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Abstrakt

V predlozené praci je studovana otézka existence a jednoznacnosti feSeni systému

funkcionélnich differencidlnich rovnic

dz(t)

S8 — p@)(0) +a(t) (R)

a jejich zvlastnich piipadu (zejména rovnice pantografu) vyhovujicich okrajové pod-

/Hﬁﬂﬂﬂz% ()

a jejim vyznaénym zvlastnim piipadum (mnohabodovd, integralni podminka).

V obecné casti predpokladame, ze p : C(I,R™) — L(I,R™) je linedrni silné
ohrani¢eny operator, ® : I — R™ " je maticova funkce s ohrani¢enou variaci,
q € L(I,R™) a ¢y € R™. V dalsich ¢édstech je prace zaméfena zejména na systémy
oby¢ejnych diferencidlnich rovnic s vice odklonénymi, resp. zpozdénymi, argumenty
a na zvlastni ptipady okrajovych podminek — mnohabodovou a integralni.

Prace obsahuje Sest kapitol, které jsou dale clenény do patnacti podkapitol.
V prvni kapitole jsou definovany zékladni pojmy a prezentovany jejich vlastnosti
ve formé pievzatych tvrzeni. Ve druhé kapitole jsou uvedeny véty o jednoznacné
fesitelnosti tlohy (R), (P) a tlohy s malym parametrem. Kapitoly 3 a 4 jsou
vénovany linedrnim systémum s koneéné mnoha odklonénymi argumenty. Pata kapi-
tola se zabyva zobecnénou rovnici pantografu s mnohabodovou okrajovou podmin-
kou. Zde jsou uvedeny detailnéjsi vysledky pro ptipady konstantniho a propor-
cionalniho zpozdéni. Posledni kapitola obsahuje konstrukei feseni zobecnéné rovnice
pantografu s mnohabodovou okrajovou podminkou a konkrétni priklady.

Prace vychazi z publikaci [1, 2, 6 — 9, 15, 18 — 21| a tam zminéné literatury. Nové

a v praci uvedené vysledky byly publikovany v [10 — 14].



Abstract

In the present thesis, the question on the existence and uniqueness of a solution of

the system of functional differential equations

dz(t)

S8 — p@)(0) +a(t) ()

and its special cases (particularly pantograph equation) with boundary condition

/mwmawz% (©)

and its special cases (multi-point, integral condition) is studied.

We assume in general that p : C(I,R") — L(I,R") is a linear strongly bounded
operator, ® : I — R"*™ is a matrix function of bounded variation, ¢ € L(I,R") and
co € R™. We study particularly the systems of ordinary differential equations with
more deviating (especially delayed) arguments and special boundary conditions —
multi-point and integral.

The thesis consists of six chapters, which are divided into fifteen sections. In
Chapter 1, we present definitions and quoted statements. In Chapter 2, the results
dealing with the unique solvability of the problem (E), (C) and the problem with
a small parameter are established. Chapter 3 and 4 are devoted to the linear systems
with deviating arguments. A generalized pantograph equation with multi-point
boundary condition is studied in Chapter 5. We preset there also corollaries for
systems with constant and proportional delays. In Chapter 6, we construct the
solution of the generalized equation of the pantograph with multi-point boundary
condition and give some examples.

The results which we present here are contained in the papers [10 — 14] and
can be regarded as a continuation of the papers [1, 2, 6 — 9, 15, 18 — 21] and the

references given therein.
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Notation

R is the set of all real numbers, i.e., R =] — 00, +-00];
R, =0, +o0[, I = |a,b];

X1 is the characteristic function of the interval I, i.e.,

1 fortel
xi(t) = ;
0 fortgl

R™ is the space of n-dimensional column vectors z = (z;)7, with elements z; €

R (i=1,...,n) and the norm

n
2l = 3 Jail;
=1

R™ ™ is the space of n x n matrices X = (z;;);;=; with elements z;; € R (i,j =
1,...,n) and the norm
X1 =" Jil;
ij=1
R:L_X” = {(xij)?,jzl e R»*m . L5 >0 (’L,j = 1, . ,n)},
If x,y € R" and X, Y € R™", then

r<yey-zeR, X<Y &YX R

|z = ()i [XT = (l])i=1

det(X) is the determinant of the matrix X € R™*";
X! is the inverse matrix to the matrix X € R™*"™;
r(X) is the spectral radius of the matrix X € R™*";
E is the unit matrix;
O is the zero matrix;

Remark.
1. Let X, Y e R If X <Y then r(X) <r(Y).

2. Let X = (w45)f;21 € R and 7" a5 < 1for j=1,...,n Then r(X) <1,
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A vector (matrix) function is said to be continuous, integrable, etc., if such are its
elements.

C(I,R™) is the space of continuous vector functions z : I — R" with the norm
||zlle = max{[[z(8)[| - ¢ € I};
If 2 = (x;)7, € C(I,R"), then
zle = ([lzille)izs

C(I,R"*™) is the set of continuous matrix functions X : I — R"*";

If X = (245);;=1 € C(I,R"™"), then

[ Xlo = (lzislle)ij=

C(I,R™) is the space of absolutely continuous vector functions x : I — R™ with the
norm

|zlle = llz(a)]] + / |2 ()] dt;

C'(I,R™™) is the set of absolutely continuous matrix functions X : I — R™*";
LP(I,R™), where 1 < p < 400 is the space of vector functions z : I — R" with

elements integrable in the p-th power with the norm

el = (/ab||:c<t>||pdt)’l’;

LT°°(I,R™) is the space of measurable and bounded vector functions z : I — R"
with the norm

||z|| -+ = ess sup{||z(¢)|| : t € T};

If v = (x;), € LP(I,R"), then

20 = (il [e )iz

L(I,R™) = LY(I,R"),

LP(I,R™"™), where 1 < p < 400 is the set of matrix functions X : I — R™" with
elements integrable in the p-th power;

If X = (w;);-; € LP(I,R™"), then

| X zr = (|l 20)7 =15
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L(I, Rnxn) — Ll ([7 Rnxn)
If Z € C(I,R™™) is a matrix function with columns z,..., 2, and ¢g : C'(I,R") —

L(I,R™) is a linear operator, then ¢g(Z) stands for the matrix function with columns

9(=1), -, 9(zn)-

We use also the following terminology: absolutely continuous function, function
with bounded variation, measure of the subset of the interval I (Lebesgue measure
- denoted by mes), essential minimum (denoted by vraimin). This terminology is
commonly used in theory of ordinary and functional differential equations in the
meaning of Carathéodory. By a solution of the considered system we understand
a vector function absolutely continuous on the considered interval. Further, we use
Lebesgue integral, Lebesgue measure and other terms of the modern mathematical
and functional analysis (for definitions see [17, 24]). There are Carathéodory con-
ditions for ordinary differential equation in mentioned publications. Definition of

Carathéodory conditions for functional differential equations is published in [3].



Introduction

The publications [8] and [9] deal with boundary value problems for linear functional
differential equations. General results are frequently illustrated on the cases of li-
near systems of differential equations with one deviating argument with Cauchy and
periodic boundary conditions. Systems with more deviating arguments with multi-
point or integral boundary condition are studied rarely. More detailed results for
multi-point boundary condition are known only for linear systems of ordinary dif-
ferential equations (see [6, 7]). Also the problems with integral boundary condition
are studied in literature insufficiently.

In the present thesis, we supplement and improve the theory of boundary value
problem of linear functional differential equations in that parts, which are not studied
in detail yet.

The thesis consists of six chapters, which are divided into fifteen sections. In
Chapter 1, we present definitions and quoted statements. We recall the theorem
about unique solvability of the linear system of functional differential equations

dz(t)
dt

= p(x)(t) + q(t)
with the linear boundary condition
l(x) = co,

where p : C(I,R") — L(I,R") is a linear strongly bounded operator, [ : C(I,R") —
R™ is linear bounded operator, ¢ € L(I,R™) and ¢y € R™ We understand the
solution of this problem in a sense of Carathéodory, i.e., the solution is a vector
function absolutely continuous on the interval I, it satisfies this system of functional
differential equations almost everywhere on I and fulfils the boundary condition.
The theorem is grounded on the Fredholm property of this problem. The proof of
this theorem was published in [8] and [9)].

Chapter 2 is devoted to the investigation of the question of the existence and
uniqueness of a solution of the above mentioned system satisfying boundary condi-
tion

b
/ [d®(t)]x(t) = co, (C)
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where ® : [ — R™*" is a matrix function of bounded variation and ¢y € R™. The
use is made here of a method developed in [8] and [9]. In Section 2.2, we present
a theorem about unique solvability and corollaries for problems with multi-point,
Cauchy, periodic and integral boundary conditions. The system

dz(t)
dt

= ep(w)(t) + q(?)

with small parameter £ > 0 is studied in Section 2.3. We introduce a theorem and
corollaries for unique solvability of this system with boundary conditions (C) and its
special cases (multi-point, Cauchy, periodic and integral boundary conditions). The
similar results for such systems with boundary condition f; x(t)do(t) = co (where
o : I — Ris a function of bounded variation) were published in paper [10] and [11].

Linear systems with deviating argument are studied in Chapter 3. In Section 3.1,

we present theorems for the unique solvability of the systems

dzit) = P()z(7(t)) + qo(t), x(t) = u(t) for t € I,
and
dzgf) =ePt)z(r(t)) + qo(t), x(t) =u(t) fort & I,

with boundary condition (C), where P € L(I,R™"), 7 : I — R is a measurable
function, u : R\ I — R" is a continuous and bounded function, ¢y € L(I,R™) and
e > 0 is a small parameter. There are again corollaries for special cases of the

condition (C). The systems with more deviating arguments

) _ > BO(n(0) + wlt), @(t)=u(t) fort &1

=1

with multi-point, Cauchy, periodic and integral boundary conditions are studied in
Section 3.2. Here, P, € L(I,R™*™), 7; : I — R are measurable functions, u : R\ I —
R™ is a continuous and bounded function, and gy € L(I,R"™). The similar results
for such systems with boundary condition fab:c(t) do(t) = ¢o (where 0 : I — R is
a function with bounded variation) were published in paper [11].

Chapter 4 is devoted to more detailed study of the general multi-point and gen-
eral integral boundary conditions for the system with more deviating arguments.

Results from Chapter 3 are supplemented with other criteria which are essential
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for solving of larger class of boundary value problems with use of some other as-
sumptions on the right side of the studied system. The results from Section 4.1
and Section 4.2 were published in paper [13]. Section 4.3 and Section 4.4 include
consequences which have not been published yet. In Section 4.3, we specify coeffi-
cients of the matrices P; and deviations of the arguments 7; to get some other special
criteria of the unique solvability of studied problems. Section 4.4 is devoted to the
corollaries for problems with Cauchy and periodic boundary conditions.

Generalized pantograph equation with multi-point boundary condition is studied
in Chapter 5. This equation is a special type of systems of differential equations
with more deviating arguments which was studied in previous chapters. Independent
variable ¢ (representing time) is considered on the interval [0, 7] and there are delayed
arguments in a special form. It allows to get other deeper results. We introduce
also corollaries for such systems with Cauchy and periodic boundary conditions. In
Section 5.3, we present also corollaries for systems with constant and proportional
delays. New results of this chapter were published in paper [12].

In Chapter 6, we construct the solution of the generalized equation of the panto-
graph with multi-point boundary condition using the method of successive approxi-
mation and give some examples. The method of successive approximation can be

used for all mentioned problems. Results of this chapter are published in paper [14].



1. Definitions and Quoted Statements

The following notation on the interval I = [a, b] is used in accordance with publica-

tions [7, 8, 9] and references mentioned therein.

Definition 1.1. A linear operator p : C(I,R") — L(I,R™) is said to be strongly
bounded if there ezists a summable function n € L(I,R,) such that

p(2) DI < n(®)llzllc for tel,zeC(I,R").

