
constructing a counterexample. The sufficiency is proven with the use of the
Picone identity introduced in Subsection 2.1.3.

Proof of Lemma 3.6. First we show that (i’) implies the kernel condition.
Let (i’) hold and suppose that there exists m € [0, N| such that Ker X,,,,1 €
Ker X,,,. Then there exists 0 # d € R" such that X,,;1d = 0 and X,,,d # 0.

Now we define (x,u) by

(Xxd,Uxd), for k e [0,m],

3.5
(0,0), for ke fm+1,N +1]. (8:5)

(@, ue) == {

This (x,u) is admissible, xg = Xod, zn11 = 0, and z,, = X,,d # 0, thus
assumption (i’) implies that Fo(z,u) + d?XIUyd > 0. But

{Z + Z } {fokaxk + 2%{@{&% + ugB,{Dkuk}

k=0 k=m-+1

dN{XTALC X, + 2 XTCEBLU, + ULBEDLUL) d,

[
Ms

T

0

and, by Lemma 1.31, identity (1.32), we further have
Folw,u) = d"X] Upyrd — d"Xg U d = —d"X{ Uy d.

Thus, Fo(z,u) + d*XTUsd = 0, which is a contradiction with Fo(x,u) +
d*XTUqyd > 0.

Now we prove that (i’) together with the kernel condition imply the P-
condition. The matrix P is symmetric, by Lemma 1.26. Suppose that there
exists m € [0, N] such that P, 2 0. Then there exists ¢ € R™ such that
' Pc < 0. Define d := XLHBmc. Then X,,d = XmXLHBmc = Phc# 0.
Now we define (x,u) by

| Xpd, for ke |0,m],
Tk 0, for k > m,
Uk d, for k € [0,m — 1],
up =4 —ATXIT XTe  for k= m,
0, for k > m.
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Again, this (r,u) is admissible, o = Xod, zn41 = 0, and x,, = X,,d # 0.
Thus, assumption (i) implies that Fo(x,u) + d* XIUsd > 0. But when we
use identity (1.33) and equivalence (1.5), we get

m—2 N
Folz,u) + dTXOTUO d= {Z + Z} (Crrr + Dyttgy, — Upoyr) Ty
k=0 k=m

+ (Cm—1$m—1 + Dm—lum—l — um)TZUm
— (Cm—1$m—1 + Dm—lum—l - um)T$m
= [d"(Crna Xt + Do iU )T P X0, X A Xond
— d"UL X pd + "X X (X1 — BinUp) d
= d"Ur X, d + " X, d — " PpUyd = ¢ Pe < 0.

This is again a contradiction and the first part of the proof is complete.

Now suppose that the kernel condition and the P-condition hold and let
(x,u) be admissible with xg = Xy d, zx41 = 0, x # 0. Then, by Lemma 1.30,
we have zp € Im X}, for all £ € [0, N + 1], and from Theorem 2.9 (Picone
identity) we get

N N
.7:0(1’, u) — ngk$k‘éV+l + Zw,{?kwk — —dTXgUo d+ Zw??kwk, (3.6)
k=0

= k=0

where P, — B,{Dk — BngHBk = P, > 0, by Lemma 2.5, and where Q)
is defined by (2.2). This implies Fo(x,u) + df XTUyd > 0. Tt remains to
show that Fy(z,u) +dT XTI Uyd # 0. Suppose that Fo(x, u) +df XIUyd = 0.
Then the nonnegativity of P and equality (3.6) impliy that w! Pywp = 0,
i.e. Prwy = 0 for all k£ € [0, N]. From identity (2.12) in Lemma 2.8 we get
(DI — BIQki1) xy1 = x. This together with zy 1y = 0 imply that z = 0,
which is a contradiction. O

Lemma 3.7 (Riccati equivalence). The following statements are equiva-
lent.

(iv) There exists a conjoined basis (X,U) of (S) such that Xy is invertible
for allk € [0, N+ 1], and P, >0 on [0, N] .

(v) There exists a symmetric solution Qy on [0, N + 1] of the Riccati equa-
tion (3.1) such that condition (3.2) holds.
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Proof. Let (X,U) be conjoined basis with X, invertible for all k¥ € [0, N + 1].
We put @ = UX™! and show that it has all the properties in (v). The

symmetry of @ follows from the symmetry of X7 and the identity UX ™! =
X~ XTyX—'. Further,

RIQLk = Uk 1 X (A Xy + BuUi) X7t = (CoXp + DUR X = 0,

Ap + BeQr = (A Xi + BRU) X' = X1 X0
thus the matrix Ag + BpQg is invertible. The identity

(A + BeQi) ™' Br = Xe X1 Be = P (3.7)

implies that (Ag + BrQr)"1B, > 0.

Conversely, let () be a symmetric solution of the Riccati equation such
that condition (3.2) holds. We define X as the solution of the linear equation
Xir1 = (A + BrQr) Xy, k € [0, N, with Xy = I, and define U := QX. Then
XTU = XTQX is symmetric and we have

Xk+1 — Aka + BkUk,
Uk = Qi1 Xpr1 = Qri1 (A + BrQi) Xy = Cp Xy + Dy,
thus (X, U) is conjoined basis of (S). The invertibility of X follows from the

invertibility of Ay + BrQg, and Py > 0 follows from identity (3.7). The proof
is complete. O

Lemma 3.8. The following statements are equivalent.

(vi) System (3.3) has a solution (X,U) such that XFUy is symmetric and
Xy is invertible for all k € [0, N + 1], and F, > 0 on [0, N]|.

(vii) Discrete Riccati inequality (3.4) has a symmetric solution Qg on [0, N+
1] such that condition (3.2) holds.

Proof. The proof is similar to the previous one. Let (X, U) be a solution of
system (3.3) with X}, invertible and XI U, symmetric for all k& € [0, N + 1].
We put Q — UX ! again and the only thing different from the previous proof
is the inequality. We have

RQI( A + BeQr) ™" = U1 Xy — (Co Xy + DyUi) (A Xy + BoUy) ™!
= (Uky1 — Ce X — DU X = Xt Nk Xl < 0.
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Conversely, let () be a symmetric solution of the Riccati inequality (3.4)
such that condition (3.2) holds. We again define X as the solution of linear
equation Xy = (Ax + BrQr) Xk, k € [0, N| with Xy = I, and define U =
QX. Now the only difference is the inequality in system (3.3). We have

Ni = XkTJrl(UkJrl — Ce Xy — Dily) = Xg+1[Qk+1Xk+1 — (Cr + DrQr) X
= X1 [Qrep1 (A + BeQr) — (Ci + DrQi) | X,
= X RIQIi( Ak + BeQr) ™' Xgiq < 0.

Thus, this lemma is proven. O

Proof of Theorem 3.4. Equivalence (i) < (ii) is Lemma 3.5, equivalence (iv)
& (v) is Lemma 3.7, and equivalence (vi) < (vii) is Lemma 3.8. We first
prove implications (ii) = (iii) = (i) and then (iv) = (i) and (vi) = (i).
Statement (v) implies (vii) trivially. Finally we prove that statement (i)
implies (iv).

(ii) = (iii): Let @ be defined by (2.2) or (2.3) by the principal solution
(X,U) Further, let v € RNtD” and define 2, == G T, k € [1,N + 1]
and xo = 0. Such a pair (z,u) is admissible, by Lemma 1.29. Thus, by
Lemma 1.30, there exists ¢, € R” such that ), = Xycp, for all k € [0, N 4 1].
Then R|Q|GrTru = R[Q]kf(kck = 0, where we used Lemma 2.2.

(iii) = (i): Let (x,u) be admissible with zop = x4 = 0,  # 0.
Lemma 1.35 yields that xx = GxZpu for k € [0, N + 1], and thus, by condi-
tion (iii), there exists @ such that 0 = R|Q|GrTru = R[Q|grr. Then, by
Lemma 2.7, we have Fo(x,u) = chv:o wlPrwy > 0. Now, if Fo(x,u) = 0,
then again as in the proof of Lemma 3.5, the equation (D} — BF Q1) wx 11 =
xy holds for all k£ € [0, N| and thus, z = 0.

(iv) = (i): The invertibility of X implies the kernel condition, thus (X, U)
has no focal points in (0, N + 1| and statement (i) follows from Lemma 3.6.

(vi) = (1): We put Fj, := X TN X7, <0 for k € [0, N] and define

A= Ax, Bp:=DBr, Cp:=Cr+ Fr A, D, := Dy + By,

and

The matrix &, is symplectic, by Lemma 1.10, and it defines symplectic system
denoted here by (S). The pair (X, U) solves the system (S), which follows
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from the calculations

A Xi + BUp = Ap Xy + BrlUp = X1,
C Xp + DU = Ci Xy + DUy + Fi(Ar Xi + BrUg)
= Cu Xy + DUk + X N = Upir.-
Moreover, XFU, is symmetric, X} is invertible for all k € [0, N + 1], and
P, = P, > 0on [0, N], hence condition (iv) holds for (S). We already proved

(iv) = (i), and hence the functional F(x,u) > 0 over o = 0 = xn41, © Z 0.
Furthermore, the symmetric matrix £, := &, + Fj satisfies

QZEIC = Dka + BngBk = Bf(&c + Fy) B, = ﬁ{ékﬁk

and we have

(A%f(ek ) Ax — ALCy + FoAy) CF + ATE, — AT(E + Fk)>

Ck+FkAk—(5k+Fk)Ak Er+ Fy,
[ ALEA - AlC, CE—ALEN (0 0 <0
Ck — 5kAk 5k o 0 Fk -7

Thus, Lemma 1.32 yields Fy(z,u) < Folx, u).

(i) = (iv): We take the comomed basis (X,U) with Xo = I and Uy =
I+ XN+1UN+1 XN+1XN+1XN+1UN+1XN+1XN+1 and show that it has no
focal points. Then the kernel condition implies that Xy is invertible for all
k e [0, N+ 1]. We use Lemma 3.6 and show that inequality in statement (i’)
holds for all (x,u) admissible with xy 1 = 0 and xy = d # 0. (For zp = 0 it
holds by (i).) Since the kernel condition holds for the principal solution by
the implication (i) = (ii), identity (2.39) yields that

fo(l’, ’LL) + l’(j;Uol’o = l’(j;l’o + fo(i’, ’[L), (39)

where (z,u) is defined by (2.38), and 2y = 0 = Zn41, by Lemma 2.30 and
Lemma 2.35. Thus, Fy(z,u) > 0 by (i) (equality holds iff z = 0). Further,
since xg # 0, the inequality in statement (i’) of Lemma 3.6 holds by (3.9).
The proof is complete. 1

Remark 3.9. An alternative proof of implication (i) = (iv) uses the results
for functionals with separated endpoints (Subsection 3.1.2) and for perturbed
functionals (Section 3.4).
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3.1.2 Functional with separated endpoints

In this subsection, the functional F has separated endpoints, i.e. it is given
by formula (1.37). A roundabout theorem for the functional with separated
endpoints, Theorem 3.14, is analogical to the presented roundabout theorem
for the functional with zero endpoints, Theorem 3.4. The difference is that
we take the solution (X, U) of (S) with Xy = I — My, and Uy = I}y + M,
instead of the principal solution ()A( U ). This solution is called the natural
conjoined basis of (S).

Remark 3.10. Note that when the initial endpoint is zero, i.e. when My =
I, then the natural conjoined basis reduces to the principal solution.

The next difference is that statement (i) in Theorem 3.14 below now says
that the functional is positive on a larger set of admissible pairs, which means
that also in other statements we have to add more conditions. These are the
final and the initial endpoint constraints,

X5 (D Xt + Ungr) >0 on Ker My Xy \ Ker Xy (3.10)

F1+QN+1 >0 on Ker/\/llﬂImXNH, (311)
X]j\;Jrl(Fl XN+1 -+ UN+1) >0 on KGI"M1XN+1, (312)
I+ Qny1 >0 on Ker My, (3.13)

Xy Xo —Up) >0 on Ker MyXo, (3.14)

[h — Qo >0 on Ker M,. (3.15)

Remark 3.11. Inequalities (3.10), (3.11) are used with the natural conjoined
basis (or the principal solution) which may be singular at £ = N + 1. On the
other hand, conditions (3.12)—(3.15) are used for a conjoined basis (X, U)
with Xy invertible on [0, N + 1].

