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Abstrakt / Abstract

Abstrakt: Se studiem zobecněných planárńıch křivek a planárńıch
zobrazeńı jsme začali motivováni souvislostmi mezi projektivńı a skoro
kvaternionovou geometríı. Zač́ınáme t́ım, že uvád́ıme přehled a obecné
definice tak zvaných A–struktur, kde A je lineárńı obal daných afinor̊u,
tedy zpracováváme a rozšǐrujeme klasickou teorii planárńıch křivek a
planárńıch zobrazeńı v jej́ı obecnosti. Dále využ́ıváme dopad obecných
výsledk̊u na skoro kvaternionovou geometrii, kterou můžeme prezen-
tovat z hlediska teorie parabolických geometŕı a můžeme specifikovat
koncept zobecněné planarity i v tomto př́ıpadě. Konkrétně ukážeme
že přirozeně definovaná tř́ıda H–planárńıch křivek je shodná s tř́ıdou
geodetik všech Weylových konex́ı a zachováńı této tř́ıdy se ukazuje být
nutnou i postačuj́ıćı podmı́nkou pro morfismy skoro kvaternionové ge-
ometrie. Hlavńı výsledky byly publikovány v [HS]

Abstract: Motivated by the analogies between the projective and
the almost quaternionic geometries, we first study the generalized pla-
nar curves and mappings. We start to present an abstract and general
definition of the so called A–structures, where A is the linear span of
the given affinors, hence recover and extend the classical theory of pla-
nar curves in this general setup. Then we exploit the impact of the
general results in the almost quaternionic geometry. We shall present
the almost quaternionic structures from the viewpoint of the theory of
parabolic geometries and we shall specify the classical generalizations
of the concept of the planarity of curves to this case. In particular, we
show, that the natural class of H–planar curves coincides with the class
of all geodesics of the so called Weyl connections and preserving this
class turns out to be the necessary and sufficient condition on diffeo-
morphisms to become morphisms of almost quaternionic geometries.
The main results have been published in [HS].

c© Jaroslav Hrdina, Masaryk University, 2007
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1. Introduction

One of the basic ideas in differential geometry is the idea of geodetics
(for detailed exposition see e.g. [KMS], [KONO], [Mich]). On a smooth
manifold M equipped with a linear connection ∇, geodetics is a param-
eterized curve C ⊂ M whose tangent vector field is parallel along the
curve itself. If we parameterize the curve arbitrarily, the condition on
the parallel tangent vector field for another suitable parametrization
reads ∇ċċ ∈ 〈ċ〉. Intuitively, we may say that a geodetic curve is a tra-
jectory which is ‘straight’ and with ‘constant velocity’. In the case of
Riemanian geometry (M, g), this idea is very illustrative. There exists
a distinguished connection without torsion which is called the Levi–
Civita connection. Its geodetics are exactly the curves connecting two
arbitrary points by the shortest curve (with respect to the Riemanian
metric g). This connection is directly determined by the chosen met-
ric g. Morphisms which preserve the geodetics (as unparameterized
curves) are called geodesical mappings and they are not isometries in
general. Let us remind that morphisms preserving geodetics of a linear
connection ∇ are morphisms of the corresponding projective structure.

Our goal is to discuss similar relation between classes of curves and
geometries for other structures. In fact, we want to find the class
of curves which exactly determine morphisms of our structure. The
fact that there is a connection without torsion is exceptional and it
does not have to exist for our structures. An elegant solution exits for
Cartan geometries (for detailed exposition see [ČS],[ČS-03]). There is
a canonical class of distinguished connection for each Cartan geometry.
Driven by the analogy to conformal Riemanian geometries, we call them
Weyl connections. The general theory of parabolic geometries offers a
simple description of the deformation of the covariant derivatives in
the canonical class. It makes sense to talk about their geodesics. This
text wants to resolve some of their properties for a concrete geometric
structure, the almost quaternionic geometries.

Let us also note, that there is a narrower class of curves which are
called the generalized geodetics and which are geodetics of the so called
normal Weyl connections.

An almost quaternionic geometry is a real smooth manifold M of
dimension 4n equipped with rank three subbundle Q ⊂ TM ⊗ T ⋆M
which is locally generated by tensors I, J , IJ of type (1, 1) (com-
pare with [S], [J]). The tensors I, J , IJ replace the multiplication by
imaginary quaternions i, j, k. Let us notice that an almost complex
structure is a real manifold N of dimension 2n equipped with a ten-
sor I of type (1, 1) representing the multiplication by the imaginary
complex unit i. We shall present the almost quaternionic structures
from the viewpoint of the theory of parabolic geometries and we shall
specify the classical generalizations of the concept of the planarity of
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curves to this case. It turns out that the class of all such curves, the so
called Q–planar curves, exhausts exactly the geodesics of all the Weyl
connections. The main result of this work is the proof that isomor-
phisms of almost quaternionic geometries are just the diffeomorphisms
which preserve the class of (unparameterized) Q–planar curves. This
remarkable behavior corresponds nicely to the well known fact that
the homogeneous model of the almost quaternionic geometries is the
quaternionic projective space and so the similarity to the projective
geometries is not that surprising.

On the way to this result, we follow the classical planarity con-
cept with respect to several affinors F1, . . . , Fi, i.e. tensors of type
(1, 1). The idea is that the covariant derivative of the tangent vec-
tor ċ in the direction of the curve always belongs to the vector space
〈F1(ċ), . . . , Fi(ċ)〉. We present an abstract and general definition of the
so called A–structures, where A is the linear span of the given affinors,
and recover the classical theory of planar curves in this general setup.
This is the contents of Chapter 4.

As we have seen, the almost quaternionic geometries represent a
special example of such A–structures and the general results of Chapter
4 lead quickly to the proof of the main result mentioned above.

Generally, it is possible to read each chapter separately, following
the references to other parts, if necessary.

The main line of our exposition starts in Chapter 3 which reviews
the almost quaternionic geometry as an particular example of parabolic
geometries. We first remind some basic notions and facts and then our
main results are formulated.

The fourth chapter begins with a small introduction to the con-
cept and history of planar morphism and continues with definition of
A–structures. We recover and generalize the approach by Mikes and
Sinjukov, see [MS] and the references therein. Our general results are
applicable to a quite wide class of structures satisfying some generic
rank conditions on the affinors.

The first chapter enhances our exposition by a gallery of geometries
related to the almost quaternionic ones and it may serve as an intro-
duction to the main topics of the dissertation for those coming from
the classical theory of geometric structures rather than the parabolic
geometry. In particular, we provide a quick link to the theory of G-
structures and some related concepts.

The main results of this dissertation have been published in [HS].
Acknowledgments. I would like to thank to my supervisor Jan

Slovák for his leasing in the topic and all discussions. I would also like
to thank to Josef Mikeš for numerous discussions. I have learned most
of the topics from the forthcoming monography [ČS] by Andreas Čap
and Jan Slovák, as well as discussions with many nice colleagues, on
the Central European seminar in Brno, Andreas Čap, Vojtěch Žádńık,
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Josef Šilhan and Lenka Zalabová in particular. The financial support
by the grant GACR 201/05/H005 has been essential too.

2. G–structures related to the quaternions

This chapter provides a quick introduction to G–structures, their
connections and prolongations. A more detailed study of several basic
examples of G–structures related to quaternions can be found also in
this chapter. The concept of quaternionic–like geometries has been
discussed by Dmitri Alekseevsky and S. Marchiafava (compare with
paper [AM96]). The main observation is that it makes sense to talk
about Q–planar curves for quaternionic–like geometries (compare with
remark 2.42). The concept of Q–planar curves was first discussed by
Shigeyoski Fujimura (see [Fujimura77]).

2.1. Connections and prolongation of G–structures. First order
G–structures are the simplest examples of geometric structures. The
definitions below appear in all standard textbooks on geometric struc-
tures, see for example the book [KO].

2.2. Definition. Let M be a smooth manifold of dimension n and let
P 1M be the bundle of linear frames over M . The bundle P 1M is a
principal bundle over M with the structure group GL(n,R). Let G be
a closed subgroup of GL(n,R). The reduction P → P 1M of the bundle
P 1M to the subgroup G ⊂ GL(n,R) is called G–structure.

The following theorem shows a geometric way how such structures
arise.

2.3. Theorem ([KO]). Let M be a smooth manifold of dimension n.
Let K be a tensor field over the vector space Rn and G ⊂ GL(n,R) be
a group of linear transformations Rn leaving K invariant. Let P →M
be G–structure with structure group G and K the tensor filed on M
defined by K and P . Then

(1) A diffeomorphism f : M → M is an automorphism of the G–
structure P →M if and only if f leaves K invariant.

(2) A vector field X is an infinitesimal automorphism of the G–
structure P → M if and only if LXK = 0, where LX denotes
the Lie derivation with respect to X.

2.4. Definition. Let M be a smooth manifold of dimension n and let
Rn be the vector space of the same dimension. The soldering form
θ ∈ Ω1(P 1M,Rn) is defined in the following way. For each u ∈ P 1M
(where u is viewed as a linear isomorphism u : Rn → TxM),

θu(ξ) := u−1(Tuπ · ξ),

where π : P 1M → M (Tuπ · ξ ∈ Tπ(u)M), x = π(u) and ξ ∈ TuP
1M .
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By construction, the soldering form θ is G–equivariant with respect
to the standard action of GL(n,R) on Rn and it is strictly horizontal,
i.e.:

(rg)⋆θ = ℓg−1 ◦ θ for g ∈ GL(n,R)

θ(ξ) = 0 if and only if ξ is vertical.

In fact, the principal bundle π : P → M with a structure group G
equipped with a Rn–valued G–equivariant strictly horizontal 1–form
θ : TP → Rn is a G–structure on a manifold M .

The form θ induces an identification of P with a principalG–subbundle
of the frame bundle P 1M in the following way. For any p ∈ P there is
an isomorphism

p̄ : Tπ(p)M → R
n

induced by θ so that

p̄ ◦ Tπ = θp.

The map p 7→ p̄ defines this identification.

2.5. Example. Let M be a smooth manifold of dimension 2n. Let
I : TM → TM be a morphism satisfying I2 = −id. Then GL(n,C) =
{A ∈ GL(2n,R)|AI = IA} ⊂ GL(2n,R) is a real Lie group. The G–
structure (see definition 2.2) with structure group GL(n,C) is called
almost complex structure.

We also use the term G–structures with structure group G more gen-
erally. In this case the structure group G is not a closed subgroup of
GL(n,R) but a covering of a virtual subgroup, i.e. there is a homo-
morphism j : G → GL(n,R) such that the derivative j′ : g → gl(n,R)
is injective. A well known example is a Rieamannian spin structure,
corresponding to the universal covering Spin(n) → SO(n) ⊂ GL(n,R).

2.6. Definition. Let π : P →M be a principal bundle with the struc-
ture group G. The bundle V P → M is obtained by composing the
bundle Ker(Tπ) : TP → TM with the tangent bundle π : TM → M .
This bundle is called vertical subbundle. A general connection on P is
a projection Ψ : TP → V P , viewed as 1–form Ψ ∈ Ω(P, TP ). The
subbundle H := ker Ψ is called horizontal subbundle. A general con-
nection Ψ is called principal connection if this is G–equivariant for the
principal right action r : P ×G→ P , i.e. T (rg) · Ψ = Ψ · T (rg).

There are three equivalent ways to view this:

• We have TP = V P ⊕H and this decomposition can be equiv-
alently described by the smooth vertical G–equivariant projec-
tion Ψ : TP → V P with kernel H (or horizontal projection
χ = idTP − Ψ).

• We can consider the induced horizontal right invariant lift ξhor ∈
X(P ) of vector fields ξ ∈ X(M), (rg)⋆ξhor = ξhor, for all g ∈ G.
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It is the unique projectable vector field lying over ξ whose value
in each point is horizontal.

• We view the connection as the unique G–equivariant one jet of
a section s : M → P , such that the horizontal lift TxM → TyP ,
where π(y) = x is given by Txs (i.e.: section of the first jet
prolongation J1P → P ).

There is the canonical isomorphism ip : VpP → g whose inverse is
given by

(1) g ∋ X 7→ ζX(p) =
d

dt
(exp(tX) · p)|t=0 ∈ VpP.

The vertical bundle V P is trivialized as a vector bundle over P by
the principal action. So

(2) ζω(Xp)(u) = Ψ(Xp)

and in this way we get a G–equivariant g–valued 1–form ω ∈ Ω(P, g),
which is called connection form of the principal connection Ψ.

2.7. Definition. Let V be a vector space of dimension n, let G be a
subgroup of Lie group of linear transformations of V and let g be the
Lie algebra of G. The first prolongation g(1) of a Lie algebra g is the
space of all symmetric bilinear mappings t : V × V → V such that, for
each fixed v1 ∈ V, the mapping v ∈ V 7→ t(v, v1) ∈ V is contained in g.

For later use, the vector space V is equal to a vector space Rn.

2.8. Example. An almost complex structure (M, I) (see the example
2.5) is a G–structure with structure group GL(n,C). The Lie algebra
gl(n,C) = {A ∈ gl(2n,R)|AI = IA} is the Lie algebra of Lie group
GL(n,C). The first prolongation gl(n,C)(1) is the space of symmetric
bilinear mappings preserving I

gl(n,C)(1) = {t|t : V×V → V, t(IX, Y ) = It(X, Y ), t(Y,X) = t(X, Y )}.