Definition 1.2. A linear operator 1 : C(I,R™) — R™ is said to be bounded if there

exists a number a € Ry such that
[l(x)]| < allz]lc  for xeC(I,R™).

On the bounded interval I = [a, b] consider the linear system of functional
differential equations

B — pw)(0) + a0 (1.1)

with the linear boundary condition

l(x) = ¢, (1.2)

where p : C(I,R") — L(I,R") is a linear strongly bounded operator, [ : C(I,R") —
R™ is a linear bounded operator, ¢ € L(I,R™) and ¢y € R".

Definition 1.3. An absolutely continuous vector function x : I — R™ is said to
be a solution of system (1.1) if it satisfies this system almost everywhere on I.
A solution x of system (1.1) is said to be a solution of the boundary value
problem (1.1), (1.2) if it satisfies condition (1.2).

Along with the boundary value problem (1.1), (1.2) consider the corresponding

homogeneous problem

O _ ) (11,)
I(z) = 0. (1.29)

The following theorem is proved in the basic publication dealing with linear

boundary value problems for functional differential equations [9].
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Theorem 1.1. The problem (1.1), (1.2) is uniquely solvable if and only if the cor-
responding homogeneous problem (1.1y), (1.2¢) has only the trivial solution.

Proof of this theorem is published in [9], page 345 and [8], page 13.

We use the Holder, Minkowski (see [24]) and Levin (see [19]) inequalities for
finding effective conditions of solvability of the mentioned problems.

Lemma 1.1 (Holder). Let p,q > 1 be such that % +% =1, f € L’(I,R) and
g € Li(1,R). Then

/ () d < (/ b|f(t)|pdt); (/ b|g<t>|th); .

Lemma 1.2 (Minkowski). Let p > 1 and f,g € LP(I,R). Then

([ o)’ < ([ vors) (fnors)

Lemma 1.3 (Levin). Let u € C(I,R), ' € LP(I,R) with 1 < p < 400 and let
to € I be such that u(ty) = 0. Then

/ab ()P dt < (b;)a)p/ab ' (£) [P dt,

-1
l,=(p— 1)% <£ sinz) :

m p

where

Remark. For p =2 in Lemma 1.3 we get Wirtinger inequality (see [7]).



2. General Linear Boundary Value Problem

2.1. Statement of the Problem

On the bounded interval I = [a,b], consider the system of functional differential
equations
dx(t
"0 p(a)(t) + g0 (2.)

with the boundary condition

b
/ [d®(t)]z(t) = co, (2.2)

where p: C(I,R") — L(I,R") is a linear strongly bounded operator, ® : I — R™*"
is a matrix function of bounded variation, ¢ € L(I,R"), ¢ € R". We understand
the integral in condition (2.2) as Lebesgue-Stieltjes integral.

Condition (2.2) fulfils assumptions of the first chapter, i.e., I(z) = f:[d@(t)]x(t)

and from characteristic properties of Lebesgue-Stieltjes integral
b n b n
[|1()[| = II/ [de(@)]z(t)]] < Z/ 1@ (@[] |z:(t)] < a ) [lzlle = allzlle,
a =1 va 1=1

where o = f; ||dP(t)|| € Ry (see also Riesz’s theorem, [5]).

Consider now the matrix function ® : I — R™*"™ piecewise absolutely continuous
on the interval I, i.e., suppose that there exists a finite number of points t; € I (j =
1,...,v)such that a = t; < ... < t, = b and the function ® is absolutely continuous
on every interval |¢;,t;41[C [a,b] (j = 2,...,v — 2) and on the intervals [¢;, o[ and

Jtu—1,t,]. Moreover, suppose that there exist finite limits lim ®(¢) (j = 2,...,v)

t—>tj

and lim ®(¢)(j =1,...,v—1).

+
t—>tj

Therefore, the function ® may have a discontinuity of the first kind in some point
t;(j=1,...,v). Put

Se, = lim ®(t) — lim () (j =2,...,v — 1),

+ —
t—>tj t—>tj

Sp, = lim ®(t) — ®(a), Se, = d(b) — lim B(t).

t—tf t—t,
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Note that, in this situation, the condition (2.2) can be rewritten as
b v
/ ¥ (Hr(t)dt + Y Sua(t) = co. (2.3)
a =1

By a special choice of the function ® we get from (2.2) the following boundary
conditions:

— multi-point condition

> Ajalt) = a (2.4

wherea =t < ... <t, =0, A; e RV (j=1,...,v),if O(t) = Z]V;ll Ajxe (t) +
AuXp (1);

— integral condition
b
/ A(t)x(t) dt = co, (2.5)

where A € L(I,R™™), if ®(t) = [} A(s)ds for t € I.
Special types of condition (2.4) are

— multi-point condition
> Na(t) = co, (2.6)
j=1

wherea =t <...<t,=band \; e R(j=1,...,v);

— Cauchy condition
l’(to) = (g, (27)

where ty € I;

— periodic condition
z(b) — x(a) = co. (2.8)

Special type of condition (2.5) is

— integral condition
b
/ z(t) dt = co. (2.9)
General problem (2.1), (2.2) and problems (2.1), (2.7) and (2.1), (2.8) are studied

in detail in publications [8, 9]. We study effective criteria for the unique solvability
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of the problem (2.1) (and its special types) with boundary conditions (2.6) - (2.9)
in this and in the following chapter. In Chapter 4 we study the special types of the
system (2.1) with boundary conditions (2.4) and (2.5).

The problem (2.1), (2.2) is special type of the problem (1.1), (1.2). Therefore,
the following theorem about Fredholm property of the problem results from The-

orem 1.1.

Theorem 2.1. The problem (2.1), (2.2) is uniquely solvable if and only if the cor-

responding homogeneous problem

O _ ), (210)
/ [AD(1)]z(t) = 0 (2.2)

has only the trivial solution.

2.2. Existence and Uniqueness Theorems

Let ty € I be an arbitrary but fixed point. According to [8, 9] we define the follow-
ing sequences of operators p* : C'(I,R") — C(I,R") and matrices A, € R™" k € N:

PO =a0), 0= [ 20 @) (2.10)
M= [ e ). (2.11)

If the matrix Ay is nonsingular for some k € N, then we set

P (t) = x(t),

PO = @0 - S FE0 AS [ M e (212)

Theorem 2.2. Let the matriz function ® : I — R™ ™ be piecewise absolutely con-

tinuous and let either

b 14
Alz/ ' (t)dt + Y S, (2.13)
a j=1
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be nonsingular or, for some k € {2,3,...}, Ay == Ay_1 =0 and
b v
A — / O WP E) dt+ S Sa,pE)(L) (2.14)
a j=1
be nonsingular. Let, moreover, there exvist matrices B,B; € R*" (j = 1,...,v)
such that ,
/ Ip(z)(t)|dt < B |z|¢ for x € C(I,R"), (2.15)
t
/ Ip(x)(t)] dt‘ < Bj |z|¢ forz e C(I,R") (2.16)
to

and, for some m € N,
r(A) <1, (2.17)

where

m—1

b v
A=B"+) BIA (/ | (t)| dt BF +) |S¢j|BjB’f—1> : (2.18)
i=0 a j=1

Then the problem (2.1), (2.2) has a unique solution.

Proof. According to Theorem 2.1, it is sufficient to show that if x is a solution of
the problem (2.1y), (2.29), then z(t) = 0. Let = be such a solution and let ¢, € I be
an arbitrary fixed point.

It is clear that functional differential equation (2.1y) is equivalent to equation

o) =+ [ pla)(s)ds,
where ¢ = x(ty) and

w(t) = c+ / p(x)(s)ds = c+p'(2)(t) = [E + p (E)()]e + p*()(t) =

=. .. =[E+p"E)t)+...+ P HE)t)]c+ P (z)(t) (2.19)

for every j =1,2,....
According to the assumption of A let j = k and from (2.2g), (2.19) we get

b b
0= [ e(ea(t) = e+ [ Tael @)

and therefore

b
c= - [ RO @)
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Thus for every solution z of the system (2.1y), (2.2¢) and for every j = 1,2, ...

we have

x(t) = pi(x)(t), t € 1. (2.20)
Then from (2.10) and (2.15) we get

p* |C—max{/|p s)|ds| : tEI}§

/ Ip(x)(t)| dt < Blz|c for x € C(I,R")
and analogously, for an arbitrary j € N, we have

|p’ \c—max{ te[}g

/ Ip(p’ ()] dt < BlpP \(@)|e  for o € C(I,R).

(s)| ds| :

By induction, in view of the last inequality, it can be shown that
P’ (z)|c < Blz|c for x € C(I,R"),j =1,2,.... (2.21)
Now (2.21) implies
P (BE)|le < B, j=1,2,.... (2.22)

Therefore from (2.12), on account of (2.21) and (2.22), we get

@)l = -3 HEON [ et e))| <

C

Do+ L ENe |t [ Tae e <

m—1

b
< Biale+ 3 Bia| [ Taelt @)

Further from (2.10), (2.15) and (2.16) it follows that

/ b[d@(tnp'f(x)(t)} _

t .

/ (1) / P (@) (s) ds dt + 3 S, / (1 (1)) () ds

to j=1 to

= <
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<

“H(@))(s)lds| <

bcb’(t) [ ey as dt\

to

/|<1> |/ (@ |dsdt+2|s¢ B, [ (@)]e <

7j=1
</ |®' (¢ |dt) Bk|x|C+Z|S¢J|B Bl z|o =
7j=1
</ |/ (¢ |dtBk+Z|Sq> |B;B*~ 1) z|¢ for z € C(I,R™).
7=1

Thus for every solution = of the problem (2.1p), (2.2y) and for suitable k,m € N

we have
P (2)|e < Alzle, (2.23)

where A is defined by (2.18).
From (2.20) it follows that

2l = [pP""(2)]e < Alzle.
Since r(A) < 1, there exists (A — E)~! and
lz|c < (A—E)™'0=0.

Therefore z(t) =0 on I. O

Theorem 2.2 yields the following corollaries for the boundary conditions (2.6) —
(2.9).

Corollary 2.1. Let either

i A #£0 (2.24)
” -
> A=0 (2.25)

and the matrix

A=Y [
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be nonsingular. Let, moreover, there exist matrices B, B; € RY" (j =1,...,v) and

m € N such that the conditions (2.15), (2.16) with ty = a hold and

r(A) <1,
where .
1 m— ] v 1%
A=B"+ s SOBDY INIB; i > N #£0
2 =1 i= j=1 j=1
and

m—1 v v
A=B"+ > BN INIBB i Y A =0.
i=0 j=1 j=1
Then the problem (2.1), (2.6) has a unique solution.

Proof. In the case of the multi-point condition (2.6), the function ® in (2.2) can
be defined by

v—1
o(t) = Z AjXJt;.b] () + AvX[b,b] ()| E for tel.
j=1

Choose ty = a. Then, from (2.14) we get

Al = EEV:)\]
j=1

and if 337, A; =0, then A; = © and

tj
a

A=Y P ENN =Y [ pE)0 =

If (2.24) holds, then the matrix A; is nonsingular and from (2.18) we obtain

m—1 v
1 )
A=B"+ = > B |NIB;.
Zj:l Aj i=0 j=1

If (2.25) holds and det(A) # 0, then A; = O, the matrix A, is nonsingular and
from (2.18) we obtain

m—1 v
A=B"+Y BIATY |)\|B;B.
i=0 j=1

Consequently, the assumptions of Theorem 2.2 are fulfilled. O
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Corollary 2.2. Let there exist a matriz B € RY™ and m € N such that
r(B™) <1

and the inequality (2.15) be fulfilled. Then the problem (2.1), (2.7) has a unique

solution.

Proof. In the case of the Cauchy condition, the function ® in (2.2) can be defined
as

O(t) = (1= Ypauo () E for tel.

