Záznam kolokviální přednášky - Laszlo Erdös - Universality of random matrices and log-gases PDF Tisk

Kolokviální přednáška se konala ve středu 12. října 2016, v 16:00 v posluchárně M1

Laszlo Erdös (IST, Rakousko)

Universality of random matrices and log-gases

Abstract:

The Wigner-Dyson-Mehta conjecture asserts that the local eigenvalue statistics of large real and complex Hermitian matrices with independent, identically distributed entries are universal in a  sense that  they depend only on the symmetry class of the matrix and otherwise are independent of the details of the distribution.
We present the recent solution to this half-century old conjecture. We explain how stochastic tools, such as the Dyson Brownian motion, and  PDE ideas, such as De Giorgi-Nash-Moser regularity theory, were combined in the solution.
We also show related results for log-gases that represent a  universal model for strongly correlated systems.

Záznam přednášky ZDE

Aktualizováno Čtvrtek, 13 Říjen 2016 09:01