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Abstract
In this thesis, we solve three problems. The first one (in Chapter 2) deals with
positive solutions of symmetric three-term 2n-order difference equation

akyk + bk+nyk+n + ak+nyk+2n = 0, k ∈ Z.

We associate this equation with an operator given in the natural way by infinite
symmetric matrix and using this matrix and the technique of diagonal minors
(Section 2.2) we show that this equation possesses a positive solution for k ∈ Z
if and only if the infinite symmetric matrix associated with this equation is non-
negative definite.

In Chapters 3 and 4, we study the Sturm-Liouville equation of the 2n-order

n∑
ν=0

(−∆)ν
(
r
[ν]
k ∆νyk−ν

)
= 0, k ∈ Z, (∗)

and associated matrix operator given by an infinite symmetric banded matrix (see
Section 3.3). Using the relationship of equation (∗) to the so-called linear Hamil-
tonian systems and the concept of the recessive system of solutions, in Chapter
3 we describe the domain of the Friedrichs extension of the matrix operator as-
sociated to (∗) and in Chapter 4 we introduce the p-critical operators (Definition
4.1) and we show that arbitrarily small (in a certain sense) negative perturbation
of a non-negative critical operator leads to an operator which is no longer non-
negative.

2010 Mathematics Subject Classification: 39A10; 39A21; 39A70; 47B25; 47B36;
47B39.
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Chapter 1

Introduction

1.1 Organization of the thesis
This thesis consists of three papers. Each of them includes its own original in-
troduction, where the necessary background is mentioned, but there is one very
important theorem, that is used in Chapters 3 and 4, which is usually taken for
granted in spite of the fact, that it is (in general discrete case) quite new result
given by M. Bohner [5] in 1996. This theorem is Reid Roundabout Theorem. We
will recall this theorem in Section 1.2 in this short introductory chapter.

The aim of the Chapter 2, which is basically the paper [21], was to prove that
the symmetric three-term 2n-order difference equation

akyk + bk+nyk+n + ak+nyk+2n = 0, k ∈ Z (1.1)

possesses a positive solution for k ∈ Z if and only if the infinite symmetric ma-
trix associated in the natural way with this equation is non-negative definite. We
have proved this by introducing the diagonal minors (Section 2.2). Behind this
technique stands a simple idea, that equation (1.1) may be rewritten, in a certain
sense, as n equations of second order

ã
[i]
k ỹ

[i]
k + b̃

[i]
k+1ỹ

[i]
k+1 + ã

[i]
k+1ỹ

[i]
k+2 = 0, k ∈ Z, i = 1, . . . , n.

While the equation from Chapter 2 is associated with the symmetric banded
matrix, which is “almost empty” in the sense that there are only three nonzero
diagonals, in Chapters 3 and 4 we deal with the general 2n-order Sturm-Liouville
difference equation

n∑
ν=0

(−∆)ν
(
r
[ν]
k ∆νyk−ν

)
= 0, k ∈ Z, (1.2)

7



CHAPTER 1. INTRODUCTION 8

which is also associated with a symmetric banded matrix. This connection have
been explicitly described by W. Kratz [25] in 2001 and is recalled in Section 3.3.
It is clear, that the approach from Chapter 2 is not suitable anymore. Therefore
we convert (1.2) into the linear Hamiltonian difference system

∆xk = Axk+1 +Bkuk, ∆uk = Ckxk+1 − ATuk, (1.3)

as it is further described, and using the concept of the recessive system of solu-
tions, in Chapter 3 (paper [13]), we describe the domain of the Friedrichs exten-
sion of the matrix operator associated to (1.2). In the last chapter (paper [14])
we use the relationship of equation (1.2) and system (1.3) and the concept of
the recessive system of solutions to introduce the p-critical operators (Definition
4.1) and we show that arbitrarily small (in a certain sense) negative perturbation
of a non-negative critical operator leads to an operator which is no longer non-
negative. Then, in Section 4.4, we find an explicit condition for criticality of the
one-term difference equation

(−∆)2(rk∆
2yk) = 0, rk > 0, k ∈ Z.

Note that the notation [·, ·], (·, ·) is used for discrete intervals, e.g., [a, b) =
{a, a+ 1, . . . , b− 2, b− 1}, a, b ∈ Z.

1.2 Sturm-Liouville equations, Hamiltonian systems,
and Reid Roundabout Theorem

The aim of this section is to recall some facts about equivalency of 2n-order
Sturm-Liouville difference equations

n∑
ν=0

(−∆)ν
(
r
[ν]
k ∆νyk−ν

)
= 0, r

[n]
k 6= 0, ∀k, (1.4)

and linear Hamiltonian difference systems

∆xk = Akxk+1 +Bkuk, ∆uk = Ckxk+1 − ATk uk, (1.5)

where Ak, Bk, and Ck are n× n matrices, Bk and Ck are symmetric, and I − Ak
is invertible (where I stands for the identity matrix of the proper dimension). The
aim of this section is to formulate the Reid Roundabout Theorem for the lin-
ear Hamiltonian difference system equivalent to equation (1.4). Full background,
more general statements, and all proofs can be found in [4, 5, 24].
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Now consider equation (1.4). Using the substitution

x
[y]
k =


yk−1

∆yk−2
...

∆n−1yk−n

 , u
[y]
k =


∑n

ν=1(−∆)ν−1
(
r
[ν]
k ∆νyk−ν

)
...

−∆(r
[n]
k ∆nyk−n) + r

[n−1]
k ∆n−1yk−n+1

r
[n]
k ∆nyk−n

 ,

we can rewrite equation (1.4) to linear Hamiltonian system (1.5) with the n × n
matrices Ak, Bk, and Ck given by the formulas

Ak = A := (aij)
n
i,j=1, aij =

{
1 if j = i+ 1, i = 1, . . . , n− 1,

0 elsewhere,

Bk = diag

{
0, . . . , 0,

1

r
[n]
k

}
, Ck = diag

{
r
[0]
k , . . . , r

[n−1]
k

}
.

(1.6)

Therefore we have

Ã := (I − Ak)−1 = (ãij)
n
i,j=1, ãij =

{
1 if j ≥ i,

0 elsewhere.

Then we say that the solution (x, u) of (1.5) is generated by the solution y of (1.4).
Let us consider the matrix linear Hamiltonian system

∆Xk = AkXk+1 +BkUk, ∆Uk = CkXk+1 − ATkUk, (1.7)

where the matrices Ak, Bk, and Ck are given by (1.6). We say that the solution
(X,U) of (1.7) is generated by the solutions y[1], . . . , y[n] if and only if its columns
are generated by y[1], . . . , y[n], respectively. On the other hand, if we have the solu-
tion (X,U) of (1.7), the elements from the first line of the matrixX are exactly the
solutions y[1], . . . , y[n] of (1.4). Now, we can define the oscillatory properties of
(1.4) via the corresponding properties of the associated Hamiltonian system (1.5)
with matrices Ak, Bk, and Ck given by (1.6). E.g., equation (1.4) is disconjugate
if and only if the associated system (1.5) is disconjugate, the system of solutions
y[1] . . . , y[n] is said to be recessive if and only if it generates the recessive solution
X of (1.7), etc. So, we define the following properties just for linear Hamiltonian
systems.

Let (X,U) and (X̃, Ũ) be two solutions of (1.7). Then

XT
k Ũk − UT

k X̃k ≡ W (1.8)
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holds with a constant matrix W . (This is an analog of the continuous Wronskian
identity.) We say that the solution (X,U) of (1.7) is a conjoined basis if

XT
k Uk ≡ UT

k Xk and rank

(
X

U

)
= n.

Two conjoined bases (X,U), (X̃, Ũ) of (1.7) are called normalized conjoined
bases of (1.7) if W = I in (1.8).

System (1.7) is said to be disconjugate in an interval [l,m], l,m ∈ N, if the
solution

(
X
U

)
given by the initial condition Xl = 0, Ul = I satisfies

KerXk+1 ⊆ KerXk and XkX
†
k+1(I − Ak)

−1Bk ≥ 0

for k = l, . . . ,m − 1. Here Ker, †, and ≥ stand for the kernel, Moore-Penrose
generalized inverse, and non-negative definiteness of a matrix indicated, respec-
tively. System (1.7) is said to be non-oscillatory if there exists l ∈ N such that it
is disconjugate on [l,m] for every m ∈ N, otherwise it is called oscillatory.

We call a conjoined basis
(
X̃
Ũ

)
of (1.7) the recessive solution at∞ if the ma-

trices X̃k are nonsingular, X̃kX̃
−1
k+1(I − Ak)−1Bk ≥ 0, both for large k, and for

any other conjoined basis
(
X
U

)
for which the (constant) matrix XT Ũ − UT X̃ is

nonsingular, we have
lim
k→∞

X−1k X̃k = 0.

The solution (X,U) is usually called dominant at∞. The recessive solution at∞
is determined uniquely up to a right multiple by a nonsingular constant matrix and
exists whenever (1.7) is non-oscillatory and eventually controllable, see p. 25.

We say that a pair (x, u) is admissible for system (1.5) if and only if the first
equation in (1.5) holds.

Now we introduce the energy functional of equation (1.4)

F(y) :=
∑
k

n∑
ν=0

r
[ν]
k (∆νyk−ν)

2.

For admissible (x, u) we have

F(y) =
∑
k

n∑
ν=0

r
[ν]
k (∆νyk−ν)

2

=
∑
k

[
n−1∑
ν=0

r
[ν]
k (∆νyk−ν)

2 + 1

r
[n]
k

(r
[n]
k ∆nyk−n)2

]
=
∑
k

[
xTk+1Ckxk+1 + uTkBkuk

]
=: F(x, u).
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Similarly as in the continuous case, using the substitution Qk = UkX
−1
k in

(1.7) we obtain the Riccati matrix difference equation

Qk+1 = Ck + (I − ATk )Qk(I +BkQk)
−1(I − Ak). (1.9)

Now we are ready to formulate the Reid Roundabout Theorem.

Theorem 1.1 (Reid Roundabout Theorem, [5]). Let n < N, N ∈ N. Then the
following statements are equivalent.

(i) System (1.5) is disconjugate in [0, N ].

(ii) F(x, u) > 0 for every admissible (x, u) on [0, N ] with x0 = 0 = xN+1 and
xk 6≡ 0 on [1, N − 1].

(iii) There exists a conjoined basis (X,U) of (1.7) such that Xk is invertible for
k ∈ [0, N + 1] and

XkX
−1
k+1ÃBk ≥ 0, k ∈ [0, N ].

(iv) There exists a (symmetric) solutionQk of the Riccati matrix difference equa-
tion (1.9) such that (I +BkQk)

−1Bk ≥ 0 for all k ∈ [0, N ].