2.9. First prolongation of G–structure. Our goal is to define a
principal bundle whose sections are connections on a G–structure with
a special torsion. The first step will be to construct a principal bundle
whose sections are all connections of a G–structure. This bundle is
called a derivation of G–structure. The second step will be to construct
a torsion tensor and a subbundle of the derivation of G–structure which
includes only connections with special torsion. This subbundle is called
a first prolongation of G–structure. We follow the paper [AM96], which
contains the results from our paragraphs 2.10, 2.13, and 2.15. The
paper also contains several our definitions (includes in particular the
definition of quaternionic–like structures) and the paragraph 2.38.

Every connection is described as a smooth horizontal subspace H(p),
for any p ∈ P . The choice of a G–equivariant extension ωp : TpP → g

of the isomorphism ip (see (1)) is the same as the choice of the kernel of
ω (H(p) = kerω(p)), i.e. there is a one to one correspondence between
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connections on G–structure and G–equivariant forms ω : TP → g

which are equal on VpP (the G–equivariant property cames from the
definition of connection on a G–structure). On the other hand, restric-
tion of the soldering form θ to a horizontal subspace H(p) defines an
isomorphism

θH : H(p) → V.

Together, we can associate horizontal space H(p) (i.e. connection)
with an isomorphism

H̄(p) = θH ⊕ ip : TpP = H(p) ⊕ VpP → V̄ = V + g.

The linear group Ḡ = Hom(V, g) ⊂ GL(V̄) acts linearly on the
vector space V̄ so that

Ḡ ∋ B : (v + A) 7→ v + (A+B(v)), v ∈ V, A ∈ g.

If P̄ is the bundle of all linear connections on M then P̄ is the bundle
of all horizontal subspaces, i.e. manifold of all functions H̄(p) : TpP →
V⊕g with the properties and the action of Ḡ on P̄ defined above. There
is an orbit space P̄ /Ḡ = P and the natural projection π̄ : P̄ → P is a
principal Ḡ–bundle. The soldering form on P̄ is

θ̄H = H̄(p) ◦ π̄⋆ = (θH + ip) ◦ π̄⋆,

where H ∈ P̄ , p = π̄(H) ∈ P .

2.10. Theorem. Let π : P → M be a G–structure with a canonical
form θ : TP → V. Then the bundle π̄ : P̄ → P of 1–jets of section of π
is a Ḡ–structure with soldering form θ̄ : T P̄ → V̄ defined above where
Ḡ = Hom(V, g) ⊂ GL(V̄). The form θ̄ : T P̄ → V̄ is G–equivariant
with respect to the natural action of Ḡ on the manifold P̄ and on the
vector space V̄ = V + g. A connection on the G–structure π : P → M
may by identified with a G–equivariant section s : P ∋ p 7→ H(p) ∈ P̄
of the bundle π̄ : P̄ → P .

The principal bundle π : P̄ → P is equipped with a canonical form
with values in V̄ = V + g.

On the G–structure π̄ : P̄ → P with structure group Ḡ, there is the
canonical V ⊗ ∧2V⋆–valued torsion function:

T : P̄ → V ⊗ ∧2
V

⋆

which is given by

tH(u, v) = dθp(θ
−1
H u, θ−1

H v),

where H ∈ P̄ , u, v ∈ V, p = π̄(H) ∈ P, θH = θp|H.
This torsion function is equivariant with respect to the natural action

of the semidirect product G⋊ Ḡ, where the action of Ḡ on the vector
space V ⊗∧2V⋆ is given by

T 7→ T + ∂B,
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where B ∈ Ḡ and T ∈ V ⊗ ∧2V⋆. Here

(3) ∂ : Hom(V, g) ∋ Ḡ = g ⊗ V
⋆ → V ⊗ ∧2

V
⋆

is the Spencer operator of alternation.
Let sω : p→ H(p) be a section of the bundle π̄ : P̄ → P that defines

the connection ω. Torsion function of the connection ω is the function

tω := t ◦ sω : P → V ⊗ ∧2
V

⋆.

Clearly, any choice of a complement D of the image ∂(g ⊗ V⋆) in V ⊗
∧2V⋆, i.e.

(4) V ⊗ ∧2
V

⋆ = ∂(g ⊗ V
⋆) ⊕D,

as the required space for the torsion fixes the torsion completely. For
good reasons, the G–invariant complements D are required. We will
see that for any parabolic geometry there is such a complement, see
(22).

Let us write

P (1) := t−1(D) = {H ∈ P̄ , tω ∈ D}.

Then π(1) = π̄|P (1) : P (1) → P is a principal bundle with the structure
group.

G(1) = (g ⊗ V
⋆) ∩ (V ⊗ S2

V
⋆) ⊂ g ⊗ V

⋆ = Ḡ ⊂ GL(V̄).

2.11. Definition. Let π(1) : P (1) → P be the principal bundle with
structure group G(1) constructed above. This bundle together with
the V̄–valued 1–form θ(1) = θ̄|P (1) is called the first prolongation of the
G–structure.

2.12. Definition. Let π : P →M be a G–structure and let D be a G–
invariant subspace introduced in (2.9). A connection ω on P is called
a D–connection if its torsion function

tω = t ◦ sω : P → V ⊗∧2
V

⋆ = ∂(g ⊗ V
⋆) ⊕D

takes values in D.

2.13. Theorem ([AM96]). (1) Any G–structure π : P →M with a
fixed G–equivariant subspace D as in (4) admits a D–connection
ω.

(2) Let ω, ω̄, be two D–connections on M . Then the corresponding
covariant derivatives ∇, ∇̄ are related by

∇̄ = ∇ + S,

where S is a symmetric tensor field of type (2, 1), such that for

any x ∈ M , the tensor Sx belongs to the first prolongation g
(1)
x

of the Lie algebra gx ⊂ gl(TxM).
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2.14. Remark. A detailed study of the prolongation theory of higher
order G–structures on manifolds can be found in [K71],[K74], or [K75].
Kolář defined generalized G–structures, as well as semi–holonomic and
holonomic prolongations of generalized G–structures and related iter-
ated differentials.

2.15. Corollary. Let π : P →M be a G–structure with structure group
G, such that the first prolongation of its algebra vanishes, i.e. g(1) = 0,
and suppose that there is given a G–equivariant decomposition with
respect to structure group G

V ⊗∧2
V = ∂(g ⊗ V

⋆) ⊕D.

Then there is an unique connection whose torsion tensor (calculated
with respect to a frame p ∈ P ) takes values in D ⊂ V ⊗ ∧2V⋆.

Most of the structures related to quaternions satisfy the assumptions
of the latter corollary, see below. The first prolongation of an almost
complex structure from example 2.5 is not trivial, because g(1) 6= 0 in
this case (see example 2.8).

2.16. Quaternionic numbers. The quaternionic–like geometry is ge-
ometry based on quaternions. The descriptions of all these geometries
are given in [AM96].

Quaternionic numbers H = C⊕Cj are extension of complex numbers
C, in the same way as complex numbers C = R⊕Ri are a generalization
of real numbers R. Together it is described as H = R⊕Ri⊕Rj ⊕Rij.
Usually the number ij is denoted by k and

H = {x = a + bi+ cj + dk | a, b, c, d ∈ R},

where i2 = j2 = k2 = −1, ij = k = −ji.
In this notation we have x̄ = a− bi− bj − ck, |x|2 = a2 + b2 + c2 +d2,

and |x| = xx̄, Re(x) = x+x̄
2

, Im(x) = x−x̄
2

.
Let us notice that in the previous section we introduced an almost

complex structure as a G–structure (see example 2.5) and in the sense
of theorem 2.3, there is tensor field I of type (1, 1) on an almost complex
structure.

2.17. Definition. Let V be a real vector space of dimension 4n. A
pair (I, J) of anti–commuting complex structures on V (IJ + JI = 0)
is called hypercomplex structure.

2.18. Lemma. The following three definitions of hypercomplex struc-
ture are equivalent,

(1) A pair (I, J) such that IJ + JI = 0, I2 = J2 = −E.
(2) A triple (I, J,K) such that K = IJ , IJ = −JI, IK = −KI,

JK = −KJ , I2 = J2 = K2 = −E.
(3) A triple (I, J,K) such that K = IJ and (IJK) = 0, where ()

is symmetrization.
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Proof. (1) ⇔ (2). By definition of (1) and (2) it suffices to prove only
the implication (1) ⇒ (2). Consider complex structures I, J from (1)
and denote K = IJ . A short computation shows:

KK = IJIJ = −IJJI = II = −E, IK = IIJ = −J

JK = JIJ = −IJJ = I,KI = IJI = −IIJ = JKJ = IJJ = −I.

(2) ⇒ (3). Consider complex structures I, J , K from (2) and sub-
stitute K = IJ . We get

IJK + IKJ + JIK + JKI +KIJ +KJI = 0.

(3) ⇔ (1). Consider complex structures I, J , K from (3). Thus
(IJK) = 0, i.e.

KIJ +KJI + IJK + IKJ + JIK + JKI = 0

and since K = IJ, J = −IK, KJ = −IJJ = I we get

0 = −E+KJI−E+E+E+JKI = KJI+JKI = (KJ+JK)I = 0,

i.e. KJ = −JK and IJ = KJJ = −JKJ = −JI. �

The second property from lemma 2.18 above is used as a definition of
hypercomplex structure in many papers ([J], [MNP]) because it shows
a similarity with quaternionic numbers. We prefer the first definition,
because this is the simplest one.

2.19. Definition. Let V be a real vector space of dimension 4n and
let a pair (I, J) be a hypercomplex structure. We define the subset
Q(I, J) ⊂ Aut(V)

(5) Q(I, J) := {aI + bJ + cIJ | a, b, c ∈ R, a2 + b2 + c2 = 1}.

The next lemma shows a geometrical meaning of our notation.

2.20. Lemma. Let V be a real vector space of dimension 4n and let us
choose a hypercomplex structure (I, J), K := IJ . If we consider a new
hypercomplex structures Ī , J̄ ∈ 〈E, I, J,K〉, K̄ = Ī J̄ then Ī , J̄ , K̄ ∈
Q(I, J).

Proof. Consider hypercomplex structure

Ī = a0 + a1I + a2J + a3K,

J̄ = b0 + b1I + b2J + b3K,

K̄ = c0 + c1I + c2J + c3K.

If we compute the coefficient of I, J , K in Ī J̄ = −J̄ Ī, than we get

a0b1 = −b0a1,(6)

a0b2 = −b0a2,(7)

a0b3 = −b0a3,(8)
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and if we compose coefficients of the constant than we get

a0b0 − a1b1 − a2b2 − a3b3 = 0.(9)

Supposing that b0 6= 0 we can express the coefficients a1, a2, a3 from
(6), (7), and (8) and thus after evaluation in (9) and computation we
get

a0b
2
0 + a0b

2
1 + a0b

2
2 + a0b

2
3 = 0.

If a0 6= 0 we will get the equations

b20 + b21 + b22 + b23 = 0

and this is contradiction with J̄ 6= 0.
If a0 = 0 we will get the equations b0a1 = 0, b0a2 = 0, b0a3 = 0, and

a1 = a2 = a3 = 0 because of b0 6= 0. This is contradiction with Ī 6= 0
We obtain b0 = 0 and if we use the relation J̄2 = −b21−b

2
2−b

2
3 = −id

we will get, that the coefficients b1, b2, b3 belong to the unit sphere in
R3. �

For better understanding, we describe the hypercomplex structures
with the help of real matrices. In suitable real coordinates, the affinors
I, J , K can be nicely described as real 4n× 4n matrices:

I =





0 −E 0 0
E 0 0 0
0 0 0 −E
0 0 E 0



J =





0 0 −E 0
0 0 0 E
E 0 0 0
0 −E 0 0





K =





0 0 0 −E
0 0 −E 0
0 E 0 0
E 0 0 0



 ,

where E denotes the identity real (n, n)–matrix.
The structure group of a hypercomplex structureGL(n,H) ⊂ GL(4n,R)

consists of matrices:

GL(n,H) :=










a b c d
−b a −d c
−c d a −b
−d −c b a





∣∣∣∣∣ a, b, c, d ∈ Matn(R)





.

2.21. Remarks. 1. Let I be a complex structure. Any nonzero vector
X ∈ V and its image I(X) are linearly independent. Let us assume
X = b · I(X). If we apply the operator I then we get IX = −bX and
direct computations gives

X = bIX = −b2X

b2 = −1.

This is contradiction with the fact that b ∈ R.
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2. Let (I, J) be a hypercomplex structure, K = IJ . We shall ob-
serve that any nonzero X ∈ V the dimension of the real vector space
〈X, IX, JX,KX〉 equals to four. Indeed, let us consider X ∈ V such
that dim〈X, IX, JX,KX〉 < 4. There are a, b, c, d ∈ R such that:

aX + bIX + cJX + dKX = 0

and multiplying by E, I, J , K we get 4 equations:

aX + bIX + cJX + dKX = 0

−bX + aIX − dJX + cKX = 0

−cX + dIX + aJX − bKX = 0

−dX − cIX + bJX + aKX = 0

The determinant of the following matrix has to be zero and short com-
putation shows that there is only one possibility a = b = c = d = 0
and for any X ∈ TM , dim〈X, IX, JX,KX〉 = 4.

