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Consider the cartesian defining equation of the unit circle, i.e., C : f(x, y) = 0 where
f(x, y) := x2 + y2 − 1 ∈ Q[x, y]. Note that the two variables polynomial f has rational
coefficients, i.e., f ∈ Q[x, y]. The object C is an example of an affine algebraic variety
defined over Q. If one takes the real points of C, i.e., if one considers the set

S1 = C(R) := {(x, y) ∈ R2 : f(x, y) = 0},

then one recovers the usual unit circle viewed as a subset of R2. Consider now the algebraic
differential form ω = dx

y
on C(R). One should think of a algebraic differential form on

S1 as an “algebraic expression” that one can integrate on the space S1. Note that the
differential form ω is again defined over Q. We have

1

2

∫
S1

ω =

∫ 1

−1

dx√
1− x2

= π,(0.1)

where π is the half circumference of S1. A famous theorem of Lindemann (1882) proves
that π is transcendental over Q. In particular, π is irrational. A priori, the irrationality of
π seems to be a bit surprising, since after all, the polynomial f and the differential form
ω were both initially defined over Q. This last observation may be summarized by saying
that, in general, the “integral operator

∫
” is a transcendental operation (contrary to finite

symbolic expressions involving only the classical binary operators +,−, ·,÷ which give rise
to algebraic operators). The number π is the simplest example of a period which is not
an algebraic number.

Consider now the Riemann zeta function

ζ(s) =
∑
n≥1

1

ns
,(0.2)

where s ∈ C with Re(s) > 1. A famous theorem of Euler states that for all k ∈ Z≥1,

ζ(2k) ∈ π2k · Q.(0.3)
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For example ζ(2) = π2

6
, ζ(4) = π4

90
etc. Similarly to the integral operator

∫
, the infinite

summation in (0.2) may again be viewed (in a sense which we do not want to make precise)
as a transcendental operation.

(i) One of the goals of this series of lecture is to provide a proof of (0.3) which clarifies
the relationship between the formulas (0.1) and (0.3). Moreover, we shall present some
generalizations of (0.3). For example, we intend to prove that∑

m,n∈Z2\(0,0)

1

(m+ n i)4k
∈ Ω4k · Q,

where i =
√
−1 and Ω =

∫ 1

−1
dx√
1−x4 . The real number Ω is again a period which was proved

to be transcendental by Schneider (1937).

(ii) More generally, if one replaces the unit circle C : x2 + y2 − 1 = 0 by the Fermat
curve CN : xN + yN − 1 = 0, then one may consider similar constructions as in (i). In
particular, we will show that the real number Γ( 1

N
)N can be written as a certain product

of periods associated to the Fermat curve CN .

(iii) Let c ∈ 1
N

Z/Z be a coset. One may consider the partial zeta function

ζ(c; s) :=
∑

0 6=n∈c

1

|n|s
,

where s ∈ C with Re(s) > 1. One may show that s 7→ ζ(c; s) admits a meromorphic
continuation to all of C. Among other things, we shall prove that the numbers ζ ′(c; 0) are
periods which satisfy certain distribution relations.

(iv) As before, let c ∈ 1
N

Z/Z be a coset. One may also consider the truncated partial
zeta functions

(1) ζ+(c; s) :=
∑
n∈c
n>0

1
ns ,

(2) ζ−(c; s) :=
∑
n∈c
n<0

1
|n|s ,

where s ∈ C with Re(s) > 1. In particular, note that ζ+(−c; s) = ζ−(c; s) and that
ζ+(c; s) + ζ−(c; s) = ζ(c; s). For c ∈ 1

N
Z/Z and c 6= 0, a famous formula from the Czech

mathematician Matyáš Lerch states that

ζ ′(c; 0) = log
Γ(c0)√

2π
,(0.4)
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where c0 ∈ c is the unique representative such that 0 < c0 < 1 and Γ corresponds to the
Gamma function. We will try to provide some relationships between the formula (0.4) and
the formulas which appear in (ii) and (iii).

(v) Finally, if time permits, we would like to explain from the point of view of (iv)
how some of the work of R. Kučera can sometimes be used to predict unexpected algebraic
identities over Q between roots of the periods considered in (ii). For example, we intend to
provide a conceptual explanation for the relation

Γ( 1
24

) · Γ(11
24

)

Γ( 5
24

) · Γ( 7
24

)
∈ Q.

More precisely, one can show that

Γ( 1
24

) · Γ(11
24

)

Γ( 5
24

) · Γ( 7
24

)
=
√

3 ·
√

2 +
√

3.

Prerequisites: Real analysis, calculus, complex analysis and some familiarities with
line integrals on Riemann surfaces.
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