Chapter 2

On positivity of the three term
2n-order difference operators

2.1 Introduction
Let ak < 0, bk > 0, k ∈ Z, be real-valued sequences and consider the symmetric
2n-order recurrence relation

(τy)k+n := akyk + bk+nyk+n + ak+nyk+2n.

We use a standard notation

`2(Z) :=

{
y = {yk}k∈Z,

∑
k∈Z

|yk|2 <∞

}
.

We associate with the difference equation

τy = 0 (2.1)

the operator T : `2(Z)→ `2(Z) with the domain

D(T ) = `20(Z) =
{
y = {yk}k∈Z ∈ `2(Z), only finitely many yk 6= 0

}
given by the formula T f = τf, f ∈ `20(Z), and we show that (2.1) has a positive
solution yk, k ∈ Z, if and only if the operator T is non-negative, i.e.,

〈T y, y〉 ≥ 0 ∀y ∈ `20(Z),

where 〈·, ·〉 denotes the usual inner product in `2(Z). The statements presented in
this chapter extend some results given in [19], where the case n = 1 is considered.

12



CHAPTER 2. THREE TERM OPERATORS 13

2.2 Preliminaries
Let T be the infinite symmetric matrix associated in the natural way with the
operator T and let us denote for µ ≤ ν, µ, ν ∈ Z, the truncations of T by

tµ,ν :=



bµ 0 · · · 0 aµ · · · 0

0 bµ+1 0 · · · 0
. . . ...

... 0
. . . ... 0 aν−n

0
... . . . 0

... 0

aµ 0 · · · 0 bµ+n 0
...

0
. . . 0 · · · 0

. . . 0
· · · 0 aν−n 0 · · · 0 bν


,

and their determinants by
dµ,ν := det

(
tµ,ν
)
.

For r, s ∈ Z, r ≡ s (mod n), we introduce the diagonal minors Dr,s, which
are determinants of the submatrix of tµ,ν consisting of rows and columns which
contain diagonal elements br, br+n, br+2n, . . . , bs−n, bs.

The following statement gives us the relationship between determinant dµ,ν
and its minors Dr,s.

Lemma 2.1. It holds that
n−1∏
i=0

Dµ+i,si = dµ,ν =
n−1∏
i=0

Dri,ν−i,

where, for i = 0, . . . , n− 1,

si = max{x ∈ Z : x ≡ µ+ i (mod n), x ≤ ν},
ri = min{x ∈ Z : x ≡ ν − i (mod n), x ≥ µ}.

Proof. Without any change of the determinant, the matrix tµ,ν can be transformed
into the block diagonal matrix t̃µ,ν with blocks Dµ+i,si or Dri,ν−i, i = 0, . . . , n−
1.

Corollary 2.1. It holds that

Dr,ν

Dr,ν−n
dµ,ν−1 = dµ,ν =

Dµ,s

Dµ+n,s

dµ+1,ν ,

where r := min{x ∈ Z : x ≡ ν (mod n), x ≥ µ} and s := max{x ∈ Z : x ≡ µ
(mod n), x ≤ ν}.
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Corollary 2.2. It holds that

Dµ,s0 = bµDµ+n,s0 − a2µDµ+2n,s0 ,

Dr0,ν = bν Dr0,ν−n − a2ν−nDr0,ν−2n.

Proof. Computing dµ,ν by expanding it along its first row we obtain

dµ,ν = bµ dµ+1,ν − a2µ

(
n−1∏
i=1

Dµ+i,si

)
Dµ+2n,s0 .

Next, using Lemma 2.1, we have

n−1∏
i=0

Dµ+i,si = bµ

(
n−1∏
i=1

Dµ+i,si

)
Dµ+n,s0 − a2µ

(
n−1∏
i=1

Dµ+i,si

)
Dµ+2n,s0 ,

which is the first equality. The second equality can be proved similarly.

Lemma 2.2. Let ν > µ + n and suppose that tµ,ν ≥ 0 (i.e., the matrix tµ,ν is
non-negative definite), then dµ,ν−n > 0, . . . , dµ,ν−1 > 0.

Proof. We prove this statement for dµ,ν−n. The rest can be proved similarly.
The assumption tµ,ν ≥ 0 implies

(i) dµ,k ≥ 0, ∀k ∈ [µ, ν],

(ii) Dµ+i,skii
≥ 0, ∀ki ∈ [0, ν − µ− i], where

skii = max{x ∈ Z : x ≡ µ+ i (mod n), x ≤ ν − ki}.

Denote
` := min{x ∈ [µ, ν] : x ≡ ν (mod n), dµ,x = 0}.

Because dµ,µ = bµ > 0, . . . , dµ,µ+n−1 =
∏n−1

j=0 bµ+j > 0, we have ` ≥ µ + n.
Now, suppose by contradiction that dµ,ν−n = 0, which implies that ` ≤ ν−n, and
compute

dµ,`+n = b`+n dµ,`+n−1 − a2`

(
n−1∏
i=1

Dri,`+1−i

)
Dr0,`−n,

Dr0,`+n = b`+nDr0,` − a2` Dr0,`−n.

Using Corollary 2.1 we have 0 = dµ,` = Dr0,`
dµ,`−1

Dr0,`−n
which implies thatDr0,` = 0

and using Lemma 2.1 we have 0 < dµ,`−n = KDr0,`−n, where K > 0, which
implies that Dr0,`−n > 0. Altogether, we obtained that Dr0,`+n < 0, which con-
tradicts our assumption tµ,ν ≥ 0.
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The following statement can be proved easily using Lemma 2.2 (see [19, p.
74–75]).

Lemma 2.3. The operator T is non-negative definite if and only if dµ,ν > 0, for
all µ, ν ∈ Z, µ ≤ ν.

Now, we present two auxiliary statements, which give us the possibility to
construct a solution of the difference equation (2.1).

Lemma 2.4. Let T ≥ 0, and r, s be the same as in Corollary 2.1. Then

(i)
1

bµ
<
Dµ+n,s

Dµ,s

<
bµ−n
a2µ−n

;

(ii)
1

bν
<
Dr,ν−n

Dr,ν

<
bν+n
a2ν

;

(iii) The sequence

ci :=

{
Dµ+n,s+in

Dµ,s+in

}
is increasing for i ∈ N0.

(iv) The sequence

di :=

{
Dr−in,ν−n

Dr−in,ν

}
is increasing for i ∈ N0.

Proof. We prove parts (i) and (iii). Parts (ii) and (iv) can be proved similarly. To
prove the first part, we expand dµ,ν along its first row and using Lemma 2.1 we
obtain

Dµ,s0 = bµDµ+n,s0 − a2µDµ+2n,s0 .

Because a2µDµ+2n,s0 > 0, the left inequality in (i) holds. Now, we expand the
determinant dµ−n,ν and we obtain

0 < Dµ−n,s0 = bµ−nDµ,s0 − a2µ−nDµ+n,s0

which proves the right inequality in (i).
The part (iii) we prove by induction. Directly one can verify that

Dµ+n,µ+n

Dµ,µ+n

<
Dµ+n,µ+2n

Dµ,µ+2n

.
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Now, we multiply equalities

Dµ,s = bµDµ+n,s − a2µDµ+2n,s,

Dµ,s+n = bµDµ+n,s+n − a2µDµ+2n,s+n

by 1
Dµ+n,s

and 1
Dµ+n,s+n

, respectively, and subtract them. We obtain

Dµ,s

Dµ+n,s

− Dµ,s+n

Dµ+n,s+n

= a2µ

(
Dµ+2n,s+n

Dµ+n,s+n

− Dµ+2n,s

Dµ+n,s

)
,

which proves the statement.

Lemma 2.5. Let f, g be solutions of τy = 0. If fj = gj , . . . , fj+n−1 = gj+n−1,
j ∈ Z, then

fk0 >

(=)
gk0 , . . . , fk0+n−1 >

(=)
gk0+n−1 for some k0 ≥ j + n (k0 ≤ j − n) (2.2)

implies
fk >

(=)
gk ∀k ≥ j + n (k ≤ j − n).

Proof. We follow the idea introduced in [19, 30]. Let f and g be solutions of the
linear system

tj+n,k0−1


yj+n
yj+n+1

...
yk0−1

 =


v
0
...
w

 ,

where

v =

 −ajyj
...

−aj+n−1yj+n−1

 , w =

 −ak0−nyk0
...

−ak0−1yk0+n−1

 .

Then fk >

(=)
gk for k ∈ [j + n, k0 + n − 1]. Now, the existence of a K ≥ k0 + n

such that fk < gk contradicts (2.2).

If we suppose that T ≥ 0, we can (due to Lemma 2.4, j ∈ [0, n−1]) introduce
the limits

C
[µ,j]
+ := lim

i→∞

Dµ+n,sj+in

Dµ,sj+in

, C
[ν,j]
− := lim

i→∞

Drj−in,ν−n

Drj−in,ν
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and a positive map u : Z× Z→ R defined by

u(µ, k) :=
∏̀
i=1

(
−ak−inC [k−(i−1)n,k−µ−`n]

+

)
, k ≥ µ+ n,

1, k ∈ [µ− n+ 1, µ+ n− 1],
`−1∏
i=0

(
−ak+inC [k+in,µ−k−`n]

−

)
, k ≤ µ− n,

where ` =
∣∣⌊k−µ

n

⌋∣∣, and b · c denotes the floor function (greatest integer less than
or equal to the number indicated) of a real number. Now, let us recall the definition
of a minimal solution of (2.1).

Definition 2.1. We say that a solution u of (2.1) is minimal on [µ + n,∞) if
any linearly independent solution v of (2.1) with vµ = uµ, . . . , vµ+n−1 = uµ+n−1
satisfies vk > uk for k ≥ µ+ n. The minimal solution on (−∞, µ− n] is defined
analogously.

Lemma 2.6. Let T ≥ 0. Then u(µ, k), µ ∈ Z being fixed, is the minimal positive
solution of τy = 0 on [µ+ n,∞) and (−∞, µ− n].

Proof. We introduce

u
[µ,ν]
k :=

1, k ∈ [µ, µ+ n− 1]

(−ak−n) (−ak−2n) · · · (−ak−`n)
Dk+n,si

Dk−(`−1)n,si

, k ∈ [µ+ n, s0 − 1],

(−ak−n) (−ak−2n) · · · (−ak−`n) 1
Dk−(`−1)n,si

, k ∈ [s0, sn−1]

0, k ∈ [sn−1 + 1, sn−1 + n],

where i = k − µ− `n, ` =
∣∣⌊k−µ

n

⌋∣∣.
The sequence u[µ,ν]k satisfies τy = 0 on [µ+ n, sn−1] and it holds that

lim
sn−1→∞

u
[µ,ν]
k = u(µ, ν), k ≥ µ,

so we can see that τu = 0 on [µ+ n,∞).
Let v be a positive solution of τy = 0 on [µ + n,∞) such that vµ = 1, . . . ,

vµ+n−1 = 1, which is linearly independent of u(µ, ·). Because vsn−1+1 > 0, . . . ,
vsn−1+n > 0, we have vk > u

[µ,sn−1]
k on [sn−1 + 1, sn−1 +n]. Thus, by Lemma 2.5,

vk > u
[µ,sn−1]
k for all k ≥ µ + n. Hence, vk ≥ u(µ, k) for all k ≥ µ. Assume, by
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contradiction, that there exists k0 ≥ µ + n such that vk0 = u(µ, k0). Then, again
by Lemma 2.5, vk = u(µ, k) for all k ≥ µ, which is a contradiction.