Remark 3.12. Condition (3.10) is equivalent to the condition

X1 (D Xt + Unvgr) >0 on Ker My Xy,
Ker ([ — Ml)(Fl XN+1 -+ UN+1) N KGI"M1XN+1 g KerXN+1.
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Remark 3.13. If identity (2.4) holds for Xn,1,Uny1,@ny1 in place of
X,U,Q, then condition (3.10) is equivalent to condition (3.11). If moreover
the matrix Xy is invertible, i.e. Qn 1 = UNHX;[L, then condition (3.12)
is equivalent to condition (3.13). Similarly, if the matrix Xy is invertible and
Qo = Uy Xy ', then condition (3.14) is equivalent to condition (3.15).

Theorem 3.14. The following statements are equivalent.
(i) F(x,u) >0 over Moxo =0, Myxni1 =0, and x #Z 0.
(ii) The natural conjoined basis (X, U) of (S) has no focal points in (0, N +
1] and satisfies (3.10).
(iii) The implicit Riccati equation
RQli (Pro(I — M) Gy) =0, kelo,N],
has a symmetric solution Q. on [0, N + 1] such that Qo = 1y, and
P = BIDy — BLQw 1B > 0 for all k € [0, N|, and satisfying (3.11).

(iv) There exists a conjoined basis (X,U) of (S) such that Xy is invertible
forallk € [0, N+1], and B, = XkX,;ElBk >0 on [0, N], and satisfying
(3.12) and (3.14).

(v) There ezists a symmetric solution Qr on [0, N + 1] of explicit Riccati
equation (3.1) such that condition (3.2) holds, and satisfying (3.13) and
(3.15).

(vi) The system

Xip1 = A Xy + BrUy,
Nk = Xg+1(Uk+1 —Cka_DkUk) S O; k S [O7N]7

has a solution (X, U) such that X U, is symmetric and X}, is invertible
forallk € [0,N + 1], B, = XkX,;ElBk > 0 on [0, N|, and satisfying
(3.12) and (3.14).

(vii) The Riccati inequality (3.4) has a symmetric solution Qg on [0, N + 1]
satisfying (3.2), (3.13) and (3.15).

Remark 3.15. Note that, by Remark 3.10, Theorem 3.4 is a corollary of
Theorem 3.14. But as we use it in the proof of Theorem 3.14, we had to
prove it first.
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First we prove the equivalence of (i) and (ii), stated separately in the next
lemma. In the proof we again use Lemma 3.6 and the Picone identity.

Lemma 3.16. The following statements are equivalent.
(i) F(x,u) >0 over Moxg =0, Myxny1 =0, and x Z 0.

(i1) The natural conjoined basis (X, U) of (S) has no focal points in (0, N +
1] and satisfies (3.10).

Proof. First let (i) hold. Then, from Lemma 3.6 for the natural conjoined
basis (X, U) and a = xg, we have that (X, U) has no focal points in (0, N+1].
It remains to show (3.10). Let d € Ker M1 Xy 1, Xyp1d # 0 and take
admissible (X d, U d). Then My Xod = 0, M Xn1d =0, Xd # 0, and thus
F(X d,Ud) > 0. By Lemma 1.31, we have

F(Xd,Ud)=d"Tyd+d" X TiXnpd + d" X5 Uvad — d' Ty d
= d" (X} DX v + X Unv) 4

and we get that the inequality d” (X% 1 Xy 1 + X3, Uny1) d > 0 holds.

Now suppose that (ii) holds and let (x,u) be admissible with My zy = 0,
Mixnyr = 0, and x # 0. Then, by Lemma 1.30, xz;x € Im X for all k €
[0, N + 1], and from Theorem 2.9 (Picone identity) we get

N
T T T N+1 T
Flw,u) = wg Lowo + wyp Diww o+ 2 Qualy  + D wi Prw
k=0

N

T T T
=Ty lien i Fay QN pieng s + E wy, Prwg
k—0

N
= d"(XG DX+ X Un) d+ ) wf P, (3.16)
k=0

where d is such that Xy,1d = xn41 and Py, = Bng - BngHBk =P, >0,
by Lemma 2.5. This together with (3.10) imply F(x,u) > 0. Case when
xnt+1 = 0 is shown in Lemma 3.6. The proof is complete. O

The proof of some parts of this roundabout theorem is based on trans-
forming the system (S) into a system with zero endpoints with the same
value of the functional F.
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We define n x n matrices Ay, By, C, Dy on [—1, N + 1] by

Mgy,  for k= -1,
Ay, for k € [O,N],
1 for k=N +1,

)

i {

) I — My, for k = —1,

B :— < B, for k € [0, N,
I — My, for k=N +1,

ék I{

Mo —1, for k = —1, (3.17)
Ck, for k € [0, N — 1],
Cn + I — (I —-Mp)]JAy, fork=N,
0, for k=N +1,
Iy + Mo, for k — —1,

B Dy, for k€ [0, N — 1],

) Dy — (I - M|By,  for k=N,

1 for k=N + 1.

)

Then the matrix Sk = (é‘: gz> with coeflicients flk, Bk,ék,ﬁk defined by
(3.17) is symplectic for k € [—1, N + 1], and the system

Xet1 s [ Xk &
=8 k -1, N+1 S
<Uk+1> k(Uk>7 E[ ) + ]7 ( )

is a symplectic system.

Remark 3.17. Another way how to transform the variable endpoint at &k = 0
into a zero endpoint at k = —1 is used for the Hamiltonian case in [17] and
for the symplectic case in [40]. The only difference is in the coefficients A_;
and C_;. Namely, in [40], A_; = [Iy + Mo — (I — Mo)]"" and C_; =
ello + Mo —e(I — My)|™*. Then A_; is invertible, which was crucial for the
Hamiltonian case in [17]. But, as it is known, for the symplectic case the
invertibility of \A_; is not necessary.

Lemma 3.18. Let (x,u) be an admissible pair w.r.t. (A,B) on [0, N + 1].
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Then the pair (Z,u) defined by

(Moo, 20), Jork = —

— o) (e, for k € [0, N],

(Z,0) = ($N+1, Cenn). fork— Nl (3.18)
(Miznyi1,7), fork =N+ 2,

where v € R™ is arbitrary, is admissible w.r.t. (fl, l’;’) on [—1, N + 2] and
Fla,u) = Fol@ i) = Y {f;{A}fckik + 257 CT Bying + a;{s}{pkak} .
k——1

(3.19)

Proof. A pair (,u) is admissible w.r.t. (A, B) on [0, N + 1] if and only if the
pair (Z,a) is admissible w.r.t. (A, B) on [0, N + 1]. Further, we have

./4_11’_1 + B_lfb_l — Xg — i’o,
and

Anp1Zni1 + Bypitin gy = Maxyyr = Tnyo.

Finally, we have

.,Fo(i’,fb) — l’g(ro + Mo)([ — Mo) To + fo(l’,u)
+an D= (I — My)AN Avay + 225 [T — (I — M) AN Byuy
+ u%[l}— ([ - M1)BN]TBNUN + $7]\}+1(I — ./\/ll) TN+1

= ¢ Toxo + Folx,u) + xy Dizn g = Fla, ).
Thus, this lemma is proven. O

Lemma 3.19. Let (%, 1) be an admissible pair w.r.t. (A, B) on [-1, N + 2|
with T_1 = 0 = Tny2. Then the pair (x,u) defined by

) (@), Jor k € [0, NJ,
(wu) = { (ffwlk; ), Jork=N+1, (3.20)

where v € R™ is arbitrary, is admissible w.r.t. (A,B) on [0, N + 1] with
Moz = 0 = Myxn i1, and equation (3.19) holds.
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Proof. A pair (%,1) is admissible w.r.t. (A, B) on [0, N 4 1] if and only if the
pair (z,u) is admissible w.r.t. (A, B) on [0, N + 1. Further, we have

Ty — Zi’o - 421_15:_1 + B_lfb_l — ([ — Mo)fb_l,
and
0=in2 = Avi1Eng1 + Byjiiivg = 2y g1 + (I — M),

thus, Mozo = 0 = Myzn 1. Finally, we have

Fo(#, @) = @l (Lo + Mo)(I — Mo) iy + Folz,u)
+ay[Di— (I = M)AN) Avay + 225 [0 — (I — M) An|" Byuy
+ U%[Fl_ (I - Ml)BN]TBNUN + x%H(I — M) xnn

= 2l Toxo + Folx,u) + $%+1F1$N+1 = F(x,u).
Thus, this lemma is proven. O

Lemma 3.20. The functional F is nonnegative over Moxo = 0= Mizni
if and only if the functional Fo defined in equation (3.19) is nonnegative over
T_1=0=12Tn,2-

Proof. First we show the implication to the right. Let (%,%) be admissible
w.r.t. (A B) on [-1,N + 2] with #_; = 0 = #x45. Then, by Lemma 3.19,
the pair (z,u) defined by (3.20) is admissible w.r.t. (A, B) with Mgxg =
0 = Mizng1. Thus, F(z,u) > 0, and hence, by Lemma 3.19, Fo(Z, @) =
F(x,u) > 0.

Conversely, let (x,u) be admissible w.r.t. (A,B) on [0, N + 1] with
Mopxyg = 0 = Myzni1. Then the pair (Z,%) defined by (3.18) is admis-
sible w.r.t. (A, B) on [=1, N + 2] with 2_1Mozo = 0, Fn2 = Miznp = 0,
thus, Fo(#, @) > 0, and hence, by Lemma 3.18, F(x,u) = Fo(#,@) > 0. O

Lemma 3.21. The functional F s positive over Moxo =0 = Mizni1 and
x Z 0 if and only if the functional Fy defined in equation (3.19) is positive
over ¥_1 =0 ==Tn,2 and T # 0.

Proof. The proof is same as the proof of Lemma 3.20, with ”>" instead of
7>7 . gince for all pairs (z,u) and (%, %) with T_; = 0 = Ty, and xp = Ty,
k € ]0, N + 1] we have x = 0 if and only if 2 = 0. O
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In the following two lemmas we prove that statement (iv) in Theorem 3.14
is equivalent to statement (iv) in Theorem 3.4 with system (S) in place
of (S) and that statement (vi) in Theorem 3.14 implies statement (vi) in

Theorem 3.4 with system (S) in place of (S).

Lemma 3.22. There exists a conjoined basis (X, U) of (S) such that X is
invertible for all k € [0, N + 1] and X, X1 Bx > 0 on [0, N], and salisfying
(3.12) and (3.14) if and only if there exists a conjoined basis (X,U) of (S)
such that Xy is invertible for all k € [-1, N + 2|, and )N(kf(kjill’;’k > 0 on
0, NV].

Proof. We can assume that U, = Uk for k € [0, N] and X, = X, for k
[0, N + 1]. Then X; and X} are invertible on [0, N + 1]. Then it suffices to
prove the following equivalences.

(a) ):(_1 = (Ib + Mo) Xo — (I — Mo)Uy s invertible, and
Py = [Ty + M) Xo — (I — Mo)Ug| X5 (I — Mg) >0
if and only if Ty — UpX5 ' > 0 on Ker Mo,

(b) ):(N+2 = (I + M) Xy + (I — Mq)Uynyq s invertible, and
Pyi1= XD+ M) Xy + T — M) Una W = My) >0
if and only if I + UNHX;,}H > 0 on Ker M.

Both proofs are almost identical, we show here the proof of equivalence (b).

The matrix X N2 is invertible if and only if the matrix (I — M) (I +
UN+1X]§L) + M is invertible. And invertibility of this matrix is further
equivalent to

ul (I + UNHX;,L)U #£0 forall ue Ker My, u#0.