∣∣∣∣∣∣∣∣

a b c d
−b a −d c
−c d a −b
−d −c b a

∣∣∣∣∣∣∣∣
=

= a4 + a2c2 + a2b2 + a2d2 + b2a2 + b2c2 + b2a2 + b4 + c4+

+c2d2 + c2a2 + c2b2 + b2d2 + d2c2 + d2c2 + d4.

2.22. Definition. Let V be a vector space of dimension 4n. A 3–
dimension subspace Q ⊂ Aut(V) generated by some hypercomplex
structure Q(I, J) = Q is called a quaternionic structure.

The difference between hypercomplex and quaternionic structure is
described as follows. Let a pair (I, J) be a hypercomplex structure. The
subsetQ(I, J) (see (5)) is the quaternionic structure, but a quaternionic
structure Q is not hypercomplex, because there is not the unique basis
of Q. This is similar to the relation between a Rieamannian and a
conformal structure.

2.23. Lemma. Let Q be a quaternionic structure. Let I, J ∈ Q ⊂
Aut(V) be a hypercomplex structure and let H ≃ GL(n,H) be the group
preserving I and J . Then H preserves all hypercomplex structures in
Q.

Proof. The group GL(n,H) is group preserving a hypercomplex struc-
ture I, J such that Q = Q(I, J). Consider a morphism A ∈ GL(n,H)

and assume that Ĩ = a0+a1I+a2J+a3K. A simple computation shows
that AĨ = A(a0 + a1I + a2J + a3K) = a0A+ a1AI + a2AJ + a3AK =
a0A + a1IA + a2JA + a3KA = (a0 + a1I + a2J + a3K)A = ĨA and

morphism preserving I, J preserves Ĩ, J̃ . �
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The class of morphisms of a quaternionic structure is bigger than
GL(n,H) because Q is invariant with respect to the right multiplication
by unit quaternions.

2.24. Definition. A bilinear form F ∈ Bil(V) is called Hermitian bi-
linear form with respect to a hypercomplex structure (I, J) or with
respect to a quaternionic structure Q if

F (IX, IY ) = F (X, Y )(10)

F (JX, JY ) = F (X, Y )(11)

or

(12) F (AX,AY ) = F (X, Y ), ∀A ∈ Q,

respectively.

The formula (12) is only reformulation of (10) and (11) for a structure
without fixed (I, J).

2.25. Definition. Let V be a vector space equipped with a quater-
nionic structure Q (or hypercomplex structure (I, J)) and let g be an
Euclidean metric on V. The triple (V, g, Q) (or (V, g, (I, J))) is called
Hermitian structure if and only if the bilinear form g is Hermitian with
respect to Q (or with respect to (I, J)).

2.26. Definition. Let V be a real vector space of dimension 4n, Q be
a quaternionic structure, (I, J) be a hypercomplex structure, g be a
bilinear Hermitian form with respect Q or (I, J) and (vol) be a volume
form invariant with respect to Q or (I, J).

• The pair (Q, vol), where (vol) is a volume form is called uni-
modular quaternionic structure.

• The pair ((I, J), vol)) is called unimodular hypercomplex struc-
ture.

• The pair (Q, g) is called a quaternionic Hermitian structure.
• The pair ((I, J), g) is called a hypercomplex Hermitian structure.

2.27. Quaternionic–like structures. All structures considered above
will be called quaternionic–like structures, again for more details see
the paper [AM96].

If S is a quaternionic–like structure we denote by Aut(S) the group
of all automorphisms of V which preserve S, where S is a quaternionic–
like structure. The algebra aut(S) is Lie algebra of Aut(S).



13

We have the following isomorphisms of quaternionic–like Lie groups
(for more details see [AM96]):

Aut(Q) = Sp(1)GL(n,H)

Aut(Q, vol) = Sp(1)SL(n,H)

Aut(Q, g) = Sp(1)Sp(n)

Aut((I, J,K)) = GL(n,H)

Aut((I, J,K), vol) = SL(n,H)

Aut((I, J,K), g) = Sp(n)

Collecting the information we obtain the following diagram which
describes the relations between the group Sp(1)GL(n,H) and its sub-
groups.

Sp(1)GL(n,H)

Sp(1)SL(n,H) GL(n,H)

Sp(1)Sp(n) SL(n,H)

Sp(n)

2.28. Lemma. The first prolongation of Lie algebras of quaternionic–
like structures is zero except of the quaternionic structure. The first
prolongation of a quaternionic structure is V⋆.

Proof. (1) The Lie algebra of the Lie groupGL(n,H)Sp(1) is gl(n,H)⊕
sp(1) and the first prolongation of gl(n,H)⊕ sp(1) is g(1) ∼= V⋆.
The identification V⋆ ∋ ξ 7→ Sξ ∈ g(1) is described as

(13) Sξ = 2Sym [ξ ⊗ 1 − (ξ ◦ I) ⊗ I − (ξ ◦ J) ⊗ J − (ξ ◦K) ⊗K] ,

where Sym is the operator of symmetrization. Let us note that
the contraction defines an isomorphism Tr : g(1) → V⋆,

Tr(Sξ) = 4(n+ 1)ξ.

For complete description and for more details see [AM96].
(2) The Lie algebra of the hypercomplex structure group GL(n,H)

is gl(n,H) = {A ∈ gl(n,R)|AI = IA,AJ = JA} and straight-
forward computation IJt(X, Y ) = It(JX, Y ) = t(JX, IY ) =
Jt(X, IY ) = JIt(X, Y ) = −IJt(X, Y ) shows that the first pro-
longation of this Lie algebra is zero.

(3) The vanishing condition for trace defines the reduction of the
Lie algebra of quaternionic structure to the lie algebra of uni-
modular quaternionic structure. The first prolongation of sl(n,H)⊕
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sp(1) is zero because there is no Sξ ∈ g(1), such that the trace
is zero because the property Tr(Sξ) = 4(n + 1)ξ = 0 implies
ξ = 0.

(4) For any subset of h ⊂ g it holds that h(1) ⊂ g(1).
�

2.29. Quaternionic–like structures on manifolds. Now, we intro-
duce the G–structures corresponding to the structures groups of the
structures in 2.27.

Choosing the necessary data in the individual tangent spaces of a
manifold M leads to reductions of the structures groups, as described
above. In particular, choosing a three–dimensional smooth subbundle
Q ⊂ TM ⊗ T ∗M yields an almost quaternionic manifold with the
structure group GL(n,H)Sp(1).

2.30. Examples. 1. A quaternionic Hermitian structure. The group
G := Sp(n+1) acts transitively on the Hn+1 and preserves quaternionic
lines (the group G acts transitively on PHn). Let e be the first vector
of standard basis:

e =

[
1
0n

]
∈ PH

n.

Let us compute the stabilizer of e. Consider a matrix satisfying:
(
a b
c d

) [
1
0n

]
=

[
1
0n

]
,

where a ∈ R, b ∈ R
n, c ∈ (Rn)⋆, d ∈ Matn(R). From this identity it

follows c = 0 and the matrix

(
a b
0 d

)
acts on the projective space. The

matrix above is element of Sp(n+ 1), i.e.
(
a b
0 d

) (
a⊺ 0
b⊺ d⊺

)
=

(
aa⊺ + bb⊺ bd⊺

db⊺ dd⊺

)
=

(
1 0
0 1

)
,

and this computation show that d ∈ Sp(n), a ∈ Sp(1), b = 0. The
stabilizer of a ray represented by e is

H := Ge =

{(
a 0
0 d

) ∣∣∣d ∈ Sp(n), a ∈ Sp(1)

}

and the homogeneous model is

Sp(n+ 1)

π

PHn ∼= Sp(n+ 1)/(Sp(n)Sp(1))
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2. An unimodular hypercomplex structure. The affine group

G :=

{(
1 0
c d

)∣∣∣ c ∈ H
n, d ∈ Sp(n)

}

acts transitively on Hn and stabilizer of

e =

(
1
0n

)
∈ H

n

consists of matrices

H := Ge =

{(
1 0
0 d

) ∣∣∣ d ∈ Sp(n)

}
∼= Sp(n)

and the homogeneous model is

G

π

H
n ∼= G/Sp(n)

We have seen that there is a homogeneous model for hypercomplex
Hermitian structure where Hn is the base. Similarly, we may construct
homogeneous models of all other quaternionic–like structures, except
the case of almost quaternionic manifolds which behaves completely dif-
ferent. One of the reasons is that the latter geometry is of second order
whereas all the remaining one are first order geometries. The homoge-
neous model for the almost quaternionic geometries is the quaternionic
projective space PHn = SL(n+ 1,H)/P , see the beginning of the next
chapter.
3. The quaternionic Iwasawa manifold. The numbers a, b, c ∈ H with
coefficients in Z, H = Z ⊕ IZ ⊕ JZ ⊕KZ ⊂ H are called Hamiltonian
integers. The quaternionic Iwasawa manifold is the homogeneous space
H

1,2/Π, where

H
1,2 =









1 a b
0 1 c
0 0 1




∣∣∣ a, b, c ∈ H






Π =









1 d e
0 1 f
0 0 1




∣∣∣d, e, f ∈ H




 .

Because open neighborhood of any point of Iwasawa manifold is dif-
feomorphic to H3 there are any quaternionic–like structures on Iwasawa
manifold.

2.31. Remark. For all quaternionic–like structures, there are distin-
guished G–invariant decompositions V ⊗ ∧2V⋆ = ∂(g ⊗ V⋆) ⊕ D with
respect to their structure groups G. This was proved in [AM96].
Quaternionic–like structures are all of first order, except of the almost
quaternionic one, i.e. there is a unique D–connection for all almost
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quaternionic–like structures except of an almost quaternionic one (see
2.15). We will get nice description of these connections in theorem
2.38.

2.32. The Obata and Oproiu connection. It is a very well known
fact that on a Riemanian manifold there is the unique torsion free
connection preserving the metric (for more details see [KMS], [Mich]).
This connection is called the Levi–Civita connection. On an almost
hypercomplex structure and on an almost quaternionic structure, there
are special connections too.

There are results about affine connections on almost hypercomplex
manifolds given by Morio Obata in the 50th of the twentieth cen-
tury. The original results on almost hypercomplex structures are in
[Obata56], [Obata57], and [Obata58] with slightly different terminol-
ogy used. Obata was using the term an ‘almost quaternionic geometry’
for what we call almost hypercomplex and the term almost quater-
nionic geometry was reserved for general structures. In his papers,
Obata introduced affine connection ∇(I,J) with special torsion on al-
most hypercomplex geometry. This connection was later called the
∇(I,J) connection (Obata connection).

For two given tensor field I and J of type (1, 1) on a differentiable
manifold the expression

[[I, J ]](X, Y ) = [IX, JY ] − I[X, JY ] − J [IX, Y ] + [JX, IY ]−

−J [X, IY ] − I[JX, Y ] + (IJ + JI)[X, Y ]

defines a tensor field [[I, J ]] of type (1, 2) and this tensor plays very im-
portant role in the discussion of the integrability of an almost complex
structure (I, J). We call [[I, J ]] the Nijenhuis bracket of I and J . If I
and J satisfy IJ + JI = 0, then the expression takes the form

[[I, J ]](X, Y ) = [IX, JY ] − I[X, JY ] − J [IX, Y ] + [JX, IY ]−

−J [X, IY ] − I[JX, Y ].

This tensor field of type (1, 2) depends I, J and partial derivatives of
I, J of the first order.

2.33. Lemma ([YA]). Let (I, J) be a pair of almost complex structures
on a smooth manifold M and K = IJ . All following Nijenhus brackets
vanish if and only if any two of them vanish:

[[I, I]], [[J, J ]], [[K,K]], [[I, J ]], [[J,K]], [[K, I]].

The Nijenhuis bracket of an almost complex structure I is impor-
tant, because [[I, I]] = 0 is a necessary and sufficient condition for the
integrability of I.

Next, we are going to discuss on the distinguished connections on
quaternionic–like structures.
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2.34. Definition. Let ∇ be an affine connection on a manifold M and
let (I, J) be an almost hypercomplex structure on M . If a covariant
derivative satisfies

(14) ∇I = 0,

(15) ∇J = 0,

and consequently ∇K = 0, then the connection ∇ is called (I, J)–
connection.

2.35. Definition. Let (I, J) be an almost hypercomplex structure. The
tensor

(16) T (I,J) =
1

12
([[I, I]] + [[J, J ]] + [[IJ, IJ ]])

is called the structure tensor of an almost hypercomplex structure.

2.36. Theorem ([Obata56]). For an almost hypercomplex structure
(I, J) there is a unique linear (I, J)–connection ∇(I,J) whose torsion
tensor equals T (I,J).

The connection ∇(I,J) is called Obata connection.

2.37. Theorem ([YA]). On a differentiable manifold with an almost
hypercomplex structure (I, J) there is the unique affine connection ∇
with torsion T (I,J) such that

(17) ∇XY =
1

2
IJ([IX, JY ] − I[X, JY ] − J [IX, Y ]) +

1

2
[X, Y ].

All invariants of the Obata connection ∇(I,J) are invariants of the
almost hypercomplex structure (I, J).