One can show analogously that u is the minimal positive solution of τy = 0
on (−∞, µ− n] using

u
[µ,ν]
k :=

1, k ∈ [µ− n+ 1, µ],

(−ak) (−ak+n) · · · (−ak+(`−1)n)
Drj ,k−n

Drj ,k+(`−1)n
, k ∈ [r0 + 1, µ− n],

(−ak) (−ak+n) · · · (−ak+(`−1)n) 1
Drj ,k+(`−1)n

, k ∈ [rn−1, r0],

0, k ∈ [rn−1 − 1, rn−1 − n],

where j = µ− k − `n, ` =
∣∣⌊k−µ

n

⌋∣∣.
2.3 Positive solutions of τy = 0

If T ≥ 0, as a consequence of the previous section, the minimal positive solutions
of the equation τy = 0 on [n,∞) and (−∞, n] are

u+k :=

{
u(0, k), k ∈ N0,

u(k − i, i)−1, k ≡ i (mod n),−k ∈ N, i ∈ [0, n− 1],

u−k :=

{
u(0, k), −k ∈ N0,

u(k + i,−i)−1, k ≡ i (mod n), k ∈ N, i ∈ [0, n− 1].

respectively.

Lemma 2.7. Let T ≥ 0. Then u+k , u
−
k are positive solutions of τy = 0 on Z.

Proof. We show that u+k is a positive solution of τy = 0 on Z, the statement for
u−k can be proved similarly.

The sequence u+ is a positive solution of τy = 0 on [n,∞). It follows from
the definition of u(µ, k) that for

∀k, ` ∈ Z, ∀m ∈ [k, `], m ≡ k (mod n)

it holds that
u(k, `) = u(k,m)u(m, `).

Let m ∈ (−∞, n− 1] be arbitrary and M ∈ −N such that M ≤ m− n be fixed.
Then for some i ∈ [0, n− 1] we have M ≡ m− i (mod n) and

u(M, i) = u(M,m− i)u(m− i, i).



CHAPTER 2. THREE TERM OPERATORS 19

Hence, by the definition of u+, we obtain

u+m = u(m− i, i)−1 =
u(M,m− i)
u(M, i)

,

which implies that u+ is a solution of τy = 0 on [M + i, i].

Theorem 2.1. T ≥ 0 if and only if there exists a positive solution of τy = 0.

Proof. The necessity follows from Lemma 2.7. To prove sufficiency we show at
first positivity of all determinants Dµ,ξ, µ ≤ ξ ≤ ν, ξ ≡ µ (mod n). Assume
that there exists a positive solution u of τy = 0. Then u solves the system

tµ,ν


uµ
uµ+1

...
uν

 =


v
0
...
0
w

 ,

where

v =

−aµ−nuµ−n...
−aµ−1uµ−1

 , w =

−aν−n+1uν+1
...

−aνuν+n

 .

By Cramer’s rule we obtain

uµdµ,ν =[
−aµ−nuµ−nDµ+n,s0+(−aσuσ+n)(−aµ)(−aµ+n) · · · (−as0−n)

](n−1∏
i=1

Dµ+i,si

)
,

where σ ∈ {ν − n+ 1, . . . , ν}, σ ≡ µ (mod n). Hence

Dµ,s0uµ = −aµ−nuµ−nDµ+n,s0 + (−aµ)(−aµ+n) · · · (−as0−n)(−aσ)uσ+n.

If s0 = µ+n then Dµ+n,s0 = Dµ+n,µ+n = bµ+n > 0 which implies that Dµ,µ+n >
0. Hence all determinants Dµ,ξ are positive. Similarly we can show positivity of
the determinants Dµ+i,ξi , µ+ i ≤ ξi ≤ ν, ξi ≡ µ+ i (mod n), i = 1, . . . , n− 1,
which gives positivity of the determinants dµ,ν , µ ≤ ν and the statement follows
from Lemma 2.3.

In an analogous way as above we can generalize a number of statements
of [19]. For example, the following result, which characterizes the minimal solu-
tions of (2.1), can be proved in the same way as in [19] (see also [31]).
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Theorem 2.2. If T ≥ 0, then for all µ ∈ Z
±∞∑
i=µ

(
−aiu±i u±i+n

)−1
=∞.

We end up this chapter illustrating the previous theory by an example. For sim-
plicity we use an equation with constant coefficients, which enables us to demon-
strate both implications in Theorem 2.1.
Example. Let us consider the equation

yk+4 − 2yk+2 + yk = 0, k ∈ Z. (2.3)

By Theorem 2.1, the equation (2.3) possesses a positive solution on Z if and only
if the operator T given by the matrix

. . . . . . . . .
0 −1 0 2 0 −1 0 0
0 0 −1 0 2 0 −1 0

. . . . . . . . .

 (2.4)

is non-negative definite.

(i) By a direct computation we obtain the solutions 1, (−1)k, k, (−1)kk of the
equation (2.3). Hence, the matrix operator T is non-negative definite, be-
cause the equation (2.3) has the positive solution yk = 1.

(ii) We show that the matrix (2.4) is non-negative definite. According Lemma
2.3 it suffices to show that all minors of the matrix (2.4) are positive, i.e.,
dµ,ν > 0, µ, ν ∈ Z. This we can show by induction using Lemma 2.1 and
Corollary 2.1. We obtain two identical tridiagonal blocks

. . . . . . . . .
0 −1 2 −1 0

. . . . . . . . .

 .

Now, it suffices to show that all main minors Di, i ∈ N, of these blocks are
positive. (The index i stands for the dimension of the minor Di.) We have
D1 = 2, D2 = 3, D3 = 4, . . .. We suppose that Dk = k + 1 and calculate
Dk+1. Expanding along its last row we obtain

Dk+1 = 2Dk −Dk−1 = 2(k + 1)− k = k + 2.

So, the matrix operator T is non-negative definite. Therefore the equation
(2.3) has a positive solution. This solution we can obtain using the formulas
for u+k and/or for u−k . Here, we obtain that u+k = u−k = 1.



Chapter 3

Friedrichs extension of operators
defined by symmetric banded
matrices

3.1 Introduction
We consider the infinite symmetric banded matrix with the bandwidth 2n+ 1

T = (tµ,ν), tµ,ν = tν,µ ∈ R, µ, ν ∈ N ∈ {0}, tµ,ν = 0 for |µ− ν| > n.
(3.1)

If we set tµ,ν = 0 (and yν = 0) for µ < 0, ν < 0, we associate with T the operator
T : `2 → `2 defined for y = {yk}∞k=0 ∈ `2 such that T y ∈ `2 by

(T y)k =
k+n∑
j=k−n

tk,jyj, k ∈ N. (3.2)

We are motivated by the papers [8] and [26], where the authors investigated
the Friedrichs extension of operators defined by infinite Jacobi matrices and by
singular 2n-order differential expressions, respectively. It was shown there that
the domain of the Friedrichs extension of these operators can be characterized by
the so-called recessive and principal solutions of certain associated difference and
differential equations.

Here we associate with (3.2) a 2n-order Sturm-Liouville difference equation
and using the concept of the recessive system of solutions of this Sturm-Liouville
equation we characterize the domain of the Friedrichs extension of T . The crucial
role in our treatment is played by the results of [25], where the relationship be-
tween banded matrices, 2n-order Sturm-Liouville difference operators, and linear
Hamiltonian difference systems is established.

21
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This chapter is organized as follows. In the next section we recall elements
of the theory of symmetric operators in Hilbert spaces and their self-adjoint ex-
tensions. In Section 3 we discuss the relationship between banded symmetric
matrices, Sturm-Liouville difference operators, and linear Hamiltonian difference
systems. We also present elements of the spectral theory of symmetric difference
operators in this section. The main result of this chapter is given in Section 3.4.

3.2 Friedrichs extension of a symmetric operator
First let us briefly recall the concept of the Friedrichs extension of a symmetric
operator. Let H be a Hilbert space with the inner product 〈·, ·〉 and let T be
a densely defined symmetric operator in H with the domain D(T ). Suppose also
that T is bounded below, i.e., there exists a real constant γ such that

〈T x, x〉 ≥ γ〈x, x〉, x ∈ D(T ).

Friedrichs [17] showed that there exists a self-adjoint extension TF of T , later
named Friedrichs extension of T , which preserves the lower bound of T . The
domain D(TF ) of this extension can be characterized as follows. The sesquilinear
form

G(x, y) := 〈T x, y〉 − (γ − ε)〈x, y〉, ε > 0,

defines an inner product on H , denote by 〈·, ·〉T this inner product, and by HT the
completion of D(T ) in this product. Then the domain of TF is

D(TF ) = HT ∩ D(T ∗),

where T ∗ is the adjoint operator of T . It can be shown (see, e.g., [23, p. 352]) that
for any x ∈ D(TF ) there exists a sequence xn ∈ D(T ) such that

G̃(x− xn, x− xn)→ 0 as n→∞,

where G̃ denotes the closure ofG. Another characterization ofD(TF ) comes from
Freudenthal [16]:

D(TF ) ={x ∈ D(T ) : ∃xk ∈ D(T ) such that xk → x in H
and G(xj − xk, xj − xk)→ 0 as j, k →∞}.

(3.3)

The construction of the sequence xn in our particular case, when T is the
operator defined by the infinite matrix in (3.1), is based on the so-called Reid’s
construction of the recessive solution of linear Hamiltonian difference systems
(see, e.g., [1, 2]) and on the resulting concept of the recessive system of solutions
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of even-order Sturm-Liouville equations introduced in [11]. The concept of the
recessive solution of difference equations is the discrete version of the concept of
the principal solution of differential equations and systems.