Next, PNH = [(I =M )y +UN+1X;,}H) +My|7HI— M), and the nonneg-
ativity of the matrix Pyy; is equivalent to the nonnegativity of the matrix

(I = MO[(I = M)(T) + Un i X54) + Myt
= (I = M)y + Una X3)T (1 — My),

which is nonnegative if and only if (It + Uy 11Xy} ;) > 0 on Im(f — M) =
Ker M. I
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Lemma 3.23. If the system

Xk+1 — Aka + BkUk,
Xg+1(Uk+1 — Cka — DkUk) < O, ke [O, N],

has a solution (X, U) such that X,?Uk is symmetric and Xy 1s invertible for
all k € [0, N + 1], P, > 0 on [0, N], and satisfying (3.12) and (3.14), then
the system

N N NXIEJA :N./Zl]iXk + Bkﬁk,

X,Z:rl(UkJrl — Cp X — DkUk) <0, ke [—1, N+ 1],

has a solution (X, U) suc~h that )N(,?Uk 15 symmetric and Xk 18 invertible for
allke|—1,N+2], and P, >0 on [—1,N +1].

Proof. We define X}, := X, for k € [0, N 4 1|, Uy, := Uy for k € [0, N| and

X = 15?1)(0 — l’;’:fon = Iy + Mo)Xo — (I — My)Uy,
0_1 = —CNaXo + Afon,
0N+1 = Unpr + I+ (I — M1)| Xy,
Xnjo = AviXn + BypiOnpr = (T M) Xnga + (I = M) Uy,

Uny2 = Cnii Xni1 + D Unir = Un .
Then

Xg(ﬁo — C~_1)~(_1 — 25_10_1) =0,
X]j\;Jrl((quLl - éNXN - ,[)N(jN) = X]j\;+1(UN+1 — OnXy — DNUN) <0,

X]€+2(0N+2 - C~N+1XN+1 - 25N+10N+1) =0,
and equivalences (a), (b) from previous Lemma 3.22 hold. O

Proof of Theorem 3.1j. Equivalence (i) < (ii) follows from Lemma 3.16,
equivalence (i) < (iv) and implication (vi) = (i) follow from Theorem 3.4 and
Lemmas 3.21, 3.22, 3.23. Implication (v) = (vii) holds trivially, and equiv-
alences (iv) < (v) and (vi) < (vii) follow from Lemma 3.7 and Lemma 3.8,
and from equivalences (3.12) < (3.13), and (3.14) < (3.15) where X is in-
vertible and Q@ = UX~!. Tt remains to show implications (ii) = (iii), and

(iii) = (i).
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(i) = (iii): Let @ be defined by (2.2) or (2.3) by the natural conjoined
basis (X,U). Then Qy = Iy, Px = P > 0 and (3.10) implies (3.11). Fur-
thermore, let (5) € RWHY™ and define xp, = (Ppo(l — Mo), GivTr) (),
k e [0,N + 1]. Such a pair (r,u) is admissible, by Lemma 1.35, and
Mgz = 0. Thus, by Lemma 1.30, there exists ¢, € R™ such that x, = Xpcg
for all & € [0, N + 1]. Then

where we used Lemma 2.2.

(iii) = (i): Let (x,u) be admissible with Mgoxy = Myxy = 0, x #
0. Then Lemma 1.35 yields that xx = (Pro(l — Mo),GeTe) (%), k €
[0, N + 1] and, thus, by (iii), there exists @) such that 0 = R[Q ]k(CI)k (I —
Mo), GeTi) (W) = R[Qlxxr, Qo = To, Pr > 0 for all k& € [0, N], and (3.11)

holds. Then, by identity (2.10) in Lemma 2.7, we have

N
N1
Fla,u) = xy Ty o + x%HleNH + I{Qk$k‘o + Z w] Py,
k=0
N
- $%+1(QN+1 + Fl) TN+ ngpkwk >0,
k=0

and the equality occurs only if zy,1 = 0 and w] Prwy = 0 for all k € [0, N].
Then, by identity (2.11) in Lemma 2.7, we have (DI — BIQpy1) w1 = x4
for all k£ € [0, N]. And this together with zn,1; = 0 imply x = 0. The proof
is complete. O

3.1.3 Functional with general endpoints

In this subsection, let F be the quadratic functional defined in (1.38). In
the roundabout theorem for the positivity of the functional with general
endpoints stated below we use the principal solution (X , U ) as in the case of
the functional with zero endpoints, but we again have to add some endpoint
constraints. They are now formulated in terms of 2n x 2n matrices, which
is unavoidable, because instead of the n x n matrices 1y and I' there is now
the 2n x 2n matrix ' in the functional F.

Let (S*) be the symplectic system in dimension 2n introduced in Subsec-
tion 2.2.1, and let (X*,U*) be the conjoined basis of (S*) defined by (2.19)
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via the principal solution (X, U) and the associated solution (X, ) of (S),
and let Q* be the matrix defined by (2.33) via a matrix Q.

Theorem 3.24. The following statements are equivalent.
(i) F(x,u) >0 over M{(ax2,) =0, and x £ 0.

(ii) The principal solution (X,U) of (S) has no focal points in (0, N -+ 1]
and satisfies the final endpoint inequality

X (X5 +US) >0 on Ker MX},, \Ker X5, . (3.21)

(iii) The implicit Riccali equation

R (g, () ~0 kel

has a symmetric solution Q;, = (% g, ) on [0, N + 1] such that Qf = 0,
and P, = B,{Dk - Bg@k+18k >0 for all k € [0, N|, and satisfying the
final endpoint inequality

'+ QN >0 on Ker MN ImXJ’Q+1. (3.22)

(iv) There exists a conjoined basis (X*,U*) of (S*) such that X} is invert-
ible for all k € [0, N + 1], and P}y = X} X/ 71Bt > 0 on [0, N], and
satisfying

X Xp +Uk) >0 on Ker MX 3., (3.23)
and

Ui Xyt <0 on Im <§> : (3.24)

(v) There exists a symmetric solution Q} = (% &, ) on [0, N+1] of the aug-
mented Riccati equation R*[Q*|x = 0 with Qf < 0 on Im (1), condition
(3.2) holds, and satisfying

't Qyp >0 on Ker M. (3.25)
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The proof of Theorem 3.24 is based on transforming the quadratic func-
tional F and system (S) into the quadratic functional

Frx" u*) = xoTF* xg + xN+1F* x?\/+1 + Fo(x*,u*)

and augmented system (S*), where the endpoints of F are separated, i.e.
Miay = 0 and Mizy,, = 0. Here My = 1 (1, 7) and M} := M are
2n X 2n projections, and I} := 0 and I} := " are symmetric 2n X 2n matrices.

Remark 3.25. There is also possible a different transformation to dimension
2n, with the 2n x 2n matrices A% = (4 9), B¥ = (59), C* = (§9),
D# = (PO M = M, M7 =1 _I) F# = I, T} := 0. Then we get
another roundabout theorem for functional with general endpoints, which
is a generalization of the roundabout theorem for functional with separated

edpoints. In contrast to this, Theorem 3.24 does not generalize Theorem 3.14.

Now we state some auxiliary lemmas about how the admissible pairs,
boundary conditions and functionals for systems (S) and (S*) are related.

Lemma 3.26. Let (x,u) be an admissible pair defined on [0, N + 1], g € R™

and
Xy = <x0>,k€[O,N+1], uk<ﬂk>,k€[O,N].
Tr Uk

FHx*,u) = Flx,u).

Then

Proof. 1t follows from the identity

T
Zo Zo
2y Ty gy + oy I 2y = r
TN+1 TN+1

and from Lemma 2.15. O

Lemma 3.27. Let (x,u) and (x*,u*) be defined as in the previous lemma
and let My =1 (1, 7') and /\/l* = M. Then Mgxg =0 and Mizy,, =0
if and only Zf/\/l (2n01) = 0.

Proof. Since xf = (33) and i, = (2x1,), we have Mzl = (§) and

Mizy = M (axl)- O
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Lemma 3.28. Let (X,U) be a solution of (S) with Ker Xz, C Ker X;.
Then for any constant nonsingular nxn matriz E and the solution (X,U) :=
(XE,UE) of (S) we have

Ker X1 C Ker X, (3.26)

and B
Py = B, (3.27)
where P, = XkX,iHBk and P, = XkX,i+1Bk,
Proof. Inclusmn (3.26) is trivial. To prove identity (3.27) we use the identities
Xy = XkaHXkH and Xk+1Xk+1Bk B, from Lemma 1.25. We have
B = X3 B( X B)' By = X X[ Xt BE( Xy E)' By = X X[, By
The proof is complete. 0J

Proof of Theorem 3.24. (i) < (ii): From Lemma 3.26 and Lemma 3.27 we
get that the positivity of the functional F over M (3", ) = 0 is equivalent
to the positivity of F* over Mgx; = 0 and Mizy,; = 0. We can now apply
Theorem 3.14 to this transformed augmented functional. Thus, we get that
the positivity of F is equivalent to the following.

(ii*) The augmented natural conjoined basis (X*, U*) of (S*) given by the
initial conditions X§ = I — M} = 1 (11) and Uf = I} + M} =
1 (1, 7") satisfies the P*-condition

2
P; >0 forall ke|0,N], (3.28)

the kernel* condition
Ker X | C Ker X; forall k €0, V], (3.29)

and the corresponding augmented final endpoint inequality

X3 Xy +Upyq) >0 on Ker MGXhv o \ Ker X3, . (3.30)

Now, by Lemma 3.28 with F := ( ) this is equivalent to the following.

(ii*a) The conjoined basis (X*,U*) of (S*) given by the initial conditions
X5 =3 AandA Us = (‘IIS) satisfies conditions (3.28), (3.29) and
(3.30) with X* U* in place of X* U*.
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Further, by Lemma 2.25, Lemma 2.26, and from M = M, I' = I}, this is
equivalent to (ii).

(i) & (iii): Again, by Theorem 3.14, applied to the transformed aug-
mented functional, we get (i) is equivalent to the following.

(iii*) The augmented implicit Riccati equation
RIQ"] (Pho(l = M5) Gi) =0, kel0,N],

has a symmetric solution @} on [0, N+1] such that Qf = I}, and P} > 0
for all & € [0, N], and satisfying I +Q%,, > 0 on Ker MiNIm X%,

Where Gz - <<8 <I>k70160> <8 ¢k261> e <8 q’k,kalkaZ ) <8 Bkofl ))7
CHIES (6 ¢270), and where for u* = (", {7, ... uld)T, up = (F), 2 =

() we get

* 1
RQe (P11 — M) GRTYY) (i()) = RlQ"k (écp,w(of (f;))xi) Gkag>

— RIQ"|x (cpip C?,) <%(a7:gx0)>'

(i) & (iv): By Theorem 3.14 we get that statement (i) is equivalent to
the following.

(iv*) There exists a conjoined basis (X*,U*) of (S*) such that X} is in-
vertible for all &k € [0, N + 1], and P} > 0 on [0, N] and satisfying
X{T (T Xy + Ul yy) > 0 on Ker MiXE, and X7 (T X¢—Ug) > 0
on Ker M{X;.
This is equivalent to (iv) for Iy = 0, I} = I', Mg =1 (/; 7)) and M} = M.
(i) & (v): Again, by Theorem 3.14, statement (i) is equivalent to the
following.

(v*) There exists a symmetric solution @} on [0, N + 1] of the Riccati equa-
tion R*[Q*]x = 0 with A} + B;Q3 invertible and (A} + BfQ:)™'B; > 0
for all & € [0, N], and satisfying I'f + Q%,, > 0 on Ker M, and
I} — Qf > 0 on Ker M.

Let Qf = (X 4,). Since Af + B;Qp = (L 4.1 5.0, ), the invertibility of the
matrix Aj + BiQ)} is equivalent to the invertibility of the matrix Ay + BrQy,
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and since (A} + BrQ:)™'B; = (8 (AkJer%k)lek), the nonnegativity of the
matrix (A} + BiQ:) ™' B} is equivalent to the nonnegativity of the matrix
(Ag+ BrQp) ' Bg. Finally, the condition Iy —Q} > 0 on Ker M} is equivalent
to (r1)" Q1) <o.

