Archiv aktualit
Online seminář z diferenciální geometrie - 31.5.2021 PDF Tisk

Seminář z diferenciální geometrie pokračuje 31.5.2021 od 10:00 online na platformě MS Teams a v zasedací místnosti ÚMS (druhé patro).

Připojení ke schůzce ZDE.

Marcus Dafinger (University of Jena):

On formal calculus of variations, Cartan formula and Noether's theorem

Abstrakt:
We give an introductory talk on the formal calculus of variations. Concepts from differential geometry, like Lie-derivative, exterior derivative and Cartan formula will be related to first variation, Helmholtz map and a kind of related Cartan formula. With the help of these operations we then formulate Noether's theorem and present some results on the so-called Takens' problem.

Aktualizováno Čtvrtek, 27 Květen 2021 09:24
 
Online seminář z algebry - 27.5.2021 PDF Tisk

Další seminář z algebry se koná 27.5.2021 od 13.00 online na platformě ZOOM. Informace pro připojení a další program semináře je zde.

Raffael Stenzel

Proof relevance in higher topos theory

Abstrakt:
In the short course of its definition and early exploration, the theory of higher toposes (by which I specifically mean (infinity,1)-toposes) has been found to exhibit various traits which appear rather odd from the perspective of ordinary topos theory. Motivated by the fact that the internal language of every higher (Grothendieck) topos is a univalent type theory - and hence is intrinsically "proof relevant" - we reconsider the basic characteristic notions associated to a higher topos from a purely logical proof relevant point of view.
Given a small infinity-category C, this will motivate the notion of a  logical structure sheaf on C whose ideals correspond exactly to the left exact localizations of the infinity-category [C^{op},S] of presheaves over C. This in turn will naturally lead to a corresponding notion of generalized Grothendieck topologies on C which, first, capture all higher toposes embedded in [C^{op},S], and second, correspond exactly to the classical notion of Grothendieck topologies in the monic (i.e.\ the proof irrelevant) context. We will see that these notions induce a  Kripke-Joyal semantics valued in spaces (rather than in the classical subobject classifier) in obvious fashion as well. In the end of the talk we will take a look at a few examples of such topologies and, if time permits (which it rarely ever does, time appears to be pretty absolute when it comes to this), end with a discussion of some open questions.


Aktualizováno Čtvrtek, 27 Květen 2021 09:20
 
«ZačátekPředchozí12345678910DalšíKonec»