It follows from Corollary 2.1 with t; = a,ty = tg,t3 =0, A = O = A,. L]

Corollary 2.3. Let the matrix

A:/mm@a

be nonsingular and let there exist matric B € RY™ and m € N such that the

inequality (2.15) holds and

m—1
r(B™+ Y BIAT'BY) <1

1=0

Then the problem (2.1), (2.8) has a unique solution.

Proof. In the case of the periodic condition (2.8), the function ® in (2.2) can be
defined as
O(t) = (1 — Xjap(t)E for tel.

Then v =2, t; = a, t = b, S¢, = —FE,Se, = E. Choose tg = a. Then, from (2.14)
we get

b
Api/¢ﬁﬂbﬂ&h+%ﬁz@

and
Ay = / & (H)p! (B) () dt + So,p (E) (@) + Seup (E)(b) =

—o+ ( / U p(E) (1) i+ / (B)) dt) - / (Bt dt = A,

t1

i.e., the matrix Ay is nonsingular. Moreover,

[Hmmmﬂ:/ﬂmmma:ommecuwy
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and . ,
2

[ wenad = [l < plele for e .z,

to a

and thus, the condition (2.16) holds with B; = © and By = B.

Furthermore, from (2.18) we obtain

m—1
A=B"+)Y BN B
i=1
i.e., the condition (2.17) is fulfilled.

Therefore, the assumptions of Theorem 2.2 are satisfied. O

Corollary 2.4. Let there exist a matriz B € R*"™ and m € N such that

m—1
r(B"+> B <1

1=0

and the inequality (2.15) holds. Then the problem (2.1), (2.9) has a unique solution.

Proof. In the case of the integral condition (2.9), the function ® in (2.2) can be
defined as
O(t)=tE for tel.

Choose ty = a. Then from (2.14) we get

b b
A1:/ <I>’(t)dt:/ Edt = E(b— a),

i.e., the matrix A; is nonsingular.
Moreover, in a similar manner as in proof of Theorem 2.2 it can be shown that,

in view of (2.15), we have

m—1

e < Brlele+ Y- By | [ #orowa <

m—1 b m—1
<B"[zlc+ Y Bi/ Ip(z)(t)| dt < (Bm +> Bi+1> z|¢ for z € C(I,R"),
i=0 a i=0

i.e., the assumptions of Theorem 2.2 hold with k = 1 and A = B™ + Y7, ! B**!
(see also Theorem 1.3.1 in [§]).
[l
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2.3. Linear System with a Small Parameter

On bounded interval I = [a, b] consider the system of functional differential equations
with a small parameter € > 0

dz(t)
dt

= ep()(t) + q(?), (2.26)

where p : C(I,R") — L(I,R") is a linear strongly bounded operator and ¢ €
L(I,R™).
For any € > 0 and = € C(I,R") set

pe()(t) = ep(x)(t).
Then from (2.10) and (2.11) we get
pE(x)(t) = " (2)(1),  Ape =Ny, K EN.

Theorem 2.3. Let the matriz function ® : I — R™ ™ be piecewise absolutely con-
tinuous and let either Ay given by (2.13) be nonsingular, or for some k € {2,3,...},
A =+ =Ny = O and Ay, given by (2.14) be nonsingular. Then there exists
g0 > 0 such that, for any € €]0, e[, problem (2.26), (2.2) has a unique solution.

Proof. Note in the first place that since operator p is strongly bounded, i.e., there
exists 7 € L(I,R;) such that ||p(z)(t)|| < n(t)||z|lc for t € I, x € C(I,R").
Therefore, there exist matrices B,B; € R (5 = 1,...,v) such that the in-
equalities (2.15), (2.16) hold. Indeed, we can put B = f;n(t) dt (1)7;-, and
By = | fin(t) ae| (1),

Using (2.15) and (2.16) from

b
pEH (@) (1) = pe(@)(t) — Aj. / [dD(8)]pE (2)(t)

we find
[PEN @) e = elp (@)]e < Adjzle for z € C(1,R™), (2:27)

where A, = A and

b 14
A=B+|A </ (1) dtB* + ) |S¢j|BjB’f—1> .

Jj=1
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Clearly, if
€0 = ]'/T(A)a
then
r(A:) < 1 for € €]0,g¢]. (2.28)

However, in view of Theorem 2.2 (Theorem 1.3.1 with m = 1, my = 0 in [8]), condi-

tions (2.27) and (2.28) guarantee the unique solvability of problem (2.26), (2.2) for

arbitrary ¢ €]0, go]. O
Remark. Instead of the condition Ay = --- = Ay_; = O, A, is nonsingular we can
assume that, for some k € {2,3,...}, Ay, ..., Ay_; are singular and Ay, is nonsingular.

(This assumption can be also used in Theorem 2.2.)

In such case -
-1 .
M= [ av@lE) )
j=0 "4
Following Corollaries can be easily derived from Theorem 2.3.

Corollary 2.5. Let either A\ = Z;:1 Aj #0 or A =0 and the matriz

A:i&/%@mm

be nonsingular. Then there exists eg > 0 such, that for any e €0, go[, problem (2.26),

(2.6) has a unique solution.

Corollary 2.6. There exists g > 0 such that, for any € €)0,eq[, problem (2.26),

(2.7) has a unique solution.

Corollary 2.7. Let the matriz

A:/m@@a

be nonsingular. Then there exists eg > 0 such that, for any e €0, go[, problem (2.26),

(2.8) has a unique solution.

Corollary 2.8. There exists g > 0 such that for any e €]0, go[ problem (2.26), (2.9)

has a unique solution.
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3.1. Linear System with a Deviating Argument and a Small
Parameter

On the bounded interval I = [a, b, consider the linear systems of differential equa-

tions with a deviating argument

dzit) = Pt)x(r(t)) + qo(t), x(t) =wu(t) fort &I, (3.1)
and
dzsﬁt) = cP(t)x((t)) + qolt), x(t) =u(t) for t & I, (3.2)

where P € L(I,R™™), 7 : I — R is a measurable function, v : R\ I — R" is

a continuous and bounded function, ¢o € L(I,R") and € > 0 is a small parameter.

Along with systems (3.1) and (3.2) consider the boundary condition (2.2), i.e.,

[ 4wl = .

where @ : I — R™ " is a matrix function of bounded variation and ¢y € R".

We first study the problem (3.1), (2.2). In view of [8] and [9] we put

a if 7(t) <a

) =9 7(t) ifa<r(t)<b , (3.3)
b if 7(t) > b
p(@)(t) = xa(7(6)) P(O)(7"(t), (34)
q(t) = (1 = xa(7($)) P()u(7(t)) + qo(?). (3.5)

It is obvious that p : C(I,R") — L(I,R") is a linear operator and g € L(I,R™).
Moreover, ||p(z)(t)|] < a(t)||z||c for any € C(I,R") and almost all ¢ € I, where
a(t) = ||xs(7(t))P(t)||. It is also clear that o € L(I,R,). Therefore p is a strongly

bounded operator.
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The problem (3.1), (2.2) can be rewritten to the form (2.1), (2.2), where the
function 7%, the operator p and the vector function ¢ are given by (3.3)—(3.5), re-

spectively. Therefore, according to Theorem 2.1 the following assertion is valid.

Theorem 3.1. The problem (3.1), (2.2) is uniquely solvable if and only if the cor-

responding homogeneous problem

Y ol (0) PO0) (310

with boundary condition (2.2¢) has only the trivial solution.

In what follows we use forms and notations from [9].

For an arbitrary matrix function P € L(I, R™*"™) we set
[P()]r0 =0, [P()]lra = x:(7(1))P(1),

0(t)
P)]ics = [P(O)]n / P(s)ads (i=1,2...),

where 70 is a function given by (3.3). Let to = a. With respect to (2.10) and (2.11)

we get
b k=1 .p t
A“i/mmm+§:/p@u»/u@mﬁ@ for k € N. (3.6)
Put

Mm:/ﬂp@mma+
m—1 b
E+Y [ (POt

Theorem 3.2.  Let there exist k,m € N such that det(Ay) # 0 and r(Agm) < 1,
where the matrices Ay and Ay, are given by (3.6) and (3.7), respectively. Then the

b t
T A7 / da(t) / 1P()oads.  (3.7)

problem (3.1), (2.2) has a unique solution.

Proof. According to above introduced notation it can be easily verified that the
assumptions of Theorem 2.2 are valid. In particular the inequality (2.23) is satisfied
with A = Ay ,,,. Thus the assertion follows from Theorem 2.2 (see also Theorem 1.3.1
with mo = 0 in [8]). O

For the special cases of (2.2) — multi-point condition, periodic condition and

integral condition — Theorem 3.2 yields the following corollaries.
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y [pp— v .
Corollary 3.1. Let either A :== 77| A\; # 0 and, for some m € N, the relation
r(A1m) < 1 holds, where

b
1
A = [ IPOmdt+ 7

E+i/www42wjhmmw

or A =0, the matriz

A=Y [ utro)poa

j=1

be nonsingular and, for some m € N, the relation r(Ay,,) < 1 holds, where
b
Ao = [ [POmdt +

E+§i/nmmmw|wﬂan/ﬁmeﬂt

Then the problem (3.1), (2.6) has a unique solution.

+

Remark. This method is suitable for multi-point boundary value problems with
v > 2. The criteria for the problem with Cauchy condition at a point ty € I (v = 1)
are not optimal. We can find optimal criteria by changing lower bound of integration

from a to tg.

Corollary 3.2. Let
b
Ay = / (P(t)], dt

be a nonsingular matriz and let there exist m € N such that r(As,,) < 1, where

m—1 b
E+Y [ (POt

Then the problem (3.1), (2.8) has a unique solution.

b b
Ao = [ POt + Az [ 1P@lsat

Corollary 3.3. Let there exist m € N such that r(A; ) < 1, where

E+i/wwmﬂ/wwmw

Then the problem (3.1), (2.9) has a unique solution.

b
a

A= [ [Pt +
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Remark. If 7(t) =t we get results for ordinary differential equations published in
[7]-

Consider now the special type of functional differential equation with a small
parameter (2.26) - system of differential equations with deviating argument and

a small parameter (3.2). With the use of (3.3), (3.4) and

q(t) = (1 = xr(7()) P()u(r(t)) + qo(t),
the problem (3.2), (2.2) can be rewritten into the form (2.26), (2.2).
From Theorem 2.3 we can get directly conditions for the unique solvability of
the problem (3.2), (2.2).

Theorem 3.3. Let the function ® : I — R be piecewise absolutely continuous and

let either ,
A= [ s
be nonsingular or, for some k € {2,3,...}, Ay =---= A1 =0 and

ve= [0 [ s

be nonsingular. Then there ezists £g > 0 such that, for any € €]0, o[, problem (3.2),

(2.2) has a unique solution.

Remark. Analogically to remark on page 26: Instead of the condition A; =
- = Ay_1 = O, Ay is nonsingular we can assume that, for some k € {2,3,...},

Ay, ..., Ap_q are singular and Ay is nonsingular.

The following corollaries can be easily derived from Theorem 3.3.

Corollary 3.4. Let either \ := Z]';l Aj # 0 orlet X\ =0 and the matriz

A= ZA/ xr(T(8)P(t) dt

be nonsingular. Then there ezists £g > 0 such that, for any € €]0, o[, problem (3.2),

(2.6) has a unique solution.
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Corollary 3.5. There exists €9 > 0 such that, for any e €]0,&0[, problem (3.2),

(2.7) has a unique solution.

Corollary 3.6. Let
b
A:/ x1(7(t))P(t) dt

be a nonsingular matriz. Then there exists e > 0 such that, for any e €]0,¢g¢],

problem (3.2), (2.8) has a unique solution.