To explain the role of these concepts in the theory of Friedrichs extensions of
differential and difference operators, let us start with the regular Sturm-Liouville
differential operator

L(y) := −[r(t)y′]′ + p(t)y, (3.4)

where t ∈ (a, b),−∞ < a < b < ∞, r−1, p ∈ L(a, b). It is well known that
the domain of the Friedrichs extension LF of the minimal operator defined by L
is given by the Dirichlet boundary condition

D(LF ) = {y ∈ L2(a, b) : L(y) ∈ L2(a, b), y(a) = 0 = y(b)}. (3.5)

If the operator L is singular at one or both endpoints a, b, it was discovered by
Rellich [33] that functions in D(LF ) behave near a and b like the principal solu-
tion of a certain non-oscillatory differential equation associated with (3.4). This
fact is a natural extension of (3.5) since the principal solution (at a singular point)
of a second order differential equation is a solution which is less, near this singu-
lar point (in a certain sense), than any other solution of this equation. We refer
to the paper [27], where the concept of the principal solution has been introduced
and to books [20, 32] for properties of the principal solution of (3.4) and for the
extension of this concept to linear Hamiltonian systems. Note also that the results
of Rellich had been later extended in various directions, let us mention here at
least the papers [22, 26, 29].

Concerning the Friedrichs extension of difference operators, the discrete coun-
terpart of the concept of the principal solution is the so-called recessive solution.
This concept for the second order Sturm-Liouville difference equation

∆(rk∆xk) + pkxk+1 = 0, ∆xk := xk+1 − xk, (3.6)

appears explicitly for the first time in [18], even if it is implicitly contained in
a series of earlier papers. The fact that this solution of (3.6) plays the same role
in the theory of second order difference operators and Jacobi matrices as the prin-
cipal solution for differential operators has been established in [3, 8, 19]. In this
chapter, we extend some results of these papers to matrix operators defined by
(3.2).

3.3 Sturm-Liouville difference operators and sym-
metric banded matrices

We start this section with the relationship between banded symmetric matrices and
Sturm-Liouville difference operators as established in [25]. Consider the 2n-order
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Sturm-Liouville difference operator

L(y)k :=
n∑
µ=0

(−∆)µ
[
r
[µ]
k ∆µyk−µ

]
, k ∈ N0 := N ∪ {0}, r

[n]
k 6= 0, (3.7)

where ∆yk = yk+1 − yk and ∆νyk = ∆(∆ν−1yk). Expanding the forward differ-
ences in (3.7), with the convention that tµ,ν = 0 for µ, ν < 0, we get the recurrence
relation (3.2) with ti,j given by the formulas

tk,k+j = (−1)j
n∑
µ=j

µ∑
ν=j

(
µ

ν

)(
µ

ν − j

)
r
[µ]
k+ν ,

tk,k−j = (−1)j
n∑
µ=j

µ−j∑
ν=0

(
µ

ν

)(
µ

ν + j

)
r
[µ]
k+ν ,

(3.8)

for k ∈ N0 and j ∈ {0, . . . , n}. Consequently, one can associate the difference
operator L with the matrix operator T , defined via an infinite matrix T , by the
formula

(T y)k := L(y)k, k ∈ N0, (3.9)

where L is related to T by (3.2) and (3.8). Conversely, having a symmetric banded
matrix T = (tµ,ν) with the bandwidth 2n + 1, one can associate with this matrix
the Sturm-Liouville operator (3.7) with r[µ], µ = 0, . . . , n, given by the formula

r
[µ]
k+µ = (−1)µ

n∑
s=µ

[(
s

µ

)
tk,k+s +

s−µ∑
l=1

s

l

(
µ+ l − 1

l − 1

)(
s− l − 1

s− µ− l

)
tk−l,k−l+s

]
,

where k ∈ N0, 0 ≤ µ ≤ n.
Sturm-Liouville difference equations are closely related to linear Hamiltonian

difference systems (see, e.g., [5]). Let y be a solution of the equation

L(y)k = 0, k ∈ N0, (3.10)

and let

xk =


yk−1

∆yk−2
...

∆n−1yk−n

 , uk =


∑n

µ=1(−1)µ−1∆µ−1(r
[µ]
k ∆µyk−µ)

...
−∆(r

[n]
k ∆nyk−n) + r

[n−1]
k ∆n−1yk−n+1

r
[n]
k ∆nyk−n

 ,

(3.11)
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where we extend y = {yk}∞k=0 by y−1 = · · · = y−n = 0. Then
(
x
u

)
solves the

linear Hamiltonian difference system

∆xk = Axk+1 +Bkuk, ∆uk = Ckxk+1 − ATuk, (3.12)

with

Bk = diag

{
0, . . . , 0,

1

r
[n]
k

}
, Ck = diag

{
r
[0]
k , . . . , r

[n−1]
k

}
, (3.13)

and

A = aij =

{
1 if j = i+ 1, i = 1, . . . , n− 1,

0 elsewhere.
(3.14)

Next we recall Reid’s construction of the recessive solution of (3.12) as it is in-
troduced in [1] for three terms matrix recurrence relations. This construction nat-
urally extends to (3.12) (see, e.g., [12]) and the important role is played there by
the following concepts introduced in [5]. A 2n× n matrix solution

(
X
U

)
of (3.12)

is said to be a conjoined basis if XTU is symmetric and rank
(
X
U

)
= n. System

(3.12) is said to be disconjugate in a discrete interval [l,m], l,m ∈ N, if the 2n×n
matrix solution

(
X
U

)
given by the initial condition Xl = 0, Ul = I satisfies

KerXk+1 ⊆ KerXk and XkX
†
k+1(I − A)−1Bk ≥ 0 (3.15)

for k = l, . . . ,m. Here Ker, †, and ≥ stand for the kernel, Moore-Penrose gen-
eralized inverse, and non-negative definiteness of a matrix indicated, respectively.
System (3.12) is said to be non-oscillatory if there exists N ∈ N such that this
system is disconjugate on [N,∞) and it is said to be oscillatory in the opposite
case. System (3.12) is said to be eventually controllable if there exist N, κ ∈ N
such that for any m ≥ N the trivial solution

(
x
u

)
=
(
0
0

)
is the only solution for

which xm = xm+1 = · · · = xm+κ = 0. Note that Hamiltonian system (3.12) cor-
responding to Sturm-Liouville equation (3.10) is controllable with the constant
κ = n, see [5, Remark 9].

A conjoined basis
(
X̃
Ũ

)
of (3.12) is said to be the recessive solution if X̃k are

nonsingular, X̃kX̃
−1
k+1(I − A)−1Bk ≥ 0, both for large k, and for any other con-

joined basis
(
X
U

)
for which the (constant) matrix XT Ũ − UT X̃ is nonsingular

(such a solution is usually called dominant) we have

lim
k→∞

X−1k X̃k = 0. (3.16)

The recessive solution is determined uniquely up to a right multiple by a nonsin-
gular n× n matrix. The equivalent characterization of the recessive solution

(
X̃
Ũ

)
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of eventually controllable Hamiltonian difference systems (3.12) is

lim
k→∞

(
k∑
X̃−1j (I − A)−1BjX̃

T−1
j

)−1
= 0.

Note that the existence of a conjoined basis
(
X
U

)
such that its first component

X is nonsingular and the second condition in (3.15) holds for large k implies that
the first component of any other conjoined basis has the same property, see [7].

The recessive solution
(
X̃
Ũ

)
of (3.12) can be constructed as follows. Let l,m ∈

N, l > m, be such that (3.12) is disconjugate on [m,∞), and consider the solution(
X[l]

U [l]

)
of (3.12) given by the condition X [l]

m = I , X [l]
l = 0, where I is the identity

matrix. Such a solution exists because of disconjugacy of (3.12) on [m, l] and for
every k ∈ [m, l] we have

lim
l→∞

(
X

[l]
k

U
[l]
k

)
=

(
X̃k

Ũk

)
.

If (3.12) is rewritten Sturm-Liouville equation (3.7), i.e., the entries in the first row
of the matrix X̃ are solutions ỹ[1], . . . , ỹ[n] of (3.10), we call these solutions the
recessive system of solutions of (3.7). Nonoscillation and disconjugacy of (3.10) is
defined via nonoscillation and disconjugacy of the associated linear Hamiltonian
difference system, hence recessive system of solutions of (3.10) exists whenever
this equation is non-oscillatory.

Next we recall the result (see [25, Lemma 2]) which relates the quadratic form
associated with the matrix T , the quadratic functional associated with (3.7), and
the quadratic functional associated with (3.12). Let y = {yk} ∈ `2 and suppose
that there exists N ∈ N such that yk = 0 for k ≥ N . If we extend y by y−1 =
· · · = y1−n = 0, we have the identity

〈Ty, y〉 = F(y) = Q(x, u), (3.17)

where

F(y) :=
∞∑
k=0

n∑
µ=0

r
[µ]
k (∆µyk+1−µ)2,

and

Q(x, u) =
∞∑
k=0

[uTkBkuk + xTk+1Ckxk+1]

with x, u inQ related to y by (3.11) and the matrices A,B,C are given by (3.13),
(3.14). According to [5], the quadratic functionalQ is positive for all (x, u) satis-
fying
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∆xk = Axk+1 +Bkuk (3.18)

with x0 = 0, xk = 0 for large k, x 6≡ 0, if and only if system (3.12) is disconjugate
on [0,∞). Moreover, for such (x, u) we have

Q(x, u) =
∞∑
k=0

xTk+1

[
−∆uk + Ckxk+1 − ATuk

]
. (3.19)

Recall that a pair (x, u) satisfying (3.18) is said to be admissible for Q.
We finish this section with some results of the general theory operators de-

fined by even order (formally) symmetric difference expressions or by symmetric
banded matrices. The maximal operator associated with the infinite matrix T is
defined by

(Tmaxy)k = (Ty)k, k ∈ N0

on the domain
D := D(Tmax) = {y ∈ `2 : Ty ∈ `2}.

The minimal operator Tmin is the closure of the so-called preminimal operator
which is the restriction of Tmax to the domain

D0 :=
{
y = {yk} ∈ D, only finitely many yk 6= 0

}
.

Denote the so-called deficiency indices by

q± := dim (Ker Tmax ∓ iI). (3.20)

We also denote by Lmax and Lmin the corresponding Sturm-Liouville difference
operators related to Tmax and Tmin by (3.9). If we suppose that T is bounded
below (and since we suppose that the entries tµ,ν of T are real), we have q :=
q+ = q−. Moreover, q ∈ {0, . . . , n}. This is due to the fact that we extended
y = {yk}∞k=0 ∈ `2 to negative integers as yk = 0, so we implicitly suppose the
boundary conditions y−1 = 0 = ∆y−2 = · · · = ∆n−1y−n. This corresponds to
the situation when a 2n-order symmetric differential operator is considered on an
interval (a, b) with the boundary conditions y(a) = 0 = y′(a) = · · · = y(n−1)(a)
at the regular left endpoint.

