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2 NATURAL OPERATORS ON CONFORMAL MANIFOLDSPrefaceThis dissertation is based on a written version of my lecture series held duringmy visiting professorship at the University of Vienna in the Fall term 1991/1992. Iacknowledge gratefully the support and kind hospitality of the University during myvisit. The motivating interest of the listeners forced me to study deeply the subjectwhich became one of the main interests of my scienti�c research nowadays. Sincethe last year, a joint seminar of J. Bure�s, V. Sou�cek and myself devoted especially tothis topic works at the Charles University in Prag. The general setting for the studyof the natural operators originates in the work of the seminar of I. Kol�a�r duringthe last ten years in Brno and in the Middle-European Seminar organized jointlyby I. Kol�a�r and P. Michor in Brno and Vienna since 1985. The recent monograph[Kol�a�r, Michor, Slov�ak, 93] collects the most of the results of this cooperation.The submitted version of the lecture notes, �rst distributed at the University ofVienna in 1992, has been revised and essentially extended. The Sections 4 and 8present my original results, the rest of the text collects the necessary backgroundfor the theory of natural operators on conformal manifolds which is really di�cultto be found in one place. The exposition covers the topics assumed as well known(to specialists) in the survey paper [Baston, Eastwood, 90] and those regularlyapplied in the fairly many other recent papers concerning the naturality problemsin conformal geometry. So a graduate student of di�erential geometry should beable to start an active work in this area after studying the lecture notes. Thebibliography is far from being complete, however I have involved all papers whichI have seen by myself and which thereby have inuenced the text.My approach combines the general methods developed for the study of the nat-urality problems in the above mentioned monograph [Kol�a�r, Michor, Slov�ak, 93],which are more suited for solving concrete (even non-linear) problems, but whichhave not been worked out in the category of conformal manifolds there, and themethods from the representation theory employed by some of the cited authors(which apply then only to linear problems, of course). The latter methods are verypowerful and they lead to very nice general classi�cation results, but on the otherhand, these results are rather implicit. I believe, that my approach should lead tonew concrete results in the near future as well. The whole text might seem strangesince we are seeking for natural operators, but neither we apply the results norwe state what they are good for. But the applications are rather non-trivial as arule, the interested reader can �nd some of them in [Baston, Eastwood, 90], [Fe�er-man, 79], [Fe�erman, Graham, 85] for the conformal invariants and [Atiyah, Bott,Patodi, 73], [Gilkey, 84] for the Riemannian invariants. Typically, a classi�cationresult on all natural operators helps to describe properties of rather concrete geo-metric objects. Moreover, the theory of the natural operators is itself rich enoughto be treated separately.The reader is assumed to be familiar with standard �nite dimensional di�erentialgeometry. The study of some parts of the monograph [Kol�a�r, Michor, Slov�ak,93] will be probably necessary for a detailed understanding. Further, a detailedtreatment of the representation theory cannot be involved in the text, but I o�erat least brief overviews, mainly in the Appendix.In the �rst preparatory section I try to motivate the naturality problems, to



PREFACE 3indicate the connections to representation theory and to �x some notation. Thenext section explains the basic setting for naturality problems and in the third one,I develop the necessary theory of natural tensors (the so called Weyl's theory).Section 4 is based on my recent papers [Slov�ak, 92a], [Slov�ak, 92b]. In fact, itpresents the �rst step towards the classi�cation in Section 8, since all conformalinvariants must be �rst of all Riemannian invariants. Furthermore, the resultspresent a nice application showing the power of the general approach to (non-linear)naturality problems mentioned above.Next, I describe thoroughly the at conformal structures and their morphismswhich is applied immediately to the description of all �rst order linear naturalconformal operators which do not vanish on conformally at manifolds in Section6. In fact, this section covers a result by Fegan from 1970 which is a special case ofthe later general classi�cation. But I like to present some of the ideas of the laterdevelopment in a more concrete setting. Among these operators, there are someliving on bundles involving more structure, the spin bundles. These are treatedin Section 7 by means of the Cli�ord algebras. In particular, this introduces thereader to the famous Dirac operators.Section 8 presents a general classi�cation of all natural operators on conformallyat manifolds based on the representation theory of parabolic subalgebras in theorthogonal groups and the classi�cations of Riemannian invariants from Section4. This is the core of the dissertation. The results were partially known, but Ihave never found a concise proof in the literature. The presented classi�cation alsocorrects some unprecise claims from the survey [Baston, Eastwood, 90].In the last section, I discuss the problem whether the latter operators extendto operators on the whole category of conformal manifolds. This is a very subtlequestion and even the de�nition of the conformally invariant operators varies fromauthor to author. This happens since the conformal manifolds are not locallyhomogeneous and, moreover, the most of interesting vector bundles do not liveon all manifolds (the existence of the conformal weights makes the di�erence withrespect to the Riemannian case). One approach is to take the implicit descriptionof all Riemannian invariants, to modify slightly the de�nition of the naturality andto try to �nd out those operators which are invariant with respect to all scalardeformations of the metrics. This is the way undertaken by Branson, �rsted,W�unsch and others. We shall discuss another approach, the point of which is toclassify �rst the linear operations on the conformally at manifolds and then touse certain geometrical methods to extend the latter operators to all conformalmanifolds. The geometry involved is based on the canonical Cartan connectionon conformal manifolds which is treated �rst and then I indicate how the generalmethods work.Some short parts of the exposition follow [Kol�a�r, Michor, Slov�ak, 93], in partic-ular 3.1 { 3.8 and 3.21 of this text are based on Section 24 (prepared by I. Kol�ar�r),3.15 { 3.20 and Section 4 extend my exposition from Section 33 of the monograph.The style of the whole text is rather brief, an active cooperation of the reader isassumed.Brno, 1993 Jan Slov�ak



4 NATURAL OPERATORS ON CONFORMAL MANIFOLDS1. Introduction1.1. Geometric operators. In general, operators are rules transforming sectionsof one bundle into sections of another one. In di�erential geometry, we often meetmanifolds with some more structure, like Riemannian or symplectic manifolds andthe isomorphisms respecting these distinguished structures. Then the most impor-tant bundles are those with a distinguished action of the isomorphisms on theirsections, the bundles of geometric objects. The geometric (or invariant or nat-ural) operators are those operators which intertwine the distinguished actions ofthe isomorphims. The latter expresses that the de�nition of such operators doesnot involve any special choice and the operators are then de�ned invariantly on allobjects from the category in question. These rough ideas are behind the formalde�nitions in Section 2, see in particular 2.12. Let us demonstrate the concept ofthe natural operators on the simplest case, the operations on functions.Let us start with the operators D : C1(M;R)! C1(E) of order 1, i.e. Df(x)depends only on the �rst derivatives of f at x, and the symbol E denotes the un-known target vector bundle with an action of the isomorphisms. We �rst require theinvariance with respect to the action of all di�eomorphisms given by '�(f) = f�'�1and we ask the (rather trivial) question: What are the linear operators D de�nedon C1(Rm;R) intertwining the actions of all local di�eomorphisms ' : Rm! Rm?Since the action is transitive onRm, it is enough to restrict ourselves to a single pointx 2 Rm, say x = 0, and since we assume the order is one, D is in fact determinedby a mapping ~D : R� Rm� ! Ex (now Ex is the standard �ber of the unknownbundle). This mapping ~D is linear and its dual mapping goes ~D� : E�x ! R��Rm.First of all the mappings commute with the linear isomorphisms and so ~D� in-tertwines the induced actions of GL(m;R) on the standard �bers. But the righthand side is precisely the decomposition into GL(m;R)-irreducible components andso the unknown standard �ber must be either R or Rm�. By the Schur's lemma,the �rst possibility corresponds to scalar multiples of the identity operator, thesecond one yields a scalar multiple of D�((dxi)�)(f) = (dxi)�(Df) = @f@xi . ThusDf = @f@xidxi or Df = f up to constant multiples and the only possible targetis the cotangent bundle or C1(M;R). In this way we have classi�ed all invariantlocal linear operators of order one on functions.There is a general classi�cation result proved independently by [Terng, 78] and[Kirillov, 77]: All natural linear operators on arbitrary tensor bundles (invariantwith respect to the tensorial action of all local di�eomorphisms) are compositionsof exterior di�erentials and invariant algebraic tensor operations (i.e. operations oforder zero). Hence there are no operations of higher order on functions naturalwith respect to all di�eomorphisms.There are two very well known examples of second order operators on C1(Rm)�f = @2f@x1@x1 + � � �+ @2f@xm@xm Laplace operator�f = � @2f@x1@x1 + � � �+ @2f@xm@xm Klein-Gordon (wave) operator.As we have mentioned, they cannot be modi�ed to become invariant with respectto all di�eomorphisms which is equivalent to the statement: these local expressions



1. INTRODUCTION 5cannot be extended to invariantly de�ned operators on functions on arbitrary man-ifolds. However, we can still reach this if we restrict ourselves to manifolds withsuitable structure. We shall consider Riemannian manifolds or pseudo-Riemannianmanifolds but �rst we have to �x some notation.1.2. Abstract index formalism. The typical subjects of natural operationsare tensor �elds with several covariant and contravariant components. The lattermeans, we take the vector space V = Rm or V = Cm , and consider the tensorproduct 
qV 

pV � with the standard representation of GL(m;K), K = R or C .For each m-dimensional manifold M we de�ne the tensor bundle T (p;q)M as theassociated vector bundle to the �rst order frame bundle onM corresponding to theabove tensor product with V = Rm. The tensor �elds are sections of these tensorbundles or their subbundles. In local coordinates, a tensor in a point x 2 M isan N -tuple of scalars for suitable N , the tensor �elds are then N -tuples of scalar-valued functions f i1:::iqj1:::jp . On complex m-dimensional manifolds we get the complextensor bundles on replacing Rby C . If we use the complex scalars on real manifolds,we get the complexi�cations of the real bundles in question.There are several basic operations like permutations of the copies of V or V �in the tensor products, linear combinations of such permutations and evaluationswith respect to one chosen copy of V and one copy of V �, the so called contractionor trace. In order to be able to indicate such operations without explicit use oflocal coordinates, we shall use a kind of `abstract markers' or `labels' for the copiesof V and V �. So V i and V j means two distinct copies of V and the expressionsta, tbj , f i1:::ip , etc. will always denote tensors in V a, V bj , V i1 
 � � � 
 V ip , orthe corresponding tensor �elds, respectively. The same labels used as subscriptsindicate isomorphic but distinct copies of the dual V � and the concatenation ofsuch symbols expresses the tensor product. Hence, in general we should distinguishcarefully the order of the subscripts and superscripts, i.e. we should write tab 2V 
 V � but tba 2 V � 
 V . It is generally adopted in a large part of geometryto forget about the order of subscripts and superscripts, but we shall be forced tofollow this convention exactly when dealing with Riemannianmanifolds and spinorslater on.Now, it is easy to write down the above mentioned operations. The permuta-tions of the copies of V or V � result in precisely the same permutations of thesubscripts or superscripts. The linear combinations of tensors are denoted simplyas linear combinations of the formal expressions. In particular, the alternation andsymmetrization are important enough to have a special notation: (a : : : b) meanssymmetrization over the indicated indices, [a : : : b] is the alternation, fa : : : bg is thesum over cyclic permutations. We adopt the so called summation convention whichmeans that any occurrence of the same label once among the superscripts and oncein the subscripts denotes a contraction with respect to the indicated entries.If we distinguish a linear isomorphism gab : V ! V �, i.e. gab 2 V � 
 V �, thenthere is its inverse gab 2 V 
V . We can apply these isomorphisms to each copy of Vor V � in the tensor products which can be indicated as a contraction with the propertensor gab or gab. Then it is suitable to add the convention that gabt:::b:::::: ::: = t::: ::::::a:::and to consider the contractions over all repeated indices in the latter sense. Inparticular, gab = gacgcb = �ab, the `Kronecker delta'. The latter will apply in



6 NATURAL OPERATORS ON CONFORMAL MANIFOLDSour discussion on operations on pseudo-Riemannian manifolds. Of course, then wehave to take care of the order of the indices, this is very important if gab is notsymmetric.If not disabled explicitly, all italic indices in the further text will be used in theabove context. If we shall need the concrete values in some coordinates, we shalluse the same symbols but underlined.1.3. Riemannian invariants. There are two important tools available: the risingand lowering of indices by means of the (pseudo-) metric and the canonical Levi-Civit�a connection. The latter can substitute the usual derivatives, the former allowsto take traces (contractions). The covariant derivative with respect to the Levi-Civit�a connection is de�ned on each vector bundle associated with the (pseudo-)Riemannian linear frame bundle. Hence we consider the composition (the �rstcovariant derivative coincides with the exterior derivative d)C1(M;R) r�! C1(T �M ) r�! C1(T �M 
 T �M ):The target of this composed operator decomposes into subbundles invariant withrespect to (pseudo-) Riemannian local isomorphisms. We haveT �M 
 T �M ' �2M � S2T �M ' �2M � (S2T �)0M � (M �R)where the mid term means the trace-free part of the symmetric forms while the lastone corresponds to the traces (tij 7! t[ij] + (t(ij) � 1m taagij) + 1m taagij in the Rie-mannian case, m being the dimension). The composition of the above operator withthe projection onto the third term is the operator rara : C1(M;R)! C1(M;R),f 7! raraf = gabrarbf which coincides with the Laplace operator in the atRiemannian case and the wave operator in the at pseudo-Riemannian case.The projection onto the antisymmetric part is zero (the Ricci identity) whilethe projection onto the symmetric trace-free part yields another invariantly de�nedoperator.1.4. The conformal invariance. We have seen that there are very few linearoperators living on all manifolds and there is a plenty of them on Riemannian man-ifolds. But the restriction to manifolds with more structure brings also anotherinteresting phenomenon { there exist more geometric objects, i.e. more bundleswith distinguished actions of the isomorphisms in question. In the (pseudo-) Rie-mannian case, all the new objects live in some tensor bundles, they form only �nerdecompositions into irreducible parts. However, in general there might appear quitedi�erent new objects, i.e. the distinguished actions are not restrictions of some ac-tion of all di�eomorphisms. The conformal manifolds are manifolds equipped witha class of pseudo-metrics which are all equal up to a multiple by a scalar function.Hence the distances in the individual metrics from the class di�er but the anglesare the same ones. In particular the `light cone' in the pseudo-Riemannian case isde�ned invariantly. There are more local isomorphisms of conformal manifolds thanin the Riemannian case, but much less than the set of all local di�eomorphisms.We shall see that each of them is globally determined by its derivatives up to thesecond order in an arbitrary point. Nevertheless, there are not many invariantly



1. INTRODUCTION 7de�ned operators and it is a rather hard problem to describe them. Only very fewof them live in tensor bundles, but on each tensor bundle, the restricted action ofthe group GL(m;R) to O(m;R) on the standard �ber can be extended to the centerR� GL(m;R) which also belongs to the conformal isomorphisms on the at con-formal manifoldRm. This extensions are given by multiplication with an arbitrary�xed power of the elements of the center and the negative of the power is calledthe conformal weight of the resulting bundles. Such tensors with weights are alsocalled (tensor valued) densities with conformal weight. They can be interpreted asfollows: With respect to a �xed metric from the conformal class, the densities ofweight � are represented by usual tensors, but if we deform the metric into ĝ = f2g(this is achieved by the action of �f:id at a point), then the corresponding tensorsare multiplied by f�.Choosing the proper weights on the bundles, we can sometimes eliminate thee�ect of the deformation of the metric by a scalar function and some of the pseudo-Riemannian invariant operators become then conformally invariant. These roughde�nitions and ideas will be discussed in detail later on. Now we illustrate only thecomplexity of the problems on some concrete explicit calculations.1.5. The conformal curvature. The Riemannian covariant derivative is invari-antly de�ned. We shall see in Section 4 that all natural operators on (pseudo-)Riemannian manifolds are built from this covariant derivative and the Riemanniancurvature. So we have to inspect how the covariant derivative transforms if wedeform the metric.If we deform g 7! ĝ = f2:g with a positive function f , then we get the deformedChristo�el symbols�̂ilk = 12 ĝij(ĝlj;k + ĝjk;l � ĝlk;j)= �ilk + 12f�2gij(2fkfglj + 2flfgjk � 2fjfglk)= �ilk + f�1gij(fkglj + flgjk � fjglk)= �ilk + �k�il + �l�ik � �iglkwhere the (`concrete') indices after comma denote the values of partial derivatives,the comma is omitted for functions and �a := ra(log f). The latter coincides withthe Lie derivative in the direction of the a's coordinate by de�nition. According toour general conventions, �a denotes the corresponding 1-formwhile �a is the corre-sponding vector �eld gab�b. The coordinate expression for the covariant derivativeis raXb = @Xb@xa + �bkaXk; raXb = @Xb@xa � �kabXk:If we insert our expression for the deformed Christo�el symbols and use the generalabstract index notation, we can writer̂aXb = raXb + �k�baXk + �aXb ��bgkaXk(1) r̂aXb = raXb � �aXb � �bXa + �kgabXk:(2)