2.38. Remark. The D–connections ∇S of quaternionic–like structure

S = (H, vol), (Q, vol), (H, g), (Q, q)

are uniquely given by

(1) ∇
((I,J,K),vol)
X = ∇

(I,J,K)
X +(1

4
)ω(X)Id, where ∇

(I,J,K)
X vol = ω(X)vol.

(2) ∇
(Q,vol)
X = ∇

(I,J,K)
X +

∑
L∈{I,J,K} τ

(I,J,K)
L (X)L+[1

4
(n+1)](Sω(I,J,K))X ,

where H = (I, J, IJ) is a admissible basis of Q and the local
1–forms τH

L are defined by (19).

(3) ∇((I,J,K),g) = ∇(I,J,K) + A, where A = (1
2
)g−1∇

(I,J,K)
X g.

(4) ∇
(Q,g)
X = ∇

((I,J,K),g)
X +

∑
L∈{I,J,K} τ

(I,J,K)
L (X)L+ [1

8
(n+ 1)][Sω

X −

Sg◦X
g−1ω

].

2.39. Definition. Let Q be an almost quaternionic geometry on a
manifold M . The tensor

(18) TQ = T (I,J) + ∂(τ
(I,J)
I ⊗ I) + ∂(τ

(I,J)
J ⊗ J) + ∂(τ

(I,J)
(IJ) ⊗ IJ)
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is called a structure tensor of an almost quaternionic structure Q where
∂ is the operator of alternation (2.9), (I, J, IJ) is a local basis of Q and

(19) τ
(I,J)
Z =

1

4n− 2
tr(ZT (I,J))

is a structure 1–form on (I, J) .

The tensor TQ does not depend on the base of Q.

2.40. Definition. Let M be real smooth manifold of dimension 4n
and let Q ⊂ End(TM ⊗ T ⋆M) be an almost quaternionic structure. A
linear connection ∇ in M is called a Q–connection if for each section
ψ of Q, the covariant derivative ∇Xψ is also a section of Q, where X
is an arbitrary vector field on M .

On a differentiable manifold with an almost quaternionic structure
Q there always exists a Q–connection ∇ with torsion TQ.

Now we will show that using D–connections one gets a nice descrip-
tion of connection on almost quaternionic–like geometries. We still
follow the paper [AM96].

For an almost quaternionic structure there is uniquely defined com-
plementary GL(n,H)Sp(1)–module D, such that

(20) V ⊗ ∧2V ⋆ = ∂(gl(n,H) + sp) ⊕D.

Note that TQ ∈ D. Hence the concept of D–connections is well
defined, but since

(gl(n,H) + sp1)
(1) = V ⋆,

the D–connection is not unique (compare with [AM96]).
Generally, any two D–connections ∇, ∇̄ are related by symmetric

tensor Sξ such that ∇̄ = ∇ + Sξ, where ξ ∈ T ⋆
xM and Sξ ∈ g(1). The

symmetric tensor Sξ is defined in (13).

2.41. Definition. Let M be real smooth manifold of dimension 4n,
let Q be and almost quaternionic structure and let ∇ be any linear
connection on M . A curve C on (M,Q,∇) is called Q–planar if there
is trajectory c = c(t), such that the property ∇ċċ ∈ 〈ċ, I(ċ), J(ċ), K(ċ)〉
holds.

2.42. Remarks. 1. We should like also to remark at this point
that the term Q–planar curves makes sense for any quaternionic–like
geometry, because the property ofQ–planarity does not depend of basis
(I, J,K) of Q.
2. In the chapter three we will see that morphisms preserving Q–planar
curves are exactly morphisms of the almost quaternionic geometries.
3. On each almost quaternionic–like structures except an almost

quaternionic structure, there is the unique D–connection. At the same
time, each such structure induces the almost quaternionic structure by
the obvious extension of the structure group. We will see later that
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any morphism preserving Q–planar curves of the unique D–connection
of any quaternionic–like structure is a morphism of the induced almost
quaternionic structure.
4. The point of view we taken in this chapter was that the D–

connections are useful for a description of the geometry of an almost
quaternionic structure. The important fact that on an almost quater-
nionic structure there is the G–invariant decomposition V ⊗ ∧2V =
∂(g ⊗ V⋆) ⊕D is not obvious. A straightforward computation is given
in [AM96]. We shall use a different conceptual approach, namely the
general theory of parabolic geometries and the so called Weyl connec-
tions, see below.

3. Almost quaternionic geometries

Throughout this chapter, we describe an almost quaternionic geom-
etry as a parabolic geometry and we prove all facts about Q–planar
curves by technique of Weyl connections. The parabolic geometry is a
Cartan geometry of type (G,P ), where P ⊂ G is a parabolic subgroup.
Cartan generalized spaces are curved analogs of the homogenous spaces
G/H defined by means of an absolute parallelism on a principal H–
bundle. We follow the book [ČS].

3.1. Definition. Let H ⊂ G be a Lie subgroup in a Lie group G,
and g be the Lie algebra of G. A Cartan geometry of type (G,H) on a
manifold M is a principal fiber bundle p : G →M with structure group
H which is endowed with a g–valued one–form ω ∈ Ω1(G, g), called the
Cartan connection such that:

(1) ω is H–equivariant, i.e. (rh)∗ω = Adh−1 ◦ω for all h ∈ H .
(2) ω reproduces the fundamental vector fields, i.e. ω(ζX(u)) = X

for all X ∈ h.
(3) ω is an absolute parallelism, i.e. ω|TuG : TuG → g is a linear

isomorphism for each u ∈ G.

The homogenous model for Cartan geometries of type (G,H) is the
canonical bundle p : G → G/H endowed with the left Maurer–Cartan
form ω ∈ Ω1(G, g). The Cartan geometry is called split if and only
if there is a Lie subalgebra g− ⊂ g which is complementary to h as
a vector space, i.e. such that g = g− ⊕ h as a vector space. The
Cartan geometry is called reductive if and only if there is a H–invariant
subspace n ⊂ g which is complementary to h, i.e. such that g = n⊕h as
a H–module. On a reductive homogenous space, the Maurer–Cartan
form is a sum of a principal connection form and soldering form. In
particular, the linear connections on manifolds appear in this setting
as the curved version of the affine space.

Given a Cartan geometry (G → M,ω) there are the constant vector
fields ω−1(X) ∈ X(G) defined for all X ∈ g by ω(ω−1(X)(u)) = X for
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all u ∈ G. By equivariancy of ω we get

ω−1(X)(u · g) = Trg · ω−1(Ad(g) ·X)(u).

In the case of the homogenous model, the constant vector field
ω−1(X) is the left invariant field LX by definition of the Maurer–Cartan
form.

3.2. Example. Affine almost hypercomplex n–dimensional space An
H
.

Let A(n,H) be the group of affine motions

x 7→ Ax+ b for A ∈ Gl(n,H), b ∈ H
n.

Viewing An
H

as the affine hyperplane x1 = 1 in Hn+1 the affine mo-
tions are exactly the subgroup of GL(n + 1,H) which map this affine
hyperplane to itself, i.e.

A(n,H) =

{(
1 0
b A

)∣∣∣A ∈ GL(n,H), b ∈ H
n

}
⊂ GL(n + 1,H).

On the Lie algebra level, we get

a(n,H) =

{(
0 0
X B

) ∣∣∣B ∈ gl(n,H), X ∈ H
n

}
.

Natural projection

A(n,H)

π

Hn ∼= A(n,H)/GL(n,H)

is a principal bundle with structure group GL(n,H) and with induced
Maurer–Cartan form ω ∈ Ω1(A(n,H), a(n,H)). Now we may split
ω = θ+ γ according to the splitting a(n,H) = Hn ⊕ gl(n,H) and since
this splitting is GL(n,H)–equivariant, both θ and γ are GL(n,H)–
equivariant.

Now we can view affine hypercomplex space as smooth manifold
equipped with a Cartan connection.

Further, we want to understand the almost quaternionic structure
as a homogeneous space. The almost quaternionic structure is a G–
structure with the structure group

G0 := GL(n,H)Sp(1) := GL(n,H) ×Z2 Sp(1),

see e.g. [S].
The group G = SL(n + 1,H) acts transitively on the Hn+1 and of

course, this actions descends to the action on the points in quaternionic
projective space. Hence the group G = SL(n + 1,H) acts transitively
on PHn. The stabilizer of

e =

[
1
0n

]
∈ PH

n
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is a 4(n+ 1) × 4(n+ 1) matrix which preserves e, i.e.
(
a b
c d

) [
1
0n

]
=

[
1
0n

]
.

From this identity it follows c = 0 and the matrix

(
a b
0 d

)
acts on the

projective space. The stabilizer of a ray represented by e is

H := Ge =

{(
a b
0 d

) ∣∣∣
(
a 0
0 d

)
∈ GL(n,H)Sp(1), b ∈ (Hn)⋆

}

and the homogeneous model is

SL(n + 1,H)

π

PH
n ∼= SL(n + 1,H)/(GL(n,H)Sp(1) ⋊ ((Hn)⋆))

Of course, G0 is exactly the subgroup fixing the origin and mapping
infinite points to infinite points.

The Lie algebra

g =

{(
a−Re(tr(A)) Z

X A

) ∣∣∣A ∈ gl(n,H), X, ZT ∈ H
n, a ∈ Im(H)

}

is naturally split into the sum g = n ⊕ h, where

n =

{(
0 0
X 0

) ∣∣∣X ∈ H
n

}
,

h =

{(
a−Re(tr(A)) Z

0 A

) ∣∣∣A ∈ gl(n,H), Z ∈ (Hn)⋆, a ∈ Im(H)

}
,

g ∼= sp(1) + gl(n,H).

The commutative subalgebra n is not H–invariant and there is no
H–invariant complementary subalgebra to h. Hence an almost quater-
nionic geometry is naturally split but not reductive.

3.3. Parabolic geometries. Parabolic geometries are defined as Car-
tan geometries of type (G,P ) for semisimple Lie group G and parabolic
subgroup P . The general idea of Cartan geometries is to model the in-
dividual tangent spaces by the Lie algebra g/p, i.e. the tangent space to
the homogeneous model in the origin inclusive its algebraic structure.
In the special case of the parabolic geometries, this amounts to special
understanding of the corresponding |k|–gradings of semisimple Lie al-
gebras. This in turn shows up as filtrations of the tangent bundles, as
we shall see below.

3.4. Definition. Filtered vector space is a vector space V together
with a sequence {Vi | i ∈ Z} of subspaces Vi+1 ⊂ Vi ⊂ V for i ∈ Z,
∪i∈ZVi = V, and ∩i∈ZVi = {0}. A filtration is called finite if 0 =
Vk+1 ⊂ Vk ⊂ Vk−1 ⊂ · · · ⊂ Vj+1 ⊂ Vj = V and all other V i are trivial



22

(i.e the whole space V or the zero subspace). All nontrivial subspaces
are assumed to be different.

From a filtration {Vi | i ∈ Z} of a vector space V, we construct
graded vector space gr(V) = ⊕i∈Zgri(V) by putting gri(V) := V

i/Vi+1

for all i ∈ Z which is called the associated graded vector space of a
filtered vector space V. In the case of finite filtration we obtain a finite
grading

gr(V) := grj(V) ⊕ · · · ⊕ grk(V).

In general, there is no natural extension of the canonical projections
Vi → gri(V) = Vi/Vi+1 to a linear isomorphism on V. Of course
one may construct such a linear isomorphism V → gr(V) by making
choices. Choosing some subspace Vi ⊂ Vi complementary to V i+1, for
each i ∈ Z the restriction of the canonical projection induces the linear
isomorphism Vi → gri(V).

3.5. Definition. A filtered vector bundle over a smooth manifoldM is a
smooth vector bundle p : E →M , together with a sequence {Ei |i ∈ Z}
of smooth subbundles such that there is i0 < j0 ∈ Z satisfying Ei = E,
for i ≤ i0 and Ei = M (i.e. the zero subbundle in E) for i > j0.

Given such a filtration of a bundle, we get the quotient bundles
gri(E) := Ei/Ei+1 and associated graded vector bundle

gr(E) =
⊕

i∈Z

gri(E).

3.6. Definition. A filtered Lie algebra is a Lie algebra (g, [, ]) together
with filtration {gi, i ∈ Z} on the vector space g such that for all i, j ∈ Z

we have [gi, gj] ⊂ gi+j . The associated graded Lie algebra gr(g) is
gr(g) =

⊕
i∈Z

gri(g), where gri(g) := gi/gi+1.

3.7. Definition. Let g be a semisimple Lie algebra and let k > 0 be
an integer. A |k|–grading on g is a decomposition g = g−k ⊕ · · · ⊕ gk

of g into a direct sum of subspaces, which defines a grading on g, i.e.
[gi, gj ] ⊂ gi+j, where we agree that gi = {0} for |i| > k, such that the
subalgebra g− := g−k ⊕ · · · ⊕ g−1 is generated by fg−1

By definition, if g = g−k ⊕ · · · ⊕ gk is a |k|–grading, then p :=
g0 ⊕ · · · ⊕ gk is a subalgebra of g, and p+ := g1 ⊕ · · ·⊕ gk is a nilpotent
ideal in p.

3.8. The group level. Let g = g−k⊕· · ·⊕gk be a |k|–graded semisim-
ple Lie algebra, and let G be a Lie group with Lie algebra g. We want
to associate to the |k|–grading subgroups G0 ⊂ P ⊂ G corresponding
to the Lie algebras g0 ⊂ p ⊂ g.