Let y[1], y[2] ∈ `2 and let (x[1], u[1]) and (x[2], u[2]) be the associated (via (3.11))
sequences of 2n-dimensional vectors. We define

[y[1], y[2]]k :=

(
x
[1]
k

u
[1]
k

)T
J
(
x
[2]
k

u
[2]
k

)
, J =

(
0 I
−I 0

)
.
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Using the fact that

∆

(
x
[1]
k

u
[1]
k

)T
J
(
x
[2]
k

u
[2]
k

)
= (x

[1]
k+1)

T
[
∆u

[2]
k − Ckx

[2]
k+1 + ATu

[2]
k

]
− (x

[2]
k+1)

T
[
∆u

[1]
k − Ckx

[1]
k+1 + ATu

[1]
k

]
= y

[2]
k L(y[1])k − y[1]k L(y[2])k

we obtain Green’s formula (see also [2])

N∑
k=0

[
y
[2]
k L(y[1])k − y[1]k L(y[2])k

]
= [y[1], y[2]]N+1.

In particular, if y, z ∈ D, there exists the limit [y, z]∞ = limk→∞[y, z]k, and, since
T ∗max = Tmin, the domain of Tmin is given by

D(Tmin) = {y ∈ D : [y, z]∞ = 0,∀z ∈ D}.

Similarly as for even order symmetric differential operators, self-adjoint ex-
tensions of the minimal operator Lmin are defined by boundary conditions at ∞.
More precisely, if the operator Tmin is not self-adjoint, i.e., q ≥ 1, let y[1], . . . , y[q]

∈ D be such that
[y[i], y[j]]∞ = 0, i, j = 1, . . . , q,

and that y[1], . . . , y[q] are linearly independent modulo D(Tmin) (i.e., no nontrivial
combination of y[1], . . . , y[q] belongs toD(Tmin)). Then a self-adjoint extension of
Lmin (and hence also of Tmin) is defined as the restriction of Tmax to the domain

D̃ := {y ∈ D : [y, y[j]]∞ = 0, j = 1, . . . , q}.

3.4 Friedrichs extension of symmetric matrix oper-
ators

Throughout this section we suppose that there exists ε > 0 such that the minimal
operator associated with the matrix T given in (3.1) satisfies

〈Ty, y〉 ≥ ε〈y, y〉, for 0 6≡ y ∈ D(Tmin). (3.21)

This means, in view of the previous section, that the associated Sturm-Liouville
operator (3.7) and linear Hamiltonian difference system (3.12) are disconjugate
on [0,∞). We also suppose that

tk+n 6= 0 for k ∈ N.
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This assumption (which is the typical assumption for tridiagonal matrices which
are the special case n = 1) means that T given by (3.1) is a “real” 2n+ 1 diagonal
matrix, i.e., the bandwidth is really 2n + 1 in each row of T . This assumption is
equivalent to the assumption r[n]k 6= 0 in (3.7).

Note that assumption (3.21) essentially means no loss of generality. Friedrichs
extension can be constructed for operators bounded below only, i.e., for T satis-
fying (instead of (3.21)) the assumption 〈Ty, y〉 ≥ γ〈y, y〉 for some γ ∈ R. How-
ever, under this assumption we can apply our construction to the operator defined
by T − (γ− ε)I , I being the infinite identity matrix, ε > 0, and the results remain
unchanged.

The next statement is the main result of this chapter. It reduces to [8, Theorerm
4] for tridiagonal matrices T in (3.1) and it is a discrete counterpart of the main
result of [26].

Theorem 3.1. Let y[1], . . . , y[n] be the recessive system of solutions of the equa-
tion L(y) = 0, where L is associated with T by (3.9). Then the domain of the
Friedrichs extension TF of Tmin is

D(TF ) = {y ∈ D(Tmax) : [y, y[j]]∞ = 0, j = 1, . . . , n}. (3.22)

Proof. The main part of the proof consists in proving that the sequences y[j],
j = 1, . . . , n, in the recessive system of solutions are in D(TF ). Let

(
X̃
Ũ

)
be

the recessive solution of Hamiltonian system (3.12) whose columns are formed
by 2n-dimensional vectors

(
x̃[j]

ũ[j]

)
, j = 1, . . . , n, related to y[1], . . . , y[n] by (3.11).

Without loss of generality we may suppose that the matrix X̃ formed by the vec-
tors x̃[1], . . . , x̃[n] is nonsingular because of (3.21). Indeed, (3.21) implies dis-
conjugacy in [0,∞) of Hamiltonian system (3.12) associated with the equation
L(y) = 0, which means that X̃0 is nonsingular by [7]. Further, let

X̂k = X̃k

k−1∑
j=0

B̃j, Ûk = Ũk

k−1∑
j=0

B̃j + X̃T−1
k ,

where
B̃j := X̃−1j+1(I − A)−1BjX̃

T−1
j ,

is the so-called associated dominant solution of (3.12). The fact that
(
X̂
Û

)
is really

a solution of (3.12) is proved, e.g., in [2, p.107]. Further, for a fixed m ∈ N, we
denote

X
[m]
k = X̃k − X̂kX̂

−1
m X̃m, U

[m]
k = Ũk − ÛkX̂−1m X̃m.

Then according to (3.16)

lim
m→∞

(
X

[m]
k

U
[m]
k

)
=

(
X̃k

Ũk

)
(3.23)
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for every k ∈ N. Also,
(
X̃
Ũ

)
,
(
X̂
Û

)
are conjoined bases of (3.12) for which X̃T

k Ûk −

ŨT
k X̂k ≡ I holds, which means that the matrix

(
X̃ X̂

Ũ Û

)
is symplectic, i.e.,

(
X̃ X̂

Ũ Û

)T
J
(
X̃ X̂

Ũ Û

)
= J .

This implies the identity (
X̃ X̂

Ũ Û

)
J
(
X̃ X̂

Ũ Û

)T
= J

which, in terms of the matrices X̃, Ũ , X̂, Û , reads as

ÛkX̃
T
k − ŨkX̂T

k = I, X̃kX̂
T
k = X̂kX̃

T
k , ŨkÛ

T
k = ÛkŨ

T
k . (3.24)

Denote, for j ∈ {1, . . . ,m},

x
[j,m]
k =

{
X

[m]
k ej, k ≤ m,

0, k > m,
u
[j,m]
k =

{
U

[m]
k ej, k < m,

0, k ≥ m,

where ej = (0, . . . , 0, 1, 0 . . . , 0)T , number 1 being the j-th entry, is the standard
canonical basis in Rn. Then by (3.23) the first entry of x[j,n]k , denote it by y[j,m]

k :=

eT1 x
[j,m]
k , satisfies (for every k ∈ N)

lim
m→∞

y
[j,m]
k = y

[j]
k ,

where y[j] = {y[j]k } have been defined at the beginning of this proof. Then
∆x

[j,m]
k = Ax

[j,m]
k+1 + Bku

[j,m]
k , i.e.,

(
x[j,m]

u[j,m]

)
is admissible for Q and for l > m

we obtain from (3.19) (with the matrices B,C given by (3.13))

Q(x[j,m] − x[j,l], u[j,m] − u[j,l])

=
∞∑
k=0

[
(x

[j,m]
k+1 − x

[j,l]
k+1)

TCk(x
[j,m]
k+1 − x

[j,l]
k+1)

+(u
[j,m]
k − u[j,l]k )TBk(u

[j,m]
k − u[j,l]k )

]
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=
m−1∑
k=0

(x
[j,m]
k+1 )T

[
−∆u

[j,m]
k + Ckx

[j,m]
k+1 − A

Tu
[j,m]
k

]
−

m−1∑
k=0

(x
[j,m]
k+1 )T

[
−∆u

[j,l]
k + Ckx

[j,l]
k+1 − A

Tu
[j,l]
k

]
+

l−1∑
k=0

(x
[j,l]
k+1)

T
[
−∆u

[j,l]
k + Ckx

[j,l]
k+1 − A

Tu
[l]
k

]
−

m−1∑
k=0

(x
[j,l]
k+1)

T
[
−∆u

[j,m]
k + Ckx

[j,m]
k+1 − A

Tu
[j,m]
k

]
.

According to the definition of
(x[.]k
u
[.]
k

)
, only the last summand in the previous expres-

sion is nonzero, denote it by (∗). For this expression we have (taking into account
that −∆u

[j,m]
k + Ckx

[j,m]
k+1 − ATu

[j,m]
k = 0 for k = 0, . . . ,m− 2)

(∗) =
m−1∑
k=0

(x
[j,l]
k+1)

T
[
−∆u

[j,m]
k + Ckx

[j,m]
k+1 − A

Tu
[j,m]
k

]
= eTj (X [l]

m)T (I − AT )U
[m]
m−1ej.

Hamiltonian system (3.12) can be written in the recurrence form

xk+1 = Ãxk + ÃBkuk, uk+1 = CkÃxk + (CkÃBk + I − AT )uk,

where Ã = (I − A)−1, whose matrix is symplectic as can be verified by a direct
computation, see also [5] or [6], and hence(

Ã ÃBk

CkÃ CkÃBk + I − AT

)−1
=

(
BkÃ

TCk + I − A −BkÃ
T

−ÃTCk ÃT

)
.

This means that (3.12) can be written as the the so-called reversed symplectic
system (in the matrix form)

Xk = (BkÃ
TCk + I − A)Xk+1 − B̃kA

TUk+1, Uk = −ÃTCkXk+1 + ÃTUk+1.

Using the second equation in this reversed system with k = m− 1,
(
X
U

)
=
(
X[m]

U [m]

)
,

and taking into account that X [m]
m = 0, we have

(X [l]
m)T (I − AT )U

[m]
m−1 = (X [l]

m)TU [m]
m

=
(
X̃m − X̂mX̂

−1
l X̃l

)T (
Ũm − ÛmX̂−1m X̃m

)
=

(
X̂−1m X̃m − X̂−1l X̃l

)T
X̂T
m

(
ŨmX̂

T
m − ÛmX̃T

m

)
X̂T−1
m

= X̂−1l X̃l − X̂−1m X̃m,
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where we have used the identities (3.24).
Consequently, by (3.16),

Q(x[j,m] − x[j,l], u[j,m] − u[j,l]) = eTj
[
X̂−1l X̃l − X̂−1m X̃m

]
ej → 0

as m, l→∞, i.e., by (3.17),

〈T (y[j,m] − y[j,l]), y[j,m] − y[j,l]〉 → 0.

By the same computation we find that (for i = 1, . . . , n)

Q(x̃[j] − x[j,m], ũ[j] − u[i,m]) = 〈T (y[i] − y[i,m]), y[i] − y[i,m]〉 → 0

as m → ∞, which means, by (3.21), that y[j,m] → y[j] in `2 as m → ∞. Conse-
quently, in view of (3.3), y[j] ∈ D(TF ), j = 1, . . . , n.