This completes the proof of theorem. O

Alternative proof of equivalence (i) < (ii) in Theorem 3.24. (i) = (ii): The
positivity of F over M (235, ) = 0 implies the positivity of Fy over 2y = 0 =
xn41 and hence Lemma 3.5 yields that the principal solution has no focal
points. It remains to show condition (3.21). Let (3) € Ker M N Im)A(]’(,H.
Then there exists ¢ € R™ such that § = XN+1a + XN+1C. We define an
admissible pair (z,u) by

Tp 1= XkOZ + Xkc, Uk 1= UkOé + ﬁkC, kel0,N+1].

We have xy = «, rn 1 = 0, and identity from Corollary 2.34 used on this
pair yields

o= () @ ([2)) ¢ A,

TN+1

where (z,u) = (0,0) and Q}“\,H is a symmetric matrix with )A(*TQ}‘VH)A(* =
X*T{7*. Thus, from positivity of F we get F+Q}‘VH > 0 on Ker MNIm thh
which implies condition (3.21).

(ii) = (i): From Lemma 2.35 and Lemma 2.24 we have that (zy,) €

Im X3 ;. The positivity of F then follows from Lemma 3.5 and Corol-
lary 2.34. (Or, alternatively, from Theorem 2.28.) O

Remark 3.29. Each statement in Theorem 3.24 is further equivalent e.g. to
the following, see also Section 3.3.

(iv’) There exists conjoined basis (X,U) of (S) such that Xo = I, Xy is in-
vertible on [0, N+ 1], and P, = Xkaj:lBk > 0 on |0, N]|, and satisfying

s <—UOTX;,1+1XN+1 —Uy—Ud = Uy UiXzhy

—1T 77 -1
XN+1U0 UN+1XN+1

) >0 on Ker M,

(3.31)
where (X, U) is a solution of (S) with XU, symmetric and Xo = 0.
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(V') There exists a symmetric solution Qk on [0, N + 1] of the Riccati equa-
tion R|Q|x = 0 satisfying (3.2), and

7 T
'+ QN1 — <UO+U6) o 8) >0 on KerM, (3.32)

where (X, U) is a solution of (S) with X[ Uy, symmetric and Xo = 0

and Q* is defined by (2.22) via (X,U) and Q.

Proof. First we show (iv) = (iv’), then (iv’) = (v'), and finally (v') = (v).

(iv) = (iv’): From (iv) we have that there exists a conjoined basis
(X*,U*) of (S*) with no focal points in (0, NV + 1] such that Xj is invertible
for all k£ € [0, N + 1], and satisfying condition (3.23) and (3.24). Without
loss of generality we can assume that X} = I. From Lemma 2.11 we have

that
. (T 0 . (M N
lg(& XJ, Uk<szJ, kelo,N+ 1],

where M, N are constant matrices and (X, U), (X,U) are solutions of (S)
with Xo = I and Xy = 0. The symmetry of X TU§ yields that N = U and
M is symmetric, and the symmetry of X;TU} further yields that X{ Uy and
XU, are symmetric and

U =UF X, — XU, forkel0,N+1]. (3.33)

The matrix X} is invertible if and only if X}, is invertible. Further,

1 0 0 0
*—1 B ko
Xk - <—X]€_1Xk Xk_1> ) Pk <O Pk) )

and 7 1y 7T 1
Rk Up— UpX ' X URX' )T

Thus, P > 0 implies P, > 0 and conditions (3.23), (3.24) imply
I+ M — UOTXJ?/}EXNH U(?X]T/}H
X55i0o UnriXyp

) >0 on KerM, (3.34)

and B B
M+ Uy + U +Uy <. (3.35)
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From conditions (3.34), (3.35) we get inequality (3.34).

(iv)) = (v'): As in the proof of Lemma 3.7, we have that for Q = UX !
one has R[Q], = 0 and condition (3.2) holds. Further, identity (3.33) is
equivalent to

UIX ! =Ul - XFQy, for ke [0, N+ 1).

Hence, condition (3.31) is equivalent to (3.32).
(v} = (v): From (3.32) we have that there exists ¢ > 0 such that

L+ X]j\;H@NHXNH - X]j\;+1UN+1 0£+1 - XJZ\;JAQ) (3.36)
Uni1— OQnpaXnp QN1
U+ U+ U, 0 I0
- < 0 0 > & 00 on Ker M.

The solution is

. (XTQX - XTU UT - XTQ el + Uy +UF+Qp 0
Q"= U—-QX Q B 0 0/)"

The identity R*[M*+ (¥ 9)] = R*[M*] holds for any 2n x 2n matrix M* and
n x n matrix M. Thus, by Lemma 2.21, we have R*|Q*| = 0. Further, Q} =

<_51_UOU_OU(%F_QO g{) < 0 on Im (1), and inequality (3.36) implies condition

(3.25). O

3.1.4 Examples

In the following examples we show a situation when a symmetric () solves
Riccati inequality (3.4) and satisfies condition (3.2), but it does not solve
Riccati equation (3.1).

Example 3.30. Let 4, =0, B, = -C""',C.=C, D, = -C""'-C-K,
where C is a constant nonsingular matrix, K # 0, and CKT = KCT > 0.
Then Q, = I satisfies condition (3.2), since Ay, + B,Qr = —CT~1 is invertible,
P, =1 > 0, and RQ|i(Ax + BQr)™! = —KCT < 0, while the Riccati
equation is R[Q|x = K # 0. Another (more specific) example can be obtained
when we take eg. C = K = 1.
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Example 3.31. Let A, and C, be invertible, B, = 0, and D), = AL "', with
CIAr > 0. Then Qp = 0 satisfies condition (3.2), since Ay + BpQr = A
is invertible, P = 0, and R[Q|r(Ar + BrQr)™t = —CkA,zl < 0, while the
Riccati equation is R|Q]x = —Cr # 0. However, in this simple example we
can directly verify that F > 0 over free endpoints.

3.2 Nonnegativity of quadratic functionals

The main difference between roundabout theorems for the positivity and
nonnegativity of F is that the kernel condition Ker X;;; C Ker Xj is not
necessary for the nonnegativity, while the image condition x; € Im X} is
used instead. The P-condition remains, but also in a weakened form. Fur-
ther, in the literature there are no statements about the solvability of the
explicit Riccati equation and inequality for the case of nonnegative quadratic
functionals.

Before we state in Subsections 3.2.3, 3.2.4 and 3.2.5 Reid roundabout
theorems for the nonnegativity, we introduce in the following two subsections
matrices M and T and corresponding augmented matrices M* and T, since
the matrix T" appears in these statements. These matrices were for the first
time defined in [46].

3.2.1 Matrices M and T

In this subsection, (X, /) is a conjoined basis of (S), Q is a symmetric matrix
with Qp X = UkX,iXk, P, = XkXLrlBk and P, = Bg’Dk + BngJrlBk
Let us define the n x n matrices

My = (I — Xpn X[ ) By, Tp:=1— M{M,. (3.37)
In the following two lemmas we show some properties of these matrices.

Lemma 3.32. The matrix My = 0 if and only if the kernel condition
Ker X411 C Ker Xy holds.

Proof. 1t follows directly from Lemma 1.25. O
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Lemma 3.33. The following identities hold.

M,T), = 0, (3.38)
BT = Xp1 XJ, BiTh, (3.39)
XL M, =0, (3.40)
M} Xp1 = 0, (3.41)
T Xy, = TeXe X[ Xp1,s (3.42)

T Py, = Ti Py Th. (3.43)

Proof. ldentities (3.38), (3.39) and (3.40) hold by the definition of M; and
Tk, identity (3.41) follows from (3.40) and from the property of a generalized
inverse Ker AT = Ker AT. Identities (3.42) and (3.43) are proven below,

T4 Xy = Ti(Df X1 — BEUi 1) = Te(Df X1 — BE XL X Ui)

= TW(DE — BEX[\ UL ) Xeyr = Ti(DE Xir1 = B Uk 1) X[y X

= Te X X[ X,
BTy = X X[ BT = (D Xpepr — BEUp i) XL, BiTh,

= D{ BT~ BLQur1 Xt X[ BTk = (DE Bi— BLQi 11 Bi) Tie = P T
Thus, Ty PT, = TxPrT) and this lemma is proven. O
Remark 3.34. The matrix T} P,T} is symmetric, by identity (3.43).

Remark 3.35. Identity (3.42) is equivalent to Ker Xy,1 € KerTy Xy, by
equivalence (1.5).

In the rest of this subsection we prove several auxiliary lemmas that are
used in proofs of roundabout theorems for the nonnegativity.

Lemma 3.36. Let (x,u) be such that xp 1 = Apxr + Brug, xp € Im Xy, and
Ter1 € Im Xy 1. Then Mpwy = 0, where wy = up — Qgxr. This further
implies that wy = Trwy.

Proof. Let xp = Xycp and xp 1 = Xgyp1dg. Then
My (ug — Qpiry) = My(ug — UpXJag) = (I — Xk+1X;1+1)Bk(Uk — UpX[2p)
= (I — X1 X[, ) (Xipad — AeXie — (Xiepr — AeXi) X Xper) = 0.

Thus, this lemma is proven. O
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Lemma 3.37. Let m € |0, N| be fized. Then there exists an n x n matriz S’
that Xy 1S' =0 and U,y1 8" = M,

Proof. Let us take a pair (X,,41, Upy1) such that ( U’"il )U(’"“ ) is symplectic.
This is possible by Lemma 1.20, since we can put

Xm+1 L= Um+1 (Xg;H Ug;+1> <Xm+1> )

Um+1
- X,
o T T m—+1
Oir = —Xmpa (X2, UZ,) < Um+1> .
Now for S" := XTI | M,, we have

Xm+1S — Xm+1Xm+1M Xm+1Xm+1M O
Uni1S' = U1 X i My, = (I + Upp 1 Xoh 1) My, = My,
and thus existence of such a matrix S’ is proven. O

Lemma 3.38. Let m € |0, N| be fized. If x,, € Im Xy, and 21 € I X041,
then MX a1 # 0.

Proof. Suppose that MmeH =0 and z,, = X,,a. Then
0=BL(I - Xp1 X[ 1) g1 = BE(T = Xpn 1 X)) (A Xonar + Bt
= BN = X1 X ) X 10+ MEB (t— Una) = MY M (1t — Up).
From that
0 = Mu(t, — Una) = (I = X1 X, ) B (U, — Unp@)
= Tm+1 — XerlX:nJrlmerl?

and this implies ;11 = XmHXL 11Tmy1, which is a contradiction with
Tyt1 §é Ime+1. L]

3.2.2 Matrices M* and T*

Let (X,U) and (X,U) be normalized conjoined bases of (S) and (X7, U*)
be the conjoined basis of (S*) defined by (2.18) through (X, U) and (X, U).
Then, as in (3.37), we can define the 2n x 2n matrices

Mp= (- X; X ) By, Ty =1 — MM, (3.44)
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Lemma 3.39. Let M} be the matriz defined in (3.44) and let My be the
matriz defined in (3.37) via (X,U). Then

ar— (0~ X X)X M (3.45)
§ 0 [ = Xepa(I + X X)X ] My

and

0 0
T
Mk M, = <O MIIMIC> . (3.46)

Proof. When we use formula (2.20) for X}/, ; and compute M} from definition
(3.44), we get identity (3.45).