8 NATURAL OPERATORS ON CONFORMAL MANIFOLDSWe recall that raXb must be understood as one symbol, a 2-form.The curvature can be de�ned by RabcdXc = (rarb � rbra)Xd, where theiterated covariant derivative is taken with respect to two di�erent connections,both induced from the same Levi-Civit�a connection on the Riemannian linear framebundle. A direct computation yieldsR̂abcd = f2(Rabcd +�acgbd � �bcgad + �bdgac � �adgbc)(3) �ab = ra�b ��a�b + 12�c�cgabwhere the tensor �eld � is symmetric (notice ra�b = rarb(logf) and the secondcovariant derivative is symmetric on functions). The curvature on a (pseudo-)Riemannian manifoldM is a section of the tensor bundle 
4T �M which is a sumof several subbundles invariant with respect to isometries. Hence also the curvaturesplits into several parts. Since the curvature satis�es several identities:Rabcd = Rcdab; Rabcd = �Rabdc; Rfabcgd = 0(the last one is the Bianchi identity), the most of these summands are zero. Let us�nd the non-zero ones.The Ricci curvature Rac is de�ned as the trace Rac = Rabcb and the traceR := Raa is called the scalar curvature. Let us write Cabcd = Rabcd + Sabcd for thetrace-free part of the curvature, i.e. both Cabcd and Sabcd are well de�ned. Let ustry to �nd a symmetric tensor Pab satisfyingSabcd = Pacgbd � Pbcgad + Pbdgac � Padgbc:Since the tensor Sabcd is completely determined by its traces (see the de�nition),it su�ces to consider the traces of this formal equation to �nd the tensor Pab. Weobtain �Rac = Sabcb = mPac � Pac + Pbbgac � Pac(4) = (m� 2)Pac + Pbbgac�R = Sabab = 2mPaa � Paa � Paa = (2m � 2)Paa(5)and so Pab exists and is uniquely determined in dimensions greater then two. Weshall write briey P := Paa. In dimension two, the full curvature tensor is deter-mined by its component R1212 and is therefore irreducible. In general the conformalgeometry is essentially di�erent in dimension two and we shall always assumem � 3in the sequel.Now, if we compare the deformation of Rabcd in (3) with the expression forthe trace part Sabcd = Cabcd � Rabcd, we see that the whole deformation of Rabcdbelongs to the trace part (the expression f�2 disappears during the rising of theindex). Hence the trace-free part Cabcd is conformally invariant. We call it theWeylcurvature or conformal curvature. At the same time, we have found the deformationof Pab:(6) P̂ab = Pab �ra�b + �a�b � 12�c�cgaband the trace of this expression yields(7) P̂ = f�2(P �ra�a + 2�m2 �a�a):



1. INTRODUCTION 91.6. The conformal Laplace operator. Let us compute the deformation ofthe usual Laplace operator rara, cf. 1.3. Using the above formulas, we get forfunctions h: r̂ah = rah andr̂br̂ah = rbrah� �brah+�kgbarkhr̂ar̂ah = f�2gab(rbrah��brah+ �kgbarkh):This formula does not seem to promise anything, but let us try to consider thefunctions h with some conformal weight. This means, the latter geometric objectscan be represented by a function which changes together with a deformation ofthe metric and we have to apply the deformed Laplace operator to this `deformedfunction'. If the conformal weight is �, we have ĥ = f�h. Hence using several timesthe formula ra(f�h) = �f��1rafh + f�rah = f�(��ah+rah) we obtainr̂ar̂aĥ = gabf�2�rb(f�(��ah+rah)) ��bf�(��ah+rah)��af�(��bh+rbh) + �kgbaf�(��kh+rkh)�= gabf��2��(rb�a)h+ �2�b�ah+ ��a(rbh) + ��b(rah) +rbrah� ��b�ah� �b(rah) � ��a�bh� �a(rbh) + ��kgba�kh+ �kgba(rkh)�= f��2�rarah+(�2� 2�+�m)�a�ah+�(ra�a)h+ (2�� 2+m)�a(rah)�If we compare this formula with the deformation of P derived in 1.5.(7), we �nd twosimilar terms, �ra�a and 2�m2 �a�a. The �rst term in our formula corresponds tothe usual Laplace operator and so it seems that we could eliminate the deformationby adding a suitable multiple of P and considering suitable conformal weights. Thee�ect of the weight should cancel the last term in the formula, i.e. 2�� 2+m = 0.This yields � = 2�m2 and with this weight we haveP̂ ĥ = f �2�m2 �Pf �ra�af + 2�m2 �a�af�:Further, (�2 � 2�+ �m) = � � 2�m2 �2 and sor̂ar̂aĥ + 2�m2 P̂ ĥ = f �2�m2 �rarah+ 2�m2 (P � f2P̂ )h�+ 2�m2 P̂ ĥ= f �2�m2 (raraf + 2�m2 Pf):Now, we can consider the values of the operator rara + 2�m2 P on the conformaldensities with weight 2�m2 as conformal densities with the weight �2�m2 and we geta conformally invariant operator, the so called conformal Laplace operator.In the dimension four we get the operatorD = rara � P = rara + 16Rwhich transforms the (scalar) densities with weight �1 into (scalar) densities withweight �3.



10 NATURAL OPERATORS ON CONFORMAL MANIFOLDS2. Invariant operatorsIn the sequel, we shall write C1Y for the space of all local smooth sections of a�bered manifold Y .12.1. Local linear operators. Let Y , Y 0 be �bered manifoldswith a commonbaseM . A local operator is a mapping D : C1Y ! C1Y 0 such that for all s 2 C1Yde�ned at x 2 M , Ds(x) depends only on the germ of s at x. If Y is a vectorbundle, then C1Y carries a natural vector space structure (de�ned pointwise). Anoperator D : C1Y ! C1Y 0 is called smooth if smoothly parameterized curves ofsections are transformed into smoothly parameterized ones.Theorem. [Peetre, 59] Let E, E0 be two (�nite dimensional) vector bundles withcommon base M . Each local linear operator D : C1E ! C1E0 has locally �niteorder, i.e. for each relatively compact coordinate neighborhood U on M there is anorder k such that the values of the operator depend only on the partial derivativesof the sections up to the order k over the points from U .We shall not prove this theorem, it follows from a much more general non-linearresult proved in [Slov�ak, 88], see also 4.5 or [Kol�a�r, Michor, Slov�ak, 93].Let us point out, that the formulation of this theorem is not satisfactory, �rstof all because of the lack of the invariant de�nition of the order. The solution is touse the language of jets which is well suited for discussion on di�erential operatorson manifolds.2.2. Jets. Two smooth mappings g, f : M ! N have the same jet of order r atx 2M (r-jet briey) if the values and partial derivatives up to the order r of f andg at x coincide in some local coordinates (equivalently in all local coordinates) atx and f(x). We write jrxf = jrxg and the corresponding equivalence class is calledan r-jet with source x and target f(x). The composition of jets is de�ned by thecomposition of the representatives, i.e. jrf(x)g � jrxf = jrx(g � f).One has to prove that this de�nition is correct (which is an easy exercise inanalysis).2The rule which associates the set Jr(M;N ) of all r-jets with source in M andtarget in N to each couple (M;N ) of manifolds and the map Jr(f; g) : Jr(M;N )!Jr(M 0; N 0), to each couple (f : M ! M 0; g : N ! N 0) of local di�eomorphismsde�ned by the obvious compositions (inverse to f on right, g on left), is a covariantfunctor from the category Mfm �Mfn with values in sets. The local di�eome-orphisms are globally de�ned and locally invertible maps and Mfm denotes thecategory of m-dimensional manifolds and local di�eomorphisms. We shall writealso Jrx(M;N ), Jr(M;N )y and Jrx(M;N )y for spaces of jets with �xed source or1In fact, it would be more precise to use the language of sheaves but I am sure we will not getany trouble when speaking about globally de�ned sections.2The reader can �nd a much more geometric de�nition and a thorough treatment of all basicproperties in [Kol�a�r, Michor, Slov�ak, 93]. Roughly, we de�ne the contact of order r for smoothfunctionsR! Rand then jrxf = jrxg if and only if h � f � c and h � g � c have contact of order r at0 2 Rfor all smooth curves c : R! M , c(0) = x, and functions h : N ! R, h(f(x)) = 0. In thissetting, jets have a clear geometric meaning depending only on the structure of smooth functionson the real line.



2. INVARIANT OPERATORS 11target or both. Since Jr(Rm;Rn) admits canonical representatives for the jets { theTaylor polynomials, there is a canonical structure of a �ber bundle over Rm �Rnon this jet space. The composition is the truncated composition of the polyno-mials by de�nition, hence smooth. Thus, the functoriality ensures that there is auniquely de�ned structure of a �ber bundle on each Jr(M;N ) over M � N withstandard �bers Jr0 (Rm;Rn)0 and the composition is smooth. There are also theobvious bundle projections �rk : Jr(M;N )! Jk(M;N ).For each �bered manifold Y over M we de�ne the k-th jet prolongation JkY �Jk(M;Y ) over M as the subbundle of all jets of local sections. Clearly, Jk(M;Y )can be de�ned as the quotient of C1Y and the smooth structure is the inducedone. For each local section s 2 C1Y , there is its k-th prolongation jks 2 C1(JkY )de�ned by jks(x) = jkxs. IfE is a vector bundle overM , then JkE is a vector bundlewith the operations de�ned on the representatives. Analogous constructions can beperformed for k = 1. We shall not need them (if then without any di�erentiablestructure) and so the modi�cations are left to the reader.2.3. The tangent and cotangent bundles. It is easy to verify that the tangentfunctor T equals to J10 (R; ) { the usual `kinematic' de�nition of tangent vectors.Notice that the tangent maps are de�ned through composition of jets.Similarly, T � = J1( ;R)0. In this de�nition, T �M always carries a naturalvector bundle structure, TM is its dual bundle (with hj10c; j1c(0)fi = j10(f � c) 2 R).More generally, Jr(M;R)0 is a bundle of algebras.2.4. Proposition. The �ber Jrx(M;N )y equals to the algebra homomorphismsHom(Jry (N;R)0; Jrx(M;R)0).Proof. Given jrxf with target y we de�ne ' : Jry (N;R)0! Jrx(M;R)0 by '(jryg) =jrx(g � f). Since the algebra Jry (N;R)0 is generated by the coordinate functions inarbitrary local coordinates, we can set the values on ' on the jets of these functionsarbitrarily. This de�nes an element from the other algebra. �Notice: If r = 1 we get the identi�cation of J1x(M;N )y with linear mappingsHom(TxM;TyN ), since the multiplication on T �yN is zero and the latter claim isdual to the proposition above.2.5. Di�erential operators. Let Y , Y 0 be two �bered manifolds with a commonbase M . We say that an operator D : C1Y ! C1Y 0 is of order 0 � k � 1 ifthe equality jrxs = jrxq always implies Ds(x) = Dq(x). Clearly, this is equivalentto the existence of a mapping Dk : JkY ! Y 0 which satis�es Ds(x) = Dk(jkxs)for all s 2 C1Y de�ned at x. Then Ds = Dk � jks so that jk plays the role ofa universal operator of order k. Di�erential operators are the smooth operatorsD : C1Y ! C1Y 0 of a �nite order k. We shall often use the brief notation`D : JkY ! Y 0 is a di�erential operator'.Now, we can reformulate Proposition 2.1 easily as follows: Let E and E0 be twovector bundles with a common compact base M . Then each local linear operatoris a di�erential operator. Consequently, all local linear operators are expressed bysmooth linear mappings Dk : JkE ! E0.2.6. Invariant operators. Let Y , Y 0 be two bundles with a common baseM andlet G be a group, � : G! Aut(Y ), �0 : G! Aut(Y 0) be two group homomorphisms



12 NATURAL OPERATORS ON CONFORMAL MANIFOLDSwith values in the �ber bundle automorphisms. Let us write �, �0 for the inducedactions onM . There is the canonical action ofG on the spaces of sections de�ned by(�g)�(s)(x) = �g � s � ��1g (x) and similarly for �0. An operator D : C1Y ! C1Y 0is said to be G-invariant if D � (�g)� = (�0g)� �D for all g 2 G. In fact the mappingD is G-equivariant (i.e. it intertwines the actions), but we use the traditional nameinvariant for operators. On the other hand, we shall use the word G-invariant forelements under invariant action of G and an invariant operator in the above senseis such an element in the space of all operators C1Y ! C1Y 0 with the inducedaction of G.The action of G on C1Y de�nes of course the canonical action of G on JkY ,we shall use the same notation �� for both. We have (�g)�(jkxs) = jk�g(x)((�g)�s).A di�erential operator D : C1Y ! C1Y 0 is G-invariant if and only if the corre-sponding mapping Dk : JkY ! Y 0 is G-equivariant. The proof is evident.Proposition. Assume G is a Lie group, the action � is smooth and the inducedaction � on M is transitive. Then there is a bijection between smooth G-invariantdi�erential operators D : C1Y ! C1Y 0 and Gx-equivariant smooth mappingsJkxY ! Y 0x where x is an arbitrary �xed point in M and Gx its isotropy group.Proof. If D is invariant, then the corresponding mapping Dk on the jet bundlemust be G-equivariant. The isotropy group Gx respects the �ber JkxY and so therestriction of Dk to this �ber must be Gx-equivariant. On the other hand, each Gx-equivariant smooth mapping JkxY ! Y 0 gives rise to a smooth equivariant mappingJkY ! Y 0 de�ned by the action of G and this de�nes a G-invariant di�erentialoperator. It is an easy exercise to work out more details. �2.7. Proposition. Let E ! M be a vector bundle. For each k 2 N the followingsequence is exact 0 �! SkT �M 
E i�! JkE �kk�1���! Jk�1E �! 0:Proof. Consider X = (j1xf1  � � �  j1xfk) 
 e 2 SkT �M 
 E with fj : M ! R,f(x) = 0, e 2 Ex. Let us choose some q 2 C1E with q(x) = e and de�nes 2 C1E by s(y) = f1(y)f2(y) : : : fk(y)q(y). Then jk�1x s = 0 since at least one ofthe functions is not di�erentiated and hence zero at x and, for the same reason,the element i(X 
 e) := jkxs does not depend on our choice of q. Obviously, i isinjective. Using local vector bundle coordinates at 0 2 Ex, the jets of sections lyingin the kernel of the jet projection are generated by those of the form of s and sothe image of i coincides with the kernel. �2.8. The symbols. Let E and E0 be two vector bundles with a common baseM and let D : JkE ! E0 be a di�erential operator. The composition � = D �i : SkT �M 
E ! E0 is called the symbol of D.0 w SkT �M 
E wi''''')� JkE w�kk�1u D Jk�1E w 0E0



2. INVARIANT OPERATORS 13Two di�erential operators with the same symbol (so in particular of the sameorder) di�er by an operator of a lower order.If G is a (Lie) group acting on M , i.e. we have a homomorphism � : G !Di�(M ), then there is the induced action �T� of G on T �M de�ned by �T�g (j1xf) :=(T ��g)(j1xf) = j1�g(x)(f � ��1g ) for each g 2 G. This must be a correct de�nitionsince we have used the functoriality of T � (the functor is covariant { hence the in-verse involved!). The same procedure applies to a large class of functor on manifoldswhich involves e.g. all tensor bundles, cf. 2.12.Now, given actions of G on E and E0 we have a well de�ned action of G also onSkT �M 
 E and we getProposition. If D : JkE ! E0 is a G-invariant linear di�erential operator, thenits symbol � : SkT �M 
E ! E0 is G-equivariant.Proof. We have only to prove that i is G-equivariant but this is more or lessevident. �This simple result is often very useful as it allows to exclude the existence ofinvariant operators. On the other hand, not every equivariant map SkT �M 
E !E0 is a symbol of an invariant operator.2.9. Examples. We start with the simplest example, the exterior di�erential onfunctions. So EM = M �R, E0 = T �M , D : J1(M �R)! E0 and � : T �M 
R=T �M ! E0. Consider G = Di�(M ). If D is G-invariant, then � must be G-equivariant, too. The action of Di�(M ) on M is transitive and smooth if M isconnected and the action of the isotropy group Di�x(M ) on T �xM factorizes throughthe well known linear action of GL(m;R). We can restrict ourselves to M = Rm,x = 0, for our operators are local.Let us assume E0 is not �xed but suppose that the action of Di�0(Rm) on E00also factorizes through GL(m) and is irreducible. Since the action on T �0Rm = Rm�is also irreducible, � is a multiple of the identity and, moreover, there is no otherpossibility for E0 beside E0 = T �M . Thus, the only Di�(M )-invariant local �rstorder linear operator on functions is the exterior di�erential, up to the identityand scalar multiples. Notice, if the target space corresponds to a decomposablerepresentation of the linear group, then the operator must be a sum of multiples ofthe exterior di�erentials and identities with values in the irreducible components.The symbol of the exterior di�erential d : �kT �M ! �k+1T �M is the alternationAlt: T �M 
 �kT �M ! �k+1T �M . We shall see that this is the only GL(m)-equivariant map between these spaces and so d must be unique up to multiples(and lower order terms).The mapping id: S2T �M 
R! S2T �M is of course Di�(M )-invariant, but weshall see that this is not a symbol of an invariant di�erential operator.2.10. Operators on homogeneous bundles. We have seen that the descrip-tion of invariant operators reduces to the description of some equivariant mappings(between �nite dimensional manifolds) if the action on the base manifold is transi-tive. The most common situation is, we are given a manifold M with a transitive