We define subgroups G0 ⊂ P ⊂ G by

G0 := {g ∈ G|Ad(g)(gi) ⊂ gi ∀i = −k . . . k}

P := {g ∈ G|Ad(g)(gi) ⊂ gi ∀i = −k . . . k}
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i.e. G0 (respectively P ) consists of all elements of G whose adjoint
action preserves that grading (respectively the filtration) of g.

Note that the choice of the structure group P is not canonical. There
is a possibility that the group preserving filtration is not connected.
The choice of P is in between this group and its connected component
containing the identity. The choice has not got effect on the local
properties but the choice has got a big effect on the global properties.
In our case, we chose the biggest one.

3.9. Definition. Let g be a |k|–graded semisimple Lie algebra. A
parabolic geometry is a Cartan geometry of type (G,P ), where G is a
semisimple Lie group and P ⊂ G is the subgroup of all elements of
G whose adjoint action preservers the filtration associated to a |k|–
grading of the Lie algebra g of G.

Note that a parabolic geometry is canonically a split Cartan geome-
try, since we always have the subalgebras g−, which is complementary
to the subalgebra p ⊂ g. This complement is however very far from
being p–invariant

Let us discuss the special choice of G and P relevant to the quater-
nionic like geometries. Thus, consider the algebra g = sl(n+ 1,H):
{(

a Z
X A

) ∣∣∣X,Z⊤ ∈ H
n, a ∈ H, A ∈Matn(H), Re(a) +Re(tr(A)) = 0

}

The corresponding gradation

g = g−1 ⊕ g0 ⊕ g1(21)

looks like:
(

0 0
X 0

)
∈ g−1,

(
a 0
0 A

)
∈ g0,

(
0 Z
0 0

)
∈ g1.

The group SL(n + 1,H) consists of all invertible quaternionic linear
endomorphisms of Hn+1, which we can consider as endomorphisms of
R4n+4 with determinant equal one. We define G := PSL(n + 1,H)
as the quotient of SL(n + 1,H) by its center {± id}. As a parabolic
subgroup we obtain quotient of the stabilizer of the quaternionic line
generated by the first vector from the standard basis, i.e.

P :=

{(
γ ρ
0 ψ

) ∣∣∣γ ∈ H, ρ ∈ H
n, ψ ∈ GL(n,H), |γ|4 · det(ψ) = 1

}
/{± id}

and

G0 :=

{(
γ 0
0 ψ

) ∣∣∣γ ∈ H, ψ ∈ GL(n,H), |γ|4 · det(ψ) = 1

}
/{± id}
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3.10. The general theory. Let us note that the structure theory of
graded semisimple Lie algebras leads to a classification which is nicely
formulated in terms of the so called Satake diagrams with crosses. We
shall not go into any details, but let us remark that the almost quater-
nionic geometry is a parabolic geometry of type (G,P ), where the Lie
algebra of P is the parabolic subalgebra in the real form sl(n+1,H) of
the complex algebra gl(2n+2,C) corresponding to the Satake diagram
with cross over the second node:

•— × — • — · · ·— • — ◦ —•

Let g = sl(n+1,H) be the Lie algebra of quaternionic (n+1)× (n+1)
matrices with zero real part of the trace. The parabolic subalgebra
p ⊂ g obtained by crossing out the second simple root is the stabilizer
of the quaternionic line generated by the first vector from the standard
basis (for detailed exposition see [Y]).

Let (G → M,ω) be a parabolic geometry of type (G,P ). The filtra-
tion of g by the p–submodules gj is transferred to the right invariant
filtration T jG on the tangent space TG by the parallelism ω. The filtra-
tion TM = T−kM ⊃ T−k+1 ⊃ · · · ⊃ T−1M of the tangent space of the
manifold M is defined from this filtration by the projection TG → TM .
Let us note that structure group of the associated graded tangent space
gr(TM) is the group G0. Hence G0 := G/P+ →M is a principal bundle
with structure group G0. We call the filtration of TM with the fixed
reduction of gr(TM) to G0 the infinitesimal flag structure.

If g is a |1|–graded Lie algebra than our parabolic geometry is called
irreducible parabolic geometry and several examples of such structures
have been studied intensively. The classification of all such simple real
Lie algebras is well known. There are several obvious examples of irre-
ducible parabolic geometries, in particular almost Grasmanian (a pro-
jective geometry is a special case of this), almost quaternionic, (pseudo)
conformal and Lagrangian geometries. In the case of irreducible para-
bolic geometries, the situation becomes very simple, since the filtration
degenerates to TM = T−1M . Hence from above we conclude that in-
finitesimal flag structures of type (G,P ) are simply reductions of struc-
ture group of TM to the group G0. Consider the |1|–grading on the
Lie algebra g = sl(n + 1,H), thus g−1

∼= Hn, g0 = gl(n,H) + sp(1,H),
and g1

∼= H
n⋆ and the standard action of (A, q) ∈ g0 on X ∈ g−1 is

AXq−1. Consequently, an infinitesimal flag structures of type (G,P )
in this case is exactly a first order G–structure with structure group
GL(n,H)Sp(1).

3.11. The adjoint tractor bundle. Let λ : G→ GL(W) be a linear
representation on a vector space W and (G → M,ω) a Cartan connec-
tion of type (G,P ). The corresponding natural vector bundle G ⊗G W

is called tractor bundle.
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The adjoint tractor bundle is the natural vector bundle A corre-
sponding to the adjoint representation Ad : G → GL(g), so we have
AM = G ×P g, where P acts on g by the restriction of the adjoint
action.

Because the gradation of g is G0–equivariant, we can compute the
action of G0 on g1 and g−1, for irreducible geometries. For an almost
quaternionic geometry, the adjoint actions G0 on g−1 and g1 are:

Ad

(
γ 0
0 ψ

) (
0 0
X 0

)
=

(
γ 0
0 ψ

) (
0 0
X 0

) (
γ−1 0
0 ψ−1

)
=

(
0 0

ψXγ−1 0

)

Ad

(
γ 0
0 ψ

) (
0 Z
0 0

)
=

(
γ 0
0 ψ

) (
0 Z
0 0

) (
γ−1 0
0 ψ−1

)
=

(
0 ψ−1Zγ
0 0

)

respectively, i.e. Ad(γ, ψ)(X) = ψXγ−1 forX ∈ g−1 and Ad(γ, ψ)(Z) =
ψ−1Zγ for Z ∈ g1, where γ ∈ sp(1) and ψ ∈ gl(n,H).

The P–submodules gj ⊂ g give rise to the filtration

A = A−1 ⊃ A0 ⊃ A1,

where the natural subbundles are Aj = G×P gj . Graded adjoint tractor
bundle is

Gr(A) = A−1 ⊕A0 ⊕A1,

where Aj = Aj/Aj+1. By the definition, there is the algebraic bracket
on A defined by means of the graded Lie bracket in g, such that

{Ai,Aj} 7→ Ai+j.

Let us note that TM = G0 ×G0 g−1, T
⋆M = G0 ×G0 g1,

A−1 = G ×P (g/p) ∼= TM, G × g− ∋ (u,X) 7→ Tp(ω−1(X)(u))

and we obtain on the level of vector bundles

A = A−1 ⊕A0 ⊕A1 ⊂ TM ⊕ (TM ⊗ T ∗M) ⊕ T ⋆M

where A0 = G0 ×H g0 is the adjoint bundle of the Lie algebra g0.
The key feature of A is that all further G0–invariant object on g

are carried over to the adjoint tractors, too. In particular, the Lie
bracket on g defines a bundle map {, } : A × A → A. By definition,
this means that for u ∈ G, X, Y ∈ g, and [[u,X]] ∈ A = G ×P g one
has {[[u,X]], [[u, Y ]]} = [[u, [X, Y ]]] and this is well defined since for any
g ∈ G the map Ad(g) is a Lie algebra homomorphism. In particular,
applying the this bracket pointwise, we obtain a Lie bracket on the
space Γ(AM) of adjoint tractors on M.

3.12. Definition. The mapping ϕ between two principal fiber bundles
(G1, ω1) and (G2, ω2) is a morphism of parabolic geometry if and only if
ϕ is a morphism of principal bundles ϕ : G1 → G2 such that ϕ∗ω2 = ω1.
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3.13. The Kostant codifferential. The G–equivariant Killing form
B : g × g → R induces an isomorphism g ∼= g⋆ on the Lie algebra. We
define n–chain space Cn(g−, g) := L(∧ng−, g) and codifferential

∂⋆(Z0 ∧ · · · ∧ Zn ⊗ A) =
n∑

i=0

(−1)i+1Z0 ∧ . . . î · · · ∧ Zn ⊗ [Zi, A]

+
∑

i<j

(−1)i+j [Zi, Zj] ∧ Z0 ∧ . . . î . . . ĵ · · · ∧ Zn ⊗A.

The codifferential computes the same cohomology as the standard Lie
algebra differential ∂ : Cn → Cn+1 on the cochains. This partly follows
from the next lemma and it serves as the main ingredient of the well
known Kostant’s computation of the Lie algebra cohomologies.

3.14. Lemma ([ČS], [Y]). For any n ≥ 0, the chain space Cn(g−, g)
naturally splits into a direct sum of G0–submodules as

Cn(g−, g) = im(∂⋆) ⊕ ker(�) ⊕ im(∂),(22)

where the sum of the first two summands is ker(∂⋆) while the last two
summands add up to ker(∂), where � is an Kostant Laplacian � :=
∂∂⋆ + ∂⋆∂.

In the |1|–graded case, the Lie algebra differential coincides with the
Spencer operator. The conclusion in this case is that there is an G0–
invariant complement D for any infinitesimal flag structures (compare
with remark 2.31).

The curvature form K ∈ Ω2(G, g) of a Cartan geometry (P →M,ω)
is defined by the structure equation

K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)],

where ξ, η ∈ TG.
The curvature function κ : G → ∧2g⋆

− ⊗ g ∼= C2(g−, g) defined by

κ(u)(X, Y ) = K(ω−1(X)(u), ω−1(Y )(u)),

may be decomposed according to the values of the target components κi

in gi. The whole g−–component κ− is called the torsion of the Cartan
connection ω.

3.15. Definition. The irreducible parabolic geometry (G, ω) with the
curvature function κ is called flat if κ = 0, torsion–free if κ− = 0,
normal parabolic geometry if ∂⋆ ◦ κ = 0.

Since the almost quaternionic geometry is irreducible we shall con-
tinue to discuss this case only.

3.16. Theorem ([ČS], [Y]). Let g = g−1 ⊕ g0 ⊕ g1 be a |1|–graded
semi–simple Lie algebra without summands isomorphic to sl(n+1,R) =
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R
n ⊕ gl(n,R)⊕R

n∗ (i.e. a graded subalgebra corresponding to the pro-
jective geometry). Let G be a Lie group with Lie algebra g, G0 ⊂ P ⊂ G
the subgroups determined by the |1|–grading. There is the bijective cor-
respondence between the isomorphism classes of normal parabolic ge-
ometries of type (G,P ) and infinitesimal flag structures of type g/p on
M .

3.17. Weyl structures. Let g = g−1⊕g0⊕g1 be a |1|–graded semisim-
ple Lie algebra. G is a Lie group with Lie algebra g and let G0 ⊂ P ⊂ G
be the subgroups determined by the |1|–grading. Let (p : G → M,ω)
be a parabolic geometry of type (G,P ), and consider underlying prin-
cipal G0–bundle p0 : G0 → M . By definition G0 = G/P+ and there is
the natural projection π : G → G0, which is a principal bundle with
structure group P+.

3.18. Definition. Let (p : G → M,ω) be an irreducible parabolic ge-
ometry on a smooth manifold M and consider the underlying principal
G0–bundle p0 : G0 → M and the canonical projection π : G → G0.
A Weyl structure for (G, ω) is a global G0–equivariant smooth section
σ : G0 → G of π : G → G0.

3.19. Theorem ([ČS],[ČS-03]). For any irreducible parabolic geometry
(p : G → M,ω), there exists a Weyl structure. Moreover, if σ and σ̄
are two Weyl–structures, then there is a unique smooth section Υ of
A1 such that

σ̄(u) = σ(u) exp(Υ(u)).

Finally, each Weyl–structure σ and section Υ define another Weyl–
structure σ̄ by the above formula.

3.20. Underlying structures. Let σ : G0 → G be a Weyl structure
on an irreducible parabolic geometry (π : G → M,ω) of type (G,P ).
The pullback σ⋆ω : TG0 → g is G0–equivariant and the Lie algebra g

decomposes as g−1 ⊕ g0 ⊕ g1 as G0–module. Hence we may decompose
σ⋆ω as σ⋆ω−1 ⊕ σ⋆ω0 ⊕ σ⋆ω1.

Let ω = (ω−1⊕ω0⊕ω1) ∈ Ω1(G, g−1⊕g0⊕g1) be the above mentioned
decomposition of Cartan connection ω. The component σ⋆ω−1 is an el-
ement of Ω1(G0,R

n), which enjoys the properties of the soldering form.
An important observation is that this soldering form is independent
of the chosen Weyl structure σ. In fact, the bijective correspondence
between the normal Cartan connections and the G0–structures in the
theorem above is provided by this soldering form.