Corollary 3.7. There exists g > 0 such that, for any € €0, o[, problem (3.2),

(2.9) has a unique solution.

3.2. Linear System with More Deviating Arguments

On the bounded interval I = [a,b], we consider the linear system of differential

equations with deviating arguments

Z Py(t Y+ qo(t), x(t) =u(t) for t &I, (3.8)

where P, € L(I,R™"), 7; : I — R are measurable functions, u : R\ I — R" is
a continuous and bounded function, and ¢y € L(,R").

Put
a if 7(t) <a

()= () fa<m(t)<b . (3.9)
For any = € C(I,R") and t € I, we set

I

p(x)(t) = xa(m(t) B(D)x(7 (1)), (3.10)

1=1

= > (= xa(m(®))P()ulr(t) + aolt).

=1

It is obvious that p : C'(I,R") — L(I,R") is a linear operator and ¢ € L(I,R™).
Moreover, ||p(z)(t)|| < a(t)||z||c for any z € C'(I,R") and almost all ¢ € I, where
at) = D Ixe(m@)Pi(t)]]. It is also clear that o € L(I,R;). Therefore p is

a strongly bounded operator.
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Consequently, the system (3.8) can be rewritten to the form

dz(t)
dt

= p(x)(t) +q(t)
and therefore the following theorem is valid (see Theorem 2.1).

Theorem 3.4. The problem (3.8), (2.2) is uniquely solvable if and only if the cor-

responding homogeneous problem

B S i P ) (3.50)

with boundary condition (2.29) has only the trivial solution.

Remark. If 4 =1 we get Theorem 3.1.

We introduce criteria for special types of boundary condition (2.2).
Corollary 3.8. Let either
A=) N #0
j=1

and r(Ay1) < 1, where

A=) / ()P0 dt + ﬁ Z D3 / a(m() [P dt

or A =0 and matrix

be nonsingular and r(As;) < 1, where

H b
A=) / ()| P0)] dt +

I

v Foorts ()
SIS [ @RONY [ Ao s

k=1

Then the problem (3.8), (2.6) has a unique solution.
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Corollary 3.9. Let

B b
nglmmWMMt

be a nonsingular matriz and r(Az1) < 1, where
Eoopb
Ao =Y [ @R dt+
i=1va
I3 b B T9(t)
L0513 [alm®IROIY [ E)ipe)] dsde
i=1Ja j=1"a

Then the problem (3.8), (2.8) has a unique solution.

Corollary 3.10. Let r(Ay1) < 1, where

B b
AwﬂZ/MWWMWﬁ

. Then the problem (3.8), (2.9) has a unique solution.
Remark. Another criteria of the solvability of the problem (3.8), (2.2) will be de-

rived in Chapter 4.

Remark. Criteria of the solvability for the problem with more deviating arguments

and a small parameter can be deduced analogously to Chapter 2.3.
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4.1. Statement of the Problem

On the bounded interval I = [a,b], consider the linear differential equation with

deviating arguments (3.8), i.e.,

dfgj) = > Pa(n(t) +ao(t),  x(t) = u(t) for t ¢ I

=1

with the linear boundary conditions (2.4) and (2.5), i.e.,

ZAkx(tk) = (g,
k=1

/b A(t)x(t) dt = co,

where P, € L(I,R™™), qo € L(I,R"), 7, : I — R are measurable functions (i =
1,...,m), u: R\ I — R" is a continuous and bounded function, t;, € I, Ay €
R™™(k=1,...,v), Ae L(I,R™™") and ¢y € R".

It is clear that (2.4) and (2.5) are special cases of (2.2) and, therefore, problems
(3.8), (2.4) and (3.8), (2.5) fulfil Fredholm property (see Theorem 3.4).

This chapter is devoted to more detailed study of the general multi-point and
general integral boundary conditions for the system with more deviating arguments.
Results from Chapter 3 are supplemented with other criteria which are essential for
solving larger class of boundary value problems with use of some other assumptions

on the right-hand side of the studied system of differential equations (3.8).

Remark. If p =1 and 7(t) =t or ;(t) =t for i = 1,..., u then we get a special
type of system (3.8) - the system of ordinary linear differential equations. This
system with multi-point boundary condition is thoroughly studied in [7]. If 7;(t) < ¢
for i =1,..., u then we speak about the system with delayed arguments.

Note also that some criteria of the solvability of the linear system with one
delayed argument and linear system of functional differential equations (in general

meaning) with mentioned boundary conditions are published in [10].
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4.2. Existence and Uniqueness Theorems I

In this section, we establish some effective criteria of the unique solvability of the
problems (3.8), (2.4) and (3.8), (2.5) using the results and methods from [8].

For the sake of transparentness, for any t,{ € [ and 7,5 = 1,..., u, we set

()
B¢, 1) = XI(Ti(t))IPz-(t)IM Xi(7i())|Py(s)| ds|,  Py(t) = Py(t, ).

Theorem 4.1. Let P, € L(I,R™™"),7; : I — R be measurable functions (i =
L,...,p) and to =min{t; : j =1,2,...,v}. Let either the matric

k=1

be nonsingular and r(Sy) < 1, where

Si= " balm) Pl + AT Y0 D 1A / G EPOd (42)

k=1 1=1 0

or the matriz

14 2 th
=2t 33 A [ unOREO (4.3)
k=1 i=1 to
be nonsingular and r(Sy) < 1, where
p v th
5= S PP+ ST Y Y [ Pstede (@)
i=1 k=1 i=1 j=1 to

Then the problem (3.8), (2.4) has a unique solution.
To prove this theorem we need the following lemma.

Lemma 4.1. Let P, € L(I,R™"), 7; : I — R be measurable functions (i =1,..., ),
to€ I, x € C(I,R™) and ( € 1. Then for almost every t € I

/ X1 (7())|Pi(s)] ds

to

/ X1 (7(8)) P(s)2(7(s)) ds

to

< Eate (4.5)

and for every i,j € {1,..., u} and almost every t € I

70 (t)

7

Xz(n(t))Pi(t)/ X1(7i(s)) P (s)x (77 (s)) ds

¢

< P (¢, 1) |x|c. (4.6)
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If x is a solution of the homogeneous equation (3.8), then

‘ [ Z’+Zip }Ix\c (4.7)

=1 j=1
Proof. Let z € C(I,R™) and ¢ € I. Then

for almost every t € I.

/tXI(Ti(S))Pi(S)x(TiO(S))dS <

/t xi (7)) P(s) |2(72()) | ds

VAN

< |z]c fortel

/t yi(7(3) [ Pi(s)] ds

and

<

(1)
x;(n-(t))Pi(t)/C X1(7i(s)) P ()2 (7} () ds

2(t)
/C x1(75(5))| Py (s)] ds

= P;;((,t) |z|c for almost every t € I.

< xa (7)) Pi(t))]

|z|c =

If z € C(I,R) is a solution of equation (3.8,), then

<n-<t>>Pi<t>x<T£<t>>\ _

[\
=
~
{:]
S
S~—
S~—
e
S
S~—
8
~
=
+

IA
(]

=

~

A

=
~—
~—
g
=
~—

()
/ 7'(s) ds
t

IA

/t% ixm(s))le(sn ds ] 2o =

1
b
+ ZZP (t )} |z|c  for almost every t € I.
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Proof of Theorem 4.1. According to Theorem 3.4, it is sufficient to show that if

x is a solution of equation (3.8), satisfying boundary condition

> Apa(ty) =0, (2.40)
k=1

then z(t) = 0.
Let x be a solution of the boundary value problem (3.8)), (2.4¢). The integration

of (3.8y) from ¢y to ¢, in view of (3.10), results in

z(t) =c +/ p(z)(s)ds (4.8)

to

and, by iteration in (4.8), we get

o= e+ () (s) s e+ /p( [ooa)@as @)

to to

where ¢ = x(ty) and

2(s)
\i(m(3)Bi(s) / (1 (E) Py () (r2(6)) de.

1 to

([ sorerae) o =S

to

i=1
First, suppose that the matrix A; given by (4.1) is nonsingular and r(S;) < 1,

where the matrix S; is defined by (4.2). Then, by virtue of (2.4y), (4.1) and (4.8),

we get

tr tg

to to

0:§Ak {c+/ p(x)(s) ds] :Alc+§Ak/ p(z)(s)ds

and thus

22
to

c=—A;! Z Ak/ p(z)(s)ds.

Therefore, (4.8) implies

z(t) = / pla)(s)ds — AT A, / p(z)(s) ds, (4.9)

7%
to to



4.2. EXISTENCE AND UNIQUENESS THEOREMS I

and in view of (4.5) we get

|</\p t)ldt + A7 1|Z|Ak|/ s)|ds <
< A ;xm(t))\a(tndw
31 3 o)) ] o -
[Zm STIRIC) ) BTN AR O IO R [

k=1 i=1 to
ie.,

[z|c < Silzle.

Whence, together with the assumption r(S7) < 1, we get
(E—8)|zlc <0=|z|c < (E—S1)"'0=0.

Therefore z(t) = 0.

Now suppose that the matrix Ay given by (4.3) is nonsingular, and r(Ss) <

where the matrix S, i given by (4.4). From (240, (48,) and (43) we gt
0=z [T oeoader S a "o [ oea) -
_ {A v Z ac [ preas]es Z au [Co( [ warerae)syas -
et ZA [o( [ e dsjm ds

and thus , . .
o= A A, /p( | e dg) (5) ds.

Therefore (4.8) yields

38

1

Y

o(r) = /t:p<x><s> ds— ;" Z a o[ rerea)eas @

to
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Hence, on account of (4.5) and (4.6), we get

[ v ] + \Aglwgmk\ A '

o [ e ac ) (s

I 7 t
< [ZlXI(Ti)PALJr|A51|ZZZ\AM / Py(to. ) dt}mc:
=1 0

k=1 i=1 j=1

jz(t)] < ds <

= SQ|ZL’|0.
Whence, together with the assumption r(S;) < 1, we get z(t) = 0. O
Remark. Consider the case where tg = a. If we put Ay = A\ E, where A\, € R,

k=1,2,...,uin Theorem 4.1 we get Corollary 3.8 where Ay = AE, A;; = 5 and
A271 = 52.

The following example demonstrates the situation when A; # © is a singular

matrix and Ay is a nonsingular matrix.

Example 4.1. Let I = [0,1],n=2,u=1,v=2,t1 =0,ta =1, n(t) =t, c=(2),
A =(§9), A =(99), P(t) = (p?t) (1)) , q(t) = (q?t)). Consider the system (3.8)

in the form

2y (t) = aa(t)
zh(t) = p(t)z1(t) + q(t)

with the boundary condition (2.4) in the form

71(0) = c1, 71(1) = .
10
A1 = Al + A2 -
10
s singular matrix and

A2:A1+<0 0)(1 0 1>:<1 o)
10/ \J,pt)dt 0 11

18 nonsingular matrix.

For this problem
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According to Theorem 4.1, the considered problem has a solution if r(S;) < 1,

0 1
5 ( 1 ) |
2[ple — [y slp(s)lds 0

Therefore, the considered problem has a unique solution under the assumption

1
2lplr <1+ [y slp(s)|ds.

where

Other criteria of the solvability of the multi-point boundary value problem can

be derived using the properties of deviations 7;(j =1,...,v).

Theorem 4.2. Let P, € L(I,R™"),7; : I — R be measurable functions (i =
L,...,p) and to =min{t; : j = 1,2,...,v}. Let either the matriz Ay given by (4.1)
be nonsingular and r(S1) < 1, where

”w
+ZZ|Pij|L+

i=1 j=1

i=1
or the matrix Ay given by (4.3) be nonsingular and r(Sz) < 1, where

+ZZ\Pw|L+IA IIZZZIAk\/thj(tO,t)dt. (4.11)

=1 j=1 k=1 =1 j=1

Z

(4.10)
R-j(t)] dt,

1

Then the problem (3.8), (2.4) has a unique solution.