14 NATURAL OPERATORS ON CONFORMAL MANIFOLDSaction of a �nite dimensional3 Lie group G. Let x 2M be �xed and write B = Gxfor its isotropy group. Hence M = G=B and the projection p : G ! M is a prin-cipal �ber bundle with structure group B. Given any Lie group homomorphism� : B ! Di�(S), there is the associated bundle Y = G�� S over M with standard�ber S. We call this bundle a homogeneous bundle over the homogeneous spaceM . If S is a vector space and � : B ! GL(V ), we get a vector bundle. This con-struction is functorial in the principal �ber bundle entry and so there is an inducedaction on Y to each action �0 with values in the principal bundle automorphisms ofG. In particular, the Lie group G acts on itself via left translations, let us denotethis action by a dot. We have g:(h�� t) = gh�� t and there is the induced action�� on C1Y .Consider now the space C1(G;S)B of all B-equivariant mappings which meanss(gh) = �h�1 (s(g)). There is the obvious left action of G there, g:s(h) = s(g�1h).Lemma. We identify C1Y = C1(G;S)B as spaces with a left action of G vias ' ~s, u�� ~s(u) := s(p(u)).Proof. The identi�cation is well de�ned, for u:b�� ~s(u:b) = u:b �� �b�1(~s(u)) =u�� ~s(u), b 2 B. Under this identi�cation, the actions of G coincide: (g:s)(p(u)) =gg�1u�� ~s(g�1u) = u�� ~s(g�1u). �This simple lemma is very important since we can view the G-invariant operatorson homogeneous bundles as operators on S-valued functions on the principal bundleG! G=B which are invariant with respect to the left translations.2.11. The geometric structures. The r-th order frame bundle P rM on an m-dimensional manifoldM is de�ned as the bundle of all invertible jets invJr0 (Rm;M )over M . This is a principal bundle with structure group Grm := invJr0 (Rm;Rm)0,the so called jet group, and the principal action de�ned by the composition of jets.This construction is functorial, i.e. we have the local principal �ber bundle isomor-phism Pf : P rM ! P rN for each local di�eomorphism f : M ! N which is de�nedby the composition of jets. The elements in the frame bundles are `local coordinatecharts up to order r' and the elements in the jet groups are `transformations ofcoordinates up to order r'.De�nition. Let B � Grm be a closed Lie subgroup. A B-structure on a manifoldM is a reduction FM ,! P rM to the structure group B. The category Mfm(B)consists of m-dimensional manifolds with B-structures and local di�eomorphismsf : M ! N satisfying P rf(FM ) � FN .2.12. Geometric objects and operators. Let us consider a closed Lie subgroupB � Grm and its action � : B ! Di�(S) on a manifold S. This de�nes the functorE : Mfm(B)!Mf , E(M;FM ) := FM �� S and Ef := P rf �� idS jE(M;FM ).These bundles are called bundle functors or natural bundles or bundles of geometricobjects, their sections are called geometric objects on Mfm(B) (more precisely, thebundles functors are the functors, the geometric objects are sections of their values).If � is a linear representation of B in a vector space V , then the corresponding3We could certainly admit here in�nite dimensional Lie groups as well, but our aim is to applytools from �nite dimensional representation theory to �nd all the equivariant mappings and so wehave to proceed in another way if dealing with say G = Di�(M)



2. INVARIANT OPERATORS 15geometric objects are sections of vector bundles. For each manifold with a B-structure (M;FM ), there is the subgroup BM � Di�(M ) of all local Mfm(B)-isomorphisms and its action on all geometric objects on M (i.e. on sections of thebundles corresponding to representations of B). We shall denote the latter actioncorresponding to � : B ! Di�(S) by ��. Let us remark that even if we deal withlinear representation, we cannot restrict ourselves to the irreducible representationssince the action of the nilpotent kernel of the jet projections to the �rst order mustthen act trivially.De�nition. Let E and E0 be two arbitrary bundle functors onMfm(B). A naturaloperator D : E ! E0 is a system of BM -invariant local smooth operators D(M;FM) :C1(EM )! C1(E0M ) invariant with respect to restrictions to open submanifolds(with the restricted B-structures). More precisely, all D(M;FM) are smooth, andfor all local Mfm(B)-isomorphisms f : M ! N and sections s1 2 C1(EM ), s2 2C1(EN ), the right-hand square commutes whenever the left-hand one doesEMuEf Mu s1 uf wDs1 E0Mu E0fEN Nu s2 wDs2 E0NNotice, that the latter de�nition involves both the locality of the operators andinvariance of them with respect to restrictions to open submanifolds.42.13. Lemma. Let B � Grm. The B-structures i : FM ,! P rM correspondbijectively to smooth sections of P rM=B.Proof. Each reduction i : FM ,! P rM induces a map �i : FM ! P rM=B. If ��are local sections of FM with domains covering the base M , then the transitionfunctions of their composition with �i are identities and so they determine a globalsmooth section of P rM=B. On the other hand, each global section of P rM=Bcan be locally obtained as a projection of local smooth sections of P rM . Theirtransition functions must have values in B, hence we get a reduction. �2.14. The coverings of structure groups. Let ~B be a covering of the Lie groupB � Grm and writeMfm( ~B) for the category of m-dimensional manifoldsM with adistinguished covering ~FM of the reduction FM of the frame bundle P rM toB, anddistinguished coverings ~Ff of the values Ff onMfm(B)-morphisms f . Repeatingthe above construction of the associated spaces, each representation � : ~B ! Di�(S)gives rise to the functor F�, the bundle functor corresponding to �. A naturaloperator D : F� ! F� is a system of local operators DM : C1(F�M )! C1(F�M )which commute with the actions of the Mfm( ~B)-morphisms and behave well with4The reader interested in axiomatic description of geometric objects and operators is advisedto [Kol�a�r, Michor, Slov�ak, 93]. Roughly, all functors on categories "similar" to Mfm(B) withsome mild conditions are of the above form (the conditions do not involve regularity and the"dependence on jets", so that this description needs a long and involved analytical proof). Onecan also de�ne more general operators which "extend" the base, but we shall not treat them inthis text.



16 NATURAL OPERATORS ON CONFORMAL MANIFOLDSrespect to restrictions to open submanifolds. The exact formulation mimics theabove de�nition.52.15. Examples of linear natural operators.(1) Take B = GL(m;R). The irreducible representations are invariant subbun-dles of tensor bundles. The natural operators are Di�(M )-invariant operators, i.e.they have to commute with pullbacks of tensor �elds. One can prove that all ofthem are constructed by means of the standard operations from the tensor algebra(cf. 3.6) and the exterior derivatives on exterior forms. In particular, all of themhave order one, see [Kirillov, 77] or [Terng, 78]. We shall comment on this in moredetails later.(2) Consider B = SL(m;R) = fA 2 GL(m;R); detA = 1g. We claim thatthe B-structures are �xed volume forms on the manifolds. Indeed, it is easy toverify P 1M=SL(m;R) = �mT �M n f0g. Hence, the local di�eomorphisms in BRmare just the unimodular ones, i.e. those preserving the canonical volume form. Ina similar way, we can describe the manifolds with a �xed tensor �eld of somegiven type in the terms of B-structures. For example O(m) yields Riemannianmanifolds and local isometries. Also in the case B = SL(m) all operators are builtfrom tensor algebra operations and exterior di�erentials. However, we have to takeinto account the natural equivalence T ! �m�1T � and also �mT � ! �0T � (thefunctors are de�ned on Mfm(B)). In this way, there also appears the second orderoperation �m�1T � d�! �mT � ! �0T � d�! T �. The �rst d in this composition alsocorresponds to the divergence of vector �elds, the whole operation to the di�erentialof divergence.62.16. The Riemannian case. If B = O(m), we have the natural equivalenceT ! T � and so there are many linear natural operators. Some of them can beeasily obtained using the canonical Levi-Civit�a connection � on the tensor bundlesE over Riemannian manifolds which can be viewed as a distinguished section of�10 : J1E ! E.Thus, we get a splitting of the exact sequence from 2.7 in the special case k = 1.The induced splitting of on the left is just the well known Riemannian covariantderivative r on E. In fact, the Riemannian covariant derivative is a �rst ordernatural operator available on each �rst order natural bundle. Since the valuesof the natural bundle are associated bundles to the linear frame bundles and theabove values ofr are section of another tensor bundle, there is also the Riemanniancovariant derivative. In this way, we can de�ne the iterated covariant derivativerk : JkE !
kT �M
E. We claim that the symmetrization ~rk of rk is a splittingof the above mentioned exact sequence. Indeed, in coordinates, we express theiterated covariant derivative as the sum of the usual partial derivatives (which aresymmetric) and a polynomial expression depending on (k�1)-jet of the connection5In fact, we have used the concept of the so called gauge natural operators in the sense of [Eck,81]. The gauge natural bundles are functors on principal �ber bundles with values �bered overthe base manifolds, see [Kol�a�r, Michor, Slov�ak, 93, Chapter XII] for detailed treatment.6Exactly as in the example (1), the latter operators exhaust all linear natural operators in thecategory of manifolds with �xed volume forms, up to decompositions into irreducible components,identities and scalar multiples, for more comments see [Kol�a�r, Michor, Slov�ak, 93], the proofs arein [Kirillov 77], [Rudakov, 74], [Rudakov, 75]



3. INVARIANT TENSORS 17and (k � 1)-jet of the section of E. Moreover, the degrees of the homogeneouscomponents of this polynomial in the entry from E are non-zero. Hence on theimage of i : SkT � 
 E ! JkE, we get just the inverse to i, c.f. 2.7. Since ~rkis natural on Riemannian manifolds, we get a natural operator to each `naturalsymbol' (i.e. a natural operator of order zero between the appropriate bundles):0 w SkT � 
 E wiu ~rk''''')� JkE w�kk�1u D Jk�1E w 0E0For example, the contraction Tr: S2Rm� ! R corresponds to the well knownLaplacian. Unfortunately, we cannot describe easily all operators in this way as wedo not know explicitly, how the Riemannian connection may enter (their inuenceneed not be linear or even polynomial a priori). So we have to solve the nonlinearproblem of �nding all `natural symbols', if we want to describe all natural linearoperators on Riemannian manifolds.An important feature is that the group of allMfm(O(m))-morphisms on a Rie-mannian manifold is a �nite dimensional Lie group. Unfortunately, its action israrely transitive. But if this is the case, e.g. for the at Riemannian manifold Rmor the spheres, then we can view the bundles of geometric objects as homogeneousbundles as described in 2.9.2.17. Remark. Let us notice the importance of Lemma 2.13. Namely, the quo-tients P rM=B form bundle functors on the whole categoryMfm with the action oflocal di�eomorphisms de�ned on the representatives of the cosets. Thus if we wantto discuss natural operators on some categoryMfm(B) and if the arguments of theoperators happen to be geometric objects on the whole Mfm, then we can alwaysadd the B-structures to the arguments of the operators and solve the problem inthe category Mfm (it is a nice exercise to verify that this is really equivalent {see [Kol�a�r, Michor, Slov�ak, 93] for more details if neccessary). We shall see lateron that all linear representations of SL(m;R) and O(m;n;R) live in tensor spaces.Since the invariant subspaces are always images of natural linear projections andthey are naturally linearly embedded into the whole space, we can also overcomethe fact that there are much more invariant subspaces in the tensor spaces in theunimodular or pseudo-Riemannian case there. Let us also notice, that we would beable to treat the unimodular case directly, but serious problems arise in the Rie-mannian one as the objects do not admit a transitive action of the local isometriesand so we cannot reduce the classi�cation problem to �nding equivariant mappingsbetween �nite dimensional manifolds, cf. 2.6.We need some additional work to incorporate also the spinor �elds into thissetting, we shall apply the approach from 2.14.3. Invariant tensors3.1. De�nition. Let G be a Lie group with a representation ' on a �nite dimen-sional vector space V (real or complex). Then the representation ~' on V � is de�ned



18 NATURAL OPERATORS ON CONFORMAL MANIFOLDSby ~'g(v�)(v) = v�('g�1 (v)) and the tensor products of these representations yieldrepresentations on all 
pV � 
 
qV . All the above actions of G will be often de-noted simply by a dot. An invariant tensor in the latter space is an element t withG:t = t.3.2. Lemma. A linear mapping f : 
pV �

qV !
rV �

sV is G-equivariantif and only if the corresponding element f
 2 
p+sV � 
 
q+rV is G-invariant. Iff is polynomial and G-equivariant, then each homogeneous component of f is G-equivariant.Proof. It follows immediately from the de�nition of the tensor product of repre-sentations and the identi�cation involved. �3.3. The total polarization of a homogeneous polynomial f : W1 ! W2 of degreek between vector spaces (or a�ne spaces) is a linear mapping Pf : SkW1 ! W2de�ned as follows. The �rst order term in the (partial) Taylor polynomial f(x +ty) = f(x) + tP1f(x; y) + : : : is a polynomial map of degree k � 1 in x. The k-thiteration Pkf = P1(Pk�1f) is k-linear and symmetric in variables y1; : : : ; yk 2 W1and independent of x. Let Pf be the corresponding linear map. The original mapf is obtained back through f(x) = Pf(x
 � � � 
 x).Lemma. A polynomial mapping f : 
pV �

qV !
rV �

sV is G-equivariantand homogeneous if and only if its total polarization is G-equivariant.Proof. Notice that the actions are linear. �The aim of this section is to describe all G-invariant tensors for some of theclassical subgroups of GL(m; C ) or GL(m;R). If we shall not specialize the �eldK = C or K = R, the arguments and results will apply to both cases. In the viewof the above lemmas, this will describe G-equivariant polynomial maps.Let us start with GL+(m;R), the group of real invertible matrices with positivedeterminant, or the full linear group GL(m; C ). As before, we shall use the `Penroseabstract index notation', i.e. usual indices denote a kind of abstract labels and ifthey should be concrete numbers, they are indicated by underlined letters, cf. 1.2.3.4. De�nition. Let us denote by �ij the identity tensor in V � 
 V , i.e. the trace(evaluation) Tr : V � 
 V ! K. For every permutation � 2 Sr, r 2 N, we de�ne theelementary invariant tensor I� 2 
rV � 

rV of degree r, I� = �j1i�(1) : : : �jri�(r) .Evidently, all I� are GL(m)-invariant tensors, hence also GL+(m;R)-invarianttensors.3.5. Theorem. All GL+(m;R)-invariant tensors are linear combinations of theelementary invariant tensors. In particular, a non-zero invariant tensor lies in atensor space 
qV 
 
rV � with q = r.All GL(m; C )-invariant tensors are linear combinations of elementary invarianttensors.Proof. Let G = GL+(m;R) or G = GL(m; C ) and let V be real or complex,respectively. The elements a 2 G and their inverses ~a are identi�ed with aij ; ~aij 2V � 
 V and the invariance of t 2 
pV � 
 
qV is expressed through a system oftensor equations(1) aj1k1 : : :ajqkqtk1:::kql1:::lp ~al1i1 : : :~alpip = tj1:::jqi1:::ip



3. INVARIANT TENSORS 19where the aij 's are copies of an arbitrary element in G. In particular, if we substituteaij = c�ij , c 2 R, c > 0, then we get cq�ptj1:::jqi1:::ip = tj1:::jqi1 :::ip for all concrete indices.Hence either t = 0 or p = q. So let us assume p = q.Evaluating for concrete values of indices we see that (1) is equivalent toaj1k1 : : :ajpkptk1:::kpl1:::lp = ak1l1 : : :akplp tj1:::jpk1:::kpand this is further equivalent to(2) ai1k1 : : : aipkp�j1i1 : : : �jpip tk1:::kpl1 :::lp = ai1k1 : : :aipkptj1:::jpi1:::ip �k1l1 : : : �kplp :Since the `variables' aij run through an open subset of a Euclidean space (Rm2or Cm2 ), the `coe�cients' of the same expressions in a's must coincide on bothsides. Taken into account that the concrete values of the monomials in a's aresymmetric in the simultaneous permutations of superscripts and subscripts, we getthe equivalent form of (2)7(3) X�2Sp �j1i�(1) : : : �jpi�(p) tk�(1):::k�(p)l1 :::lp = X�2Sp �k�(1)l1 : : : �k�(p)lp tj1:::jpi�(1):::i�(p) :Assume �rst m � p and let us de�ne scalar coe�cients c� := t1:::p�(1):::�(p). Considerthe equations (3) with concrete indices j1 = i1 = 1; : : : ; jp = ip = p. Then only theterm with � = id remains on the left hand side, and so we gettk1:::kpl1:::lp = X�2Sp c��k�(1)l1 : : : �k�(p)lp :Thus, the theorem is proved for m � p.If m < p, then we would still like to view (3) as a system of equations for t's onthe left hand side, while those on the right should be known.8 But the rank of thissystem is not maximal and we have to add some suitable equations.Consider the homogeneous system in p! tensorial variables X� = (X�)k1:::kpl1:::lpcorresponding to (3)(4) X�2Sp �j1i�(1) : : : �jpi�(p)X� = 0and let Z�� = (Z�� )k1:::kpl1 :::lp , � = 1; : : : ; r, be a fundamental system of its solutions.Let us further consider the system of r equations (with the same variables as in(4))(5) X�2Sp Z��X� = X�2Sp(Z�� )i1:::ipj1 :::jp(X�)k1 :::kpl1:::lp = 0:For each tensor X 2 
pV � 
 
pV let us write �:X for the action by permutationof superscripts.7The same system of equations is obtained by di�erentiating (1) with respect to aij at the unitand collecting the corresponding terms together (evaluated at �ij 2 gl(m)).8H. Weyl presents a general tool for the reduction of the considerations to m � p, the so calledCapelli identity, see [Weyl, 39, Chapter II, section 4]. We shall proceed more elementary following[Gurevich, 48] and [Kol�a�r, Michor, Slov�ak, 93].