By the definition of Cartan connection ω, the component σ⋆ω0 ∈
Ω1(G0, g0) represents a principal connection on the bundle G0 → M ,
which is called the Weyl connection associated to the Weyl structure σ.
The component σ⋆ω1 clearly determines a one–form P ∈ Ω1(M,T ⋆M),
which is called the Rho tensor associated to the Weyl structure σ. The
latter tensor measures the difference between the horizontal vectors
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with respect to the Weyl connection and the original Cartan connec-
tion.

Now we may write down easily the transformation formula. Let ∇̄
and ∇ be two Weyl connections, and let Υ be the appropriate unique
smooth section of A1, from theorem 3.19. For all ξ, η ∈ Γ(TM), the
connections transform as

∇̄ξη = ∇ξη + {{ξ,Υ}, η},(23)

where the vector fields are understand as adjoint tractors in A−1 and
the bracket is the natural Lie bracket, see 3.11. Further, the Rho–tensor
transform as

P̄(ξ) = P(ξ) + ∇ξΥ +
1

2
{Υ, {Υ, ξ}}.

Notice that the internal bracket of ξ ∈ TM and Υ ∈ T ∗M is in A0

(i.e. an endomorphism of TM) while the external bracket is exactly the
evaluation of this endomorphism on η (all this is read off the brackets
in the Lie algebra easily). For more details see [ČS-03], [GS], or [BE].

3.21. Definition. A (unparameterized) curve C ⊂ M is called H–
planar if it is Q–planar with respect to each Weyl connection ∇ on M
(compare with definition 2.41).

The next theorem explains the link between the two concepts:

3.22. Theorem ([H]). A curve C is Q–planar with respect to at least
one Weyl connection ∇ on M if and only if C is H–planar.

Proof. For a Weyl connection ∇ and a trajectory c : R → M , the
defining equation for Q–planarity reads ∇ċċ ∈ Q(ċ). If we choose some
hypercomplex structure within Q, we may rephrase this condition as:
∇ċċ = ċ · q where ċ(t) is a trajectory in the tangent bundle TM while
q(t) is a suitable trajectory in quaternions H. Now the formula (23)
for the change of the Weyl connections implies

∇̂ċċ = ∇ċċ+ {{ċ,Υ}, ċ} = ∇ċċ+ 2ċ · Υ(ċ).

Indeed, this is the consequence of the computation of the Lie bracket
in g of the corresponding elements ċ ∈ g−1, Υ(u) ∈ g1:

[[ċ,Υ], ċ] ≃

[[(
0 0
ċ 0

)
,

(
0 Υ
0 0

)]
,

(
0 0
ċ 0

)]

=

(
0 0

2ċ · Υ(ċ) 0

)
≃ 2ċ · Υ(ċ),

where Υ(ċ) is the standard evaluation of the linear form Υ ∈ g1 = (Hn)∗

on the vector ċ ∈ g−1 = Hn. Thus we see that if there is such a
quaternion q for one Weyl connection, then it exists also for all of
them. �

Next, we will see that Q–planar curves are exactly geodetics of all
Weyl connections.
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3.23. Theorem ([H]). Let M be a manifold with an almost quaternionic
structure. Then, a curve C ⊂ M is H–planar if and only if there is
parametrization c : R → C ⊂M which is a geodesic trajectory of some
Weyl connection.

Proof. Let C be a geodesics for ∇. Let us remark that c : R → M is
a trajectory of C if and only if ∇ċċ = 0. Thus, the statement follows
immediately from the computation in the proof of lemma 3.22. Indeed,
if C is Q–planar, then choose any Weyl connection ∇ and pick up Υ
so that ∇̂ċċ vanishes. �

Now, we are able to formulate the main result about diffeomorphisms
between two almost quaternionic manifolds.

3.24. Theorem. [HS] Let f : M → M ′ be a diffeomorphism between
two almost quaternionic manifolds of dimension at least eight. Then f
is a morphism of the geometries if and only if it preserves the class of
unparameterized geodesics of all Weyl connections on M and M ′.

The proof is based on our theory of A–structures which will be dis-
cussed in detail in the next section. We shall come back to it later.

3.25. Unimodular quaternionic geometry. We shall conclude this
section by short discussion on unimodular quaternionic geometries, i.e.
almost quaternionic geometries equipped with volume forms. An uni-
modular quaternionic geometry (compare with definition 2.26) is not
a parabolic geometry but we shall indicate that the choice of a volume
form plays a similar role as the choice of a metric in conformal Riema-
nian geometry. Of course the volume forms on an almost quaternionic
geometry are sections of a natural line bundle. Let us observe that this
is a principal bundle associated to G0 at the same time:

For an almost quaternionic geometry, the center of g0 is described in
matrices as couple (b, B) ∈ g0 = gl(n,H) ⊕ sp(1), which satisfies

[(
a 0
0 A

)
,

(
b 0
0 B

)]
= 0,

for any (a, A) ∈ g0. This is equivalent of fact that [a, b] = 0 in sp1 and
[A,B] = 0 in gl(n,H). The solution is only {(b, cE)|b ∈ R, c ∈ R} and
the center of g0 is

z(g0) =

{(
−nk 0

0 kE

)}
.

We define Z(G0) ⊂ G0 to be the image of z(g0) under the exponential
mapping

Z(G0) =

{(
a 0
0 1

n
√

a
E

) ∣∣∣a ∈ R
+

}

and the factor group G0/Z(G0) ∼= Sp(1)×Z2SL(n,H) is the semisimple
part of G0.
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A bundle of scales for irreducible parabolic geometries of type (G,P )
is a natural principal R+–bundle Lλ associated to a homomorphism
λ : G0 → R+, where the kernel λ is exactly the semisimple part of G0.
For the homomorphism λ : Sp(1)GL(n,H) → R

+ such that
(
a 0
0 A

)
· x 7→

(
Re det

(
a 0
0 A

))n

x

the sections of the line–bundle Lλ correspond to volume forms.
Now, each Weyl connection obviously induces a connection on Lλ and

surprisingly enough, this yields a bijection between Weyl structures and
connections on the bundle of scales, [ČS-03]. Of course, the sections of
Lλ correspond to trivial connections on the line bundle and thus the
corresponding Weyl connections belong to the unimodular quaternionic
geometry.

Such a construction works for all parabolic geometries and, similarly
to the conformal case, the Weyl connections coming from scales are
called exact.

4. Planar curves and planar morphisms

Various concepts generalizing geodetics have been studied for almost
quaternionic and similar geometries. Also various structures on mani-
folds are defined as smooth distribution in the vector bundle T ⋆M⊗TM
of all endomorphisms of the tangent bundle. We have seen the two ex-
amples of almost complex and almost quaternionic structures above.
Let as extract some formal properties from these examples. Unless oth-
erwise stated, all manifolds are smooth and they have the dimension
n. Let ∇ be a linear connection and let c : R → M be a trajectory.

Then there is the trajectory ċ := ∂c(t)
∂t

: R → TM .

4.1. Definition. Let M be a smooth manifold and let ∇ be a linear
connection. Then a map c : R →M is called geodesic trajectory if and
only if ∇ċċ = 0.

In other words, a curve c is a geodesic trajectory if and only if its
tangent vectors ċ(t) are parallely transported along trajectory c(t).

In local coordinates on M , the condition is expressed as the system
of 2nd order differential equations for geodesics (for more details see
[KMS])

c̈i +

n∑

j,k=1

Γi
jkċ

j ċk = 0.(24)

This immediately shows the unique local existence of geodesics in each
tangent direction.

4.2. Lemma. Let M be a smooth manifold and let ∇ be a linear con-
nection. If a trajectory c(t) is a geodesic trajectory on M then the tra-
jectory c(at+ b) is also a geodesic trajectory on M , for every a, b ∈ R.
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Proof. We call c̄i = c(at + b)i. The first and second derivation of c̄ is
˙̄c = ċa and ¨̄c = c̈a2. The equation (24) is

a2c̈i +

n∑

j,k=1

Γi
jkaċ

jaċk = a2(c̈i +

n∑

j,k=1

Γi
jkċ

j ċk) = 0

for the trajectory c̄. The trajectory c̄ is a geodesics. �

4.3. Definition. Let M be a smooth manifold and ∇ be a linear con-
nection. A curve C ⊂ M is called geodesic curve of the linear con-
nection ∇ if there is some its parametrization c(t) such that c(t) is a
geodesic trajectory. We shortly call it geodesic.

4.4. Lemma. Let ∇ be a linear connection on smooth manifold M . A
curve C is geodesic if and only if one parametrization c(t) (and then
all parameterizations) satisfies:

∇ċċ = ċ · k, k ∈ C∞(M,R).

Proof. We will work in an arbitrary coordinate system.
(⇐) (∇ċċ)

h = (c̈)h + Γh
ij ċ

iċj where c(t) = (ch(t)). We shall find an-
other parametrization for which the right hand side will vanish. For
a reparametrization c̄(t) = c ◦ ϕ(t) we have c̄h = ch(ϕ(t)) and after

derivation by t we have ˙̄ch = ċhϕ̇ a ¨̄c
h

= c̈hϕ̇2 + ċhϕ̈. We can substitute

(∇ ˙̄c ˙̄c)h = (¨̄c)h+Γh
ij

˙̄c
i ˙̄c

j
= c̈hϕ̇2+ċhϕ̈+ϕ̇2Γh

ij ċ
iċj = ϕ̇2(c̈h+Γh

ij ċ
iċj)+ċhϕ̈ =

ϕ̇2(ċh · k) + ċhϕ̈ = ċh(ϕ̇2 · k + ϕ̈). Since we require this to by zero, it
is necessary that ϕ̈ + k · ϕ̇2 = 0. The general solution of this equation
for small δ is ϕ = c1

∫
exp−

R

kdt dt+ c2 where c1 6= 0, −δ ≤ t ≤ δ and
c1, c2, δ ∈ R, ϕ ∈ C∞(R,R).
(⇒) If (∇ċċ)

h = 0 then any reparametrization leads to (∇ ˙̄c ˙̄c)h = (¨̄c)h +

Γh
ij

˙̄c
i ˙̄c

j
= c̈hϕ̇2 + ċhϕ̈+ ϕ̇2Γh

ij ċ
iċj = ϕ̇2(c̈h +Γh

ij ċ
iċj)+ ċh(ϕ̈) = ċhϕ̈ = ˙̄ch ϕ̈

ϕ̇
,

where ϕ̇ 6= 0. Finally, the choice k = ϕ̈

ϕ̇
∈ C∞(R,R) leads to the re-

quired formula. �

We will write ∇ċċ ∈ 〈ċ〉 (i.e. ∇ċċ is in the real vector space spaned
by ċ).

4.5. Definition. Let (M,∇), (M̄, ∇̄) be smooth manifolds equipped
with linear connections. A diffeomorphism f : M → M̄ is called a
geodesic morphism if it maps geodesics on M with respect to ∇ to
geodesics on M̄ with respect to ∇̄.

Two connections ∇ and ∇̄ on a manifold M are called projectively
equivalent if they share the geodesics. A classical computation in local
coordinates reveals that this is equivalent to the existence of a one form
ψ, such that their Christofell symbols Γ̄i

jk and Γi
jk are related by the

equation

(25) Γ̄h
ij(x) = Γh

ij(x) + δh
i ψj(x) + δh

j ψi(x) = Γh
ij(x) + ψ(iδ

h
j).
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More generally, a morphism f : M → M̄ mapping geodesics of ∇ onto
geodesics of ∇̄ has to satisfy

(26) f ⋆∇̄ − ∇ = (ψ ⊙ E),

where ψ is a suitable one form, ⊙ is the symmetric tensor product,
and E is the identity affinor. Such an f is called a morphism of the
projective structures represented by the connections ∇ and ∇̄, see [M2]
for more details.

4.6. F–planar curves and morphisms. Let M be a smooth man-
ifold equipped with a linear connection ∇ and let F be an affinor on
M . A curve C is called F–planar curve if there is its parametrization
c : R →M satisfying the condition

∇ċċ ∈ 〈ċ, F (ċ)〉.

It is easy to see that geodesics are F–planar curves for all affinors F ,
because of ∇ċċ ∈ 〈ċ〉 ⊂ 〈ċ, F (ċ)〉.

The best known example is an almost complex structure (see example
2.5). We have to be careful about the dimension of M . Let M be a
manifold of dimension two and let I be a complex structure. A curve C
is F–planar for F = I if and only if there is trajectory c satisfying the
identity ∇ċċ ∈ 〈ċ, Iċ〉 ∼= R2, and any trajectory c satisfy the identity
∇ċċ ∈ R2. In other words any curve C is a F–planar on the manifold
of dimension two. The concept of I–planar curves makes sense for
dimension at least four.

A diffeomorphism f : (M,F ) → (M̄, F̄ ), where couples (M,F ) and
(M̄, F̄ ) are structure equipped with one affinor is called (F, F̄ )–planar
mappings if it maps F–planar curves on M to F̄–planar curves on M̄ .

Now, let (M,∇, F ), (M̄, ∇̄, F̄ ) be smooth manifolds equipped with
an affinor and a linear connection. Let us assume that the connections
∇, ∇̄ have the same torsion. It is a well known fact (see [MS]) that
diffeomorphism f : M → M̄ is F–planar if and only if satisfy following:

f ⋆∇̄ − ∇ = (ψ1 ⊙ E) + (ψ2 ⊙ F ),(27)

f ∗F̄ ⊂ 〈F 〉,(28)

where ⊙ is symmetric tensor product, E is the identity affinor, and ψi

are one forms. The F–planar curves and morphisms were introduced
and studied in detail in [MS].