Now, we prove that (3.22) really characterizes the domain of the Friedrichs
extension of Tmin. Here we essentially follow the idea introduced in [26]. We
have

[y[i], y[j]] = eTi

(
X̃

Ũ

)T
J
(
X̃

Ũ

)
ej = eTi (X̃T Ũ − ŨT X̃)ej = 0,

since the recessive system of solutions of L(y) = 0 determines (via (3.11)) a con-
joined bases of (3.12). Hence, the domain given by the right-hand side of (3.22),
we denote it by D̃, is the domain of a self-adjoint realization of Tmin. Note
that boundary conditions in (3.22) need not to be linearly independent relative
D(Lmin), see Remark 1 (ii) below. Now, let y ∈ D(TF ), then also (by self-
adjointness) y ∈ D(T ∗F ). Since y[j] ∈ D(TF ), we have [y, y[j]] = 0, j = 1, . . . , n,
i.e., D(TF ) ⊆ D̃. This, together with the fact that D̃ is a domain of a self-adjoint
extension of Tmin shows that D(TF ) = D̃.

Concluding remarks.
(i) In the previous theorem we have proved that sequences which are in the do-

main of the Friedrichs extension of the operator T behave near∞ like sequences
from the recessive system of solutions of the associated Sturm-Liouville operator
(3.7). Consider now again this Sturm-Liouville operator and let

(
X
U

)
be a dominant

solution of (3.12) associated with (3.7), i.e., (3.16) holds. Theorem 3.1, coupled
with (3.16), suggests the conjecture that the domain D(TF ) can be also described
as follows

D(TF ) =
{
y = {yk}∞k=0 ∈ `2, lim

k→∞
X−1k xk = 0, xk given by (3.11)

}
.

This conjecture is a subject of the present investigation.
(ii) Observe that similarly to higher order symmetric differential expressions,

n boundary conditions hidden in (3.22) need not to be linearly independent, see
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[26]. The number of linearly independent conditions among them depends (again
similarly to differential expressions) on the number q = q± defined in (3.20). In
particular, if q = 0, i.e., the operator Tmin is self-adjoint and TF = Tmin, then
boundary conditions (3.22) are implied by the assumption T y ∈ `2 involved in
the definition of D. A typical example of this situation is the operator L(y)k =
∆2yk−1 where the recessive solution is ỹk = 1, i.e., 0 = [y, ỹ]∞ = limk→∞∆yk
and this condition is implied by y ∈ `2, ∆2y ∈ `2, which define D in this case.



Chapter 4

Critical higher order
Sturm-Liouville difference operators

4.1 Introduction
In this chapter, we deal with the 2n-order Sturm-Liouville difference operators
and equations

L(y)k :=
n∑
ν=0

(−∆)ν
(
r
[ν]
k ∆νyk−ν

)
= 0, k ∈ Z, (4.1)

and the associated matrix operators

(T y)k =
k+n∑
j=k−n

tk,jyj, k ∈ Z. (4.2)

defined by infinite symmetric banded matrices

T = (tµ,ν), tµ,ν = tν,µ, µ, ν ∈ Z, tµ,ν = 0 for |µ− ν| > n. (4.3)

This chapter is motivated by some results presented in [19], where pertur-
bations of second order Sturm-Liouville operators and of associated tridiagonal
matrices are investigated. The concept of a critical operator is introduced in [19]
and it is shown there that a “small negative perturbation” of a non-negative critical
operator leads to the so-called supercritical operator. We recall these concepts in
more details in the next section.

The results of this chapter are based again on the relationship of (4.1) to linear
Hamiltonian difference systems

∆xk = Axk+1 +Bkuk, ∆uk = Ckxk+1 − ATuk. (4.4)

34
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We use the concept of the recessive solution of (4.4) to introduce the so-called
p-critical Sturm-Liouville operator and we investigate perturbations of such oper-
ators.

The chapter is organized as follows. In the next section we recall neces-
sary preliminaries, including the relationship between banded symmetric matri-
ces, Sturm-Liouville difference operators, and linear Hamiltonian difference sys-
tems. Section 3 is devoted to the study of perturbations of critical Sturm-Liouville
operators of the form (4.1). In the last section we study perturbations of one-term
even order difference operators.

4.2 Preliminaries
We start with the relationship between Sturm-Liouville operators (4.1) and matrix
operators (4.2) defined by banded symmetric matrices (4.3) as established, e.g., in
[25]. Expanding the forward differences in (4.1), we get the recurrence relation
(4.2) with ti,j given by the formulas

tk,k+j = (−1)j
n∑
µ=j

µ∑
ν=j

(
µ

ν

)(
µ

ν − j

)
r
[µ]
k+ν ,

tk,k−j = (−1)j
n∑
µ=j

µ−j∑
ν=0

(
µ

ν

)(
µ

ν + j

)
r
[µ]
k+ν ,

(4.5)

for k ∈ Z and j ∈ {0, . . . , n}. These formulas are essentially the same as (3.8).
We repeat them here for the reader’s convenience, similarly as some other for-
mulas in this section. Consequently, one can associate the difference operator L
given by (4.1) with the matrix operator T , defined via an infinite matrix T , by the
formula

(T y)k = L(y)k, k ∈ Z.
The substitution

x
[y]
k =


yk−1

∆yk−2
...

∆n−1yk−n

 , u
[y]
k =


∑n

ν=1(−∆)ν−1
(
r
[ν]
k ∆νyk−ν

)
...

−∆(r
[n]
k ∆nyk−n) + r

[n−1]
k ∆n−1yk−n+1

r
[n]
k ∆nyk−n

 ,

(4.6)
converts (4.1) to linear Hamiltonian system (4.4) with the matrices A,B,C given
by the formulas

A = aij =

{
1 if j = i+ 1, i = 1, . . . , n− 1,

0 elsewhere,
(4.7)
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Bk = diag

{
0, . . . , 0,

1

r
[n]
k

}
, Ck = diag

{
r
[0]
k , . . . , r

[n−1]
k

}
. (4.8)

A 2n × n matrix solution
(
X
U

)
of (4.4) is said to be a conjoined basis if XTU

is symmetric and rank
(
X
U

)
= n. Following [5], system (4.4) is said to be right

disconjugate in a discrete interval [l,m], l,m ∈ Z, if the 2n × n matrix solution(
X
U

)
given by the initial condition Xl = 0, Ul = I satisfies

KerXk+1 ⊆ KerXk and XkX
†
k+1(I − A)−1Bk ≥ 0 (4.9)

for k = l, . . . ,m−1. Here Ker, †, and≥ stand for the kernel, Moore-Penrose gen-
eralized inverse, and non-negative definiteness of a matrix indicated, respectively.
Similarly, (4.4) is said to be left disconjugate on [l,m] if the solution given by the
initial condition Xm = 0, Um = −I satisfies

KerXk ⊆ KerXk+1 and Xk+1X
†
kBk(I − A)T−1 ≥ 0, k ∈ [l,m), (4.10)

see [6]. System (4.4) is disconjugate on Z if it is right disconjugate (which is the
same as left disconjugate, see, e.g., [6, Theorem 1]) on [l,m] for every l,m ∈ Z,
l < m. System (4.4) is said to be non-oscillatory at∞ (non-oscillatory at−∞ ) if
there exists l ∈ Z (m ∈ Z) such that it is right disconjugate on [l,m] for everym >
l (left disconjugate on [l,m] for every l < m). Nonoscillation and disconjugacy
of (4.1) is defined via nonoscillation and disconjugacy of the associated linear
Hamiltonian difference system. An equivalent approach to disconjugacy of (4.1),
based on the nonexistence of a pair of generalized zero points of multiplicity n of
a solution of (4.1) is presented in [5].

If
(
X
U

)
is a conjoined basis of (4.4) such that Xk are nonsingular for k ∈

{l, l + 1, . . . ,m}, then

X̃k =Xk

k−1∑
j=l

X−1j+1(I − A)−1BjX
T−1
j ,

Ũk =Uk

k−1∑
j=l

X−1j+1(I − A)−1BjX
T−1
j +XT−1

k ,

k ∈ {l, l + 1, . . . ,m}, is also a conjoined basis of (4.4), which together with
(
X
U

)
generates the solutions space of (4.4), see [10].
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Nonnegativity of the difference operator L given by (4.1) and of the associated
matrix operator (4.2) is defined as follows. Denote by

`2(Z) :=

{
y = {yk}k∈Z,

∑
k∈Z

|yk|2 <∞

}
,

`20(Z) :=
{
y = {yk}k∈Z ∈ `2(Z), only finitely many yk 6= 0

}
and by 〈·, ·〉 the usual scalar product in `2(Z). Then by summation by parts we
have

〈L(y), y〉 = F(y) :=
∞∑

k=−∞

n∑
ν=0

r
[ν]
k (∆νyk−ν)

2 , ∀y ∈ `20(Z)

and according to [25, Lemma 2]

〈T y, y〉 = F(y) =
∑
k∈Z

[
(x

[y]
k+1)

TCkx
[y]
k+1 + (u

[y]
k )TBku

[y]
k

]
, ∀y ∈ `20(Z),

where the matrices B and C are given by (4.8) and x[y], u[y] are related to y by
(4.6). Now we say that the operator L is non-negative and we write L ≥ 0 if
F(y) ≥ 0 for every y ∈ `20(Z).

A conjoined basis
(
X̃
Ũ

)
of (4.4) is said to be the recessive solution at∞ if X̃k

are nonsingular, X̃kX̃
−1
k+1(I − A)−1Bk ≥ 0, both for large k, and for any other

conjoined basis
(
X
U

)
, for which the (constant) matrix XT Ũ −UT X̃ is nonsingular

(such a solution is usually called dominant at∞), we have

lim
k→∞

X−1k X̃k = 0. (4.11)

The recessive solution at ∞ is determined uniquely up to a right multiple by
a nonsingular n × n matrix and exists whenever (4.4) is non-oscillatory at ∞.
The equivalent characterization of the recessive solution

(
X̃
Ũ

)
at∞ of Hamiltonian

difference systems (4.4) is

lim
k→∞

(
k∑

j=M

X̃−1j+1(I − A)−1BjX̃
T−1
j

)−1
= 0 for some large M, (4.12)

see [2]. The recessive solution at −∞ is defined analogously, limk→∞ in (4.11)
and (4.12) is replaced by limk→−∞ and the summation limit (4.12) is

∑j=M
k .