20 NATURAL OPERATORS ON CONFORMAL MANIFOLDSSublemma. For each X the system of tensors X� = �:X, � 2 Sp, is a solution of(5).Proof. We have (X�)i1:::ipj1:::jp = Xi��1(1) :::i��1(p)j1:::jp = �i1k�(1) : : : �ipk�(p)Xk1 :::kpj1:::jp so that thelemma is obvious. �Now, it remains to notice that the rank of the system (4) and (5) (consideredwith concrete indices as a linear system for p! tensorial variables) is maximal. Thisis shown easily: if X� is a solution of both systems, then, in particular, X� =P� c�Z�� , c� 2 K. But then (5) yields0 =X� c�(P� Z��X�) =X� X� c�(Z�� )i1:::ipj1:::jp (X�)k1:::kpl1:::lp=X� (X�)i1:::ipj1:::jp (X�)k1 :::kpl1:::lp :In particular,P��(X�)i1:::ipj1:::jp�2 = 0 and so all X� are zero.Sublemma. Let c 2 
pV � 
 
pV be a �xed tensor and let r! tensors X� satisfythe system X�2Sp �i1j�(1) : : : �ipj�(p)X� = X�2Sp ci1:::irj�(1):::j�(p)I�X�2Sp Z��X� = 0 � = 1; : : : ; r:Then every X� is a linear combination of the elementary invariant tensors.Proof. Since the system (4) and (5) has full rank, there must be a subsystem (4')in (4) such that the system (4') and (5) is linearly independent and has still fullrank. Consider the corresponding subsystem in the statement of the lemma andapply the Cramer rule for modules. �Now Theorem 3.5 follows easily: if t is invariant, it satis�es (3) and the system oftensors X� = �:t is a solution of the system from the above lemma with c = t. �Theorem 3.5 and Lemma 3.2 imply the following implicit description of all linearequivariant mappings between tensor spaces.3.6. Corollary. All GL+(m;R)-equivariant or GL(m)-equivariant linear map-pings between tensor spaces are obtained through a �nite iteration of the followingsteps(a) permutation of indices(b) tensor product with invariant tensors(c) trace with respect to one subscript and one superscript(d) linear combinations.



3. INVARIANT TENSORS 213.7. Polynomial equivariant mappings. Let W1, W2 be GL(m)-invariant sub-spaces in tensor spaces V1 = 
pV � 
 
qV , V2 = 
rV � 
 
sV . There are equi-variant projections p1 : V1 ! W1, p2 : V2 ! W2 and the equivariant inclusionsj1 : W1 ! V1, j2 : W2 ! V2 (the former can be de�ned by extending a �xed basis ofthe invariant subspace). Since pi are the left inverses to ji, all GL(m)-equivariantlinear maps f : W1 !W2 are also described by 3.6. Thus, we know all polynomialGL(m)-equivariant mappings f : W1 !W2, cf. Lemma 3.3.W1up1 zu j1 wf W2u p2y uj2V1 w V23.8. Examples. Let us take V1 = V2 = 
rV , and pi be either the alternationor the symmetrization. A polynomial mapping f : W1 ! W2 commutes with theaction of the center of GL(m) and therefore f is linear. Hence all polynomialGL(m)-equivariant mappings(1) SrV ! SrV are the constant multiples of the identity(2) �rV ! �rV are the constant multiples of the identity(3) 
rV ! SrV are the constant multiples of the symmetrization(4) 
rV ! �rV are the constant multiples of the alternation(5) SrV !
rV and �rV !
rV are the constant multiples of the inclusion.3.9. SL(m)-invariant tensors. Next we shall restrict our group G to SL(m;R)or SL(m; C ). Let us write also G� = fA 2 GL(m;R); detA = �1g. We shall notneed to modify the proof of 3.5 for these groups since we shall be able to reducethis case to Theorem 3.5.First of all we have to notice the existence of the invariant tensor � 2 �mV �, thecanonical volume form, and its dual contravariant tensor � 2 �mV . Further, thereare the linear isomorphisms � : V ! �m�1V �, � : V � ! �m�1V de�ned by �(v) =iv(�), �(v�) = iv��. Thus, we may restrict ourselves to invariant tensors in 
pV �,i.e. to invariant linear mappings f : 
p V ! K. Let us denote W = �mV � n f0g,the space of volume forms with the restriction of the action of G�. Given f , wede�ne �' : W �
pV ! K; �'((detA)�; t) = f(A:t):Lemma. If f is G- or G�-invariant, then �' is well de�ned and GL(m)-invariant.Proof. Since the action of G or G� onW is A:� = (detA)�1�, this follows directlyfrom the de�nition of �'.We would like to extend �' to a polynomial GL(m)-invariant map on �mV � �
pV , for then we can apply directly Theorem 3.5. The mapping �' gives rise to amapping ' : GL(m) � 
pV ! K, '(A; t) = �'(A:�; t) and for each t 2 
pV we getthe restriction 't : GL(m)! K which is polynomial and G- or G�-invariant.



22 NATURAL OPERATORS ON CONFORMAL MANIFOLDS3.10. Lemma. If  : GL(m) ! C is polynomial and SL(m; C )-invariant, thenthere is a polynomial ~ : C ! C such that  (A) = ~ (detA). If  is G�-invariant,then we can �nd ~ with  (A) = ~ ((detA)2). If  : GL+(m) ! R is SL(m;R)-invariant, then there is polynomial ~ with  (A) = ~ (detA) de�ned on positive realnumbers.Proof. Let us de�ne i : K ! gl(m;K); i(a) = �a 00 Im�1�. Then we getGL(m)u yi u det w KK n f0g������ If K = C , then A = i(detA) mod SL(m). If K = Rand detA > 0 then A = i(detA)mod SL(m). If detA < 0 then A = i(� detA) mod SL(m) = i(detA) mod G�and so ~ (a) = ~ (�a). �3.11. Theorem. If t 2 
pV � 
 
qV is SL(m) invariant and non-zero, thenp� q = km, k 2Z. All SL(m)-invariant maps between SL(m)-invariant subspacesof tensor spaces are exhausted by those obtained by iterating a �nite number ofsteps 3.6.(a){(d) and(i) the tensors � and � are invariant.If f is G� invariant, we have to replace (i) by(i') the tensors � 
 �, � 
 �, � 
 � are invariant.Proof. As discussed in 3.9, we may restrict ourselves to G-invariant mappingsf : 
pV ! K and we have constructed the polynomial GL(m)-invariant mapping' : GL(m) � 
pV ! K. For each t 2 
pV , the restricted map 't : GL(m) ! Ksatis�es the assumptions of Lemma 3.10. Assume �rst K = C . Then we can extendthe map 't to the whole space �mV � and we obtain a homogeneous polynomialmapping ' : �mV � � 
pV linear in the second entry. The total polarization of 'is a GL(m)-invariant mapping Sk(�mV �)
 
pV ! C . Thus it results from �niteiteration of the steps 3.6.(a){(d). The original mapping is f(t) = '(Im; t) = �'(�; t).Thus, taking into account V = �m�1V �, this proves the theorem in the complexcase. Indeed, if t 2 
rV �

sV is invariant, then t is viewed as an invariant linearmapping 
r+(m�1)sV ! C and so r + (m � 1)s = km, i.e. r � s = (k � s)m.Consider now the real case and an SL(m;R)-invariant linear map f : 
p V ! R.Since the description of all GL+(m;R)-invariant tensors coincides with that ofGL(m;R)-invariant ones, we can repeat step by step the above proof on replacingGL(m) by GL+(m;R).If f is G�-invariant, then we turn back to GL(m;R) invariant 't, but the totalpolarization will happen to be a map S2k(�mV �)
 
pV ! C . Hence the number� treats in f must be even.9 �9The description can also be deduced by a standard trick which might be useful at anotheroccasion as well: we could describe only theG�-invariant tensors. On the space I of all SL(m;R)-invariant tensors, there is an action ofZ2 = G�=SL(m;R) which splits I into the �1 eigen spacesI+, I� . Then notice, if t 2 I� , then � 
 t 2 I+ .



3. INVARIANT TENSORS 233.12. Relative invariant tensors. A tensor t 2 
pV � 
 
qV is called relativeGL(m)-invariant if there is a � : GL(m)! K with A:t = �(A)t for all A 2 GL(m).Clearly � must be a continuous character of GL(m).Theorem. The relative invariant tensors are exactly the SL(m)-invariant tensors.In particular, if t 2 
pV � 
 
qV is relative GL(m)-invariant and non-zero, thenp� q = km, k 2Z, and the corresponding character � is (detA)k.Proof. First, let us notice how easily we can �nd all continuous characters ofGL(m) using Theorem 3.5. Since �must be a continuous Lie group homomorphism,it must be smooth. The corresponding Lie algebra homomorphism�0 : V �
V ! Kis Ad-invariant (�0 � Ad = Te� � TeConj = Te(� � Conj) = �0 since the action onC is trivial). Further, Ad(A) is exactly the standard representation of GL(m) onV � 
 V . Thus, �0 is a scalar multiple of the trace and so �jGL+(A) = (detA)k,k 2 R, in the real case while �(A) = (detA)k, k 2 C , in the complex case. Thisshows t is SL(m)-invariant and the description of all such t from Theorem 3.11�nishes the proof. �3.13. Irreducible representations. Later on we shall often treat only irre-ducible representations and we shall also need to pass from the real to the complexsituation or back. The latter is usually denoted as the `complexi�cation' and `re-ali�cation'. Let us describe briey the irreducible representations of GL(m) andSL(m), the (pseudo-)orthogonal groups will follow later, the details can be founde.g. in [Boerner, 67]. In the case G = GL(m) this is a problem closed to 3.5. In-deed, as discussed in 3.7, each invariant subspace is an image of a G-equivariantprojection and for contravariant tensors of degree r all such projections are ob-tained through actions of the permutation group Sr . Let Dr be the group ring ofSr which acts obviously on the (contravariant) tensors. The idempotents e 2 Drwhich represent the irreducible representations Dr:e � Dr of Sr (and these corre-spond to polynomial irreducible representations of GL(m)) are described with thehelp of the so called standard Young diagram. The latter is given by a systemn1 � n2 � � � � � np > 0 of natural numbers with n1 + � � � + np = r which isgraphically described by n1n2...npwith numbers 1; : : : ;m written inside the individual boxes in such a way that theyincrease in the columns and do not decrease in the rows. Labeling the boxes bynumbers 1; : : : ; r, such a diagram determines an element e 2 Dr de�ned as thecomposition of the sum of all permutations indicated in the rows and the alternatedsum of the permutations in the columns. Hence the image of the correspondingprojection 
pV ! W is obtained by numbering the indices of the tensors andapplying the corresponding symmetrizations and alternations. For example, giventhe diagram with (1; 2) in the row and (1; 3) in the column, we get theprojection 
3V ! W , tijk 7! (tijk + tjik) 7! tijk + tjik � tkji � tjki. Notice, we



24 NATURAL OPERATORS ON CONFORMAL MANIFOLDSpermute the tensors according to the original numbering of indices, the permutationleading to tkij in the last term lies in S2V 
 V which is further reducible!Each such diagram (without the numbers inside) with the number of rows lessthan or equal to m determines in this way an irreducible polynomial representationof GL(m; C ) with dimension equal to the number of the possible standard Youngdiagrams of the same shape. Two diagrams with di�erent shapes correspond toinequivalent representations. We shall denote the representation corresponding tothe diagram described by n1; : : : ; np by the symbol Cm(n1;::: ;np) or Cm(n1;::: ;nm) wherewe set nj = 0 for all j > p. Let us remark that in view of Theorem 3.5 theproof of the irreducibility is a combinatorial problem in the representation theoryof the symmetric group.10 The representations Cm(n1;::: ;np) exhaust all irreduciblepolynomial representations of GL(m; C ), see [Boerner, 67, Chapter V, section 5].These representations remain irreducible if we restrict the group to SL(m; C ) butsome of them coincide (notice that this follows from Theorem 3.11). On the otherhand, they exhaust all rational representations of SL(m; C ) and each continuousrepresentation of SL(m; C ) is rational and completely reducible, hence polynomial(remember Cm� = �m�1Cm ). This is not true for GL(m; C ) where only all ra-tional representations are completely reducible and there are some reducible butnot completely reducible ones11. All rational representation of GL(m; C ) are of theform (detA)kCm(n1;::: ;np), k 2 Z. For the proofs we refer to [Boerner, 67, ChapterV, section 8].Given a real Lie group G and its linear action on a real vector space W , thereis the induced action of G on W 
 C and if the action on W is reducible, then alsothe action on W 
 C is reducible. If G is one of the matrix groups discussed aboveor O(m;R), SO(m;R), SO(m;n;R), then the latter action is extended to an actionof the corresponding complex group. In [Boerner, 67, p.164] we �nd the followingstatementTheorem. The irreducible rational representations of the groups GL(m; C ) remainirreducible if restricted to the subgroups GL(m;R), SL(m; C ), SL(m;R), U (m),SU (m).1210See [Boerner, 67, Chapter IV]). Roughly speaking, any further permutations can be builtfrom those concerning only indices lying either in rows or in columns and so a composition withfurther permutations yields some `conjugated elements'.11As well known, a representation of a semisimple complex Lie group is completely reducibleand a representation of a general complex Lie group is completely reducible if and only if itsrestriction to the radical is. In our case, the radical is the one-dimensional center of GL(m; C),while the semisimple part is SL(m; C).12The proof is surprisingly elementary. Roughly speaking, if the restricted representation werereducible, then there would be a `common null box' in all the matrices of the representationin a suitable basis. Hence there are non-zero linear forms on gl(W ) which annihilate all thematrices of the representation. The composition of these forms with the representation matricesyields rational functions on GL(m) which are zero on all matrices from the subgroups in question.These subgroups have enough points to assure that these rational functions are zero identicallyand, thus, the original representation must be reducible. In the case of SU(m), there is a similartrick available using the representation of the Lie algebra and for U(m) we apply the results forSU(m) and SL(m; C). A similar reasoning will become an important step in our discussion on(pseudo-)orthogonal groups below.