4.7. 4–planar curves and mappings. Consider almost hypercom-
plex structure (I, J, IJ) (definition 2.17). The curve C with a tra-
jectory c : R → M such that ∇ċċ ∈ 〈ċ, I(ċ), J(ċ), IJ(ċ)〉 is called 4–
planar. It is easy to see that all geodesics are 4–planar curve, because
of ∇ċċ ∈ 〈ċ〉 ⊂ 〈ċ, I(ċ), J(ċ), IJ(ċ)〉 and also all F–planar curves are 4–
planar, where F ∈ 〈I, J, IJ, E〉. A diffeomorphism of an almost hyper-
complex structures with an linear connection f : (M, (I, J, IJ),∇) →
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(M̄, (F1, F2, F1F2), ∇̄) is called 4–planar morphism if and only if this
maps 4–planar curves on M with respect to ∇ and I, J , IJ to 4–planar
curves on M̄ with respect to ∇̄ and F1, F2, F1F2.

Let (M, I, J,∇), (M̄, F1, F2, ∇̄) be a smooth manifolds equipped with
almost hypercomplex structures and connections with the same torsion.
A diffeomorphism f : M → M̄ is 4–planar if and only if satisfies
followings:

f ⋆∇̄ − ∇ = (ψ1 ⊙ E) + (ψ2 ⊙ I) + (ψ3 ⊙ J) + (ψ4 ⊙ IJ),(29)

f ⋆F̄i = aiI + biJ + ciIJ,(30)

where ⊙ is symmetric tensor product, E is identity affinor, ψi are on
forms and ai, bi, ci ∈ R (compare with [MNP]).

Finally, the 4–planar curves and morhpisms have brought us to the
main topic of this Thesis, the Q–planar curves and morphisms. As
defined in definition 2.22 and subsection 2.29, an almost quaternionic
geometry is a rank four subbundle Q ⊂ T ∗M ⊗ TM locally generated
by the identity E and an almost hypercomplex structure.

4.8. Definition. Let (M,Q) be a manifold with an almost quaternionic
structure. A curve C ⊂ M is called Q–planar if there is its trajectory
c : R →M such that:

∇ċċ ∈ Q(ċ) = {A(ċ) | A ∈ Q}.

4.9. Lemma. Let (M,Q,∇) be a manifold equipped with linear connec-
tion and almost quaternionic structure. For every chosen bases I, J ,
IJ of Q the Q–planar curves are exactly 4–planar curves with respect
to I, J , IJ .

Proof. Let I, J , IJ ∈ Q be a chosen basis of Q. The curve C is a
Q–planar curve if and only if there is its trajectory c : R → M such
that

∇ċċ ∈ Q(ċ).

This property implies 4–planarity:

∇ċċ ∈ (aE + bI + cJ + dK)ċ

because aE + bI + cI + dK ∈ Q. The other implication is obvious. �

Let (M,Q),∇), (M̄, Q̄, ∇̄) be manifolds equipped with linear con-
nections and almost quaternionic structures. A diffeomorphism f :
M → M̄ is called Q–planar morphism if it maps Q–planar curves on
M to Q–planar curves on M̄ .

The Q–planar curves and related morphisms were discussed by Fu-
jimora, see [Fujimura79, Fujimura80].
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4.10. A–planar curves and morphisms. In the lemma 4.9 we made
an important observation: the 4–planar curves are fully determined by
the almost quaternionic structure induced by the chosen hypercomplex
structure.

This simple consequence of standard behavior of the generators of
a vector subspace suggests the generalization of the planarity concept
below.

4.11. Definition. Let M be a smooth manifold of dimension m. Let
A be a smooth ℓ–rank (ℓ < m) vector subbundle in T ∗M ⊗ TM , such
that the identity affinor E = idTM restricted to TxM belongs to Ax ⊂
T ∗

xM ⊗ TxM at each point x ∈ M . We say that M is equipped by
ℓ–rank A–structure.

In definition 4.11, the dimension of M is higher than the rank of A.
This is not a restriction, because there are no A–structures of rank ℓ
higher then m. The possibility ℓ = m is not interesting, because in this
event every curve is A–planar (see remark 4.6).

4.12. Definition. For any tangent vector X ∈ TxM we shall write
A(X) for the vector subspace

A(X) = {F (X)|F ∈ AxM} ⊂ TxM

and we call A(X) the A–hull of the vector X. Similarly, the A–hull of
vector field will be subbundle in TM obtained pointwise.

For every smooth parameterized curve c : R → M we write ċ and
A(ċ) for the tangent vector field and its A–hull along the curve c.

4.13. Definition. Let (M,A) be a smooth manifold M equipped with
an ℓ–rank A–structure. We say that the A–structure has

(1) generic rank ℓ if for each x ∈M the subset of vectors (X, Y ) ∈
TxM ⊕ TxM , such that the A–hulls A(X) and A(Y ) generate
a vector subspace A(X) ⊕ A(Y ) of dimension 2ℓ is open and
dense.

(2) weak generic rank ℓ if for each x ∈M the subset of vectors

V := {X ∈ TxM | dimA(X) = ℓ}

is open and dense in TxM .

One immediately checks that any A–structure which has generic rank
ℓ has week generic rank ℓ. Indeed, if U ⊂ TxM is an open subset of
vectors X with A(X) of dimension lower than ℓ, then U×U is an open
subset with to low dimension, too.

4.14. Theorem. Let (M,A) be a smooth manifold of dimension n
equipped with A–structure of rank ℓ, such that 2ℓ ≤ n. If Ax is an
algebra (i.e. for all f, g ∈ Ax, fg := f ◦ g ∈ Ax) for all x ∈M , and A
has weak generic rank ℓ then the structure has generic rank ℓ.
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Proof. Since the A–structure has a weak generic rank ℓ, there is the
open and dense subset V ⊂ TM such that dimA(X) = ℓ for all X ∈ V.

Because A is an algebra, for any X,Z ∈ TM , Z ∈ A(X) implies also
A(Z) ⊂ A(X), and moreover A(Z) = A(X) for all X,Z ∈ V because of
the dimension. Thus, whenever there is a non–trivial vector 0 6= Z ∈
A(X) ∩A(Y ), the entire subspaces coincide, i.e. A(X) = A(Y ).

In particular, whenever X, Y ∈ V and the dimension of A(X)+A(Y )
is less then 2ℓ, we know A(X) = A(Y ).

Let us consider a couple of vectors (Y, Z) ∈ A(X) ⊕ A(X) for some
X ∈ V. Consider a vector W /∈ A(X). The open neighborhood U of
Y has to include (Y + aW, Y ) for all sufficiently small a ∈ R. But if
Y + aW ∈ A(X) for some a 6= 0 then W ∈ A(X) and this is not true.
Thus, for every couple of vectors in A(X) ⊕ A(X) and for every its
open neighborhood, we have found another couple (Y ′ = Y + aW,Z)
for which the dimension of A(Y ′)+A(Z) is 2ℓ. This proves the density
of the set of couples of vectors generating the maximal dimensions 2ℓ.

Of course, the requirement on the maximal dimension is an open
condition and the theorem is proved. �

4.15. Corollary. Let (M,A) be a smooth manifold with A–structure of
rank ℓ, such that ℓ ≥ dimM . If Ax ⊂ T ⋆

xM ⊗ TxM is an algebra with
inversion then A has weak generic rank. Moreover, if dimM ≥ 2ℓ than
A has generic rank ℓ.

Proof. If dimA(X) < ℓ for some non–zero X, then there is F ∈ A such
that F (X) = 0 for some non–zero. But this is not possible because of
the existence of the inverses.

The remaining claim follows from the theorem above. �

4.16. Lemma. Let M be a smooth manifold of dimension at least two
and F be an affinor such that F 6= q · E. Then the 〈E,F 〉–structure
has weak generic rank 2.

Proof. Consider A–structure A = 〈E,F 〉. The complement of V con-
sists vectors X ∈ TxM such that:

X + aF (X) = 0, a ∈ R,

i.e. eigenspace of F . Dimension of A is two and F is not multiple of the
identity. Thus, the union of eigenspaces of F is closed or trivial vector
subspace of TxM . Thus, the complement V is open and nontrivial, i.e.
open and dense. �

There is only one possibility for the A–structures in the lowest di-
mension one A = 〈E〉. The algebra 〈E〉 is an algebra with inversion,
such that E · E = E. For every X ∈ TxM , A(X) is the strait line
containing A.

4.17. Example. (1) An almost complex geometry. The pair (M,F )
is a called a complex structure onM if and only if F 2 = −E. An



36

almost complex structure has generic rank two on all manifolds
of dimension at least four, because of theorem 4.14.

(2) An almost product geometry. The pair (M,F ) is a called a
product structure on M if and only if F 2 = E and f 6= E. An
almost product structure has a weak generic rank ℓ because of
lemma 4.16 and an almost product structure has generic rank
two because of theorem 4.14. We proved that an almost quater-
nionic geometry has a weak generic rank four in lemma 2.21.
The algebra 〈E, I, J,K〉 = Q is an algebra with inversion, i.e.
an almost quaternionic geometry has an generic rank four on all
manifolds of dimensions at least eight, because of the theorem
4.14.

4.18. Definition. Let M be a smooth manifold equipped with an A–
structure and a linear connection ∇. A smooth curve C is told to be
A–planar if there is its parametrization c : R → M such that

∇ċċ ∈ A(ċ).

Clearly, A planarity means that the parallel transport of any tangent
vector to c has to stay within the A–hull A(ċ) of the tangent vector
field ċ along the curve. Moreover, this concept does not depend on the
parametrization of the curve c.

4.19. Definition. Let M be a manifold with a linear connection ∇ and
an A–structure, while M̄ be another manifold with a linear connection
∇̄ and B–structure. A diffeomorphism f : M → M̄ is called (A,B)–
planar if each A–planar curve C on M is mapped onto the B–planar
curve f(C) on M .

4.20. Remark. The 1–dimensional A = 〈E〉 structure must be given
just as the linear hull of the identity affinor E, by the definition. Obvi-
ously, the 〈E〉–planar curves on a manifold M with a linear connection
∇ are exactly the unparameterized geodesics. Moreover, two connec-
tions ∇ and ∇̄ without torsion are projectively equivalent (i.e. they
share the same unparameterized geodesics) if and only if their differ-
ence satisfies ∇̄XY − ∇XY = α(X)Y + α(Y )X for some one–form α
on M . The latter condition can be rewritten as

∇̄ − ∇ ∈ Γ(T ⋆M ⊙ 〈E〉) ⊂ Γ(S2T ⋆M ⊗ TM)

where the symbol ⊙ stays for the symmetrized tensor product. Com-
pare to (25).

The latter condition on projective structures may be also rephrased
in the terms of morphisms. A diffeomorphism f : M → M is called
geodesical (or an automorphism of the projective structure) if f ◦ c is
an trajectory of geodesic C for each trajectory c of geodesic C and this
happens if and only if the symmetrization of the difference f ⋆∇−∇ is
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a section of T ⋆M ⊙〈E〉. We are going to generalize the above example
in the rest of the section.

In the case A = 〈E〉, the (〈E〉, B)–planar mappings are called simply
B–planar. They map each geodesic curve on (M,∇) onto a B–planar
curve on (M̄, ∇̄, B)

Each ℓ dimensional A structure A ⊂ T ∗M ⊗ TM determines the
distribution

A(1)
x M := 〈α1 ⊙ F1 + · · · + αl ⊙ Fl|αi ∈ T ∗

xM,Fi ∈ AxM〉.

Let us remind that there is not direct coherence of the term A(1) and
a first prolongation of a Lie algebra. The term A(1) is only label for
our expression.

4.21. Theorem. Let M be a manifold with a linear connection ∇, let
N be a manifold of the same dimension with a linear connection ∇̄ and
with A–structure of generic rank ℓ, and suppose dimM ≧ 2ℓ. Then a
diffeomorphism f : M → N is A–planar if and only if

Sym(f ∗∇̄ − ∇) ∈ f ∗(A(1))(31)

where Sym denotes the symmetrization of the difference of the two con-
nections.

This theorem will be proved later in this chapter.

4.22. Remark. (1) The theorem is of local character. We may
assume thatM = N and f = idM without any loss of generality.

(2) A–planarity of f : M → N does not at all depend on the possi-
ble torsions of the connections. Indeed, we always test expres-
sions of the type ∇ċċ for a trajectory c and thus a deformation
of ∇ into ∇̄ = ∇+T by adding same torsion will not effect the
results. Thus, without any loss of generality we may assume
that the connection ∇ and ∇̄ live at the same manifold and
share the same torsion. Then we may omit the symmetrization
from equation (31).

(3) We may fix same (local) basis E = F0, Fi, i = 1, . . . ℓ− 1 of A,
i.e. A = 〈F0, . . . , Fl−1〉. Then the condition in the theorem says

∇̄ = ∇ +

l−1∑

i=0

αi ⊙ Fi

for some suitable one–forms αi on M . Of course, the existence
of such forms does not depend on our choice of the basis of A.