Now we prove identity (3.46). Let My = Fy Ry be a full rank factorization
of My, ie., I}, € R and R, € R™**" with r, := rank M, = rank F}, =
rank Ry. We define matrices F} € R**"% and R} € R™**" by

. —(I+ X1 X)) " X I .

o (Rt | R ) R0 )
Then Iy R;, = M, ri = rank R}, = rank M}/, while rank F} = ry, follows from
the invertibility of the matrix on the right-hand side of identity (1.7) with
A = Xgy1. Thus, M} = F{R} is a full rank factorization of M} and from
identity (1.3), applied first to the matrices M} and Rj and then to M} and
Ry, we get

*tarx T * pxTN—1 px 0 0 _ 0 0

The proof is complete. O

Remark 3.40. We can also compute the formula for the Moore-Penrose
inverse of M}. When we apply identity (1.2) to the matrices F} and R}, we
get

M*T _ B O -~ - ,O _
k —Hp Xpa (I + X5 X)) ™" He(I+ Xen X))

where H), := Rz(RkRz)_l[Fg(I + Xk+1Xg+l)_le]_1Fg e R"=x",
Lemma 3.41. The following identities hold

QQ)E) %&%<on&n> (3.47)

Proof. The first identity is consequence of (3.46), the second identity we get
from the first one, Lemma 2.22, and identity (3.43). O
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3.2.3 Functional with zero endpoints

Recall that the functional Fy is defined by formula (1.30).
Theorem 3.42. The following statements are equivalent.
(i) Fo(x,u) > 0 over xo =0 and xn41 = 0.
(ii) The principal solution (X,U) of (S) satisfies the P-condition
TePTi, >0 forall k € [0, N, (3.48)
and the image condition

zr € Im Xy forallk € [0,N +1],

3.49
for all admissible (x,u) with xo =0, xn41 = 0. (3.49)

(iii) The implicit Riccati equation
TkalG;fHR[Q]kaTk =0 on KerGny1, k€10,N],

has a symmetric solution Q. such that Qkf(k = ﬁkf(,if(k on [0, N + 1],
and
T P T > O, fO?” all k € [O, N] (350)

(iv) The conjoined basis (X,U) of (S) given by the initial conditions
XO =1 - X]Jr\[JrlXNJrl) UO — X]Jr\[JrlXNJrl
satisfies P-condition (3.48) and the image condition

2 € Im Xy forallk € [0, N + 1],

for all admissible (x,u) with XN+1xo =0=1xn1.

(v) There exist symmetric matrices F, < 0, k € [0, N], and a solution
(X, U) of the system

Xk+1 — Aka + BkUk,
Fka+1 - Uk+1 - Cka - DkUky
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k € [0, N|, satisfying the initial conditions
ot o e
Xo=1- XNJAXNJFD Up = XNJAXNJFD

such that XFUy is symmetric for all k € [0, N + 1], P-condition (3.48)
holds, and the image condition

2 € Im Xy forallk € [0, N + 1]

for all admissible (z,u) with Xy 170 = 0= 2y

holds, where (X, U) is the conjoined basis of the system (S), which has
the coefficient matriz Sy defined in (3.8), with the initial conditions
(XWQO) - (17 O)

Proof. The equivalence of statements (i), (ii), and (iii) is a corollary of Theo-
rem 3.43 for functional with separated endpoints, which we prove in the next
subsection. For proofs of the equivalence of statements (iv) and (v) with
statement (i), see [37]. O

3.2.4 Functional with separated endpoints

In this subsection, let (X, /) be the natural conjoined basis of (S). Recall
that the functional F is defined by formula (1.37).

Theorem 3.43. The following statements are equivalent.
(i) F(x,u) >0 over Moxo =0 and Myxyy1 = 0.

(ii) The natural conjoined basis (X,U) of (S) satisfies P-condition (3.48),
the 1mage condition

2 € Im Xy forall k € [0, N + 1],

3.51
for all admissible (x,u) with Mgxg =0, Mixyy1 = 0, ( )

and the final endpoint inequality

X]j\;Jrl (Fl XN+1 -+ UN+1) Z 0 on KGI"M1XN+1. (352)
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(iii) The implicit Riccati equation

TG (3.53)

on Ker./\/l1 <CI)N+170(I — ./\/lo) GN+1> , ke [O,N],

has a symmetric solution Q. such that Qp Xy = UkX,iXk on [0, N + 1],
P-condition (3.50) holds, and satisfying the final endpoint inequality

QN+1 + Fl Z 0 on KGI'Ml N ImXN+1. (354)

First we prove that P-condition (3.48), image condition (3.51), and in-
equality (3.52) are necessary for the nonnegativity of F. The necessity of
the P-condition and of the final inequality is proven similarly as in the case
when F is positive. However, the image condition, which corresponds to the
kernel condition in case when F is positive, is proven rather differently.

Lemma 3.44. If F(x,u) > 0 over Mpxo = 0 and Myxyi1 = 0, then
TPl > 0 for all k € 10, N|, i.e. P-condition (3.48) holds.

Proof. Suppose that there exists m € |0, N| such that T, P, 1T, ? 0. Then
there is ¢ # 0 with ¢!'1,, B, Tinc < 0 and, therefore, P,,T,,c # 0. Define
d = XLHBmec. Then X,,d = F,,T,,c # 0, which follows from identity
(3.39) in Lemma 3.33. Now we define (x,u) by

{ Xid,  for k € [0,m],
T 1 —

0, forkem+1,N+1],

Upd, for k € [0,m — 1], (3.55)
Up = —A%(Dm - Qerle)TmC; for k — m,

0, forkem+1,N+1],

where Q11 18 a symmetric matrix with Q,, 11X 1 = UerlX:nJrleJrl? see
e.g. formula (2.3). Such defined (x, u) is admissible and Mgz = M¢Xod =
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Mo([ — Mo) d= O, MlxN+1 = 0. Further,

N
T T T, |N+1 T
F(x,u) =z Lowe + oy Doy + 2, uk‘o + E Tpoy1 (Crovp + Drttg, — Upgr)
k=0

— $g[cm—1Xm—1d + Dm—lUm—ld + Aﬁ(Dm - Qm+18m)TmC]

= d" X Und + d"(X} 1 — ULBIY (D — Qa1 Bin) T
=d"X U d+ d"XE X (XE Dy — UL By) e — UL P Tc
=d"XL XTI X, e = d X, Trwe = ¢ Ty P T < 0,

which is a contradiction, because F was supposed to be nonnegative. O

Lemma 3.45. If F(x,u) > 0 over Moxy = 0 and Myzni1 = 0, then
xp € Im Xy for all k € [0, N + 1] for all admissible (x,u) with Myxo = 0
and Myixyy1 = 0, i.e. image condition (3.51) holds.

Proof. Let (x,u) be an admissible pair with My xyg = Mjzy1 = 0. Suppose
that there exists an index m such that x,, € Im X,, but z,,1 € Im X,,,;1.
Certainly m > 0, because Mg xg = 0 implies xg € Im(/ — M) = Im Xy. Let
a be such that X,,a = x,,. Now we take the matrix S’ from Lemma 3.37 and
an arbitrary real number ¢ and define & := ¢tS'M!x,,,1. Further we define
(%, @) by

. {Xk(oHrd), for k € [0, m],

T, for ke |m+1,N+1],

Uela + @), for ke 0,m—1], (3.56)
U == Um + Una, for k=m,

(. for ke fm+1,N +1].

Such defined (%, %) is admissible, since for k € [0,m — 1] it is a solution of
(S), for k € [m + 1, N] it is equal to the admissible (x, ) and for k = m we
have

AT + B, = Am X (o + &) + B (tm, + Upn@)
d p—

~ ~ ' agT 5
= Tmt1 + Xm+1 Tmt1 + tXm+1S Mm$m+1 = TmA41,

where we used X,,,15" = 0. Further, Moty = MyXg(a + @) = 0, and
My = Myznyr = 0, hence by the assumption we have F(z,a) >
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0. Now we show that this cannot be true for all ¢ € R and thus get the
contradiction.
We denote X := ifﬂ(cka?k + Dyt — TUgy1). Then we have

0, for k € [0,m — 2],
%, (a+a) T XL (Uno — ), for k=m — 1,
ke xsz(Cmea + Dty + Uy 16 — U y1), for k=m,
l’ngQ(Cerll’erl -+ Dm+1um+1 — um+2), for k € [m + 1, N]
(3.57)

Now we compute the sum

N m—2 N
D X = {Z+ > }Xk+Xm_1+Xm(a+d)TXT(Uma Unn)
k=0

k=0 k=m+1
N
+ ZngLl(CmeOZ + Dmum + Um+1d - um+1) + Z Xk
k=m-+1
N
= T X (U — 1) + 2 1 (Con Xon@ + Doy, — U 1) + Z X,
k=m-+1

+ [(@"U, = uh) Xon + lﬁJrlUerl]da
where further

(7 Uy =1, X + lﬁJrlUerl]d =
[( TUT 2)(D£Xm+1 - BZzUerl) + xqulUerl]SlMg;merl
[B ( Uy, — UmO[) + I'erl]TMmMgZCerl =2t $2+1MmM£$m+l.

t
t

From that we get

I - 1 - -
F(2,7) = 23 ToFo + xNHleNH + “k‘o Vi +Z Tpo 1 (Cop + Dyl — Tgey1)

= $%+1(F1$N+1 +uni1) +a XnTz(Umoz — um)
N
A€o+ Dot i) 4 3 Fa 20 M
k=m-+1

and as ML x,,,1 # 0 by Lemma 3.38, there exists ¢ sufficiently large negative
such that F(z,a) < 0. O
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Lemma 3.46. If F(x,u) > 0 over Moxo = 0 and Myxyy, = 0 then
X]T,H(Fl Xni1 + Ung1) > 0 on Ker My Xy, d.e. final inequality (3.52)
holds.

Proof. Let d € Ker M;Xyn;1 and take the pair (Xd,Ud). It is obviously
admissible and My xod = 0 = M Xn1d. Hence, F(Xd,Ud) > 0 and from
Lemma 1.31 we have

F(Xd,Ud) = d"X{ Ty Xod + d"X i X nd + ' X § Unnd — d°Xg Un d
= d"X5 (D X1+ Unga) d.

Thus, the inequality is proven. O

The next lemma says that P-condition (3.48), image condition (3.51),
and final endpoint inequality (3.52) are sufficient for the nonnegetivity of F.
It is proven again by means of the Picone identity.

Lemma 3.47. If the natural conjoined basis (X, U) of (S) satisfies P-condi-
tion (3.48), image condition (3.51), and final endpoint inequality (3.52), then
F(x,u) >0 over Moxg =0 and Myxyn,1 =0.

Proof. Let (x,u) be admissible with Myxy = 0, Myjaxyy1 = 0. As xx €
Im X, for all k € [0, N + 1], we get from Theorem 2.9 (Picone identity), see
also formula (3.16), and from Lemma 3.36

N
Fla,u) = d" (X5 DiXv + X4 Uvi) d+ > wi TP T,
k=0

where d € R” is such that Xy 1d = 2y, and Py = P > 0 by Lemma 2.5.
This together with (3.48) and (3.52) imply F(x,u) > 0 for all (x,u) with
Mo%oio, M1$N+1 = 0. |

Lemma 3.48. Statements (ii) and (iii) in Theorem 3.43 are equivalent.

Proof. (ii) = (iii): We define Q¢ by (2.2) or (2.3) via the natural conjoined
basis (X, U). Then T PyT), = TP/ T, > 0 on [0, N] and the final endpoint
inequality (3.54) holds. Let (&) € Ker My (Pny10(I — Mo) Gyy1) be ar-
bitrary with « € RN and define x;, .= G Tpu, k € [L, N + 1] and 25 = o
Then (x,u) is admissible, by Lemma 1.35, and Mgz = 0 and Myjxn i = 0.
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Thus, by (ii), we have xp € Im X}, for all k € [0, N + 1], that is, there exists
cx € R™ such that xp = Xgeg for all k € [0, N + 1]. Tt follows that

T
a (I = Mo) CI);%FH,O o
<_> ( 77,67, Ok (Broll = Mo) GiTi) {
= 2l RIQl = o Xy RIQI Xnck = 0,

where we used X\ | R[Q]; X, = 0 from Lemma 2.2.

(iii) = (ii): Conversely, assume that Q) satisfies the conditions in (iii). We
show that image condition (3.51) holds. Therefore, let us take an admissible
(x,u) with Moxo = 0 and Myxn;1 = 0. Let m < N be any integer such
that

xp € Im Xy for all £ <m. (3.58)

This is always true for m = 0. To prove the image condition for all £ €
[0, N + 1] it suffices to further show that (3.58) implies x,, 11 € Im X, 1.
Let d € R™ be arbitrary and define (%, %) by

-y (XU = X[ X)) d, for k <om,
(B, ) = { (0,0), for k > m.