3. INVARIANT TENSORS 253.14. Examples. The standard representation on Km is the Cm(1;0;:::;0) (there isonly one index, no symmetry), K� corresponds to (detA)�1Cm(1;:::;1;0). The space
2K admits two indices and so its decomposition must correspond to the diagramsand , i.e. the symmetrization and alternation. In the decompositionof 
3K, there appear only the diagrams , and . We shouldnotice that we have not discussed at all the multiplicities of these representations!3.15. O(m)-invariant tensors. We shall proceed in a way similar to 3.11. Re-call O(m) = fA 2 GL(m);A:g0 = g0g where g0 2 S2V � is the canonical Eu-clidean metric (or its complex analog). Given g in the space S2+V � of positivede�nite non-degenerate 2-forms (non-degenerate in the complex case), this de�nesan isomorphism g : V ! V � and its inverse ~g : V � ! V . Clearly g0 and ~g0 areO(m)-equivariant and therefore we do not have to consider both covariant andcontravariant entries of the tensors. Thus, we have to describe all O(m)-invariantlinear mappings f : 
p V ! K. Given such f we de�ne �' : S2+V � � 
pV ! Kby �'(A:g0; t) := f(A:t). Since GL(m):g0 = S2+V � and f is O(m)-invariant, �' iswell de�ned and GL(m)-invariant. Similarly to 3.11, we need to extend �' to apolynomial GL(m)-invariant mapping on the whole space S2V � � 
pV . This willbe possible using the next two lemmas which are interesting for themselves.13Since we want to treat at the same time metrics with arbitrary signature (inthe real case { in complex situation they are all equivalent), we need some morenotation. We write O(m;n) = fA 2 GL(m);AJAT = Jg where J = �Im 00 �In�,so that the matrices fromO(m;n) preserve the canonical pseudo-metric of signaturem on Km+n . This de�nition makes sense not only for K = R or K = C but forany other extension L of R as well. Further, the Zariski connected componentsof O(m;n;L) are always algebraic varieties in L(m+n)2 and there is the canonicalinclusion O(m;n;K) � O(m;n;L).3.16. Lemma. Let L be any algebraic extension of R and let f : O(m;n;L)! Lbe a rational function. If f vanishes on O(m;n;R), then f is zero.Proof. We shall write o(m;n) = fA 2 gl(m + n;R);AJ + JAT = 0g for the realLie algebra of the pseudo-orthogonal group. Let us consider the Caley mapC : o(m;n)! GL(m); C(S) = (1 + S)(1 � S)�1de�ned for all S with det(1�S) 6= 0. This is injective and rational. Further we claimthat the image lies in O(m;n) and C admits a rational inverse C�1 : O(m;n;R)!13The proofs of these lemmas (and also that one of the description of the invariant tensors)follow [Atiyah, Bott, Patodi, 73, p. 323], where the positive de�nite real case is presented.



26 NATURAL OPERATORS ON CONFORMAL MANIFOLDSo(m;n). Indeed, we have J = J�1, J = JT , SJ + JST = 0 and soC(S)J(C(S))T = (1 + S)(1 � S)�1J(1� ST )�1(1 + ST )= (1 + S)(J � JS � ST J + ST JS)�1(1 + ST )= (1 + S)(J(1 � S)(1 + S))�1(1 + ST )= (J � JS)�1(1 + ST ) = J(1 + ST )�1(1 + ST ) = J:Further, if Z = (1 + S)(1 � S)�1 then S = (Z � 1)(1 + Z)�1 whenever bothexpressions are de�ned and it remains only to verify S = (Z�1)(1+Z)�1 2 o(m;n)if ZJZT = J . The latter means (Z � 1)(1 + Z)�1J + J(1 + ZT )�1(ZT � 1) = 0,but in order to see that the left hand side is zero we can multiply it by invertiblematrices. Let us multiply by (1 + ZT )J on the left and by J(1 + Z) on the right.This yields (1 + ZT )J(Z � 1) + (ZT � 1)J(1 + Z) which is zero.Hence we have proved: the connected component of the unit in O(m;n) is bira-tionally isomorphic to the real a�ne space o(m;n).Thus, if f vanishes at all real points, then the composition with this isomorphismis a zero rational map on an a�ne space and hence all coe�cients of the representingpolynomials vanish. This proves the lemma for the connected component of theunit.It remains to know that O(m;n;R) consists of four connected components de-termined by the signs of the two subdeterminants along the diagonal correspondingto the matrices Im and �In in J , see [Boerner, 67, p.297]. Hence we can composethe mapping C(S) with multiplication by one of the four matrices �A 00 B� withA = ��1 00 Im�1�, B = ��1 00 In�1�. This yields the result for all connectedcomponents of O(m;n;R). �3.17. Lemma. Let h : GL(m + n) ! K be a polynomial or rational O(m;n)-invariant mapping. Then there is a polynomial or rational mapping F de�ned onthe space of all symmetric matrices such that h(A) = F (ATJA) for all A 2 GL(m),respectively.Proof. In dimension one, we deal with the well known assertion that each evenpolynomial h, i.e. h(x) = h(�x), is a polynomial in x2 and analogously for rationalmappings. However in higher dimensions, the proof is quite non trivial.We shall prove the polynomial case, the rational one follows by omitting someextensions. If we were in the real situation, then h extends to a complex valuedfunction h : GL(m; C ) ! C which is O(m;n; C )-invariant by virtue of Lemma 3.16.Indeed, consider �hA : O(m;n; C ) ! C , �hA(B) := h(BA)�h(A). This is polynomialfor each A 2 GL(m; C ) and it vanishes on real matrices, hence also on the complexones and this is the invariance we require. Thus we can restrict ourselves to thecomplex case.First notice that if ATJA = P with P non singular and if there is a symmetricQ with QJQ = P , then A lies in the O(m;n)-orbit of Q. Indeed, Q is also nonsingular and B = AQ�1 satis�es BT JB = Q�1AT JAQ�1 = Q�1PQ�1 = J . Eachsymmetric matrix P admits a symmetric square root in the complex domain. Let



3. INVARIANT TENSORS 27us construct this as follows. Take P = BTDB with D diagonal, BTJB = J . WritepD for the diagonal matrix consisting of square roots of the eigen values of D andtake the matrix D0 = BTpJpDB. This satis�es D0TJD0 = BTDB = P and iswell de�ned. So it su�ces to restrict ourselves to symmetric matrices.Finally, since O(m;n; C ) is isomorphic to O(m+ n; C ), it is su�cient to restrictourselves toO(m; C ). Notice, the isomorphism is induced by constant multiplicationof �rst m coordinates in C by i. Hence the corresponding isomorphism on non-degenerate symmetric matrices is ATA 7! ATJA which is well de�ned, see above.Hence we want to �nd a polynomialmap g satisfying h(Q) = g(Q2) for all symmetricmatrices.As already mentioned, there is the square root pP = Q for each symmetricP = BTDB, pP = BTpDB. But we should express Q as a universal polynomialin the elements pij of the matrix P . If all eigen values �i of P are di�erent, thenwe can write Q = mXi=1p�iYj 6=i P � �j�i � �j :In order to make this to a polynomial expression, we have �rst to extend the �eld ofcomplex numbers to the �eld L of rational functions (i.e. the elements are ratios ofpolynomials in pij's). So for matrices with entries from L, all eigen values dependpolynomially on pij's. We also need their square roots to express Q, but we shallsee that after inserting Q = pP into h(Q) all square roots will factor out. Forany �xed P , let us consider the splitting �eld ~L over L with respect to the rootsof the equation det(P � �2) = 0. So pP is polynomial over ~L. Now the basic factis, that for any automorphism � : ~L ! ~L from the Galois group of ~L over L wehave (�Q)2 = �P = P and since both Q and �Q are symmetric, B = �QQ�1 isorthogonal.Using Lemma 3.16, we get �h(Q) = h(�Q) = h(BQ) = h(Q). Since this holdsfor all �, h(Q) lies in L and so h(Q) = g(Q2) for a rational function g.The latter equality remains true if P = Q2 is a real or complex symmetric matrixsuch that all its eigen values are distinct and the denominator of g(P ) is non zero.If g = F=G for two polynomials F and G, we get F (ATA) = h(A)G(ATA). If wechoose A so that G(ATA) = 0 and h is a polynomial, we get F (ATA) = 0. Henceif h is polynomial, then g is a globally de�ned rational function without poles andso a polynomial.Thus, we have found a rational function (a polynomial in the polynomial case)F on the space of symmetric matrices such that h(A) = F (ATA) holds for a Zariskiopen set in gl(m). �3.18. Theorem14. All O(m;n)-equivariant mappings between invariant sub-spaces of tensor spaces are constructed by a �nite iteration of steps 3.6.(a){(d)and (i) the tensors g0 and ~g0 are invariant.Proof. Let us continue the discussion from 3.15 and denote for a moment S2+V �,V = Km+n the space of metrics of some �xed signature m. Thus, we want to14This is the famous Weyl's theorem, [Weyl, 39]



28 NATURAL OPERATORS ON CONFORMAL MANIFOLDSdescribe all O(m;n)-invariant linear maps f : 
p V ! K. It su�ces to prove thatall such maps are complete contractions over permuted indices (this means thereis an even number of indices there and we choose a half of them, shift them to theother position using g0 and then apply some complete contraction). If we are in thereal situation, then f extends to the complexi�ed spaces and becomes O(m;n; C )-invariant, cf. Lemma 3.16. Hence we shall restrict ourselves to K = C . (We couldalso stick to O(m), for all signatures are equivalent now).The mapping f de�nes an O(m;n)-invariantmapping' : GL(m+n)�
pV ! C ,'(A; t) = f(A:t). By Lemma 3.17, every restricted map 't : GL(m + n) ! Csatis�es 't(A) = ht(AT JA) for certain polynomial ht and so we get a polynomialmapping h : S2V ��
pV ! C linear in the second entry. For all B;A 2 GL(m+n)we have h((B�1)TATJAB�1; B:t) = f(AB�1B:t) = f(A:t) = h(ATJA; t) and soh : S2V � �
pV ! K is GL(m+ n)-invariant. Then the composition of h with thesymmetrization yields a polynomial GL(m + n)-invariant map 
2V � � 
pV ! C ,linear in the second entry. Each homogeneous component of degree s + 1 is alsoGL(m)-invariant and so its total polarization is a linear GL(m)-invariant map�: 
2sV �

pV ! C . Hence, by Theorem 3.5, p = 2s and � is a sum of completecontractions over possible permutations of indices. Since the original mapping f isgiven by f(t) = h(J; t), the Weyl's theorem follows. �3.19. Special (pseudo-) orthogonal group. This is the case we shall be mostinterested in later on.Theorem. All SO(m;n)-equivariant linear mappings between SO(m;n)-invariantsubspaces in tensor spaces are obtained through a �nite iteration of steps 3.6.(a){(d)and (i) g0 2 V � 
 V � and ~g0 2 V 
 V are invariant (the pseudo-metric and itsinverse)(ii) � 2 �mV � is invariant (the canonical volume form).Proof. The theorem follows from 3.18 by means of the trick mentioned as a foot-note in 3.11. Indeed, the SO(m;n)-invariant tensors split into the �1-eigenspacesfor the induced action of Z2 = O(m;n)=SO(m;n) and once a tensor appears inthe �1-eigenspace, its tensor product with � belongs to the other one, i.e. it isO(m;n)-invariant. Since the canonical volume element has components �i1:::im+n =((�1)n det(gij))1=2"i1:::im+n where "i1:::im+n are the components of the Levi-Civit�atensor, this proves the theorem. �3.20. Remark. In dimensionm = 1, every polynomial can be expressed as a sumof an odd polynomial and an even one. We generalized the description of the evenpolynomials in Lemma 3.16, but there is also an analogy to the above splitting ofpolynomials:Lemma. Let h : GL(m + n)! K be a rational or polynomial SO(m;n)-invariantmapping, then there are rational or polynomialmappings F , G de�ned on the spaceof all symmetric matrices such that h(A) = F (ATJA) + (detA)�1G(ATJA) for allA 2 GL(m), respectively.Proof. Let I be the space of all SO(m;n)-invariant rational functions h : GL(m+n) ! K. There is the action of Z2 = O(m;n)=SO(m;n) on I. Hence I is splitted



3. INVARIANT TENSORS 29into the eigen spaces I+ and I�. If h� 2 I�, then the map ~h� given by A 7!(detA)h�(A) lies in I+, i.e. is O(m;n)-invariant. Now we can split h as a sumof elements from I�, h = h+ + h�, and apply Lemma 3.15 to both h+ and ~h�.Consequently, h�(A) = (detA)�1~h� has the desired form. The polynomial case iscompletely analogous. �As a consequence of this lemma, we can identify the ring of rational func-tions on the `space of all (pseudo-) metrics' GL(m + n)=O(m;n) with the ringK[gij ; (det gij)� 12 ] (notice, the metric corresponding to [A] 2 GL(m + n)=O(m;n)is (AAT ; sign(detA))).Let us also remark, the analogous statements to Lemmas 3.17 and 3.20 areavailable for the right actions of the orthogonal subgroups. Indeed, we have onlyto consider g(A) = h(A�1), to apply the lemmas and then to notice that in thepolynomial case we get polynomials.We shall end this section with an analytical proposition which is often useful toavoid the polynomiality assumption, i.e. to describe all smooth equivariant map-pings.Consider a product V1 � : : :� Vn of �nite dimensional vector spaces and writexi 2 Vi, i = 1; : : : ; n.3.21 Proposition15. Let f : V1 � : : : � Vn ! K be a smooth function and letai > 0, b be real numbers such that(1) kbf(x1; : : : ; xn) = f(ka1x1; : : : ; kanxn)holds for every real number k > 0. Then f is a sum of homogeneous polynomialsof degrees di in xi satisfying the relation(2) a1d1 + � � �+ andn = b:If there are no non-negative integers d1; : : : ; dn with the property (2), then f is thezero function.Proof. Assume �rst b < 0. If there were f(x1; : : : ; xn) 6= 0, then the limit ofthe right-hand side of (1) for k ! 0+ would be f(0; : : : ; 0), while the limit of theleft-hand side would be improper. Hence f is zero identically.In the case b � 0 we write a = min(a1; : : : ; an) and r = � ba�(=the integer partof the ratio ba ). We claim that all partial derivatives of the order r + 1 of everyfunction f satisfying (1) vanish identically. Di�erentiating (1) with respect to xj,we obtain kb @f(x1; : : : ; xn)@xj = kai @f(ka1x1; : : : ; kanxn)@xj :Hence for @f@xj we have (1) with b replaced by b�ai. This implies that every partialderivative of the order r + 1 of f satis�es (1) with a negative exponent on theleft-hand side, so that it is the zero function by the �rst part of the proof.15The so called Homogeneous function theorem, cf. [Kol�a�r, Michor, Slov�ak, 93, Theorem 24.1].



