Archiv aktualit
Online seminář z algebry - 11.2.2021 PDF Tisk

Další seminář z algebry se koná 11.2.2021 od 13.00 online na platformě ZOOM. Informace pro připojení a další program semináře je zde.

Paolo Perrone

Kan extensions are partial colimits

Abstrakt:
One way of interpreting a left Kan extension is as taking a kind of "partial colimit", where one replaces parts of a diagram by their colimits. We make this intuition precise by means of the "partial evaluations" sitting in the so-called bar construction of monads. The (pseudo)monads of interest for forming colimits are the monad of diagrams and the monad of small presheaves, both on the category CAT of locally small categories.

We also define a morphism of monads between them, which we call "image", and which takes the "free colimit" of a diagram. This morphism allows us in particular to generalize the idea of "confinal functors", i.e. of functors which leave colimits invariant in an absolute way. This generalization includes the concept of absolute colimit as a special case.
The main result of this work says that a pointwise left Kan extension of a diagram corresponds precisely to a partial evaluation of its colimit. This categorical result is analogous to what happens in the case of probability monads, where a conditional expectation of a random variable corresponds to a partial evaluation of its center of mass.

Joint work with Walter Tholen. arXiv:2101.04531.

Aktualizováno Úterý, 09 Únor 2021 16:25
 
Online seminář z algebry - 4.2.2021 PDF Tisk

Další seminář z algebry se koná 4.2.2021 od 13.00 online na platformě ZOOM. Informace pro připojení a další program semináře je zde.

Jiří Rosický

Metric monads

Abstrakt:
We develop universal algebra over an enriched category and relate it to finitary enriched monads. Using it, we deduce recent results about ordered universal algebra where inequations are used instead of equations. Then we apply it to metric universal algebra where quantitative equations are used instead of equations. This contributes to understanding of finitary monads on the category of metric spaces.

Aktualizováno Středa, 03 Únor 2021 09:03
 
«ZačátekPředchozí12345678910DalšíKonec»