Proof. According to Theorem 3.4, it is sufficient to show that if x is a solution
of the problem (3.8), (2.4¢) then z(t) = 0. Let x be a solution of boundary value
problem (3.8y), (2.4y).

First, suppose that the matrix A; given by (4.1) is nonsingular and r(S;) < 1,
where the matrix S is defined by (4.10). Analogously to the proof of Theorem 4.1
we get equation (4.9). Then the relation (4.9), in view of (4.7), implies

|</|p |ds+|A1|1Z|Ak|/ 9l ds <

I L

+Z 'j|L—|-
DY |Ak|/(

(1) P,

=1 j=1

ixf r(s)Pi(s)| + ii&-(s)) as e

=1 j5=1
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ie.,

[z]c < Sil|7|e.

Since we suppose that r(S7) < 1, we get z(t) = 0.

Now suppose that the matrix Ay given by (4.3) is nonsingular, and r(Ss) < 1,
where the matrix S is defined by (4.11). Analogously to the proof of Theorem 4.1
we derive the equality (4.91). Then, the relation (4.9;), in view of (4.6) - (4.7),

yields
w01 < [ o] ds + 143 1|Z\Ak ([ orerac) o as <
Beoop
<[> +zzwm+
i=1 j=1
v.oouoop t
)35 3 NN AR AN FAE
k=1 i=1 j=1 to
= SQ‘.:C|C.
Whence, together with the assumption r(S;) < 1, we get x(t) = 0. O
Remark. In the case where signs of the matrices P;, ¢ = 1, ..., i are not the same,

the criterion of the Theorem 4.1 is more suitable than the criterion of the Theorem
4.2.

Example 4.2. Let = 2 and

2'(t) = Pu(t)z(mi(t) + Pa(t)z(72(t)) + q0(t),

where Py(t) = —1Pi(t) and 7,75 are arbitrary deviating arguments.

Since

Ixr(ma () Pu(t) — %XI(Tz(t))Pl(t)l < Da(n(t) + %Xz(ﬁ(t))] |P1(t))]

we get S7 < Sp k= 1,2, where S are matrices given in Theorem 4.2 and S} are

matrices given in Theorem 4.1. Therefore, r(S3) < r(S}) for k=1,2.

For integral problem (3.8), (2.5) we get from Theorem 3.4 the following theorems.
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Theorem 4.3. Let P, € L(I,R™™"),7; : I — R be measurable functions (i =
1,...,u) and A € L(I,R™™™). Let either

A = / bA(t) dt (4.12)

be nonsingular matriz and r(Sy) < 1, where

SI=Z|XI(Ti)Pi|L+|A1—I|Z/ \A(t)\/ Xi(mi(s)|Pi(s) dsdt,  (4.13)

A2 A1+Z/ / X1 TZ( )) Z(S) dsdt (414)

be nonsingular matriz and r(Sy) < 1, where

B
5= 33 IPya Mo+ 1A 1|ZZ/|A |/ Py(a,s)dsdt+

=1 5:1 ) zul 7j=1 (415>
+ 1> xi(m) I\ZZ/\A \/ Pij(a,s) ds dt.

=1 =1 j5=1

Then the problem (3.8), (2.5) has a unique solution.

Proof. According to Theorem 3.4, it is sufficient to show that if x is a solution of

the equation (3.8y), satisfying boundary condition

/ bA(t):r(t) dt = 0, (2.50)

then x(t) = 0.

Let x be a solution of boundary value problem (3.8y), (2.50). Analogously to the
proof of Theorem 4.1 it can be shown that relations (4.8) and (4.8;) with ¢ty = a are
fulfilled. If the matrix A; given by (4.12) is nonsingular then from (2.5¢) and (4.8)

0= / A lc+ / (@) () ds] dar,

c=—A7! / bA(t) / () (s) ds dt.

we get

where ¢ = z(a), i.e.,
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Therefore, by virtue of (4.5), it follows from from (4.8) that

+|AT l|/ |A(t |/ Ip(z)(s)|dsdt <
< [Z\W»H\LHA;HZ / () / xa(7(3))|Pi(s) s o]

= Sﬂl"c.

|z(1)] < ( s)ds

Consequently |z|c < Si|z|c. Since we suppose in this case that r(S1) < 1, we get

z(t) = 0.

If the matrix Ay given by (4.14) is nonsingular, then from of (2.5¢) and (4.8;)

we get

O:/abA(t) lE+/atp(E)(s)ds}dt ¢+
v [(a [0 [ prerae) s asai=
:A2c+/abAoe)/atp(/a'p@)(adg)(s)dsdt,

CI—Az_l/abA(t)/ p(/a.p(x)(ﬁ)dﬁ)(S)dsdt-

t
Therefore, by virtue of (4.5) and (4.6), it follows from (4.8;) that

(/ p(a) |d5) 5)
e 1|/|A o[ orenas) o
pe)as| 15 [ 141 [ o [ woorac) )

[ii'P N IS [ 1401 [ ytas)asars

i=1 j5=1 i=1 j=1

Lo b
1|ZZ/ |A(t ‘/ i (a,s dsdt}‘ﬂc

i=1 j=1

ie.,

ds+

ds dt+

dsdt <

= SQ|ZL’|C.

Consequently |z|c < Ss|z|c. Since we suppose in this case that r(Sy) < 1, we
get z(t) = 0. O
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Theorem 4.4. Let P, € L(I,R™™"),7; : I — R be measurable functions (i =
1,...,n) and A € L(I,R"™™). Let either the matriz Ay given by (4.12) be nonsin-

gular matriz and r(Sy) < 1, where

; ., (4.16)
+ AT 1|/ |A(t ‘/ ZXI(% +ZZPU ]dsdt
i=1 i=1 j=1
or the matrix Ny given by (4.14) be nonsingular and r(Ss) < 1, where
B BB b
S2ZZZ|P7,]( Mo + |AS 1|ZZ/ |A(t |/ P;(a,s)dsdt+
=1 j=1 =1 j=1
p Bk
+[ZX1(TZ)PZ +ZZ| nr |A21|ZZ/ |A(t |/ P(a,s)dsdt.
=1 L i=1 j=1 =1 j=1
(4.17)

Then the problem (3.8), (2.5) has a unique solution.

Proof. The proof is analogous to the proof of Theorem 4.3, but inequality (4.7)
should be used instead of inequality (4.5). O

Remark. Analogous criteria for multi-point boundary value problem for linear
systems of ordinary differential equations are published in [7] (see Theorem 4.2 and
Corollary 4.2). The assertions are identical for nonsingular A; while the results for
nonsingular A, are new.

Theorems given here for linear systems of differential equations with deviating
argument correspond to Corollary 1.3.3 and Corollary 1.3.11 in [8] in the case when
the matrix A; is nonsingular. The results with nonsingular Ay have been published

only for a periodic boundary value problem.

Remark. Note also that the criteria for the solvability of the problems (3.8), (2.5)
and (2.4) are derived from the inequalities (4.81) and (4.8), respectively. It is clear
that other effective criteria for the solvability of the problems indicated can be get
from (4.8) for the problem (3.8), (2.5) and from (4.8;) for the problem (3.8), (2.4).
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4.3. Existence and Uniqueness Theorems 11

In this part, we specify coefficients of the matrices P; and deviations 7; (i = 1,...,v)
to get some other special criteria of the unique solvability of the problems (3.8), (2.4)
and (3.8), (2.5).

We introduce now two theorems and two corollaries about solvability of the

multi-point boundary value problem (3.8), (2.4).

Theorem 4.1%. Let, for everyi € {1,...,u}, P, € LP(I,R™"), where 1 < p < 400,
7; : I — R be measurable functions and to = min{t; : j = 1,2,...,v}. Let either the

matriz Ay given by (4.1) be nonsingular and r(Sy) < 1, where

Sy=(b—a)i [E+|A 1\Z|Ak] Z\xf 7)Pi| o (4.20)

or the matriz Ay given by (4.3) be nonsingular and r(S2) < 1, where

SQ b—CL Z|X} Ti P|Lp+
=1

B®op
b—a)b|A; 1|Z|Ak|22|xf ) Pil i [ (75) P
7=1

=1

(4.4a)

where % + % = 1. Then the problem (3.8), (2.4) has a unique solution.

Remark. If we use more precise estimates for matrices S;,7 = 1,2, we can find

criterion for unique solvability of the problem (3.8), (2.4) with matrices

5= |6 =B+ AT Y LAt~ ) ] > ()Rl

k=1

and

m
Sy =(b—a)s Z X1 (7:) Pi| o+
i=1

b—a) |A2 |Z (tx —to)7 |Ak|ZZ|X1 (1) Bl e | X1 (75) Py | -

i=1 j=1

This process we use for derivation of following theorems.
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Theorem 4.1°. Let 1 < ¢y < 400, for everyi e {1,...,u}, P, € L(I,R™™),
7; € C(I,R) be monotone functions, ty = min{t; : j =1,2,...,v} and let there exist
B, € RY*™ such that

x1(m() | P(t)] < B,-|7‘Z-'(t)|% almost everywhere on 1.

Let either the matriz Ay given by (4.1) be nonsingular and r(Sy) < 1, where
| w© 1 v o 1 1
=(b—a)m > mPB;+ AT Z >t — to) om,° | Ag| B; (4.2b)
i=1 1 =1
or the matriz Ay given by (4.3) be nonsingular and r(S2) < 1, where

1 L

M=

So =(b—a)m Y m B+
=1
s " L (4.40)
HIADY DTS (b= a)ie (te — to)om,° m° | Ax| B;B;
k=1 i=1 j=1

where pg > 1, — + = =1,m;=mes(r;(I[)NI),i=1,...,u. Then the problem (3.8),

’ Po
(2.4) has a unique solution.

For gy = +o00 resp. ¢y = 1 we get directly from Theorem 4.1° the following

corollaries.

Corollary 4.1. Let, for everyi € {1,...,u}, P, € L(I,R™™), 1, € 6’([,R) be
monotone functions, ty = min{t; : j = 1,2,...,v} and let there exist B; € R}*"
such that

x1(7i(1)|Pi(t)| < B; almost everywhere on I.

Let either the matriz Ay given by (4.1) be nonsingular and r(Sy) < 1, where
p v
Sl = (b— G)ZBZ—F |A1_1|ZZ tk —to ‘AMB
i=1 k=1 i=1
or the matriz Ay given by (4.3) be nonsingular and r(S2) < 1, where
p v
Sp=(b—a)d Bi+ A7 D D) (b—a)(ty — to)| Akl BiB;.
i=1 k=1 i=1 j=1

Then the problem (3.8), (2.4) has a unique solution.
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Corollary 4.2. Let, for every i € {1 ..u}, Pe LU,R™), 1 € C(I,R) be
monotone functions, to = min{t; : j = 1,2,...,v} and let there exist B; € R}*"
such that

(T ()| Pi(t)| < By|7i(t)] almost everywhere on I.

Let either the matriz Ay given by (4.1) be nonsingular and r(Sy) < 1, where

ZmZB +|A 1|szz|Ak|Bla

k=1 i=1
or the matriz Ay given by (4.3) be nonsingular and r(S2) < 1, where
p voopop
i=1 k=1 i=1 j=1

where m; = mes(1;(I) N I),i =1,...,u. Then the problem (3.8), (2.4) has a unique

solution.
To prove the previous theorems we need the following lemma.

Lemma 4.2. Let, for every i € {1,...,u}, P;, 7, B; fulfil successively the assump-
tions of Theorem 4.1* and Theorem 4.1°. Then, for everyi=1,..., p, x € 5([, R™)
and an arbitrary t € I, the following conditions hold

a)

| P ) ds| < [t~ tlibalmPlulele.  (415)

to

b)
1
< |t — to|rom® Bilzc, (4.19)

/ x1(7i()) P(s)2(7(s)) ds

to

where m; = mes(;(I1) N I).