Then (Z, @) is admissible with MyZy = 0 and M1Zx,1 = 0 and so is the pair
(x+Z,u+@). From equation (3.53) and Lemma 2.2 used with (x+ %, u + @)
we get (X1 + g 1)L RO m(@m + ) = 0. From that and the definition of
T we have
O — xferlR[Q]mum + Xm(l - X;erleJrl) d]
= T RIQLm + 2l RQIm X (I = Xy Xon1) .

The first term is zero, by equation (3.53) and Lemma 2.2 again, and we get
xh RIQln X — X1 Xop1)d =0 for all d € R™.
Now we use identity (2.8) and put d = U}, 2,11, and get

$2+1Um+1 (I — X;erleJrl)X;sz(l - XL+1Xm+1)U£+1$m+1 =0,
X5 XTI = Xy 1 X 1)Uy 11 = 0,
Xon(I = X 1 Xy DUL 1 = 0. (3.59)

m
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Because of (3.58), there exists ¢ such that x,, = X,,c and

UL @i = UL (A, + Bottn) = Ul [Xng1€ 4 Bu (i, — Upa0)]
= UL Xopic+ (UL 1B — XDy + X1 D) (i, — Upne)
= X 1 [Unmg1¢ 4 Doy (tn, — Up©)] — XL (tty — Upi). (3.60)
Now from (3.59) and (3.60) we get
Xl — XL+1Xm+1)Xg;(um — Upc) =0,
which implies
(I = X} 1 Xy 1) XD (i, — Upnc) = 0.

Now we use (3.60) again to get x,,,1 back and we obtain

(I — X} 1 X VUL g1 = 0. (3.61)

m

Let (X,U) be such that (X,U), (X,U) are normalized conjoined bases of
(S). We multiply equation (3.61) by X,,,; and get
0= X1 (I = X1 Xy DU 1 1
= [XmHUn:CH - Xererjr:,JrlX;rnjjrlUgr;Jrl]merl
= [Xeran:CH 11— XmHX;{zHXLZlUn:CH]me
= erl[Drjr;Jrl - XTZ;+1X:nj;1U£+1]$m+1 + T,
hence x,, 1 € Im X,,,;1 and this lemma is proven. O

Proof of Theorem 3.43. Implication (i) = (ii) follows from Lemmas 3.44,
3.45, 3.46. Implication (ii) = (i) follows from Lemma 3.47, while equivalence
(i) < (iii) is Lemma 3.48. ]

3.2.5 Functional with general endpoints

In the statements of the following theorem we again use the conjoined basis
(X*,U*) of (S*), defined by (2.19) via the principal solution (X,U) and the
associated solution (X, U7) of (S), and the matrix Q* defined by (2.33) with a
symmetric matrix ). Recall that the functional F is now defined by formula
(1.38).

Theorem 3.49. The following statements are equivalent.
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(i) F(z,u) >0 over M (233, ) = 0.

(ii) The principal solution (X,U) of (S) satisfies P-condition (3.4%), the
image condition

z, — Xpxo € Im X for all k € [0, N + 1],

3.62
for all admissible (x,u) with M (2x%,) =0, (3.62)

and the final endpoint inequality

X (O X5 + Uk ) >0 on Ker MX .. (3.63)
(iii) The implicit Riccati equation

T _XT -

(") Ao o= % 6im)
+1 ket

I 0

Pniio Grya

(3.64)

on Ker/\/l< >, ke [0, N],

has a symmetric solution Q. such that Qkf(k = ﬁkf(,if(k on [0, N + 1],
P-condition (3.50) holds, and satisfying the final endpoint inequality

I+ Q>0 on Ke MNIm X} . (3.65)

As in the proof of Theorem 3.24, we again use the transformation of the
quadratic functional F and system (S) into the augmented functional F* and
system (S*).

Proof. The proof of (i) < (ii) is similar to the proof of the equivalence of
the corresponding conditions for the positivity (Theorem 3.24), we use the
last identity in (3.47) and Lemma 2.24. The proof of (i) = (iii) is similar
to the proof of Lemma 3.48 in which we replace the natural conjoined basis
(X, U) by the principal solution (X, U), and instead of image condition (3.51)
we use image condition (3.62). The symmetric matrix Q satisfying the
conditions in (iii) is defined by equation (2.2) with (X, UU) in place of (X, U).
Implication (iii) = (i) is again proven similarly as in Lemma 3.48, but with
the image condition xy — Xpx0 € Im X, for all k € [0, m], and with the vector

A

d:— Ugr;Jrl(l’erl — Xerll’o). O
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Remark 3.50. Equivalence (i) < (ii) in Theorem 3.49 can be again proven
similarly as in the alternative proof of equivalence (i) < (ii) in Theorem 3.24,
see page 62, but here we have to prove the necessity of image condition (3.62)
with the use of the augmented functional F*, because image condition (3.49)
for zero enpoints does not imply image condition (3.62).

3.3 Implicit Riccati equations

In this section we collect and compare various forms of implicit Riccati equa-

tions. In the case of zero and separated endpoints, we have only one form

for the positivity and one form for the nonnegativity. In the case of general

endpoints, three equivalent forms of implicit Riccati equations are possible

for the positivity and two for the nonnegativity. One of them (for the posi-

tivity) involves the augmented Riccati operator R*[Q*|x, in the others only
the original Riccati operator R[Q|, in dimension n appears.

For convenience, we denote in this section the P-conditions as follows
Pr = B{Dy — BLQry1Br >0 for all k € [0, N], (P)
T P T, >0 forall k €0, N|, (TPT)

where the matrix T is defined in (3.37) through a conjoined basis (X, U)

specified in the corresponding statements. Further, Q* is again the matrix

defined by (2.33) with a symmetric matrix ) and the associated solution

(X,0) of (8), and (X*,U*) is the conjoined basis of (S*) defined by (2.19).
First we display implicit Riccati equations for the positivity.

Positivity, zero endpoints. The implicit Riccati equation
R[Q]ka — O) ke [07 N])
has a symmetric solution Qk on [0, N + 1] such that condition (P) holds.

Positivity, separated endpoints. The implicit Riccati equation
RQli (Pro(I — M) Gy) =0, kelo,N],

has a symmetric solution Qg on [0, N + 1] such that Qo = I}y, condition (P)
holds, and satisfying

I+ Qni1 >0 on Ker MyNIm Xpy.

Positivity, general endpoints.
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(i) The implicit Riccati equation
RIQIxGr =0, kel0,N], (3.66)

has a symmetric solution Qi on [0, N+1] such that condition (P) holds,
and Q. satisfies the final endpoint inequality

'+ Q>0 on Ker MNIm X5 . (3.67)

(ii) The implicit Riccati equation
R[Qlx (Pro — Xy Gi) =0, kelo,N], (3.68)

has a symmetric solution Qr on [0, N + 1] such that Qg = 0, condition
(P) holds, and Q. satisfies final endpoint inequality (3.67).

(iii) The implicit Riccati equation

RO, <¢io £k> —0, kelo,N] (3.69)

has a symmetric solution Qf = (% 3,.) on [0, N + 1] such that Qf = 0
and (P) holds, and salisfying the final endpoint inequality (3.67) with
QN1 instead of Q-

Remark 3.51. The above implicit Riccati equations for the positivity can
be replaced by the following weaker forms.

Positivity, zero endpoints.

R[QI.GrT, =0 on KerGpyyy, k€]0,N].

Positivity, separated endpoints.

RQlk (Pro(l — Mo) GiT;,) =0
on Ker./\/l1 <CI)N+170(I — ./\/lo) GN+1> , k€ [O,N]

Positivity, general endpoints.

o (0 I 0
H1Q (cbk,o Gka>O on Ker M <<I>N+1,o GNH)’ ke o, N

These forms of implicit Riccati equation appear e.g. in [40].
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Next, we display implicit Riccati equations for the nonnegativity.
Nonnegativity, zero endpoints. The implicit Riccati equation
TG RIQIGKTe =0 on KerGnpi, k€ [0,N], (3.70)

has a symmetric solution Qy such that Qka UkXTXk on [0, N + 1|, and
(T'PT) holds with Ty defined via (X, U).

Nonnegativity, separated endpoints. The implicit Riccati equation

<(I M) Py o) R[Qlk (Proll — Mo) Gy Ti) =0

TGl
on Ker M, (CIDNH’O(I — Mp) GN+1> , kelo,N],

has a symmetric solution Q. such that Qp X, = UkX,iXk on [0, N +1
(TPT) holds with Ty, defined via the natural conjoined basis (X,U),
satisfying the final endpoint inequality

~—
=
3
=

Qv+ 11 >0 on Ker MyNIm Xpyg. (3.72)
Nonnegativity, general endpoints.
(i) The implicit Riccali equation

T G RIQIGK T = 0

on {ue RV Ag 0 u € Im M A , kel0,N],
Gyt XNyt

(3.73)
has a symmetric solution Q. such that Qka UkX Xk on [0, N+ 1],

(TPT) holds with T defined by (X,U), and QN+1 satisfies the final
endpoint inequality

P+ Q>0 on Ker MNIm XY, ;. (3.74)
(i) The implicit Riccati equation

T _XT
(", ) ol = % 6um) o
+1 ket

Ker M
on B <CI)N+1O GN+1>

(3. 75)
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has a symmetric solution Qy such that Qkf(k = ﬁkf(,if(k on [0, N +
1], (IT'PT) holds with T' defined via (X,U), and QN satisfies final
endpoint inequality (3.74).

Remark 3.52. Similarly as in case of the positivity, we could furthermore
formulate a statement analogous to (iii).

(iii") The implicit Riccati equation

ool I 0
0 ) RQ =0
<0 .l )@\ e, o
I 0
Ker M , kelo, N,
o kam (!0 ke

has a symmetric solution Qf = (% 3,) such that Qi X} = U XX on
0, N+ 1], and (T'PT) holds with Ty, defined via (X,U), and satisfying
the final endpoint inequality (3.74) with Q. instead of Qi ;.

(3.76)

But, by Remark 2.18, this solution @* must have the form (2.22), and thus
statement (iii’) would say the same as statement (ii’).

Remark 3.53. The condition Qka = ﬁkf(,if(k (or QpXy = UleiXk) that
does not appear in statements for positivity cannot be removed from state-
ments for nonnegativity. See Example 3.57 at the end of this section. How-

ever, we do not know, whether this condition can be replaced by a weaker
one, e.g. by the condition X7 QX) = UL X}.

In the remaining part of this section, conditions (i)-(iii) and (i")-(iii")
refer to implicit Riccati equations displayed on pages 79-80.

Theorem 3.54. Statements (i) — (iii) are equivalent.
Theorem 3.55. Statements (i’) and (ii’) are equivalent.

Both theorems are proven independently of the roundabout theorems
(Theorem 3.24 and Theorem 3.49), except of the final endpoint inequality in
implication (iii) = (i). In proofs we use the next auxiliary lemma.
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U

Proof. Let (43 ) be arbitrary n + (N + 1)n-vector, where u := < : > Define
uN

a pair (Z, @) by

ik:zgka—¢k70a—Gk%g, kE[O,N+1],

3.77
U 1 — Ukoz—uk, k’E[O,N]. ( )

This (%, @) is admissible, because
Apy, + Brity, = Ae X oo — g1 00 — AGr T u — By + BelUg a
= Xppra— 00— G Ty = Fppr-
Further, 7y = Xoa — Qoo — GoThu = 0, and Lemma 1.29 implies that

Uo a—ug

i’Gka@,Where@< )Qa—g. We have

Un a—uy
Q
U

R[Qlk (X — Py —GiTi) < > = R[QkZr = RIQxGrTr i = 0.