30 NATURAL OPERATORS ON CONFORMAL MANIFOLDSSince all the partial derivatives of f of order r+1 vanish identically, the remainderin the r-th order Taylor expansion of f at the origin vanishes identically as well, sothat f is a polynomial of order at most r. For every monomial x�11 : : :x�nn of degreej�ij in xi, we have(ka1x1)�1 : : : (kanxn)�n = ka1j�1j+���+anj�njx�11 : : : x�nn :Since k is an arbitrary positive real number, a non-zero polynomial satis�es (1) ifand only if (2) holds. �Let us remark that the assumption ai > 0, i = 1; : : : ; n, is essential. For example,all smooth functions f(x; y) of two independent variables satisfying f(kx; k�1y) =f(x; y) for all k 6= 0 are of the form '(xy), where '(t) is any smooth function ofone variable. In this case we have a1 = 1, a2 = �1, b = 0.4. Operators on (pseudo-) Riemannian manifolds4.1. Our next problem is: Let us consider two representations �F , �E of G1m =GL(m;R) in Di�S, Di�S0 and the corresponding bundle functors F and E, see 2.12.We shall consider them as functors on the category Mfm(O(m0; n;R)) of (m0+n)-dimensional pseudo-Riemannian manifolds with signature m0; n and local isome-tries. Find all natural operators D : F ! E on the category Mfm(O(m0; n;R))!The most common examples for the functors are the identity action on Rm(corresponds to the tangent functor T ), its contragredient action on Rm� (yieldsT �) and their tensor products. We shall denote T (q;p) the natural bundle of p-timescovariant and q-times contravariant tensors. Hence C1(T (q;p)M ) are local tensor�elds on the manifoldM . In particular, we shall study in detail the operations onexterior forms.It does not seem to be satisfactory that we restrict ourselves to bundle functorson the whole category Mfm0+n. But this has two good reasons: all (univalued)linear representations of O(m0; n) are invariant subspaces of some tensor spaces(with the restricted usual action), see the Appendix, and dealing with the wholetensor spaces we can add the metrics themselves to the arguments of the operatorsas discussed in 2.17. So we shall deal with natural operators S2+T � � F ! Ewhere S2+T � stands for the bundle functor of pseudo-Riemannianmetrics with some�xed signature (m0; n) and the cross denotes the product in the category of bundlefunctors and their natural transformations (i.e. the values are the �bred productsover the base manifolds). The only disadvantage, namely we cannot treat directlythe O(m0; n)-invariant subspaces is not serious, see 2.17 and 3.7.A more detailed explanation of the technical tools sketched below in 4.2 { 4.9can be found in [Kol�a�r, Michor, Slov�ak, 93, Sections 28, 33], the exposition follows[Slov�ak, 92a], [Slov�ak, 92b].4.2. The orbit reduction. In our situation, all the manifolds are locally isomor-phic to Rm0+n and the action of Di�(Rm0+n) is transitive. Let us assume �rstthat the operators are of �nite order k and so we can use 2.6 and the wholeclassi�cation problem reduces to the �nding of all Gk+1m -equivariant mappings



4. OPERATORS ON (PSEUDO-) RIEMANNIAN MANIFOLDS 31f : A := Jk0 (S2+Rm� � 
pRm� 
 
qRm) ! 
rRm� 
 
sRm (the latter mappingscorrespond to natural operators T (q;p) ! T (s;r) on pseudo-Riemannian manifoldswhich are of order k in both the tensors and the metrics). We see immediatelythat on the target of the equivariant mapping f , the action is of order one, i.e.the whole kernel K = ker�k+11 in Gk+1m acts trivially. This shows that f mustbe constant on the orbits of K in the domain. If we succeed in the descriptionof the corresponding orbit space A=K with the canonical action of G1m, then allour equivariant mappings f with values in some G1m-space Z will factor throughG1m-equivariant mappings g : A=K ! Z.First we shall present such a procedure for operations depending on connections.Since there is the canonical Levi-Civit�a connection on each pseudo-Riemannianmanifold this will be helpful even in the Riemannian case.There is a simple criterion for such descriptions: Let ' : G! H be a Lie grouphomomorphismwith kernelK,M be a G-space, Q be anH-space and let p : M ! Qbe a '-equivariant surjective submersion, i.e. p(gx) = '(g)p(x) for all x 2M , g 2 G.We can consider every H-space N as a G-space via '.Lemma. If each p�1(q), q 2 Q, is a K-orbit inM , then Q = M=K. Consequently,there is a bijection between the G-maps f : M ! N and the H-maps g : Q ! Ngiven by f = g � p. �4.3. Operations on manifolds with connection. The linear connections onm-dimensional manifolds are sections of the natural bundle QP 1 = J1P 1=G1m.This expresses the de�nition of principal connections as right invariant horizontaldistributions. The bundle of symmetric connections (i.e. without torsion) will bedenoted by Q�P 1.A classical observation due probably to Veblen or Schouten claims that the natu-ral operators of order k on tensor �elds depending on connections factorize throughthe covariant derivatives of the arguments up to the order k and through the cur-vature and its covariant derivatives up to the order k � 1. Several authors derivedmore precise formulations involving some further assumptions, see e.g. [Lubczonok,72], [Atiyah, Bott, Patodi, 73], [Epstein, 75], [Krupka, Jany�ska, 90]. A (rathertechnical) veri�cation of such reduction without any additional assumption is pre-sented in the framework of natural operators by Kol�a�r in [Kol�a�r, Michor, Slov�ak,93, Section 28]. The proof is based on the above orbit reduction principle. On theset-theoretical level, this is a more or less classical technical computation, but thesubtle point is the smoothness.Let F be a �rst order bundle functor on Mfm, E be an open natural subbundleof a natural vector bundle �E onMfm. The curvature and its covariant derivativesare natural operators �k : Q�P 1 ! Rk, with values in tensor bundles Rk, RkRm =Rm�Wk, W0 = Rm
Rm�
�2Rm�, Wk+1 =Wk 
Rm�. Similarly, the covariantdi�erentiation of sections of E forms natural operators dk : Q�P 1�E ! Ek, whereE0 = �E, E0Rm = Rm�V0, d0 is the inclusion, EkRm = Rm�Vk, Vk+1 = Vk
Rm�.Let us write Dk = (�0; : : : ; �k�2; d0; : : : ; dk) : Q�P 1 � E ! Rk�2 � Ek, whereRl = R0 � : : :� Rl, El = E0 � : : :� El. All Dk are natural operators.In view of the lemma above, the next assertion shows that there are bundlefunctors Zk(E) such that all k-th order natural operators Q�P 1 � E ! F factorthrough natural transformations Zk ! F .



32 NATURAL OPERATORS ON CONFORMAL MANIFOLDSLemma. There are sub bundle functors Zk � Rk�2 � Ek such that Dk : Q�P 1 �E ! Zk and the associated maps Dk : Jk�10 (Q�P 1Rm) � Jk0 (ERm) ! Zk0Rm aresurjective submersions for all k. Furthermore, for each point z 2 Zk0Rm the preim-age (Dk)�1(z) forms one orbit under the action of the kernel Bk+11 of the projection�k+11 : Gk+1m ! G1m.4.4. Proposition. For every natural operator D : Q�P 1�E ! F which dependson k-jets of sections of the bundles EM and on (k�1)-jets of the connections, thereis a unique natural transformation (i.e. a zero order natural operator) ~D : Zk ! Fsuch that D = ~D �Dk.Furthermore,D is polynomial if and only if ~D is polynomial, andD is polynomialin all variables except those from V0 with smooth real functions on V0 as coe�cientsif and only if ~D is polynomial with smooth real functions on V0 as coe�cients.Proof. We have only to prove to polynomiality.Let us write Si for the tensor space Rm 
 Si+2Rm�, Q = S0 for the standard�ber of the bundle of symmetric connections andS : Jk�10 (Rm; Q) = Jk�10 (Q�P 1Rm)! S0 � : : :� Sk�1be the `symmetrization of the derivatives of the Christo�el symbols' (i.e. we expressthe jet space Jk�10 (Q�P 1Rm) as the sum of the tensor spaces corresponding to theindividual degrees of derivatives and apply the symmetrization to the individualsummands). A more or less classical construction in local coordinates leads to apolynomial mapping : W0� : : :�Wk�2�V0� : : :�Vk� (S0� : : :�Sk�1)! Jk�10 (Rm; Q)�Jk0 (Rm; V )such that  � (Dk � S) is the identity on Jk�10 (Rm; Q)� Jk0 (Rm; V ).Since the standard �ber V0 of the bundle E0Rm is embedded identically intoZk(E)0Rm by Dk, we get also the last statement. �4.5. The �niteness of the order. Even if we have no estimate on the order,we can get an analogous result. The way is paved by the non-linear version of thePeetre theorem proved in [Slov�ak, 88]. The general result is rather technical andso we formulate a special case which we shall need.Proposition. Let Y !M and Y 0 !M be �bered manifolds and letD : C1(Y )!C1(Y 0) be a smooth local operator. Then for every �xed section s 2 C1(Y ) andfor every compact set K � M , there is an order r 2 N and a neighborhood V of sin the compact open C1-topology such that for every x 2 K and s1, s2 2 V thecondition jrxs1 = jrxs2 implies Ds1(x) = Ds2(x).As a direct consequence of this result, we see that each natural operator D : F !E is of order k =1 and so D is determined by the associated G1m -equivariant mapD : J10 (FRm)! E0Rm.Let us remark that a stronger version of the above proposition (without thesmoothness assumption) is also proved in [Kol�a�r, Michor, Slov�ak, 93, Theorem 19.7]and it is applied there in an alternative proof of the regularity and the �nitenessof the order of bundle functors which avoids the original manipulation with in�nitedimensional Lie groups G1m , cf. [Epstein, Thurston, 79].



4. OPERATORS ON (PSEUDO-) RIEMANNIAN MANIFOLDS 334.6. Lemma. Let F : Mfm ! FM be an arbitrary bundle functor and p > qbe non-negative integers. Then every natural operator D : Q�P 1 � T (q;p) ! F has�nite order.Proof. Let us write E = Q�P 1�T (q;p). By 4.5, D is determined by the associatedmap D : J10 (ERm) ! F0Rm induced by DRm. Furthermore, for every jet j10 s 2J10 (ERm) there is an order r < 1, a neighborhood Ur of jr0s in Jr0 (ERm) anda smooth mapping Dr : Ur � Jr0 (ERm) ! F0Rm such that for all j10 q 2 Vr :=(�1r )�1Ur we have D(j10 q) = Dr(jr0q). The naturality of D implies that if theopen neighborhood Ur is the maximal one with this property, then Vr is G1m -invariant. The induced action of G1m turns Jk0 (ERm) into a sum of G1m-invariantlinear subspaces in the tensor spaces (Rm

`+2Rm�)� (
sRm

r+`Rm�), ` � k.Since r > s, the action of the homotheties (i.e. the center) in G1m shows, that theorbit of any neighborhood of the jet jk00 of the zero section under the action of G1mcoincides with the whole space Jk0 (ERm). �4.7. Now, we come back to our natural operators Q�P 1 � E ! F without anyassumption on the order. Proceeding as in the proof of 4.6, we obtain an open�ltration of the whole �ber J10 ((Q�P 1�E)Rm) consisting of maximalG1m -invariantopen subsets Vk where the associated mapping D factorizes through Dk : �1k (Vk) �Jk0 ((Q�P 1 � E)Rm) ! F0Rm. Now, we can apply the same procedure as in the�nite order case to this invariant open submanifolds �1k (Vk).Let us de�ne the functor Z1 as the inverse limit of Zk, k 2 N, with respectto the obvious natural transformations (projections) �k̀ : Zk ! Z`, k > `, andsimilarly D1 : Q�P 1 � E ! Z1.Theorem. For every natural operator D : Q�P 1�E ! F there is a unique naturaltransformation ~D : Z1 ! F such that D = ~D �D1. Furthermore, for every m-dimensional compact manifold M and every section s 2 C1(Q�P 1M �M EM ),there is a �nite order k and a neighborhood V of s in the Ck-topology such that~DM j(D1)M (V ) = (�1k )�( ~Dk)M ; for some ( ~Dk)M : (Dk)M (V )! C1(ZkM )DM jV = ( ~Dk)M � (Dk)M jV:In words, a natural operator D : Q� � E ! F is determined in all coordinatecharts of an arbitrary m-dimensional manifoldM by a universal smooth mappingde�ned on the curvatures and all their covariant derivatives and on the sectionsof EM and all their covariant derivatives, which depends `locally' only on �nitenumber of these arguments.4.8. The pseudo-Riemannian case. Let us write S2+T � for the bundle functor ofpseudo-Riemannian metrics with some �xed signature on m-dimensional manifolds.On pseudo-Riemannian manifolds, there is the natural operator �: S2+T � !Q�P 1 de�ned by the Levi-Civit�a connection. Every operator S2+T � � E ! Fcan be viewed as an operator Q�P 1 � S2+T � � E ! F , independent of the �rstargument. Since S2+T � � S2T � is an open sub bundle functor, we can consider thecompositions Dk � (�; id) : S2+T ��E ! Q�P 1�S2+T ��E ! Rk�2� (S2+T ��E)kand apply Proposition 4.4. Since all covariant derivatives of the metric with respect



34 NATURAL OPERATORS ON CONFORMAL MANIFOLDSto the metric connection are zero (the parallel transport consists of isometries), thecovariant derivatives of the metric will not appear in the codomain of the operatorsDk after the composition. Hence we getProposition. There are sub bundle functors Zk � Rk�2 � Ek such that Dk �(�; id) : S2+T ��E ! S2+T ��Zk and the associated mappings Dk on the jet spacesare surjective submersions with the preimages (Dk)�1(z) forming one orbit underthe action of the kernel Bk+11 of the projection �k+11 : Gk+1m ! G1m. Hence for allk, and for every k-th order natural operator D : S2+T � �E ! F , there is a naturaltransformation ~D : S2+T � � Zk ! F such that D = ~D �Dk � (� � id).For the proof see [Slovak, 92a] or [Kol�a�r, Michor, Slov�ak, 93, Section 33]. Let usnotice that the bundles ZkM involve the curvature of the Riemannian connectiononM , its covariant derivatives, and the covariant derivatives of the sections of EM .Similarly as above, we de�ne the inverse limits Z1 and D1 and we getCorollary. For every natural operator D : S2+T � � E ! F there is a naturaltransformation ~D : S2+T � � Z1 ! F such that D = ~D � D1 � (�; id). Fur-thermore, for every m-dimensional compact manifold M and every section s 2C1(S2+T �M �M EM ), there is a �nite order k and a neighborhood V of s in theCk-topology such that~DM j(D1 � (�; id))M (V ) = (�1k )�( ~Dk)M ;where ( ~Dk)M : (Dk � (�; id))M (V )! C1(ZkM )DM jV = ( ~Dk)M � (Dk)M � (�; id)M jV:4.9. The polynomial operations. We call a natural operator D : S2+T ��E ! Fa polynomial operator on (pseudo-) Riemannian manifolds if the associated mapD : J10 (S2+Rm)�J10 (ERm)! F0Rm depends polynomially on k-jets of sections ofERm for some k.By the nonlinear Peetre theorem, this means that for each Riemannian manifold(M; g) the operator DM is given by a universal polynomial expression depending onthe derivatives of the sections of EM but the coe�cients are functions dependingon (locally �nitely many) derivatives of the metric.Let us consider now a k-th order operator D and the natural transformation ~Dcorresponding to D, see 4.8. In the center of normal coordinates, each metric hasthe canonical pseudo-Euclidean form g0 and so the whole transformation ~D is deter-mined by the restriction of the associated map ~D to fg0g�Zk0Rm. This restrictionis polynomial if and only if ~D depends polynomially on elements from Zk0Rm, themetric gij and the square root of the inverse of its determinant det(gij). Indeed, inorder to �nd the transformation of coordinates which maps the canonical pseudo-euclidean metric to gij we need to decompose gij = AJAT with A 2 GL(m;R), cf.3.17. The same applies to D: if this G1m -equivariant map depends polynomially onthe derivatives of the metric and the jets of sections of ERm, then the values of themetric appear in D polynomially through gij and the square root of the inverse ofits determinant det(gij).



4. OPERATORS ON (PSEUDO-) RIEMANNIAN MANIFOLDS 35Now, let us �x gij. Since � depends polynomially on the 1-jet of the metricand the values of the inverse metric, it follows that ~D depends polynomially on theelements from Zk0Rm if and only if D depends polynomially on the derivatives of themetric gij and on the jets of the sections of E (with functions of gij as coe�cients),and this happens if and only if D depends polynomially on the jets of the metrics,the jets of the sections of E and on the square root of the inverse of the determinantof (gij).Let us remark that such operations were introduced in [Atiyah, Bott, Patodi,73] under the name regular operators, a reason why they should be distinguishedcan be also found in 3.20.4.10. Before studying the (pseudo-) Riemannian case, we shall treat the operationsdepending on connections. On the way we shall prepare all necessary tools forsolving our initial problem .Let us �rst discuss the natural operators D : Q�P 1� T (s;r) ! T (q;p) with r > s.Proposition. All natural operators Q�P 1�T (s;r) ! T (q;p) are obtained by a �niteiteration of the following steps:(a) the tensor �eld and its covariant derivatives with respect to the connectionare invariant(b) the curvature of the connection and its covariant derivatives are invariant(c) tensor multiplication is invariant(d) GL(m;R)-equivariant operations on the tensors determine invariant opera-tions (i.e. trace, permutations of indices)(e) linear combinations (over R) of invariant operators are invariantIn particular, they are all polynomial.Proof. By 4.6, every such operator has some �nite order k and so it is determinedby a smooth Gk+2m -equivariant map f = (f i1 :::iqj1 :::jp) : Jk0 (Rm; Q) � Jk0 (Rm; V ) ! S,where Q is the standard �ber of the connection bundle, V = 
sRm
 
rRm� andS = 
qRm 
 
pRm�. Let us assume, we have chosen k in such a way that fdepends on (k � 1)-jets of the connections only. If we apply the equivariance of fwith respect to the transformation x 7! c�1x, c 2 R positive, from the center ofG1m, we getcp�qf i1 :::iqj1:::jp(�ìj; : : : ;�ìj;`1:::`k�1 ; vi1:::isj1:::jr ; : : : ; vi1:::isj1:::jr`1:::`k) == f i1:::iqj1:::jp (c�ìj; : : : ; ck�ìj;`1:::`k�1 ; cr�svi1:::isj1:::jr ; : : : ; cr�s+kvi1:::isj1:::jr`1:::`k)where the subscripts `j denote the usual derivatives. By 3.21 f i1:::iqj1:::jp must be sumsof homogeneous polynomials.Now, 4.4 and 2.6 imply that there is a unique smooth G1m-equivariant map g onZk0Rm which is a restriction of a polynomial map �g = (gi1:::iqj1:::jp) : W0� : : :�Wk�2�V0 � : : :� Vk ! S and satis�es f = g � Dk. Therefore the coordinate expression ofour operator is given by polynomial mappingsgi1:::iqj1:::jp (Rijkl; : : : ; Rijklm1:::mk�2 ; vi1:::isj1:::jr ; : : : ; vi1:::isj1:::jrm1 :::mk)