Proof. For every i € {1,...,u} put P, = P,7; = 7, B; = B. Then, with the use of
Holder inequality, we get

a)

x1(7(s))|P(s)|" ds <

/ wi(r(s) P(s)a(r%(s)) ds| <

to

/ |z(7° |qu

1
< |t —to|7|x:(7)P|rr|z|c-
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b)
<B

[l )l 6 ds| <

to

/ xi(7()P()2(7°(s)) ds

to

/ xa(7(3)[2(7°(5)) |7/ (5)| ds|

to

< Bt — to|7 <

< Bt — to|m < |t — to| 0 [mes(r(I) N I)]w Blz|c.

. 70(t) qo
/ |x(s)]|?% ds
To(to)
O
Proof of Theorem 4.1%. According to Theorem 3.4, it is sufficient to show that

if x is a solution of the problem (3.8y), (2.4¢) then z(t) = 0.
Let x be a solution of the boundary value problem (3.8), (2.4¢).

First, suppose that the matrix A; given by (4.1) is nonsingular and r(S;) < 1,
where the matrix S; is defined by (4.2a). Analogously to the proof of Theorem 4.1
we get equation (4.9). Then the relation (4.9), in view of (4.18), implies

<[ Y )R s) ds| +

to j—1

+ |7 ZAk [ty risiie) as <
< (b- a)% Z x1(7:) il o]zl + AT Z | Akl Z (b—a) \XI(Tz)P\LPWC =
= (b— a)% |: + |A 1| Z ‘Ak:| Z ‘X[ Ti P|LP|$‘C,

=1

ie.,

[z|c < Silzle.

Since we suppose that 7(S;) < 1, we get x(t) = 0.

Suppose now that the matrix Ay given by (4.3) is nonsingular and r(S;) < 1,
where the matrix Sy is defined by (4.4a). Analogously to the proof of Theorem 4.1
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we derive the equality (4.9;). Then the relation (4.91), in view of (4.18), yields

< / > i(7(8) Pi(s)a(72(s)) ds| +

to j=1

TO(t)
12Ak [ S utono [ B asa <

o =1 j=1

_(b—a Z‘X} Ti R‘Lp‘idc_'_

=1
v oo
2,
+ (b —a)s[AY Z | A Z Z Ix1(7:) Pl o | X1 (75) Pj| o |7,
k=1 i=1 j=1

whence, together with the assumption r(Ss) < 1, we get x(t) = 0. O

Proof of Theorem 4.1°. The proof is analogous to the proof of Theorem 4.1%, but
inequality (4.19) should be used instead of inequality (4.18). O

We get another type of criterion for the solvability of problem (3.8), (2.4) using
the Levin inequality.

Theorem 4.1°. Let, for everyi € {1,...,u}, P, € LP(I,R™™), where 1 < p < 400,
7, € C(I,R) be monotone functions, 7 = vraimin{|7/(t)| : t € I} > 0 and t, =
min{t; : j =1,2,...,v}. Let either the matriz Ay given by (4.1) be nonsingular and
r(S1) < 1, where

m
(b—a
Sy = ;WWI(TZ)PW b—a qo|A 1|ZZ |Allx1(7:) P|rro  (4.2¢)

k=1 i=1

or the matrix Ay given by (4.3) be nonsingular and r(Ss) < 1, where

ol 1

(b—a)s

Sy = Z W‘XI(TZ')PZ'|LP+
=1 q

(4.4e)

where

1
@ (@sinTm) T 1<g< g <o
1 1<g=gqporg =00
+

qio = 1. Then the problem (3.8), (2.4) has a unique solution.
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To prove Theorem 4.1¢ we need the following lemma.

Lemma 4.3. Let, for everyi € {1,...,u}, Pi,7,p,q, po, qo fulfil the assumptions of
Theorem 4.1° and 7 = vraimin{|7/(t)| : t € [} > 0. Then

X1(7:) Pil o] %] oo, (4.20)

| DR E) 6| < )

where

(© — L) (Lsin )75 1<q<gy< o0
I1<g=gqoorg=o0

Proof. With the use of Holder and Levin inequalities we get for every i € {1,..., u}

<
L40

/ Xe(7i(8) Pi()a(70(5)) ds

<[/
[ atsnieea

< U;( o e ;)qodt};{)g

= hulmfle K/b ’ dt) q“} ’

< (Pl -~ () ([t o "
aﬁl‘l(%)(/abm( (el <>>|%'Tz'<f )

|XI(Ti)P72‘LP‘x|Lq0.

) %
dt} <

[ at)at sl ds

to

[ a2l as

to

/ X1(7i(9) [Py (s)||(77' ()| ds

to

IA

< |x1(7:) Pi| o (b —

(b—a)s
= YR
U

Proof of Theorem 4.1¢. The proof is analogous to the proof of Theorem 4.1¢, but
inequality (4.20) should be used instead of inequality (4.18). O

The following theorem is deduced with the use of similar inequalities as in Corol-
lary 4.1. This theorem is more suitable for problems with different signs of the matrix

functions P; (see Example 4.2).
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Theorem 4.2°. Let, for every i € {1,...,u}, P, € L(I,R™™), 7, : I — R be
measurable function, to = min{ty : k = 1,2,...,v} and let there exist B, B; € R"*"

such that

> uln) A

< B, xi((t)|P(t)] < B; almost everywhere on I.

Let either the matriz Ay given by (4.1) be nonsingular and r(Sy) < 1, where

S1=(b—a)B+|AT D) (t —to)| Akl B: (4.10a)

k=1 i=1

or the matrix Ay given by (4.3) be nonsingular and r(Ss) < 1, where

Sy=(b—a)B+|A'1D ) > (b—a)(t — to)|Ax| BiB3;. (4.11a)

k=1 i=1 j=1

Then the problem (3.8), (2.4) has a unique solution.

Remark. We can get, from above introduced theorems with A, = ME, k =
1,2,...,v, criteria for solvability of the problem (3.8) with the boundary condi-
tion (2.6).

The following theorems deal with the problem of the unique solvability of system
(3.8) with general integral boundary condition (2.5). Proofs are similar to the proof
of Theorem 4.3. The inequalities from Lemma 4.2 and Lemma 4.3 are used suitably

according to assumptions of each theorem.

Theorem 4.3%. Let, for everyi € {1,...,u}, P, € LP(I,R™"), where 1 < p < 400,
7, : I — R be measurable functions and A € L(I,R™*™). Let either the matriz Ay
given by (4.12) be nonsingular and r(Sy) < 1, where

I
S = (b—a): [E ; |A;1HA|L] S (7Pl (4.130)

i=1

or the matriz Ay given by (4.14) be nonsingular and r(S2) < 1, where

I
Sy =(b—a)s Y xi(7:) Pil ot
i=1

(4.15a)

poop

+ (b= a) [AIAILD D Ixa () Pl oo lxa (75) Py o

i=1 j=1

where % + % = 1. Then the problem (3.8), (2.5) has a unique solution.
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Remark. If we use more precise estimates for matrices S;,7 = 1,2, we can find

criterion for unique solvability of the problem (3.8), (2.5) with matrices

Slzl(b—a) E+|A 1|/|A t—a dt:|Z|XI7'ZP|Lp

=1

and
Se=(b—a)s [E+|A 1|/ |A)|(t — a)e dtZ|XI T]P|Lp}Z|X17,P|Lp
j=1

Theorem 4.3°. Let 1 < ¢y < +oo, for every i € {1,...,u}, P, € L(I,R™"),
7, € C(I,R) be monotone functions, A € L(I,R™™) and let there exist B; € R"™"
such that

x1(m() | P ()] < B,|T{(t)|% almost everywhere on 1.

Let either the matriz Ay given by (4.12) be nonsingular and r(Sy) < 1, where
1 ad L
Sy =(b—a)w {E+ |A;1HA|L} > mPB;, (4.13b)
i=1
or the matriz Ay given by (4.14) be nonsingular and r(S2) < 1, where

Sy =(b—a) Po quo B+

=1

KoK 1 1
=)Ao D m m | AlLBB;,

i=1 j=1

(4.15b)

where > + = =1,m; =mes(r;(I)N1I),i =1,...,u. Then the problem (3.8), (2.5)

has a unique solutzon.

Remark. If we use more precise estimates for matrices S;,7 = 1,2, we can find

criterion for unique solvability of the problem (3.8), (2.5) with matrices

Sp = {(b—a)POE—HA 1\/ |A(t)|(t — a)ro dt] quOB

=1

and

'c‘,_.

Sy = (b—a)PO{E—HA 1|/\A |(t — a)

oo 1
ey Yont
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For gy = +o00 resp. ¢y = 1 we get directly from Theorem 4.3° the following

corollaries.

Corollary 4.3. Let, for every i € {1,...,u}, P, € L(I,R™™), 1, € 6’([,R) be
monotone functions, A € L(I,R™™)and let there exist B; € R?*" such that

x1(7i(1)|Pi(t)| < B; almost everywhere on I.

Let either the matriz Ay given by (4.12) be nonsingular and r(Sy) < 1, where
m
S1=(b-a) {E + |A1_1||A|L} ZB,-,
i=1
or the matrix Ay given by (4.14) be nonsingular and r(Ss) < 1, where
poom
Sy=(b—a)d Bi+(b—a?A7'> Y |AlLBiB;.
i=1 =1 j=1
Then the problem (3.8), (2.5) has a unique solution.

Corollary 4.4. Let, for every i € {1,...,u}, P, € L(I,R™"), 7, € C(I,R) be
monotone functions, A € L(I,R"*") and let there exist B; € R*" such that

(T ()| Pi(t)| < By|7i(t)] almost everywhere on I.

Let either the matriz Ay given by (4.12) be nonsingular and r(Sy) < 1, where
m
i=1
or the matriz Ay given by (4.14) be nonsingular and r(S2) < 1, where
p B
Sg = Z mZBZ + ‘A;l‘ Z ZmimﬂA\LBiBj,
i=1 i=1 j=1

where m; = mes(r;(1)N1),i =1,...,u. Then the problem (3.8), (2.5) has a unique

solution.

Theorem 4.3°. Let, for everyi € {1,...,u}, P, € LP(I,R™"), where 1 < p < 400,
7, € C(I,R) be monotone functions, 77 = vraimin{|7/(t)| : t € I} > 0 and A €
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Lo (I,R™ ™). Let either the matriz Ay given by (4.12) be nonsingular and r(S;) < 1,

where

(b a%
$i = > ()Pl + (= AT Al 3 )Rl (4130
i\ g

=1

b—a)s
So :Zﬁ‘XI(TZ)P‘Lp_'—
' Fe 4.15¢)
, T (4.
+ (b= ) [A Y| Algao Y 0> Ixa () il vo X2 (7) P oo,

i=1 j=1

where q¢ < qo,% + % =1+ qio = 1. Then the problem (3.8), (2.5) has a unique

1
Po
solution.

The following theorem is more suitable for problems with different signs of the

matrix functions P;.
Theorem 4.4°. Let, for every i € {1,...,u}, P, € L(I,R™™), 7, : I — R be

measurable function, A € L(I,R™™) and let there exist B, B; € R"*"™ such that

(75(t < B, xi(7:(t))|Pi(t)| < B; almost everywhere on 1.

Let either the matriz Ay given by (4.12) be nonsingular and r(Sy) < 1, where
m
S1=(b—a) [B+ |A1_1||A|LZB,} (4.16a)
i=1
or the matrix Ay given by (4.14) be nonsingular and r(Ss) < 1, where
B
Sy = (b—a) [B+ (b—a)|A2‘1||A|LZZB,~Bj}. (4.17a)
i=1 j=1
Then the problem (3.8), (2.5) has a unique solution.