Thus, this lemma is proven. O

Proof of Theorem 3.54. Implication (ii) = (i) holds trivially, and (i) = (ii)
holds by Lemma 3.56.
(ii)= (iii): From (3.68) we have

RQlk (— X 1) <¢ZO £k> =0, kelo,N]

which implies

(—)ial) RIQN (- X 1) (Cpi C(;k)o ———

and thus, by identity (2.25), we get R* [Q*]k (cpip é)k) = 0. Further, Qo =0

and thus Q(’j =0.
(iii)= (i): Let Qr = (% J,) be a solution of (3.69) satisfying the given
conditions. From the definition of R*|Q*| we have

vt (Lo )6 A) 6 8)(a)] e
16 &) 6w G el ma)
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We multiply equation (3.69) by the matrix (9) from the right and get

(i R[Zz]z) <63> -0

which implies R[Q]xGr = 0. Now it remains to show the final endpoint
inequality. By Theorem 3.24, we have that inequality (3.21) holds, which is
equivalent to (3.67). O

Proof of Theorem 3.55. ()= (ii’): Similarly as in the proof of Lemma 3.56,
we take arbitrary n+ (N +1)n-vector (%) such that M (o, cy,, ) (¥) =
0, and define (7, %) by (3.77). We get

(%T UT) <CI)£HTO _:Pj(al)R[Q]k (CI)ko - ch Gk%) <x0>
B 111G 7 u
- NTTkﬂleHR[Q]kaTk@-

Since M (cI)NH’Ogcg(C)OqLGNHg) =0, we have M <GN+1 ) o= M (XJ\IIH
hence, equation (3.73) implies @' 7,7, GT, | RIQ)x G Tt = 0.
(i)= ("): Let u € RV and M (¢, )u=M ( . ) a. We define

) xp, and

XN
Uo
: ]. Then M <<I>N+10G18+1> (3) = 0 and
(Pro — Xp)a + GyTitu = GiTiu. Note that $poa + GpTUa = Xia, by
Lemma 1.29. Hence, from equation (3.75) we get equation (3.73). O

U = Qa—g, where Q:: <

Finally, we show an example of Fy # 0 such that there is a symmetric
solution Q¢ on [0, N + 1] of equation (3.70) satisfying condition (TPT) and
not satisfying Qu Xy = U, X[ X, on [0, N + 1].

Example 3.57. Let n = 1, N = 3, and S = (% 1) for k € [0,3], ie
A, =0 and B, = D, = —C, = 1. Assume that both endpoints are zero.
Then the functional Fy takes the form Fo(x,u) = Zizo{ui — 21U} over
pairs (r,u) satisfying g1 = w for k € 0, 3] and xo = 0 = x4. The
principal solution (X, U) of (S) is in this case X = {0,1,1,0,—1} = XT and
U = {1,1,0,—1,—1}. Then Fy # 0, since F(i,4) — —1 for the admissible
pair (x,u) defined by z = {0,1,1,1,0} and u := {1,1,1,0}. Note that
i3 & Im X, i.e. image condition (3.49) is violated.


file:///JkX/Xk
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Define @ := {2, 3, —1,2,0}. Then Q, satisfies equation (3.70) and condi-
tion (TPT), and does not satisfy that Qkf(k = ﬁkf(,if(k for k € [0,4]. This
can be verified when we calculate the sequences R[Q)] = {0,0,0,—1}, P =
{12,-1,1}, M = {0,0,1,0} = M', T = {1,1,0,1}, TPT = {1,2,0,1} > 0,
G3=(0 0 1),andG4=(0 0 0 1).

3.4 Perturbation of quadratic functionals

In this subsection we present theorems that say that the nonnegativity of
a functional with zero, separated, and general endpoints, respectively, on
admissible pairs (r,u) with corresponding boundary conditions is equiva-
lent to the nonnegativity of a perturbed functional on admissible pairs (x, u)
such that (zy2, ) is restricted to a (larger) subspace. If the (nonperturbed)
functional is positive then this restriction holds for all admissible pairs, thus
corresponding results regarding the positivity say that the positivity of a
functional on admissible pairs (x, u) with given boundary conditions is equiv-
alent to the positivity of a perturbed functional on all admissible pairs (x, )
with x # 0.

3.4.1 Functional with zero endpoints

Again, recall that (X, U) is the principal solution of (S),ie. (Xo, Up) = (0, 1),
and (X,U) is the associated solution of (S), i.e. (Xo,Us) = (I,0). The
functional Fy is defined by formula (1.30).

Theorem 3.58. The following statements are equivalent.
(i) Folx,u) >0 over xg =0 = xny1-
(ii) There exist o > 0 and 8 > 0 such that
Folw,w)+alzol?+8 |ensill> =0 over 2y —Xnpzo € Im Xy
(iii) There exists o > 0 such that
Folz,u) +alzo)> >0 over Xyi1zo € ImXyy1, 2ny1 = 0.

(iv) There exists § > 0 such that

Folz,u) + Bllen1|P >0 over an,i€ ImXN+1, 2o = 0.



3.4. PERTURBATION OF QUADRATIC FUNCTIONALS 85

(v) There exists a > 0 such that

Folz,u) + allze||* >0 over XN+1xo = TNyl

(vi) Folx,u) >0 over XN+1xo =xyy1 = 0.

Proof. Conditions (ii)—(vi) imply condition (i) trivially, and condition (ii)
implies (iii) and (iv). It remains to prove that (i) implies (ii), (v) and (vi).

(i) = (ii): Let (x,u) be an admissible pair with zy11 — Xnpizo €
Im X ~+1. Then, by Theorem 2.31, we have that the identity

T
fo(l’,u) = <$iil> Q* <$f:rl> ~|».’Fo(i’,fb), (239)

holds, where (x,u) is an admissible pair with x5 = Zy;1 = 0 and Q* is a
symmetric 2n x 2n matrix. Let )y be the smallest eigenvalue of Q*. Then
from (2.39) and inequality (1.8) we get

Fola,u) = Aollwoll* + [lzn1ll*) = —[Aol(lx5ll + a1 ]*)-

Hence, the inequality in (ii) holds for any a, 8 > [Ao|.
(i) = (v): If Xy 1m0 = 2y 41, then, by Corollary 2.33, we get Fo(w,u) >
2§ X% 1 Un 1o, We use again condition (1.8) and get that the inequality in
(v) holds for any a > |Ay|, where A; is the smallest eigenvalue of )N(]T[HUNH.
(i) = (vi): As in previous case, we have Fy(x,u) > xOT)N(]T[HUNHxO, and
XN+1xo = 0 further implies Fo(x,u) > 0. O

Theorem 3.59. The following statements are equivalent.
(i) Folx,u) >0 over xg =0 =xn41, v F 0.
(i) There exist o > 0 and 3 > 0 such that

Folr,u) + allzgl|* + Bllan,il]* >0 over x#£0.

(iii") There exists a > 0 such that

Folw,u) +allzel|* >0 over ay =0, 2%Z0.

(iv’) There exists > 0 such that

Folz,u) + Blleyal> >0 over o =0, x#0.
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(v') There exists o > 0 such that

Folz,u) + allagl|* >0 over XN+1xo =any1, x Z0.

(vi") Folx,u) >0 over XN+1xo =an1=0, v # Xzo.

Proof. Again, conditions (ii’)—(vi’) imply condition (i’) trivially, and condi-
tion (ii’) implies (iii’) and (iv’). It remains to prove that (i’) implies (ii’),
(v') and (vi’). Conditions (i)—(vi) refer in this proof to Theorem 3.58.

(i) = (it’): First note that (i) = (i) =-(ii). From Lemma 3.5 we have that
Ker X, C Ker X}, for all k € [0, N] and hence, by Corollary 2.34, identity
(2.39) holds for all admissible (z, u) Thus, we get that there exist & > 0 and
3 > 0 such that Fo(x,u) + allzol|®> + Blzni1]|? > 0 for all admissible (x, u).
Now, for o := a+1 and 8 := 3+ 1 we have Fo(x,u) + o ||zo||? + 3 | zni1]]? >
lzoll® + lxny1ll?, and ||zo||® + |z ni1]]? > 0 except when zy = 0 = xy, ;. But
if 1o = 0 = xn,1, then, since x #Z 0, condition (i") directly implies that the
inequality in (ii’) holds for such (z,w) with any «, 3.

(i) = (v'): Weuse (i’) = (i) = (v) and get that there exists @ > 0 such
that Fo(z,u) + a ||xo]|> > 0 over XN+1xo = xny1. As in the previous case,
for o == & + 1 we get Folz,u) + alzol|? > ||loo]|?, and as Xy 120 = Znq1,
26|l > 0 except when xp = 0 = xx,;. And if zg = 0 = x5, then, since
x Z 0, condition (i’) directly implies that the inequality in (ii’) holds for such
(x,u) with any a.

(i) = (vi’) Define (z, @) as in (2.42). Then Z # 0, because z % Xz, and
from (2.39) we get Fo(x,u) = Fo(z,u) > 0. ]

Remark 3.60. Another way of proving (i’) = (ii’) is via generalized Picone
identity (2.362, where we take o = o and the normalized conjoined bases
(X,U) and (X,U), and get

T
At — (1) @ (17)

with Q* defined by (2.33), with @ such that Qo = 0 and Qka UkX X}, on
0, N++1]. As Py, > 0, by Lemma 3.5, we get Fo(z,u) > (220, )" QN+1 (2nor )-

N+1 N

~T ~
+ E kakwk,
k=0

0

Remark 3.61. Yet another way of proof of (i’) = (ii’) uses results for the
positivity of functional with general endpoints. More specifically, we consider
the functional with the matrix I" ;= (8‘ 2) and the matrix M := 0 and show
that there exist a, 3 > 0 such that condition (3.21) holds.



3.4. PERTURBATION OF QUADRATIC FUNCTIONALS 87

Remark 3.62. We can see that in case of the nonnegativity of Fy, the
endpoints xp and xx;1 cannot be free, but must be restricted to a subspace.
This is also shown in the following example where Fo(x,u) > 0 over xy =
0 = xn41, but there is no a, 8 > 0 such that F(x,u) = o ||xo]|*+ B ||zni1||* +
Folx,u) > 0.

Example 3.63. Consider the coefficients S, = 7, that is, Ay = Dy, = 0 and
B, = —C, =1 for all k € [0, N|. Then the solution X} is

{Xk}{c\[:t)l:{1707_1707[707_1707"'}7

and the functional Fy takes the form

N
Folr,u) = =2 {xOTuo + Zu;‘f_luk}
k=1

for admissible (x,u), i.e. xx1 = ug on [0, N|.
If we take N =1, then

Folw,u) = =22 up — 2uduy

for admissible (x,u) and, in particular, Fo(x,u) = 0(> 0) when xq = x5 = 0.
Note that in this case Fy is not positive definite. On the other hand,

Fx,u) = azol® + Bllanpl]* — 22f uo — 2ufus 20

over xy and xg free, which follows for example by choosing ug := (a+3) xo # 0
and u; := xo, so that F(z,u) = —(a + 0) ||xe|* < 0.

Finally, observe that when N > 2, then Fy(x,u) 2 0 over xg = 0 = xy41,
which can be shown e.g. by choosing u; := ug # 0 and uy = --- = uy := 0,
so that Fo(z,u) = —2 |Jue)|* < 0.

3.4.2 Functional with separated endpoints

In this subsection, let (X, /) be the normalized conjoined basis of (S), i.e.
Xo =1 — Mg and Uy = Iy + Mg, and let (X, U) be its associated solution
such that Xy = My and Uy = My — I. Recall that the functional F is
defined by formula (1.37).

Theorem 3.64. The following statements are equivalent.
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(i) Flx,u) >0 over Morg =0= Myizn,1.
(ii) There exist o > 0 and 8 > 0 such that
Flx,u) + al[Moxo|® + B[ My [ > 0

over Mixng — [Xnpr + (I — M)Un Moo € Im[Xnyy + (I —
M1)UN+1],

(iii) There exists o > 0 such that
F(a,u) + a | Mozol* = 0

over [XN+1 + ([ — M1)0N+1]M0x0 € Im[XN+1 + ([ - Ml)UN+1]7
M1$N+1 = 0.