36 NATURAL OPERATORS ON CONFORMAL MANIFOLDSwhere the subscripts mj denote the covariant derivatives. If we apply once morethe equivariance with respect to the homotheties c�1�ij 2 G1m, we getcp�qgi1:::iqj1:::jp(Rijkl; : : : ; Rijklm1:::mk�2 ; vi1:::isj1:::jr ; : : : ; vi1:::isj1:::jrm1:::mk) == gi1:::iqj1:::jp (c2Rijkl; : : : ; ckRijklm1:::mk�2 ; cr�svi1 :::isj1:::jr ; : : : ; ck+r�svi1 :::isj1:::jrm1:::mk):This homogeneity implies that the g's must be sums of homogeneous polynomialsof degrees a` and b` in the variables Rijklm1:::m` and vi1 :::isi1:::irm1 :::m` , satisfying(1) 2a0 + � � �+ kak�2 + (r � s)b0 + � � �+ (k + r � s)bk = p� q:Now we consider the total polarization of each multi homogeneous component toobtain linear mappingsSa0W 
 � � � 
 Sak�2Wk�2 
 Sb0V 
 � � � 
 SbkVk ! S:The description of all invariant tensors (see 3.7) implies that the polynomials inquestion are linearly generated by monomials obtained by multiplying an appropri-ate number of variables Rijklm1:::m` , vi1:::isj1:::jrm1:::m` and applying GL(m)-equivariantoperations. This yields the statement of the proposition. �If q = p, then the polynomials must be of degree zero, and so only the GL(m)-invariant tensors can appear. If q�p < 0, there are no non negative integers solving(1) and so all natural operators in question are the zero operators only.4.11. In order to determine all natural operators D : Q�P 1�T (0;r) ! �T � we haveto consider the case s = 0 in the above construction, to contract all superscriptsand to apply the alternation on all remaining subscripts at the very end.Every GL(m;R)-invariant polynomial P de�ned on Rm 
 Rm� determines viathe Chern-Weil construction a natural form, i.e. a natural operator of our typeindependent of the second argument. In particular, the homogeneous componentsof the invariant polynomial det(Im+A) give rise to the Chern forms cq. The wedgeproduct of exterior forms de�nes the algebra structure on the space of all operatorsin question.Theorem. The algebra of all natural operators D : Q�P 1 � T (0;r) ! �T � is gen-erated by the alternation, the exterior derivative d and the Chern forms cq. Theoperators which do not depend on the second argument are generated by the Chernforms only.In particular, we see that all natural forms have even degrees. Since the exteriordi�erential is natural, they must be closed.4.12. In the proof of this result, we shall need several lemmas. The most of thecovariant derivatives of the curvature and of the forms which are involved in thegeneral construction from 4.10 are disabled by some of their symmetries during the�nal alternation. Let us �rst recall the antisymmetry of the curvature form, the�rst and the second Bianchi identity. We haveRijkl = �Rijlk(1) Rijkl +Riklj + Riljk = 0(2) Rijklm + Rijlmk + Rijmkl = 0:(3)



4. OPERATORS ON (PSEUDO-) RIEMANNIAN MANIFOLDS 37Lemma. The alternation of Rijklm1:::ms over any 3 indices among the �rst threeor four subscripts is zero.Proof. Since the covariant derivative commutes with the tensor operations like thepermutation of indices, it su�ces to discuss the variables Rijkl and Rijklm. By (2),the alternation over the subscripts in Rijkl is zero and (3) yields the same for thealternation on k, l, m in Rijklm. In view of (1), it remains to discuss the alternationof Rijklm on j, l, m. Then (1) implies Rijkml = �Rijmkl and so we can rewrite thisalternation as follows Rijklm + Rijmkl + Rijlmk �Rijlmk+Rimkjl + Rimlkj + Rimjlk �Rimjlk+Rilkmj + Riljkm + Rilmjk �Rilmjk:The �rst three entries on each row form a cyclic permutation and hence give zero.The same applies to the last column. �4.13. Lemma. For every tensor �eld t = (ti1:::iq), the alternation of its secondcovariant derivative r2t = (ti1:::iqiq+1iq+2) over all indices is zero.Proof. Every linear connection �ijk determines a connection � with curvature R oneach vector bundle associated to the linear frame bundle. The components of R areeasily evaluated from Rijkl using the action of gl(m) on the tensor space in question.In our case, (aij) 2 GL(m) acts on a tensor !i1:::iq by (aij)!i1:::iq = ~aj1i1 : : :~ajqiq!i1:::iqwhere ~ denotes the components of the inverse matrix, and so given a tensor �eld twe get the expression of the contraction hR; ti = �Pqs=1Rmisiq+1iq+2ti1:::m:::iq . If theconnection is symmetric, then the Ricci identity yields Alt(r2t) = hR; ti, where thealternation concerns only the last two indices. Hence we can apply our alternationto this expression. Up to a constant multiple, we getX�2� sgn�ti�(1) :::i�(q+2) = �Xs Xm X� sgn�Rmi�(s)i�(q+1)i�(q+2)ti�(1):::m:::i�(q):Let us decompose this sum into summands with �xed m, s and all �(j) with j 6= s,j 6= q + 1, j 6= q + 2. These summands have the form��X��2�3 sgn��Rmi��(s)i��(q+1)i��q+2�ti�(1) :::m:::i�(q) :Now the �rst Bianchi identity implies that all these summands vanish. �4.14. Lemma. For every tensor t = (ti1:::iq ), the alternation of the �rst covariantderivative rt coincides with the exterior di�erential d(Alt(t)).Proof. Whenever the coordinate expressions of two natural operators coincidein one coordinate chart, the operators are equal. The �rst covariant derivativeis of order zero in the connection argument, and at a �xed point the Christo�elsymbols are zero in a suitable coordinate system. But then the formula for the



38 NATURAL OPERATORS ON CONFORMAL MANIFOLDSalternation of the covariant derivative of the tensor t coincides with that for theexterior di�erential of the alternated tensor at this point. �Proof of Theorem 4.11. Let us continue in the discussion from 4.10 and con-sider �rst a monomial in R's and v's containing at least one quantity Rijklm1:::mswith s > 0. Then there exists one term among the R's in the product with threefree subscripts among the �rst four ones, or one term Rijkl with all free subscripts,so that the monomial vanishes after alternation. Further, 4.12.(1) and (2) implyRijkl � Rilkj = �Riklj . Hence we can restrict ourselves to contractions on the �rsttwo subscripts in the R's. Obviously, no subscript in the v's can be contracted sinceotherwise the alternation would kill one of the R's. So in view of Lemma 4.13, onlythe �rst order covariant derivatives can appear, and they yield the exterior deriva-tives of the alternated tensor v by Lemma 4.14. Hence all the possible operators aregenerated by the expressions Rkqk1abRk1k2cd : : :Rkq�1kqef where the indices a; : : : ; f remainfree for the alternation, vi1:::ir and Alt(vi1:::irir+1). This is a coordinate expressionof the theorem. �4.15. Operations on functions. Up to now, we have assumed r > s � 0,so that the case r = 0 was excluded. In this case we cannot use 4.6 and so wemust apply Theorem 4.7 instead of 4.4, but the codomain of the operations inquestion will still ensure the polynomiality of the operations. By 4.7, each jet(j10 �; j10 v) lies in some G1m -invariant open subset (in the inverse limit topology)Vk � J10 (Q�P 1Rm �R) such that the restriction of the associated mapping D ofthe operator to Vk is determined by a (locally de�ned) Gk+2m -equivariant mappingf : Jk0 (Rm; Q)� Jk0 (RmR)! S. Taking k large enough we can assume that the jetof the zero section lies in Vk. Now, proceeding as in 4.6 and 4.10 we get for everypositive c 2 R the homogeneity conditioncp�qf i1 :::iqj1:::jp(�ìj; : : : ;�ìj;`1:::`k�1 ; v; : : : ; v`1:::`k) == f i1 :::iqj1:::jp(c�ìj; : : : ; ck�ìj;`1:::`k�1 ; v; : : : ; ckv`1 :::`k):Thus, f is a polynomial mapping in all variables except v with functions of v ascoe�cients.Using 4.4 and 4.7, we pass to G1m-equivariant mappingsgi1:::iqj1:::jp(Rijkl; : : : ; Rijklm1:::mk�2 ; v; : : : ; vm1:::mk )with the homogeneitycp�qgi1:::iqj1:::jp(Rijkl; : : : ; Rijklm1:::mk�2 ; v; : : : ; vm1:::mk ) == gi1:::ipj1:::jq (c2Rijkl; : : : ; ckRijklm1:::mk�2 ; v; : : : ; ckvm1:::mk):Hence g is polynomial with smooth functions in one real variable v as coe�cientsand the degrees of its monomials satisfy 4.10.(1) with r = s = 0. Now we canrepeat the arguments from the end of 4.10 and we get



4. OPERATORS ON (PSEUDO-) RIEMANNIAN MANIFOLDS 39Lemma. All natural operators D : Q�P 1 � T (0;0) ! T (q;p) are obtained by iter-ating the following steps. Given a function, we can compose the function witharbitrary smooth function of one real variable, we can take covariant derivatives ofthe function and the covariant derivatives of the curvature, we can tensorize, we canapply any GL(m;R)-equivariant operation, and we can take linear combinations.The arguments from the proof of 4.11 are also valid now and so we can extendthis theorem to the case of functions.Theorem. The algebra of all natural operators D : Q�P 1�T (0;0) ! �T � is gener-ated by the compositions with arbitrary smooth functions of one real variable, theexterior derivative d and the Chern forms cq.4.16. There are many natural operators on pseudo-Riemannian manifolds. In par-ticular, using the inverse metric we can contract on any couple of indices and thecomplete contractions of suitable covariant derivatives of the curvature of the Levi-Civit�a connection give rise to natural functions of all even orders greater then one.Composing k natural functions with any �xed smooth function Rk ! R, we get anew natural function. Since every natural form can be multiplied by any naturalfunction, we see that there is no hope to describe at least all natural forms in a waysimilar to the above characterization of the Chern forms. However, in Riemanniangeometry we meet operations with a sort of homogeneity with respect to the changeof the scale of the metric and these can be described in more details.De�nition. Let E and F be natural bundles over m-dimensional manifolds. Wesay that a natural operator D : S2+T ��E ! F is possibly-conformal , if D(c2g; s) =D(g; s) for all metrics g, sections s, and all positive c 2 R. If F is a natural vectorbundle and D satis�es D(c2g; s) = c�D(g; s), then D is said to be homogeneouswith weight �.Let us notice that the weight of the metric gij is 2 (we consider the inclusiong : S2+T � ! S2T �), that of its inverse gij is �2, while the curvature and all itscovariant derivatives are conformal. The regular operators on Riemannian mani-folds (cf. 4.9) homogeneous in the weight were studied extensively, see e.g. [Atiyah,Bott, Patodi, 73], [Epstein, 75], [Stredder, 75]. Using the above approach, we shallrecover and generalize some of their results.4.17. Recall S2+T � means the bundle functor of pseudo-Riemannian metrics on m-dimensional manifolds with some �xed signature. We shall discuss �rst the naturaloperators D : S2+T ��T (s;r) ! T (q;p) with s < r. Similarly to 4.15, we use 4.8 to �ndG1m -invariant open subsets Vk in J10 ((S2+T ��T (s;r))Rm) forming a �ltration of thewhole jet space. On these subsets D factorizes through smooth Gk+1m -equivariantmappings f i1 :::iqj1:::jp = f i1:::iqj1:::jp (gij; : : : ; gij`1:::`k ; vi1:::isj1:::jr ; : : : ; vi1:::isj1:::jr`1:::`k ):de�ned on �1k Vk. Using the action of the homotheties c�1�ij for large k's, we get(1) cp�qf i1 :::iqj1:::jp(gij; : : : ; gij`1:::`k ; vi1:::isj1:::jr ; : : : ; vi1:::isj1:::jr`1:::`k) == f i1 :::iqj1:::jp (c2gij; : : : ; c2+kgij`1:::`k ; cr�svi1 :::isj1:::jr ; : : : ; cr�s+kvi1:::isj1:::jr`1 :::`k):



40 NATURAL OPERATORS ON CONFORMAL MANIFOLDSNow, let us add the assumption that D is homogeneous with weight �, choosethe change g 7! c�2g of the scale of the metric and insert this new metric into (1).We getcp�q��f i1 :::iqj1 :::jp (gij; : : : ; gij`1:::`k ; vi1:::isj1:::jr ; : : : ; vi1:::isj1:::jr`1:::`k ) == f i1 :::iqj1:::jp(gij; : : : ; ckgij`1:::`k ; cr�svi1 :::isj1:::jr ; : : : ; cr�s+kvi1:::isj1:::jr`1 :::`k):This formula shows that the mappings f i1:::iqj1:::jp are polynomials in all variables exceptgij with functions in gij as coe�cients.According to 4.8 and 4.9, the map D is on Vk determined by a polynomialmapping! = (!i1:::iqj1:::jp(gij ;W ijkl; : : : ;W ijklm1:::mk�2 ; vi1:::isj1:::jr ; : : : ; vi1:::isj1:::jrm1 :::mk ))which is G1m-equivariant on the values of the covariant derivatives of the curvaturesand the sections. If we apply once more the equivariance with respect to thehomothety x 7! c�1x and at the same time the change of the scale of the metricg 7! c�2g, we getcp�q��!i1 :::iqj1:::jp(gij; Rijkl; : : : ; Rijklm1:::mk�2 ; vi1:::isj1:::jr ; : : : ; vi1:::isj1:::jrm1 :::mk) =!i1:::iqj1:::jp(gij; c2Rijkl; : : : ; ckRijklm1:::mk�2 ; cr�svi1 :::isj1:::jr ; : : : ; cr�s+kvi1 :::isj1:::jrm1:::mk):This homogeneity shows that the polynomial functions !i1:::iqj1:::jp must be sums ofhomogeneous polynomials with degrees a` and b` in the variables Rijklm1:::m` andvi1 :::isj1:::jrm1:::m` satisfying(2) 2a0 + � � �+ kak�2 + (r � s)b0 + � � �+ (k + r � s)bk = p� q � �and their coe�cients are functions depending on gij's (in fact polynomials depend-ing on gij and on the square root of the inverse of the determinant of gij, cf. 4.9).Now, we shall �x gij = g0 and use the O(m0; n;R)-equivariance of the homoge-neous components of the polynomial mapping !. For this reason, we shall switchto the variables Rijklm1:::ms = giaRajklm1:::ms (the v's remain). Using the stan-dard polarization technique and Theorem 3.18, we get that each multi homoge-neous component in question results from multiplication of variables Rijklm1;::: ;ms ,vi1 :::isj1:::jrm1:::ms , s = 0; 1; : : : ; r, and application of some O(m0; n)-equivariant tensoroperations on the target space. Hence we have proved:Theorem. All natural operators D : T (s;r) ! T (q;p), s < r, on pseudo-Riemannianmanifolds which are homogeneous in weight result from a �nite number of thefollowing steps:(a) take tensor product of arbitrary covariant derivatives of the curvature tensoror the covariant derivatives of the tensor �elds form the domain(b) tensorize by the metric or by its inverse(c) apply arbitrary GL(m)-equivariant operation(d) take linear combinations.