Remark. We can get from above introduced theorems criteria for solvability of the

problem (3.8) with boundary condition (2.9).
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4.4. Cauchy and Periodic Boundary Value Problems

The following corollaries are deduced from Theorems 4.1 and 4.2. We can analo-
gously get other criteria for the unique solvability of the Cauchy and periodic bound-

ary value problems from Theorems 4.1 - 4.1¢ and 4.2°.

Corollary 4.5. Let r(S) < 1, where either

ZXI(T)P

Then the problem (3.8), (2.7) has a unique solution.

B
+ZZ|PZ]|L
L

i=1 j=1

n
S:Z|XI(Ti)1Di|L or S=

Proof. The validity of the corollary follows immediately from Theorems 4.1 and
4.2 with v = 1, Ay = FE and t; = ty because, in this case, the matrix A; given by
(4.1) is the unit matrix. O

Corollary 4.6. Let

o

Z/ X] ’7'2 Z(t) dt
r(S

be a nonsingular matriz and let r(S) < 1, where either

T
S = Z|X1 TPl + A7) Y 1Py,
7j=1

=1

or

ZXI Tz

Then the problem (3.8), (2.8) has a unique solution.

boop roM
S 3 SIARISIS o S
i=1 j=1

i=1 j=1

Proof. The validity of the corollary follows immediately from Theorems 4.1 and
4.2 with v = 2,A; = —FE, Ay = E,tg = t; = a and ty = b, because, in this case,
the matrices Ay and Ay given by (4.1) and (4.3), respectively, satisfy A; = © and
Ay = A O



5. Multi-point Boundary Value Problem for
Pantograph Equation

5.1. Statement of the Problem

For the sake of transparentness of the results, the interval [0,7] was chosen as
interval I in this chapter.
On the bounded interval I = [0,7], consider the system of linear differential

equations with deviating arguments

do(t)
dt

Z P(t)z(mi(t) + qo(t), x(t) = u(t) for t <0 (5.1)

i=1

with the multi-point boundary condition (2.4), i.e.,

ZAkx(tk) = (g,
k=1

where T" > 0, P, € L(I,R™™) for i = 1,...,1, g0 € L(I,R"), cg € R", t, € I,
A, e R"(k = 1,...,v), 7, : I — R (i = 1,..., ) are absolutely continuous
nondecreasing delays (i.e., 7;(t) <t for every ¢t € I), and u :] — 00, 0[— R" is a con-

tinuous and bounded vector function.

Remark. If 4 = 2 and 71(t) = ¢ then system (5.1) represents the equation of the
pantograph that is frequently studied in the literature (usually for n = 1). The
paper [23], about simulation of an electricity transmission between wiring and lo-
comotive, increased interest in the equation of the pantograph. Authors studied an
asymptotic behaviour of solutions for ¢ — 400 and their numerical approximations
(see [1, 2, 15, 18, 20] and references therein). They used criteria of the existence

and uniqueness of a solution of the Cauchy problem.

In this part, we give effective criteria for the solvability of the generalized equa-
tion of the pantograph with a multi-point condition. We put other assumptions on

delays of the arguments 7;.
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Foranyi:=1,...,uand t € I, we put
0 if ;(¢) <0
(1) = n{f) <0

This problem with delayed arguments is a special type of the problem (3.8),
(2.2). That is why this problem fulfils Fredholm property, i.e., the following theorem

follows immediately from Theorem 3.4.

Theorem 5.1. The problem (5.1), (2.4) is uniquely solvable if and only if the cor-

responding homogeneous system

= > xi(m) PD(7 (1) (5.10)

with boundary condition (2.4¢) has only the trivial solution.

5.2. Existence and Uniqueness Theorems

In this section, we establish some efficient criteria of the unique solvability of the

problem (5.1), (2.4) using the results and methods from [§].

Theorem 5.2. Let, for every i € {1,...,u}, P, € L(I,R™™) 7, € C(I,R) be
nondecreasing delays, to = min{t; : j = 1,2,...,v} and let there exist matrices
B, e R (i =1,...,u) such that

xr(m(0)|Pi(t)] < BiTi(t) almost everywhere on I. (5.2)

Let, moreover, either the matriz Ay given by (4.1) be nonsingular and r(S;) < 1,

where

ZBT )+ AT 1|ZZ\Ak|B O(ty) — (o)), (5.3)

k=1 i=1

or the matrix Ay given by (4.3) be nonsingular and r(Sz) < 1, where

ZB (1) + A3 ZZ > Al BBy (2 (1) — 7 (t0)) 7 (1) (5.4)

=1 =1 j=1

Then the problem (5.1), (2.4) has a unique solution.
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Remark. This theorem does not follow from Theorem 4.1°. The assumption of
delayed arguments allows a finer formulation. That is why the proof is introduced

independently, as in [12].

Proof. According to Theorem 5.1, it is sufficient to show that if x is a solution of
the problem (5.1p), (2.49) then z(t) = 0. Let = be such a solution. The integration

of (5.1y) from #o to £, in view of (3.10), results in
o) =t [ po(o)as (5.5

and, by iteration in (5.5), we get
o0 =2+ [ as]er [o [ so@a)eas o

where ¢ = x(ty) and

p(B)(s) = 3 () Pis)
- ! )
o( [ rar©a) o =X X ulneDre [ ulnE)n@e)

First suppose that the matrix A; given by (4.1) is nonsingular and r(5;) < 1,
where the matrix S; is defined by (5.3). Then from (2.4y), by virtue of (4.1) and
(5.5), we get

0= kZ:Ak [c+/t:kp(x)(s) ds] _ A1c+§Ak/ p(z)(s) ds

ti
to

and thus

ti
to

c= AT 4 / p(z)(s) ds.

Therefore, (5.5) implies

) = [ ple)s) ds — A0S A [ p(a)(s)ds
/top ; k/to p
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and, in view of (5.2), we get
[ o as| iz Z A
< [z [utenineias)+
FIATY Z A4 Z / IR ds] ol <
< [Z [ Bt ast
+ 17 Z 4 Z [ Bt asiele <
{ZBT A S0 S A B k) — 7 el

k=1 i=1

<

(1) < / " o()(s) ds

to

ie.,

[z]c < Sil|7le.

Whence, together with the assumption r(S7) < 1, we get
(E—S)|zlc 0= |z|c < (E—S1)"'0=0.

Therefore z(t) = 0.

Now suppose that the matrix Ay given by (4.3) is nonsingular, and r(Ss) <

where the matrix S is defined by (5.4). From (2.4¢), (5.51) and (4.3) we get

0= ZA B4 [ e sfer ZA ol [ rorerae)oas -

to

_ {A1+§Ak [ e dﬁwgm [0l [ rorerae)oas -
_ Agc+§AkAtkp(AP($)(€) ac ) (s

and thus

e= -3 [ ol [ eerae)as
= Ju

to

59

1

Y
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Therefore (5.5) yields

(1) = /t:p<x><s> ds— A7 Z a [ o [ orerae) ) as

to

Hence, on account of (5.2) and the notation P(t) = y;(7:(t))Pi(¢),

7 (t) = xa(7i(t)) 7, (1), we get
/t:p(x)(S) ds| + A 2 | A /t:kp</to.p(x)(§) dg)(s) ds| <

<z:/t0 0(s)) ds|+
+ 145 1IZ|AkIZZ

=1 j=1

= ZB' P (T)|zlc+

A7 1|Z|Ak|zz/

=1 j=1

z(8)] <

/ /:(S) Py(&)x(r9(€)) déds| <

ds <

/ 1B (6)[2(=2(6))) d

= ZB' P (T)|zlc+

1A 1|Z|Ak|ZZBB/ (s /Ok%;'-<s>dsds|x|cg

=1 j=1

ZB- $(T)|zle+

w w
+[Ay 1|Z|AkIZZBzBJ (tr) — 77 (t0)) 75 (te) [l =
7=1

=1

IA

vonop
SDILEGEIS) 3 ) SEHEE YRR TONETIN] (ER
k=1 i=1 j=1
= 52|[L’|0.
Whence, together with the assumption 7(Ss) < 1, we get z(t) = 0. O

Corollary 5.1. Let, for every i € {1,...,u}, P, € L(I,R™™), 1, € 6’([,R) be

nondecreasing delays and let there exist matrices B; € RY*™ such that the condition
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(5.2) holds fori=1,...,u. Let, moreover, r(S) < 1, where

Then the problem (5.1), (2.7) has a unique solution.

Proof. The validity of the corollary follows immediately from Theorem 5.2 with
v=1,A; = E, and t; = tg because, in this case, the matrix A; given by (4.1) is the

unit matrix. O

Corollary 5.2. Let, for every i € {1,...,u}, P, € L(I,R™"), 7, € C(I,R) be
nondecreasing delays and let there exist matrices B; € RI*"™ such that the condition

5.2) holds for1=1,..., u. Let, moreover,
( 7

A= / xi (7)) dt

be a nonsingular matriz and r(S) < 1, where

p poop
S="BrUT) + AN BB (1) (D).
i=1

i=1 j=1

Then the problem (5.1), (2.8) has a unique solution.

Proof. The validity of the corollary follows immediately from Theorem 5.2 with
v=2A =—-FE A = E t; =0, and t; = T, because, in this case, ty = 0 and
the matrices A; and Ay given by (4.1) and (4.3), respectively, satisfy A; = © and
Ay = A O

Remark. Further criteria can be derived analogously to the theorems stated in

Chapter 4.

5.3. Linear System with Constant and Proportional Delays

Let 7;(t) = qit — A; for t € I, where ¢;, A; € Ry are such that (¢; — 1)T < A; (i =
1,..., ). Then we get the following criteria of the solvability of the problem (5.1),
(2.4) with linear delays.
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Corollary 5.3. Let to = min{t, : k = 1,2,... v}, 7(t) = qit — A; fort € I,
where q;, A; € Ry are such that ¢; # 0,(¢; — V)T < A; (i = 1,..., 1), and let
there exist matrices B; € RY™ (i = 1,..., ) such that the inequality (5.2) holds for
t=1,....u. Put fori=1,...,pand k=0,1,... v

A, A,
di = X[, T]( )(qu A;) and 6i = X[o.4,)(— " =) (aitk — Ai).
Let, moreover, either the matriz Ay given by (4.1) be nonsingular and r(S;) < 1,

where

ZB& + AT 1|ZZ|Ak\B ik — 0i0); (5.6)

k=1 i=1

or the matrix Ay given by (4.3) be nonsingular and r(Sz) < 1, where

H voop
= "B + A1 0D 0 C1AWBiB; (i — Gi0) i (5.7)
=1

k=1 i=1 j=1

Then the problem (5.1), (2.4) has a unique solution.

For the system with constant and proportional delays we get the following corol-

laries.

Corollary 5.4. Let to = min{ty : k = 1,2,...,v}, 7;(t) =t — A; fort € I, where
A, eRy (i =1,...,u), and let there exist matrices B; € RY™ (i = 1,..., 1) such
that the inequality (5.2) holds for i = 1,..., . Put 6; = xjo.11(2:)(T — A;) and
Oik = Xio] (Ai)(te — Ag) for i = 1,...,pu,k = 0,1,...,v. Let, moreover, either
the matriz Ay given by (4.1) be nonsingular and r(S1) < 1, where the matriz S,
is defined by (5.6), or the matriz Ay given by (4.3) be nonsingular and r(Sy) < 1,
where the matriz Sy is defined by (5.7).
Then the problem (5.1), (2.4) has a unique solution.