(iv) There exists 3 > 0 such that
Fa,uw) + B[ Muzyia]* 20
over Mizni1 € Im[ Xy i1 + (I — M)Un 1], Moz = 0.
(v) There exists o > 0 such that
Fla,u) + a | Moxol* > 0
over Mixny1 = [Xnp1 + (I — M) Un (1] Moo,
(vi) F(x,u) >0 over Myzni1 = [Xni1 + (I — M)Un 1Moz = 0.
Theorem 3.65. The following statements are equivalent.
(i) F(x,u) >0 over Moxg = 0= Myxni1, v Z0.
(i) There exist o > 0 and 8 > 0 such that

Fla,u) + o |Moxol|* + 8| Mizna]|> >0 over x#0.

(iii") There exists a > 0 such that

Fla,u) + al|[Moxol|* >0 over Myxnyi = 0,2 #Z 0.



3.4. PERTURBATION OF QUADRATIC FUNCTIONALS 89

(iv’) There exists > 0 such that

Flx,u) + B[ My |> >0 over Moz = 0,2 2 0.

(v') There exists o > 0 such that
Flx,u) + o | Mozol* > 0
over Mizyi1 = Xy + (I — M)Uy | Moz, 2 # 0.

(Vi) Flz,u) > 0 over Myzyy = [Xnpa + (I — MUy Moz = 0,
x Z X Moxp.

We prove both theorems with the use of the transformed system (S),
introduced in Subsection 3.1.2.

First note that if (X, U) and (X, U) are the principal and the associated
solutions of (S), i.e. if X_y =0, U_y = I, and X_y = I, U_; = 0 then
Xo=1T—Mo, Uy =T+ Mgy, Xo= Mo, Uy =Mo—1I, Xnyo= Xy + U —
MD)Un 1, and Xyio = Xnypq + (I — My)Unyq. Thus, the principal solution
(X,U) of (S) on [—1, N + 2] is in fact the natural conjoined basis of (S) on
0,N +1].

Remark 3.66. The associated solution (X, ) given above is not the unique
one which will work for this theorem. Another choice is to take the trans-
formed system from Remark 3.17. Then we would get the associated solution

with XO = [Fo +Mo — 5(1 - MO)]_17 UO — 5[FO +MO - 5(1 - MO)]_l'

Proof of Theorem 3.64. Conditions (ii)—(vi) imply condition (i) trivially.

Let condition (i) hold. Then, by Lemma 3.20, Fo(%,@) > 0 over &_; =
0 = Zny2, and hence conditions (ii)—(vi) from Theorem 3.58 are satisfied,
where we replace the interval [0, N+ 1] by [—1, N+2|, the pair (x,u) by (Z, @),
the functional Fy(x, u) by Fo(#, @), and the solutions (X, U) and (X, U) by
(X,U) and (X,U). Now we will show that (i) implies (ii) in details. The
other implications (i) = (iii)—(vi) are proven in a similar way.

Let (z,u) be an admissible pair w.r.t. (A, B) with Myzy 11— [Xn 1+ —
MDUn Moz € Im[ Xy + (I — M{)Un,1]. Then the pair (2, @) defined
by (3.18) is admissible w.r.t. (A, B) on [—=1,N + 2|, #_; = Moo, Tnye =
Miznit, and Zyge — Xnge®—1 € Im Xyyo. Furthermore, by Lemma 3.18,
F(x,u) = Fo(&, ). Hence, by condition (ii) from Theorem 3.58, we have

0 < Fo(@, @)+ |lZ-al* + 8| Enall* = Fla,u) + o Mool + 8 | My 1%,
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where o and § are the positive numbers that exist by condition (ii) from
Theorem 3.58. O

Proof of Theorem 3.65. The proof is same as the proof of Theorem 3.64,
only we use Lemma 3.21 and Theorem 3.59 instead of Lemma 3.20 and
Theorem 3.58. [

Other perturbation type conditions are possible, formulated via the prin-
cipal solution (X, U) and the associated solution (X, U) of (S) instead of the
natural conjoined basis (X, U) and the solution (X, U) of (S).

Theorem 3.67. The following statements are equivalent.
(i) F(x,u) >0 over Moxog = 0= Mizrni1.

(ii) There exist a >0 and 3> 0, and a 2n X 2n matriz O* such that

f($;U)+OZ ||M0$0||2+/8||M1$N+1||2_2 <$ > O* < MOiUO > >0
N+1

Miznp

over Mixn 1 — Xy Moxg € Im Xy 1.

(iii) There exists o > 0 such that
Flz,u) + o Moxol|* — 23:%“@]\/“/\/103:0 >0

over XN+1MO$O - M1$N+1.

Proof. Conditions (ii) and (iii) imply condition (i) trivially.
(i) = (ii): Let (x,u) be an admissible pair with My 11— Xy 1 Moxo €
Im Xn41. Then, by Theorem 2.38, we have that the identity

Folx,u) = Folz,u) — < Mozo >TQ*< Moz >

M1$N+1 M1$N+1
T
Ty Fr Okt Mo
+ 2 Uy X
<$N+1> N4+1*N41 MlxNJrl )

holds, where Q* is a symmetric 2n X 2n matrix, and (z,u) is an admissible
pair with o = (I — M)z and Zn 1 = (I — My)xnyy. Thus, ol Toxe +
$%+1F1ZCN+1 — ZE’(Z;F()ZE’O + Zi’j]:[+1F1fN+1.
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Let Ag be the smallest eigenvalue of —Q*. Then from inequality (1.8) we

get
T
_< tn ) Q"( L, )zAo<||Moxo||2+||M1xzv+1l|2>-

Mll’NJrl M1$N+1
Hence, the inequality in (ii) holds for the matrix O* := U}, H)A(;[T ., and any
Oé,/@ Z |)‘O| -
(i) = (iil): If Xy p1Morg = Mizxnya, then, by Corollary 2.39, we get
f($, u) Z (Mo%o)TX]j\;+10N+1Mol’o -+ 2$%+10N+1M0$0.
We use condition (1.8) and get that the inequality in (iii) holds for any
a > |\, where Ay is the smallest eigenvalue of X% U1 O

Remark 3.68. We can see that when the conditions are formulated via the
solutions (X, U) and (X,U) of (S), an extra term with a 2n x 2n matrix
O* appears in the perturbed functional. This term cannot be removed, as is
shown in the following example, where F > 0 over Mpxy = 0 = My,
but there is no a, # > 0 such that o ||Moxo|* + 8 My |1* + Flx,u) > 0
over Mixn,1 — XN+1MOxO € Im Xn,.

Example 3.69. Consider the coefficients By = —Cy = Dy = I, Ay = 0, and
A, =D, =1,B,=C,=0fork e|[l,N], and the matrices Mo = 0, My = I,
and [y = I'; = 0. Then the principal solution X} is

(Xp}Vtt = {0,1,1,1,...,1}.

Admissible pairs (&, u) are
{(zr, ue) oty = { (o, uo), (w0, ur), (w0, ua), - .., (w0, un41) }
and admissible pairs (z,u) with Myzy = 0 = Mjxn4 are
{(zr, we) 1oy = {(20,0),(0,11), (0, 1), ., (0, uni1) }
The functional F takes the form
Fla,u) = =22 uo + ud up,
and F(x,u) = 0(> 0) when Myzy = 0= Mjxn;1. On the other hand,
Flx,u) + al[Moxo|* + Bl Mizn [ = =225 u0 + uguo + 3 llue||* £ 0

over My 1 — XN+1Moxo € Im XN+1, i.e. over all (x,u) admissible, which
follows for example by choosing xy := (1 + B)ug # 0, so that F(z,u) =
—(1+ 8) [luo]* < 0.
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3.4.3 Functional with general endpoints

In this subsection we again use the conjoined basis (X*,U*) of (S*), defined
by (2.19) via the principal solution (X, U) and the associated solution (X, /)
of (S). Recall that the functional F is now defined by formula (1.38).

Theorem 3.70. The following statements are equivalent.

(i) F(xz,u) >0 over M (an%,) = 0.

(ii) There exists a > 0 such that

Fla,u) +a M (%) 220
over M (x5, ) € Im[X]’([H + (I — M)U]’([H],

Theorem 3.71. The following statements are equivalent.

(i) F(x,u) >0 over M (apry) =0, 2 Z0.

(i) There exists o > 0 such that

Flr,u) +a|M (a2 2P >0 over x#0.

The proofs of Theorems 3.70, 3.71 are again based on transforming system
(S) and the quadratic functional F into augmented system (S*) and the
augmented quadratic functional

Fr(a* ub) = Ty oy + oy U o + Fo(x* ub),

which has separated endpoints, where M := % ( ! _I) M =M1} :=0
I =T,

Proof of Theorem 3.70. Condition (ii) implies condition (i) trivially.

Let condition (i) hold. Then, by Lemma 3.26 and Lemma 3.27, we have
FH(x*,u*) = 0 over Mjz§ = 0 = Mjixy,,, and hence condition (iv) from
Theorem 3.64 holds for (*, u*) and F*(z*, v*) in place of (z,u) and F(x,u),
and with the natural conjoined basis (X*, U*) of (S) in place of the natural
conjoined basis (X, U) of (S). This is equivalent to condition (ii), because
Mgxg = 0 implies that (z*,u*) has the form from Lemma 3.26. Hence,
Mizh g = M (3% ), Fra*, u*) = Flx,u), and (X*, U*) = (X*,U*) ( 1)
and Im[X} ; + (I = MUK ] = Im {[X§ + (L= MU ] (F17) ) O

Proof of Theorem 3.71. The proof is same as the proof of Theorem 3.70, we
only use Theorem 3.65 instead of Theorem 3.64. O
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3.5 Notes

The focal point definition (Definition 3.1) was for discrete symplectic systems
first introduced in [13], and earlier for Hamiltonian difference systems in [9].
Regarding the positivity for zero endpoints in Theorem 3.4, the equivalence
of (i)—(iii) is from [13], the equivalence of (i), (iv), and (v) is from [40], and the
equivalence of (i), (vi), and (vii) is new and is contained in [37]. Regarding the
positivity for separated endpoints in Theorem 3.14, tje equivalence of (i)—(v)
is from [40], while the equivalence of (i), (vi), and (vii) is new and is contained
in [37]. The tranformation of separated endpoints into zero endpoints in
(3.17) is a modification of the one in [40|. Regarding the positivity for general
endpoints in Theorem 3.24, (i)« (ii) is in [11] under the assumption Ker M C
Im X;(/H- This assumption was eliminated (by taking Ker M N Im X% )
in [40] where this result was extended by the equivalence of (iii)—(v). Another
transformation as it is described in Remark 3.25 can be found in [40].

The basic results on the matrices My, T}, in Subsection 3.2.1 are from [46].
Lemmas 3.36-3.38 are from [18]. Subsection 3.2.2 is new and it is contained
in [37]. Regarding the nonnegativity for zero endpoints in Theorem 3.42,
(i)e(ii) is from [18], (i)« (iii) is new and it is in [39], and the equivalence
of (i), (iv), and (v) is new and is contained in [37]. The necessity of P-
condition (3.48) (see also Lemma 3.44) is established in [24]. Regarding the
nonnegativity for separated endpoints in Theorem 3.43, (i)<(ii) is from [16],
and (i)<(iii) is new and it is contained in [39]. Regarding the nonnegativity
for general endpoints, Theorem 3.49 is new. More precisely, the equivalence
of (i) and (ii) is in [37] and the equivalence of (i) and (iii) is in [39].

The comparisons of implicit Riccati equations in Theorems 3.54, 3.55
are new, some parts are in [39]. The equivalences for perturbed quadratic
functionals in Theorem 3.58 as well as Theorems 3.59, 3.64, 3.65, 3.70, 3.71
are new.

3.6 Perspectives

Some of our new results for discrete symplectic systems have already been
generalized to time scales. For example, Riccati inequality (3.4) and some of
the perturbations in Theorem 3.58 are derived in [44] and [38] for time scale
symplectic systems, respectively. We believe that also the other new results
can be extended to such systems, which would lead to new results even for
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continuous time linear Hamiltonian systems.
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