According to [5], F(y) > 0 for every 0 6≡ y ∈ `20(Z) if and only if (4.1) is
disconjugate on Z and disconjugacy of (4.1) on Z is equivalent (by [7]) to the fact
that the recessive solution at ∞ (at −∞) of the associated Hamiltonian system
(4.4) has no left (right) focal point in Z, i.e., (4.9) (resp. (4.10)) holds for k ∈ Z .
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If we denote by x̃[j], ũ[j], j = 1, . . . , n, the column vectors, which form the
recessive solution

(
X̃
Ũ

)
of (4.4) with A,B,C given by (4.7) and (4.8), and by ỹ[j]

the first entry of x̃[j], then we call ỹ[j] the recessive system of solutions of (4.1) at
∞. The recessive system of solutions of (4.1) at −∞ is defined analogously.

We finish this section by recalling some results of [19], which deal with the
second order Sturm-Liouville difference equation

τ(y) := −∆(ak∆yk−1) + ckyk = 0, ak > 0, (4.13)

and the corresponding three-term symmetric recurrence relation

τ(y) = −ak+1yk+1 + bkyk − akyk−1 = 0, bk = ak+1 + ak + ck.

Suppose that the equation (4.13) is disconjugate on Z, i.e., τ ≥ 0. Operator τ
is said to be critical if the recessive solutions at ∞ and −∞ are linearly depen-
dent, in the opposite case τ is said to be subcritical. If τ 6≥ 0, i.e., (4.13) is not
disconjugate, τ is said to be supercritical.

Proposition 4.1 ([19]). The following statements are equivalent.

(i) The operator τ is critical on Z.

(ii) For any ε > 0 and m ∈ Z, the operator τ̃ , which we get from τ by replacing
am by am + ε, is supercritical on Z, i.e., τ̃ 6≥ 0.

(iii) For any ε > 0 and m ∈ Z, the operator τ̂ , which we get from τ by replacing
bm by bm − ε, is supercritical on Z, i.e., τ̂ 6≥ 0.

4.3 Critical and supercritical operators
Suppose that (4.1) is disconjugate on Z and let ŷ[i] and ỹ[i], i = 1, . . . , n, be the
recessive systems of solutions of L(y) = 0 at −∞ and∞, respectively. Introduce
the linear space

H = Lin {ŷ[1], . . . , ŷ[n]} ∩ Lin {ỹ[1], . . . , ỹ[n]}. (4.14)

In this section, |J | stands for a number of elements of a set J .

Definition 4.1. Let (4.1) be disconjugate on Z and let dimH = p ∈ {1, . . . , n}.
Then we say that the operator L (or equation (4.1)) is p-critical on Z. If dimH =
0, we say that L is subcritical on Z. If (4.1) is not disconjugate on Z, i.e., L 6≥ 0,
we say that L is supercritical on Z.
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The following statement and the construction in its proof will be useful in the
proof of the main result of this section, Theorem 4.1.

Lemma 4.1. Suppose that (4.1) is p-critical for some p ∈ {1, . . . , n}. Then for
every δ > 0 there exists a sequence yk ∈ `20(Z) such that

F(y) :=
∞∑

k=−∞

n∑
ν=0

r
[ν]
k (∆νyk−ν)

2 <
δ

2
.

Proof. Denote by (X−, U−) and (X+, U+) the recessive solutions of (4.4) (with
A, B, C given by (4.7), (4.8)) at −∞ and ∞, respectively. Further, let h be
a solution of (4.1), which is contained both in recessive systems of solutions of
this equation at∞ and −∞, and let (x[h], u[h]) be the associated solution of (4.4).
Let K,L,M,N be arbitrary integers such that N −M > n,M − L > n, and
L − K > n and let (x[f ], u[f ]) and (x[g], u[g]) be the solutions of (4.4) (see [10])
given by the formulas

x
[f ]
k = X−k

(
k−1∑
j=K

B−j

)(
L−1∑
j=K

B−j

)−1 (
X−L
)−1

x
[h]
L ,

u
[f ]
k = U−k

(
k−1∑
j=K

B−j

)(
L−1∑
j=K

B−j

)−1 (
X−L
)−1

x
[h]
L

+
(
X−k
)T−1(L−1∑

j=K

B−j

)−1 (
X−L
)−1

x
[h]
L ,

x
[g]
k = X+

k

(
N−1∑
j=k

B+
j

)(
N−1∑
j=M

B+
j

)−1 (
X+
M

)−1
x
[h]
M ,

u
[g]
k = U+

k

(
N−1∑
j=k

B+
j

)(
N−1∑
j=M

B+
j

)−1 (
X+
M

)−1
x
[h]
M

−
(
X+
k

)T−1(N−1∑
j=M

B+
j

)−1 (
X+
M

)−1
x
[h]
M ,

where

B−k = (X−k+1)
−1(I − A)−1Bk(X

−
k )T−1,

B+
k = (X+

k+1)
−1(I − A)−1Bk(X

+
k )T−1,
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and denote by f and g the solutions of (4.1), which generate (x[f ], u[f ]) and
(x[g], u[g]), respectively, i.e., f and g are the first entries of x[f ] and x[g], respec-
tively. Using the convention that

∑K−1
K = 0 =

∑N−1
N we have

x
[f ]
K = 0, x

[f ]
L = x

[h]
L , x

[h]
M = x

[g]
M , x

[g]
N = 0.

Let us introduce the sequence

yk :=



0, k ∈ (−∞, K − 1],

fk, k ∈ [K,L− 1],

hk, k ∈ [L,M − 1],

gk, k ∈ [M,N − 1],

0, k ∈ [N,∞).

(4.15)

Now, we compute

F(y) =
∞∑

k=−∞

n∑
ν=0

r
[ν]
k (∆νyk−ν)

2

=
L−1∑
k=K

[
u
[f ]T
k Bku

[f ]
k + x

[f ]T
k+1Ckx

[f ]
k+1

]
+

M−1∑
k=L

[
u
[h]T
k Bku

[h]
k + x

[h]T
k+1Ckx

[h]
k+1

]
+

N−1∑
k=M

[
u
[g]T
k Bku

[g]
k + x

[g]T
k+1Ckx

[g]
k+1

]
.

Using summation by parts we obtain (see [11, Lemma 3.1])

F(y) = x
[f ]T
k u

[f ]
k

∣∣∣∣L
K

+ x
[h]T
k u

[h]
k

∣∣∣∣M
L

+ x
[g]T
k u

[g]
k

∣∣∣∣N
M

= x
[h]T
L

(
u
[f ]
L − u

[h]
L

)
+ x

[h]T
M

(
u
[h]
M − u

[g]
M

)
.

Because

u
[f ]
L = U−L

(
X−L
)−1

x
[h]
L +

(
X−L
)T−1(L−1∑

j=K

B−j

)−1 (
X−L
)−1

x
[h]
L ,

and

u
[g]
M = U+

M

(
X+
M

)−1
x
[h]
M −

(
X+
M

)T−1(N−1∑
j=M

B+
j

)−1 (
X+
M

)−1
x
[h]
M ,
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we have

F(y) = x
[h]T
L

(
X−L
)T−1(L−1∑

j=K

B−j

)−1 (
X−L
)−1

x
[h]
L

+ x
[h]T
M

(
X+
M

)T−1(N−1∑
j=M

B+
j

)−1 (
X+
M

)−1
x
[h]
M .

The definition of B−, B+ implies that (compare (4.12))(
L−1∑
j=K

B−j

)−1
→ 0, for K → −∞,

(
N−1∑
j=M

B+
j

)−1
→ 0, for N →∞.

Hence F(y) < δ
2

for K sufficiently small and N sufficiently large.

The main result of this section read as follows.

Theorem 4.1. Let the operator L be p-critical on Z, and let m ∈ Z and ε > 0 be
arbitrary. Further, let J ⊆ {0, . . . , n−1} with |J | = n−p+1 and let us consider
the sequences

r̂[µ]m =

{
r
[µ]
m − ε, for µ ∈ J,
r
[µ]
m , otherwise,

r̂
[µ]
k = r

[µ]
k , for k 6= m, (µ = 0, . . . , n).

Then the operator

L̂(y) :=
n∑
ν=0

(−∆)ν
(
r̂
[ν]
k ∆νyk−ν

)
is supercritical on Z, i.e., for the associated quadratic form we have F̂ 6≥ 0.

Proof. Let
(
X−

U−

)
and

(
X+

U+

)
be the recessive solutions at −∞ and∞ of (4.4) asso-

ciated to the equation L(y) = 0.
Let us introduce the linear space

H̃ := Lin

{(
x[1]−

u[1]−

)
, . . . ,

(
x[n]−

u[n]−

)}
∩ Lin

{(
x[1]+

u[1]+

)
, . . . ,

(
x[n]+

u[n]+

)}
,
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where
(
x[j]−

u[j]−

)
,
(
x[j]+

u[j]+

)
, j = 1, . . . , n, are the columns of

(
X−

U−

)
and

(
X+

U+

)
, respec-

tively. According to the relationship between (4.1) and (4.4) the dimension of this
space is the same as dimension of the space from Definition 4.1, i.e., dim H̃ = p,
and let z[i] =

(
x[i]

u[i]

)
, i = 1, . . . , p, be a basis of H̃.

At first, we show that x-part of any base vector z[i] is nonzero at any index
k ∈ Z, i.e.,

x
[i]
k 6= 0, k ∈ Z, i ∈ {1, . . . , p}.

By contradiction, let x[j]k = 0 for some j ∈ {1, . . . , p} and some k ∈ Z.
Because there exist nonzero constant vectors c−, c+ ∈ Rn such that(

x[j]

u[j]

)
=

(
X−

U−

)
c−,

(
x[j]

u[j]

)
=

(
X+

U+

)
c+,

we have x[j] = X±c±, which implies that the matrices X±k are both singular.
This contradicts the disconjugacy of equation (4.1) (see [7, Theorem 1]). This
also means that x[j]k , j = 1, . . . , p, are linearly independent, because none of their
nontrivial linear combinations can be a zero vector.

We have obtained that

rank (x
[1]
k , . . . , x

[p]
k ) = p for any k ∈ Z.

Let us denote
P = (x

[1]
m+1, . . . , x

[p]
m+1), P ∈ Rn×p,

where m is the integer in which r[µ] are changed to r[µ] − ε, µ ∈ J , and consider
the square matrix P̃ ∈ Rp×p that consists of the linearly independent lines of the
matrix P .

Hence, the system

P̃

d1...
dp

 =

1
...
1


has a unique solution d ∈ Rp, d 6= 0.

Now, let us introduce the solution z[h] =
(
x[h]

u[h]

)
of (4.4) given by

z[h] :=

p∑
j=1

djz
[j]

and let h be the solution of (4.1) which generates z[h], i.e.,

x
[h]
k =


hk−1

∆hk−2
...

∆n−1hk−n

 . (4.16)
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Because x[j] are linearly independent and d 6= 0, we have 0 6= x[h] ∈ Rn.
The construction of z[h] implies that at least p entries of x[h]m+1 are nonzero, i.e.,
(x

[h]
m+1)i+1 = ∆ihm−i = 1 (at least) for i ∈ J̃ , J̃ ⊆ {0, . . . , n− 1} with |J̃ | = p.