With respect to the above remarks, the theorem 4.21 is equivalent
to alternative statement below.
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4.23. Equivalent theorem to 4.21. Let M be a manifold of dimen-
sion at least 2ℓ, ∇ and ∇̄ two connections on M with the same torsion,
and consider an A–structure of generic rank ℓ on M . Then each geo-
desic curve with respect to ∇ is A–planar with respect to ∇̄ if and only
if there are one–forms αi satisfying equation

∇̄ = ∇ +

ℓ−1∑

i=0

αi ⊙ Fi.

The proof will require several steps. Assume first we have such forms
αi, and let c be a geodesic trajectory for ∇. Then equation (31) implies
∇̄ċċ ∈ A(ċ) so that c is an A–planar trajectory, by definition. The
other implication is the more difficult one. Assume that each geodesic
C is A–planar. This implies that the symmetric difference tensor P =
∇̄ − ∇ ∈ Γ(S2T ⋆M ⊗ TM) satisfies

P (ċ, ċ) = 〈ċ, F1(ċ), . . . , Fℓ−1(ċ)〉.

In fact, the main argument of the entire proof boils down to a purely
algebraic claim:

4.24. Lemma. Let A ⊂ V ⋆ ⊗ V be a vector subspace of generic rank
ℓ, and assume that P (X,X) ∈ A(X) for some fixed symmetric tensor
P ∈ V ⋆ ⊗ V ⋆ ⊗ V and each vector X ∈ V . Then the induced mapping
P ∈ V → V ⋆ ⊗ V has values in A.

Proof. Let us fix a basis F0 = idV, F1, . . . , Fℓ−1 of A. Since A is of
generic rank ℓ, there is the open and dense subset V ⊂ V of all vectors
X ∈ TM for which {X,F1(X), . . . , Fℓ−1(X)} are linearly independent.
Now, for each X ∈ V there are unique coefficient αi(X) ∈ R such that

(32) P (X,X) =
ℓ−1∑

i=0

αi(X)Fi(X).

The essential technical step in the proof is to show that all functions
αi are in fact restrictions of smooth one–forms on M . Let us notice,
that P is symmetric bilinear tensor and thus it is determined by the
restriction of P (X,X) to arbitrary small open non–empty subset of the
arguments X in V . �

4.25. Lemma. If a smooth symmetric tensor

P (X,X) =

l−1∑

i=0

αi(X)F (X)

is determined over the above defined subspace V, then the function α :
V → R are smooth and their restriction to the individual rays (half–
lines) generated by vectors in V are linear.
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Proof. Let us fix a local smooth basis ei ∈ TM , the dual basis ei,
and consider the induced dual bases eI and eI on the multivectors and
exterior forms. Let us consider the smooth mapping

χ : ΛlTM \ {0} → ΛlT ⋆M

χ
(∑

aIe
I
)

=
∑ aI∑

a2
I

eI .

Now, for all non–zero tensors

Ξ =
∑

aIe
I ,

the evaluation 〈Ξ, χ(Ξ)〉 is the constant function 1, while χ(k · Ξ) =
k−1χ(Ξ). Next we define for each X ∈ V

τ(X) = χ(X ∧ F1(X) ∧ · · · ∧ Fl−1(X))

and we may compute the unique coefficient αi :

α0(X) = 〈P (X,X) ∧ F1(X) ∧ F2(X) ∧ · · · ∧ Fℓ−1(X)), τ(X)〉

α1(X) = 〈X ∧ P (X,X) ∧ F2(X) ∧ · · · ∧ Fℓ−1(X)), τ(X)〉

αℓ−1(X) = 〈X ∧ F1(X) ∧ F2(X) ∧ · · · ∧ P (X,X)), τ(X)〉

In particular, this proves the first part.
Let us now consider a fixed vector X ∈ V. The defining formula

formula for αi implies αi(kX) = kαi(X), for each real number k 6= 0.
Passing to zero with positive k shows that α does have limit 0 in the
origin and so we may extend the definition of the forms αi to the entire
cone V ∪ {0} by setting αi(0) = 0 for all i.

Finally, along the ray {tX|t < 0} ⊂ V, the derivative d
dt
α(tX) has

the constant value α(X). This proves the rest of the lemma. �

4.26. Lemma. If a smooth symmetric tensor P is determined over the
above defined subspace V ∪ {0}, then the coefficients αi, are smooth
one–forms on M and the tensor P is given by

P (X, Y ) =
1

2

ℓ−1∑

i=0

(αi(Y )Fi(X) + αi(X)Fi(Y )).

Proof. The entire tensor P is obtained through polarization from its
evaluation P (X,X), X ∈ TM ,

(33) P (X,X) =
1

2
(P (X + Y,X + Y ) − P (X,X) − P (Y, Y )),

and again, the entire tensor is determined by its values on arbitrarily
small non–empty open subset of X and Y in each fiber. The summands
on the right hand side have values in the following subspaces:

P (X + Y,X + Y ) ∈ 〈X + Y, F1(X + Y ), . . . , Fℓ−1(X + Y )〉 ⊂

〈X,F1(X), . . . , Fℓ−1(X), Y, F1(Y ), . . . , Fℓ−1(Y )〉,

P (X,X) ∈ 〈X,F1(X), . . . , Fℓ−1(X)〉
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P (Y, Y ) ∈ 〈Y, F1(Y ), . . . , Fℓ−1(Y )〉.

Since we have assumed that A has generic rank ℓ, the subspace W ∈
TM ×M TM of vectors (X, Y ) such that all the values

{X,F1(X), . . . , Fℓ−1(X), Y, F1(Y ), . . . , Fℓ−1(Y )}

are linearly independent is open and dense. Clearly W ⊂ V ×M V.
Moreover, if (X, Y ) ∈ W than F0(X + Y ), . . . , Fℓ−1(X + Y ) are inde-
pendent, i.e. X + Y ∈ V. Inserting (32) into (33), we obtain

P (X, Y ) =
ℓ−1∑

i=0

(di(X, Y )Fi(X) + ei(X, Y )Fi(Y )).

For all (X, Y ) ∈ W, the coefficients di(X, Y ) = 1
2
(α1(X + Y )− αi(X))

at Fi(X), and ei(X, Y ) = 1
2
(αi(X + Y ) − αi(Y )) at Fi(Y ) in the lat-

ter expression are uniquely determined. The symmetry of P implies
di(X, Y ) = ei(Y,X). If (X, Y ) ∈ W then also (sX, tY ) ∈ W for all
non–zero reals s, t and the linearity of P in the individual arguments
yields for all real parameters s, t

stdi(X, Y ) = sdi(sX, tY ).

Thus the functions αi satisfy

αi(sX + tY ) − αi(sX) = t(αi(X + Y ) − αi(X)).

Since αi(tX) = tαi(X), in the limit a→ 0 this means

αi(Y ) = αi(X + Y ) − αi(X).

Thus αi are additive over the open and dense set (X, Y ) ∈ W. Choosing
a basis of V such that each couple of basis elements is in W, this shows
that αi are restrictions of linear forms, as required. �

Now the completion of the proof of theorem 4.21 is straightforward.
Following the equivalent local claim in the alternative theorem 4.23
and the pointwise algebraic description of P achieved in lemma 4.25,
we just have to apply the latter lemma to individual fibers over the
points x ∈ M and verify, that the linear forms αi may be chosen in a
smooth way. But this is obvious from the explicit expression for the
coefficients αi in the proof of lemma 4.26. This concludes the complete
proof.

4.27. Theorem. Let M be a manifold with linear connection ∇ and
an A–structure, N be a manifold of the same dimension with a linear
connection ∇̄ and B–structure with generic rank ℓ. Then a diffeomor-
phism f : M → N is (A,B)–planar if and only if f is B–planar and
A(X) ⊂ (f ⋆(B))(X) for all X ∈ TM .

As before, we may restrict ourselves to same open submanifolds, fix
generators Fi for B, assume that f = idM and booth connection ∇ and
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∇̄ share the same torsion, and restrict ourselves to prove the equivalent
local assertion to our theorem:

4.28. Equivalent theorem. Let M be a manifold with linear connec-
tions ∇ and ∇̄, together with an A–structure and B–structure with
generic rank ℓ. Each A–planar curve c with respect to ∇ is B–planar
with respect to ∇̄, if and only if the symmetric difference tensor P =
∇̄ − ∇ is of the form (32) with smooth one–forms αi, i = 0, . . . , ℓ− 1,
and A(X) ⊂ B(X) for each X ∈ TM .

All geodesics with respect to ∇ on M are in particular A–planar and
thus also B–planar. Therefore, we may use the result of the theorem
4.21 to deduce that

P (X,X) =
l∑

j=0

αi(X)Fi(X)

for uniquely given smooth one–forms αi.
Now, consider a fixed F ∈ A and suppose F (X) /∈ B(X). Since we

assume that all 〈E,F 〉–planar curves c in M are B–planar, we may
proceed exactly as in beginning of the proof of theorem 4.21 to deduce
that

P (X,X) =
l∑

j=0

αi(X)Fi(X) + βi(X)Fi(X)

on a neighborhood of X, with some unique functions αi and β.
The comparison of the latter two unique expressions for P (X,X)

shows that β(X) vanishes. But since F (X) 6= X, there definitely
are curves which are 〈E,F 〉–planar and tangent to X, but not 〈E〉–
planar. Thus, the assumption in the theorem would lead to β(X) 6= 0.
Consequently, our choice F (X) /∈ B(X) cannot be achieved and we
have proved A(X) ⊂ B(X) for all X ∈ TM .

4.29. Example. Let us summarize consequences of the latter theorem
for the three examples of projective, complex and quaternionic struc-
tures. We obtain the well knowned results mentioned earlier. Consider
connections with the same torsion on a manifold M .

(1) Projective structures. In this case A = 〈E〉 and we have

Sym(f ∗∇̄ − ∇) = f ∗∇̄ − ∇ ∈ f ∗(A(1))

f ∗∇̄ = ∇ + α⊙E

for some one–form α. The second property f ∗〈E〉 ⊂ 〈E〉 is
trivial and this case and so we have got the classical result on
geodesical mappings.

(2) Almost complex structure. i.e A = 〈E, I〉, with I2 = −E. For
this choice,

f ∗∇̄ = ∇ + α⊙ E + β ⊙ I
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The second property f ∗〈E, I〉 ⊂ 〈I〉 imply f ∗〈I〉 ⊂ 〈I〉 becomes
f ∗I = ±I and so we have recovered the fact that mappings
respecting the A–planar curves are either holomorphic or anti–
holomorphic.

(3) Almost quaternionic space. With the choice A = 〈E, I, J,K〉
the first condition becomes

f ∗∇̄ = ∇ + α⊙ E + β ⊙ I + γ ⊙ J + δ ⊙K

which suitable one–forms α, β, γ, δ, while the second property
reads

f ∗〈E, I, J,K〉 ⊂ 〈E, I, J,K〉

and equivalently

f ∗〈I, J,K〉 ⊂ 〈I, J,K〉.

The almost quaternionic geometries enjoy the following property,
which is not necessarily true for all A–structures:

∀X ∈ TxM, ∀F ∈ A, ∃cX | ċX = X, ∇ċX
ċX = β(X)F (X),(34)

where β(X) 6= 0.
For example, this property is not true for conformal geometries of all

signatures except the positive and negative definite ones, or the almost
product structures.

4.30. Theorem. Let (M,A), (M ′, A′) be smooth manifolds of dimen-
sion m equipped with A–structure and A′–structure of the same generic
rank ℓ ≤ 2m and assume that the A–structure satisfies the property
(34). If f : M → M ′ is an (A,A′)–planar mapping, then f is a mor-
phism of the A–structures, i.e f ∗A′ = A.

Proof. Assume we have got two manifolds with A–structures (M,A),
(M ′, A′) and a diffeomorphism f : M → M ′ which is (A,A′)–planar.
Then theorem 4.27 implies that A(X) = (f ∗A′)(X) for each X ∈ TM
(since they both have the same dimension). In order to conclude the
theorem, we have to verify A = f ∗A′ instead, since this is exactly the
requirement that f preserves the defining subbundles A and A′.

Let us look at the subsets of all second jets of A–planar curves.
According to the property (34), the accelerations fill just the complete
A–hulls of the velocities at each point. Thus, for a given point x ∈ M
and a fixed F ∈ A, we may locally choose a smoothly parameterized
system cX of A–planar curves with parameter X ∈ TxM such that
ċX = X and ∇ċX

ċX = β(X)F (X) where F is one of the generators of
A and β(X) 6=. Then

(∇ċX
− ∇̂ċX

)ċX = β(X)F (X) +
∑

k

αk(X)Fk(X)
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where Fk are the generators of A′ and αk are smooth 1–forms, cf.
the proof of theorem 4.21. Moreover, the affinors Fk as well as the
one–forms αk are independent of X. But this shows that F (X) =∑

k γk(X)Fk(X) for some smooth functions γk of X. Since F is linear
in X, γk have to be constants and we are done. �

4.31. Proof of theorem 3.24. By example 4.17 an almost quater-
nionic structure has generic rank 4. Further, we saw in 3.22 that the
almost quaternionic structures have the property (34). Furthermore,
theorem 3.23 asserts that the Q–planar curves are just the geodesics of
the Weyl connections. Thus, the theorem 4.30 concludes the proof.
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