Example 5.1. Consider the problem
2'(t) = =102 (t) + 107w (t — 1/2) + qo(t), t€[0,1],

z(0) = (1), z(t) =u(t) for t € [-1/2,0],

where qo € L([0,1],R") and u : [—-1/2,0[— R™ is a continuous and bounded vector

function.
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Thenv =2, u=2,tg=t;=0,t, =1, 71(t) =t, n(t) =t —1/2, P, = 1071 E,
P,=10"'E, A, = E, Ay = —E and we get Ay = ©, nonsingular matriz Ay = 2—10E
and Sy = %E with r(Sy) < 1. According to Definition 1.3, the solution of the
problem is an absolutely continuous vector function on the interval [0,1]. It may
not generally be a continuous extension of the function u defined outside the interval
[0, 1].

From Corollary 5.4 it follows that the considered problem has a unique solution.
Corollary 5.5. Let tgo = min{ty : k = 1,2,...,v}, 7i(t) = qit for t € I, where

€0,1] (i =1,..., ), and let there exist matrices B; € RY™ (i = 1,..., 1) such
that (5.2) holds for i =1, ..., u. Let, moreover, either the matriz Ay given by (4.1)

be nonsingular and r(Sy) < 1, where
Zqu2T+|A 1|ZZ‘A1€‘BZ% )7
k=1 =1

or the matrix Ay given by (4.3) be nonsingular and r(Ss) < 1, where

p v.oou g

Y BT AT 30 S A BB — o)

i=1 k=1 i=1 j=1

Then the problem (5.1), (2.4) has a unique solution.

Proof of Corollaries 5.3 - 5.5. The validity of corollaries follows from Theorem

5.2 when, for t € I, 7;(t) = q;t — A;, 7:(t) =t — A; and 7;(t) = g;t, respectively.

Remark. From Corollaries 5.3 - 5.5 we can easily derive analogous criteria for the
solvability of the Cauchy problem (5.1), (2.7) and periodic problem (5.1), (2.8).

Remark. We can establish special criteria for unique solvability of the problem

with an integral boundary condition the same way as in Chapter 4.



6. On Construction of Solutions

6.1. Statement of the Problem

On the bounded interval I = [0, 77, consider the system of linear differential equa-

tions with deviating arguments (5.1), i.e.,

dzgft) _ Z:: Pl(t)l’(ﬂ(t)) + qo(t)’ l’(t) = u(t) fort <0

=1

with the multi-point boundary condition (2.4), i.e.,

ZAkx(tk) = (g,
k=1

where T' > 0, P, € L(I,R™"), 7; : [ — R are absolutely continuous nondecreasing
delays (i.e. 7i(t) < t for every t € I) fori = 1,...,u, g € L(I,R"), t;, € I,
Ay, €e R (k= 1,...,v), ¢o € R" and u :| — 00,0[— R" is a continuous and
bounded vector function.

For the construction of solutions of the boundary value problem (5.1), (2.4) on the
segment [ we use the method of professor Kiguradze. The solution of the considered
problem is obtained as a limit of a sequence of solutions of certain auxiliary problems.
Methods and results are illustrated by examples created in Maple 10.

In this part, we show one method of constructing the solution of multi-point
boundary value problem (5.1), (2.4) and its special cases. This method was used for
constructing the solution of the Cauchy-Nicolleti’s linear boundary value problem

for linear systems of ordinary and functional differential equations (see [3, 6]).

Particular cases of the system (5.1) are the system of differential equations with

one deviating argument
2(t) = P(t)z(7(t)) + qo(t) (6.1)

and the system of ordinary differential equations

2'(t) = P(t)x(t) + qo(t). (6.2)
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Important cases of deviations, which are discussed in literature together with the

pantograph equation, are proportional delay
7:(t) = qit, (6.3)
where ¢; €]0, 1], and constant delay
Ti(t) =t — A, (6.4)

where A; > 0.

6.2. Method of Successive Approximation

According to the previous chapter, for any ¢ =1,...,p and ¢t € I, we put
Ti(t) if 0 < 7i(¢)
and let us recall, in the following proposition, Theorem 5.2 dealing with the unique

solvability of the problem (5.1), (2.4).

Proposition 6.1. Let, for every i € {1,...,u}, P, € L(I,R™"), 7, € C(I,R) be
nondecreasing delays, to = min{t; : j = 1,2,...,v} and let there exist matrices
B, e R (i =1,...,u) such that

xr(m(0)|Pi(t)] < BiTi(t) almost everywhere on I.
Let, moreover, either

1. the matriz ,
A=) Ay
k=1

be nonsingular and r(Sy) < 1, where

I

S1= 3" Bal(@) + 107130 S 1AUB (P (k) — 72(10)),

i=1 k=1 =1

or
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2. the matrix

A1+22Ak/ xi1(7: (1)) Pi(t) dt

k=1 1=1
be nonsingular and r(Sy) < 1, where

v.oopom
ZBT )+ 1Ay 1|ZZZ|Ak|BB D(tk) — 7 (to)) 7] (k).
=1 =1 j=1
Then the problem (5.1), (2.4) has a unique solution.

To describe the method of successive approximation of solutions we define ope-

rators 11, Ty : C(I; R™) — C(I;R™) (for the case when A; is nonsingular matrix and

the case when A, is nonsingular matrix) by setting

10 = [ =473 A [l
1)) = [ ple)(s)ds — A 12Ak/ o[ arerae)oas,

to

where to = min{t; : j =1,2,...,v}, p(z)(t) = 25:1 x1 (5 (8)) P (t)z(9(¢)),

and functions

]
S
=

where .
)+ (1= xa(r; (1) Py (t)u(r;(t)).
7j=1

We construct the solution of the problem (5.1), (2.4) in the following theorem

using the method of successive approximation.

Theorem 6.1. Let the first or the second assumption of Proposition 6.1 be fulfilled.
Then the problem (5.1), (2.4) has a unique solution x such that

|z — zm|lc — 0 for m — oo, (6.5)
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where {x,}5°_, C C(I;R") is a sequence of continuous n-dimensional vector func-

tions, which are solutions of the following sequence of problems
x1 € C(I;R") is arbitrary and
T () = Ti(2p1)(t) + qi(t) fort € I,m € N\ {1}, (6.6)
where i = 1 in the first case and i = 2 in the second one.

Proof. The unique solvability of the problem (5.1), (2.4) follows from Proposition
6.1. Let = be the unique solution of the problem (5.1), (2.4) and ¢ty = min{t; : k =
1,2,...,v). Integrate the equation (5.1) from ¢y to t. We get the equation

x(t) :c+/ p(z)(s) ds+/ q(s)ds, (6.7)

to to
where ¢ = x(tp). Since the solution z of the equation (5.1) fulfils the condition (2.4),

this vector function fulfils the integral equation

o) = B+ /t:p@)(s) wer [ fp ([ rarerac) yast
+/t:p (/to'q@)d&) <s>ds+/t:q<s>ds

as well. In the first case, when A; is nonsingular, with use of (2.4) and (6.7), we get

v t v t
A1—1 Co — Z Ak/ p(x)(s) ds — Z Ak/ q(s) dS]
k=1 to k=1 to

and in the second case, when A, is nonsingular, with use of (2.4) and (6.8), we get

Ay Co_;ﬁ/};%(/t;p( ]
[ f o) ds+/q )

This implies that the solution x of the boundary problem (5.1), (2.4) is also the

(6.8)

solution of the integral equation
w(t) = Ti(x)(t) + ¢:(t), tel. (6.9)

Let now 21 € C(I;R") be arbitrary and {x,, }5°_, be the sequence of n-dimensional

vector functions given by (6.6). We proof the uniform convergence of the sequence
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{zm}5°_, to the solution z, i.e., we show, that (6.5) holds. According to the proof
of Theorem 5.2, we get

IT:(2)|c < Silz|e for z € C(I;R™).
Therefore,
2 — zm|o = |2 — (Ti(xm-1) + @)lc = [Ti(z — Tm-1)|c <
< Silr = Tmile <. <SP e — 2

Since r(S;) < 1 we get S — O for m — oo. Hence

lim [z — anle = 0,

m—00
i.e., the sequence {x,,} is uniformly convergent to the vector function x on the inter-
val 1. 0

Remark. The numerical stability of the convergency process in this case can be
proved using the methods published in [7] for boundary problems for ordinary diffe-
rential equations. This problem is solved by Lukas Manasek and and in our collective
work [14].

6.3. Examples

We apply the method of successive approximation introduced above to a simple
problem. We consider the system (5.1), where u = 2,74 = t,75 = 7, and the
boundary condition (2.4), where v = 2, A} = \gE, Ay = ArE,t; = 0,ty = T. Thus
we solve the following problem
dz(t)
dt

= Pi(t)z(t) + Po(t)x(7(t)) + qo(t), x(t) =u(t) for t <0, (6.10)
Xoz(0) + Arx(T) = ¢ (6.11)
which is known as the pantograph equation.

Example 6.1. Consider the problem (6.10), (6.11), where Pi(t) = 1,P(t) =
L7(t)= L) =1, =1 Ar=1,T=1,¢ =0, i.c., the problem

dZ—E:):x(t)m(%) +1,

z(1) = x(0).
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In Fig. 1 we can see starting function xo(t) = 1, t € [0, 1] and the first iteration and

in Fig. 2 the same starting function and iterations 1 — /0.
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o
1l

n

.
T
(=]
o

Figure 1: Iteration: 1 Figure 2: Iterations: 1 - 40

In Fig. 3 we can see starting function xo(t) = —t—1, t € [0, 1] and the first iteration

and in Fig. 4 the same starting function and iterations 1 — /0.

0.5
-1.07 %oo%“‘% -1.05 —
] Teq :
-1 5—: oo OO%QV‘J%OC_OQ -1 5—_ 0090000000000
] o i “a
2_0—: %%Dooo%%%o _2_0_: 000000009000000

Figure 3: Iteration: 1 Figure 4: Tterations: 1 - 40
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Example 6.2. Consider the problem (6.10), (6.11), where Pi(t) = 0, Py(t) =
L,7(t) = t— %,qo(t) =t, =1 \r=1,T=2,¢=0, i.e., the problem

dott) _ (o L) 4y
dt 3 ’

x(2) = z(0).

In Fig. 5 we can see starting function xo(t) = 1, t € [0,1], u(t) = 1 for t < 0 and
first iteration and in Fig. 6 we can see the same starting function, function u and

iterations 1 — 40.

deleivielslellolsvivielelulvivielnlolodslolele sl lelalelvlivlnlolelolelolvlolsle wle ols ole] —90000000 [elelvlalete elslelelvivlolvlolelalelolnlulnle sleslesle]
t H
0 05 1.0 15 20 ajo 0.5 1.0 15 /D
Lt v v v v L1 | L1 4 N VM O T T T N O I I B |

.

(= =3

Figure 5: Iteration: 1 Figure 6: Iterations: 1 - 40

In Fig. 7 we can see starting function xo(t) =1, t € [0,1], u(t) =t —1 for t <0 and
first iteration and in Fig. 8 we can see the same starting function, function u and

iterations 1 — 40.
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Figure 7: Iteration: 1 Figure 8: Iterations: 1 - 40

Previous examples were computed in Maple 10. In pictures are plotted starting
function xg, the first iteration (eventually more iterations) and function u (if it is
necessary). From the first example follows that the solution really does not depend
on the starting function xy. Second example shows that we receive different solutions

for different functions w.



Conclusion

We have studied the question on solvability of the multi-point and integral boundary
value problems for systems of functional differential equations, especially the systems
with more deviating arguments. During our studies, we have concentrated on linear
systems and also on systems with small parameter. The reason is huge number
of results we gained in this course of study, which is important in practice (see
generalized pantograph equation).

There still remain, however, many open problems, for example:
— the construction of a solution for other boundary value problems,
— the nonnegativeness of a solution,
— other effective criteria for unique solvability for linear boundary value problems,
— effective criteria for unique solvability for nonlinear boundary value problems of
systems of functional differential equations and systems with more deviating argu-
ments.

More open problems we can find in theory and applications of generally non-
linear and singular boundary value problems for systems of functional differential

equations.
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