Now, let y = {yk}k∈Z be the sequence given by (4.15) with h from (4.16). We
have

F̂(y) =
∞∑

k=−∞

[
n∑
ν=0

r̂
[ν]
k (∆νyk−ν)

2

]
=

∞∑
k=−∞

[
u
[y]T
k Bku

[y]
k + x

[y]T
k+1Ĉkx

[y]
k+1

]
,

where Ĉk = diag
{
r̂
[0]
k , . . . , r̂

[n−1]
k

}
and x[y] and u[y] are given by formulas (4.6).

Denote C̃k := Ck − Ĉk. Then C̃k = 0 for k 6= m and C̃m is the diagonal matrix
with the diagonal entries (C̃m)i+1,i+1 = ε, i ∈ J , and (C̃m)i+1,i+1 = 0, i 6∈ J .
Hence

F̂(y) =
∞∑

k=−∞

[
u
[y]T
k Bku

[y]
k + x

[y]T
k+1(Ck − C̃k)x

[y]
k+1

]
=

∞∑
k=−∞

[
u
[y]T
k Bku

[y]
k + x

[y]T
k+1Ckx

[y]
k+1

]
−

∞∑
k=−∞

[
x
[y]T
k+1C̃kx

[y]
k+1

]
.

and
∞∑

k=−∞

[
x
[y]T
k+1C̃kx

[y]
k+1

]
= ε

∑
i∈J

(∆ihm−i)
2 ≥ ε

∑
i∈J∩J̃

(∆ihm−i)
2 = ε|J∩J̃ | =: δ > 0

since |J | = n − p + 1 and |J̃ | = p, i.e., J ∩ J̃ 6= ∅. Using Lemma 4.1 and the
construction from its proof we obtain that

∞∑
k=−∞

[
u
[y]T
k Bku

[y]
k + x

[y]T
k+1Ckx

[y]
k+1

]
<
δ

2

if K and N in (4.15) are sufficiently close to −∞ and∞, respectively.
Together we have

F̂(y) <
δ

2
− δ = −δ

2
< 0,

i.e., L̂ is supercritical.

The following statement is a direct consequence of Theorem 4.1.
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Corollary 4.1. Let the operator L be p-critical on Z, p ∈ {1, . . . , n}, and let
m ∈ Z and ε > 0 be arbitrary. Further, let J̃ ⊆ {0, . . . , n−1}with |J̃ | = n−p+1
and consider the sequence

r̃[µ]m =

{
r
[µ]
m + ε, for µ ∈ J̃ ,
r
[µ]
m , otherwise,

r̃
[µ]
k = r

[µ]
k , for k 6= m, (µ = 0, . . . , n).

Then

L̃(y) :=
n∑
ν=0

(−∆)ν
(
r̃
[ν]
k ∆νyk−ν

)
is at most q-critical for some q ∈ {0, . . . , p− 1}.

Proof. Suppose that L̃ is q-critical with q ≥ p. We get L from L̃ by changing r̃[µ]m
to r̃[µ]m − ε. Theorem 4.1 then implies that L is supercritical, a contradiction.

Remark 4.1. In Theorem 4.1 we have formulated the statement in terms of per-
turbations of coefficients r[µ] in L. Using formulas (4.5), this statement can be
reformulated in terms of perturbation of the entries ti,j of T , similarly as it is done
in Proposition 4.1 in case n = 1.

4.4 One term operators
In this section, we deal with perturbations of the one-term difference operator
(equation)

l(y) := (−∆)n(rk∆
nyk) = 0, rk > 0, k ∈ Z. (4.17)

Since this equation can be solved explicitly, we can find an explicit condition for
its criticality. To avoid technical difficulties, in the main part of this section we
deal with the case n = 2, but at the end of the section we suggest how the results
can be extended to general n.

Equation (4.17) has solutions y[1] = 1, . . . , y[n] = k(n−1) = k(k − 1) · · · (k −
n+ 1) which satisfy ∆ny = 0, such solutions we will call polynomial. In addition
to polynomial solutions, (4.17) is also solved by sequences for which ∆nyk =
k(j−1)r−1k , j = 1, . . . , n, such solutions we will call nonpolynomial. A similar
analysis as in the continuous case (see [15]) shows that only polynomial solutions
can be simultaneously contained both in the recessive systems of solutions at∞
and −∞.

We start with a statement which describes the structure of the solution space
of (4.17).
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Lemma 4.2 ([11, Sec. 2]). Equation (4.17) is disconjugate on Z and possesses
a system of solutions y[j], ỹ[j], j = 1, . . . , n, such that

y[1] ≺ · · · ≺ y[n] ≺ ỹ[1] ≺ · · · ≺ ỹ[n] (4.18)

as k → ∞, where f ≺ g as k → ∞ for a pair of sequences f, g means that
limk→∞(fk/gk) = 0. If (4.18) holds, the solutions y[j] form the recessive system of
solutions at∞, while ỹ[j] form the dominant system, j = 1, . . . , n. The analogous
statement holds for the ordered system of solutions as k → −∞.

To compute nonpolynomial solutions, we need the following formula (which
can be verified by a direct computation or by induction). Let zk be any sequence
and

yk =
1

(n− 1)!

k−1∑
j=0

(k − j − 1)(n−1)zj,

then ∆nyk = zk. Moreover, the generalized power function

(k − j)(n) = (k − j)(k − j − 1) · · · (k − j − n+ 1)

has the “binomial” expansion

(k − j)(n) =
n∑
i=0

(−1)i
(
n

i

)
k(n−i)(j + i− 1)(i). (4.19)

In the remaining part of this chapter we denote by V+ and V− the solutions
subspaces of (4.17) generated by the recessive system of solutions at∞ and −∞,
respectively.

Theorem 4.2. Let n = 2.
(i) If

∞∑
k=0

r−1k =∞ =
0∑

k=−∞

r−1k , (4.20)

then (4.17) is 2-critical on Z and V+ ∩ V− = Lin {1, k}.
(ii) If at least one of the infinite series in (4.20) is convergent, but

∞∑
k=0

k2r−1k =∞ =
0∑

k=−∞

k2r−1k , (4.21)

then (4.17) is 1-critical on Z and V+ ∩ V− = Lin {1}.
(iii) If at least one of the infinite series in (4.21) is convergent, (4.17) is subcritical
on Z, i.e., V+ ∩ V− = ∅.
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Proof. In the proof we will use Lemma 4.2 (with n = 2) to show that a given
solution y of (4.17) is contained in the recessive system of solutions. To show
this, it is sufficient to find linearly independent solutions y[1], y[2] such that y ≺ y[i],
i = 1, 2 (for k →∞ or k → −∞).
(i) Let

y
[1]
k =

k−1∑
j=0

(k − j − 1)r−1j , y
[2]
k =

k−1∑
j=0

(k − j − 1)jr−1j .

Then by the L’Hospital rule for i = 1, 2

lim
k→∞

y
[i]
k

k
= lim

k→∞

k−1∑
j=0

ji−1r−1j =∞,

i.e., yk = k ≺ y
[i]
k , i = 1, 2. Since ȳk = 1 ≺ yk = k, we have V+ = Lin {1, k}.

For k < 0 we set

y
[1]
k =

0∑
j=k−1

(k − j − 1)r−1j , y
[2]
k =

0∑
j=k−1

(k − j − 1)jr−1j

and similarly as above we show that V− = Lin {1, k}.
(ii) Suppose that (4.21) holds and, e.g.,

∑∞ r−1k < ∞ (the case
∑
−∞ r

−1
k <

∞ can be treated analogically). We show that yk = k 6∈ V+ by constructing
a nonpolynomial solution ȳ for which ȳk ≺ k as k →∞. Such a solution is

ȳk = (k − 1)
∞∑
j=0

r−1j −
k−1∑
j=0

(k − j − 1)r−1j . (4.22)

We have limk→∞(ȳk/k) = limk→∞∆ȳk = limk→∞
∑∞

j=k r
−1
j = 0, i.e., ȳk ≺ k.

On the other hand, if (4.21) holds, there are two linearly independent solutions
greater than y = 1. One of them is obviously yk = k and the second one is

yk = (k − 1)
∞∑
j=0

jr−1j −
k−1∑
j=0

(k − j − 1)jr−1j , (4.23)

if
∑∞ jr−1j <∞ or the solution (4.22) if

∑∞ jr−1j =∞. Consider, e.g., the case
of solution (4.23). We have ∆yk =

∑∞
j=k jr

−1
j and using summation by parts

yk =
k−1∑
j=0

∆yj = [j∆yj]
k
0 −

k−1∑
j=0

j∆2yj

=k
∞∑
j=k

jr−1j +
k−1∑
j=0

j2r−1j →∞ as k →∞,
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i.e., yk � y = 1.
(iii) Suppose, e.g., that

∑∞ j2r−1j <∞ (the complementary case is again analog-
ical). Then both solutions

y
[1]
k =

k−1∑
j=0

(k − j − 1)r−1j − (k − 1)
∞∑
j=0

r−1j +
∞∑
j=0

jr−1j ,

y
[2]
k =

k−1∑
j=0

(k − j − 1)jr−1j − (k − 1)
∞∑
j=0

jr−1j +
∞∑
j=0

j2r−1j

satisfy y[i]k → 0 as k → ∞, i.e., y[i] ≺ y = 1. To show this, consider, e.g., the
solution y[1], we have

|y[1]k | =

∣∣∣∣∣−(k − 1)
∞∑
j=k

r−1j +
∞∑
j=k

jr−1j

∣∣∣∣∣ ≤ (k − 1)
∞∑
j=k

r−1j +
∞∑
j=k

jr−1j

≤
∞∑
j=k

jr−1j +
∞∑
j=k

jr−1j → 0 as k →∞.

Hence V+ ∩ V− = ∅.

Remark 4.2. The previous result may be used, e.g., for improving the main result
of [9], where a conjugacy of the second order Sturm-Liouville difference equation
via a phase theory is studied. Combining these two concepts, some interesting new
results may be obtained.

Finally, we briefly mention the case of general n ∈ N. The continuous case,
i.e., the equation (r(t)y(n))(n) = 0 is treated in detail in [15] and computations
given there show that the situation is technically rather complicated in the general
case. Nevertheless, computations for n = 2 together with the continuous case
and formula (4.19) suggest the following conjecture, which we hope to prove in
a subsequent paper.

Conjecture 4.1. Let m ∈ {0, . . . , n− 1} and suppose that

0∑
j=−∞

j2(n−m−1)r−1j =∞ =
∞∑
j=0

j2(n−m−1)r−1j .

Then Lin {1, . . . , k(m)} ⊆ V+ ∩ V−.
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