4. OPERATORS ON (PSEUDO-) RIEMANNIAN MANIFOLDS 414.18. If the codomain of the operator is �T �, then all indices which were not con-tracted must be alternated at the end of the above procedure. Since the metric isa symmetric tensor, we get zero whenever using the above step (b) and alternat-ing on both indices. But contracting over any of them has no proper e�ect, for�ijtjj2;::: ;js = tij2;::: ;js . So we can omit the step (b) at all.Surprisingly enough we shall prove that among the homogeneous natural oper-ators D : S2+T � � T (0;r) ! �T � with non-negative weights, there are no other onesthen those obtained by the evaluation of the operators from Theorem 4.11 usingthe Levi-Civit�a connection.It is more suitable to discuss the curvatures and their covariant derivatives inthe form Rijklm1:::ms . These are all of weight two. The Riemannian curvatureis a two-form with values in the algebra of skew-symmetric matrices, so we havethe symmetry Rijkl = �Rjikl in the positive de�nite case. The pseudo-Riemanniancurvature has values in `pseudo-skew-symmetric' matrices, but after shifting theindex down, we get always the same symmetry, i.e.(1) Rijkl = �Rjikl:Therefore, the evaluation of the Chern forms using the pseudo-Riemannian connec-tion yields zero in degrees not divisible by four and the Pontrjagin forms in degrees4`.Theorem. There are no non-zero homogeneous natural operators D : S2+T � �T (0;r) ! �T � with a positive weight. The algebra of all possibly-conformal naturaloperators D : S2+T � � T (0;r) ! �T � is generated by the Pontrjagin forms pq, thealternation and the exterior di�erential. The operators which do not depend on thesecond argument are generated by the Pontrjagin forms.16Proof. The theorem will follow quite easily from the above proposition using Lem-mas 4.12{4.14 concerning the symmetries of the curvature of arbitrary torsion-freeconnections and the one more symmetry speci�c for the pseudo-Riemannian cur-vatures:Sublemma. The alternation of Rijklm1:::ms on arbitrary 3 indices among the �rstfour or �ve ones is zero.Proof. Since the pseudo-Riemannian connections satisfy Rijkl = Rklij (this is aconsequence of (1) and Bianchi identity), Lemma 4.12 and (1) yield this lemma. �Consider a monomial P with degrees as in Rijklm1:::ms and bs in vi1 :::isi1:::irm1:::ms .In view of the above lemma, if P remains non zero after all alternations, then wemust contract on at least two indices in each Rijklm1:::ms with s > 0 and so we canalternate over at most 2a0 + � � �+ kak�2 + pb0 + : : : (p+ k)bk indices. This means16This generalizes the famous Gilkey theorem on the uniqueness of the Pontrjagin forms,see [Gilkey, 73], [Atiyah, Bott, Patodi, 73]. The Gilkey theorem describes the regular possibly-conformal natural forms in the Riemannian case, while we use no assumptions on the order orpolynomiality or regularity, only the smoothness. In [Gilkey, 75], the uniqueness of the Pontrjaginforms is proved in the pseudo-Riemannian case as well. Let us remark, Gilkey proves his theoremsdirectly discussing the derivatives of the metric.



42 NATURAL OPERATORS ON CONFORMAL MANIFOLDSp � 2a0+ � � �+ kak�2+ rb0+ : : : (r+ k)bk = p��. Consequently � � 0 if there is anon-zero natural form with weight �. This proves the �rst assertion of the theorem.Let � = 0. Since the weight of gij is �2, any contraction on two indices in themonomial decreases the weight of the operator by 2. Every covariant derivativeRijklm1:::ms of the curvature has weight 2. So we must contract on exactly twoindices in each Rijklm1:::ms which implies, there are s+2 of them under alternation.But then there must appear three alternated indices among the �rst �ve if s 6= 0.This proves a1 = � � � = ak = 0. Moreover, there is no further contraction forour disposal, and so any covariant derivative of the tensors of order greater thenone kills the whole monomial after alternation. Hence all the natural operatorsare generated by the forms pq, the alternation and the exterior di�erential. Thiscompletes the proof. �4.19. Exactly in the same way as in 4.15, we can modify the proof of Theorem 4.18for the case r = 0. In the implicit description of all operators D : S2+T � � T (0;0) !T (q;p) in 3.3, we have to add the compositions with smooth real functions and wegetTheorem. There are no non-zero homogeneous natural operators D : S2+T � �T (0;0) ! �T � with a positive weight. The algebra of all possibly-conformal naturaloperators D : S2+T � � T (0;0) ! �T � is generated by the Pontrjagin forms pq, thecompositions with arbitrary smooth functions of one real variable and the exteriordi�erential. �4.20. Linear operations homogeneous in weight. The discussion from theproof of the Theorem 4.18 can be continued for any �xed negative weight. In par-ticular, the situation is interesting for � = �2. Beside the well known codi�erential� : �p ! �p�1, the compositions d � � and � � d (the Laplace-Beltrami operator is� = � � d + d � �), and the multiplication by the scalar curvature, there appearsome other simple operators. Let us describe this case in more detail for the linearoperators �pT � ! �pT � (in the Riemannian case and under stronger assumptionsthis can be also found in [Stredder, 75]).If compared with the proof of 4.18, we have exactly one more contraction for ourdisposal in each monomial. Hence we might involve also more covariant derivatives.But once there appears Rijklm1:::ms with s > 0, we have never enough contractionsto kill a necessary number of indices. If Rijkl appears, then no covariant derivativeof the argument can be involved for the same reason. So there are only the followingpossibilities:(1) Rababvi1:::ip ; Raba[i1vi2:::ip ]b; Rab[i1i2vi3:::ip]ab; vi1:::ipaa; v[i1:::ip�1aaip]Here [: : : ] denotes the alternation of the indicated indices and all natural operatorsin question result from a linear combination of these �ve ones.The codi�erential � is de�ned as the formal adjoint to d, i.e. we requireZUhd!; �i� = ZU h!; ��i�for all forms ! 2 
p�1, � 2 
p with compact supports in U . Here h ; i is the induced(pseudo-) Riemannianmetric de�ned by hvi1:::ip ; wj1:::jpi = 1p!vi1:::ipwi1:::ip , and � is



4. OPERATORS ON (PSEUDO-) RIEMANNIAN MANIFOLDS 43the local Riemannian volume form on U . (U is small enough to allow the existenceof �, �i1:::im = ((�1)n det(gij))1=2"i1:::im , where "i1:::im is the Levi-Civit�a tensor.)Clearly, the de�nition does not depend on the orientation (i.e. on the choice of �)and � is a local linear operator 
p ! 
p�1. Once we have chosen �, we can de�nethe Hodge star operator � : 
p ! 
m�p by the equality h!; �i� = ! ^ ��. Thisyields for ! = vi1:::ip the expression�! = 1p!vi1:::ip�i1:::ip ip+1:::im :Now, we compute easily for ! 2 
p� � ! = 1p!(m � p)!vj1 : : : jp�j1:::jpjp+1 :::jm�jp+1:::jm i1 : : : ip = (�1)(m�p)p!:Further we get(�d�)(vi1:::ip) = �( 1p!vj1:::jp [im+1�j1:::jp ip+1:::im]) == 1p!(m� p)!vj1:::jp[km+1�j1:::jpkp+1:::km]�kp+1:::kmkm+1 i1:::ip�1 == (�1)p(m � p+ 1)vi1:::ip�1aa:Let us choose ! 2 
p�1, � 2 
m�p and write the equation for � with ! and ��:0 = ZU(�1)p(m�p)d! ^ � � ZU ! ^ (�� � �) = ZU (�1)p(m�p)d(! ^ �):Since this holds for all ! and �, we get ��� = (�1p(m�p)+pd) and so, �nally,� = (�1)pm+m+1(�d�) = (�1)(p+1)(m+1)(m � p+ 1)vi1:::ip�1aa:Now, we are ready to write down the generators from (1) (up to constant mul-tiples).4.21. Proposition. All linear operators �pT � ! �pT � on pseudo-Riemannianmanifolds which are homogeneous with weight �2 are linearly generated by thefollowing generators: the multiplication by scalar curvature, the contraction withthe Ricci curvature, the contraction with the full pseudo-Riemannian curvature ,the compositions � � d and d � �.4.22. Operations on oriented pseudo-Riemannianmanifolds. Let us noticethat in the description of natural operators S2+T � �E ! F we used the O(m0; n)-invariance as late as at the very end of 4.17 and that the whole proof of 4.18 usesonly the discussion on the steps from Proposition 4.17. Therefore, we can proveeasily:



44 NATURAL OPERATORS ON CONFORMAL MANIFOLDSTheorem. All natural operators D : T (s;r) ! T (q;p), s < r, on oriented pseudo-Riemannianmanifoldswhich are homogeneous in weight result from a �nite numberof the following steps:(a) take tensor product of arbitrary covariant derivatives of the curvature tensoror the covariant derivatives of the tensor �elds from the domain(b) tensorize by the metric or by its inverse(c) tensorize by the (pseudo-) Riemannian volume form �(d) apply arbitrary GL(m)-equivariant operation(e) take linear combinations.Proof. It remains to prove that the covariant derivatives of the volume form �cannot be involved. But the latter are zero, for the covariant derivative is de�nedthrough the parallel transport which consists of isometries. �Let us remark that the latter theorem, as well as Theorems 4.17 and 4.10 arevalid also without the requirement s < r if we add the polynomiality assumption.4.23. Possibly-conformal linear operators on forms. At the end of this sec-tion, we prepare some technical results which shall be of fundamental importance inour description of all conformally invariant operators on conformally at manifoldsin Section 8.As we have mentioned, the volume form � is de�ned by the expression �i1 :::im =((�1)n det(gij))1=2"i1:::im (the signature is (m0; n)) and so it is evidently homoge-neous with weightm. Thus, the homogeneous weight of � : 
p ! 
m�p ism�2p. Ingeneral, there exist more possibly-conformal natural operators in the oriented case.First of all, if the dimensionm = 2p is even, then �� : 
p ! 
p is identity up to signand we can split the space of p-forms, 
p = 
p+ �
p�, where 
� are the two eigenspaces for �. We shall see later that these spaces are not only O(m0; n)-invariantbut even irreducible. If we compose the exterior di�erential d with the projections,we get the operators d = d+ + d� and the compositions d � d� are not more zero.Further, it might happen that composing enough d's and �'s together, we get apossibly-conformal operator. Let us write �q = �d � : : :d� : 
q+1 ! 
m�q�1, q < p,with m� 2q � 1 stars involved, and Dq = d � �q � d : 
q ! 
m�q.Proposition. If the dimension m = 2p is even, then each operator D de�ned byD = Dq = d��q �d or D = �q �d or D = �q is a possibly-conformal natural operatoron oriented pseudo-Riemannian manifolds. In particular, Dp�1 : 
p�1 ! 
p+1equals to d � d = d � d+ � d � d�. Up to constant multiples and up to termsinvolving the curvature and its covariant derivatives, the operators D are the onlynon-zero possibly-conformal linear natural operator on forms on (oriented) pseudo-Riemannian manifolds beside the exterior di�erentials d, d� and the identities.If the dimensionm is odd, then up to constant multiples and up to terms involv-ing the curvature and its covariant derivatives, the only non-zero possibly-conformallinear natural operators on forms on (oriented) pseudo-Riemannian manifolds arethe exterior di�erentials and the identities.Proof. Clearly each operator D is natural. If we start in 
q+1 and apply �d�,then the mappings go: 
q+1 7! 
m�q�1 7! 
m�q 7! 
q while the weights whichare added are: 0 7! m � 2q � 2 7! m � 2q � 2 7! �2 (the total is obvious { the



4. OPERATORS ON (PSEUDO-) RIEMANNIAN MANIFOLDS 45weight of �). Hence if m = 2p, q < p and if we start at 
q+1 we reach weight zeroexactly after composing (m � 2q � 2)-times d� and applying � at the very end. Inall other cases we never get weight zero, for each turn around decreases the weightby 2 and once we get back to the initial position with a negative weight in all threelast positions the hope is lost.Let us now perform the discussion from 4.18 in this special situation and let usrestrict ourselves to the natural operators on the whole category of (not oriented)pseudo-Riemannian manifolds. If we want to get a linear operator D : 
q ! 
q0which is non-zero on at manifolds, then the only monomials which make senseare of the form vi1:::iql1 :::ls . Since we do not admit the curvatures, we may restrictourselves to the at case and so the covariant derivatives lk are symmetric. Thusat most one index among the l's may remain uncontracted and at most one can becontracted with some of the i's. Hence what we only can do is to involve 2s or 2s+1or 2s+2 derivatives, to choose s pairs, to contract them and to contract one of theremaining indices (if any) with some of the i's. Hence, up to constant multiplesand linear combinations, D = d � � : : : � d or D = � � d : : :� d or D = d � � : : : � � orD = � � d : : : � � and we get q0 � q = 1 or 0 or 0 or �1, respectively.On the space of all natural operators D : 
q ! 
q0 , there is the canonical actionofO(m0; n)=SO(m0; n) =Z2 and so each such operator is a sumD = D++D� whereD+ is invariant with respect to the change of orientation whileD� changes the sign.If D is natural and possibly-conformal, then also both D+ and D� are natural andpossibly-conformal. Now, notice that ��D� is invariant with respect to the changeof orientation and D� = � � �D�. Thus, �D� : 
q ! 
m�q0 and, up to constantmultiples and linear combinations, either m�q0�q = 1 and ��D� = �d�� : : :�d, orm�q0�q = 0 and ��D� = �� �d : : :�d or ��D� = �d�� : : :��, or m�q0�q = �1and ��D� = ���d : : :��. The last Hodge star in these operators acts on 
m�q0 andso its weight is 2q0�m. If m is odd then this can never kill the even negative weightappearing through �'s. Thus, there is no codi�erential involved in the expression,D� = 0 and D is either exterior di�erential or identity (up to constant multiples).This proves the last statement of the proposition.If m = 2p is even and 2q0�m < 0, then the weight of � is negative and we get thesame result as in the odd-dimensional case. If 2q0�m � 0, then a simple discussionshows that the only possible operators are those listed in the proposition. �We can describe the most interesting operators by the following two diagrams,separately for the even and odd dimension m.The even case m = 2p: 
p+hhhjd)'''d+
0 wd 
1 wd � � � wd 
p�1 
p+1 wd � � � wd 
m�1 wd 
m
p�CAAAd� ����dDp�1=d�d=d�d+�d�d� uD1=d�(�d)m�3 uD0=d�(�d)m�1 uThe diagram is not commutative! The horizontal line is exact, but not the arrowsin the central diamond. On the other hand, all three operators 
p�1 ! 
p+1



46 NATURAL OPERATORS ON CONFORMAL MANIFOLDSdi�er by constant multiples. The diagram does not exhaust all operators from theproposition, but notice that the operators indicated on the arrows are unique, upto multiples.The odd-dimensional case coincides with the de Rham resolvent:0 w 
0 wd 
1 wd � � � wd 
m�1 wd 
m w 0We shall see later on, that the arrows in the above diagrams correspond exactlyto the conformal operators on forms on conformally at manifolds.4.24. Linear operators on functions. Another important information is thedescription of all homogenous linear operators on functions with values in functions.For each even number 2k 2 N we de�ne the operator Ak : 
0 ! 
0 by A(v) =vb1b1:::bkbk , i.e. we take the 2k-th covariant derivative of v and contract all indices.Notice that if we change our choice of the contracted couples of indices then theresult di�ers by some expression built of curvatures and its covariant derivatives,cf. 4.13. In particular, on the at manifolds we get no di�erence. The operator Akis a homogeneous natural linear operator with weight �2k. In view of the abovediscussion there is no other possibility for homogenous linear operators beside thoseinvolving the curvature or its covariant derivatives. Thus we have proved:Proposition. Up to constant multiples and up to terms involving the curvatureand its covariant derivatives, the operators Ak are the only linear homogeneousnatural operators de�ned on functions with values in functions. In particular, thereare no homogeneous operators with an odd weight.5. Conformally at manifolds5.1. Conformal structures. A conformal (pseudo-Riemannian) manifold M isan m-dimensional manifold with a CO(m0; n;R)-structure, m = m0 + n, see 2.11for the de�nition. Hence M is a base manifold of a principal �ber bundle FM �P 1M with structure group CO(m0; n;R). By 2.13, the latter bundles correspondto sections of P 1M=CO(m0; n;R). Whenever we choose representing local sectionswith values in the cosets of P 1M=CO(m0; n;R), we get an induced reduction ofP 1M to O(m0; n) and, moreover, if we take another representing local sections,then the corresponding metric will be deformed by multiplication by a smoothreal function. Analogously we de�ne the complex conformal structures on complexmanifolds.Further, by the de�nition, a mapping f : M ! N between conformal manifoldsis a morphism inMfm(O(m0; n;R)) if and only if P 1f(FM ) � FN , and the latterhappens if and only if f preserves each metric from the conformal class up tomultiplication by a function. Thus, we can study the conformal local isomorphismsby �xing an arbitrary metric from the given conformal class.In this section, we shall deal mostly with the real manifolds.5.2. De�nition. The at conformal structure �FRm on Rm is determined by thecanonical (pseudo-) Euclidean metric. A conformal manifold (M;FM ) is calledlocally at if each point x 2M admits a local conformal isomorphism (M;FM )!(Rm; �FRm) de�ned at x.



5. CONFORMALLY FLAT MANIFOLDS 475.3. Local conformal transformations on the at Rm. We shall write g = gijfor the canonical (pseudo-) metric and its evaluation on vectors will be denoted byh ; i. Further we write jxj2 for the value hx; xi. Each local conformal isomorphismf determines the positive (locally de�ned) function �2 de�ned by f�g = �2g. Thereare four types of evident local conformal isomorphisms on Rm:(a) the transformations from O(m0; n;R) are de�ned globally, �(x) = 1(b) the translations x 7! x+ a are de�ned globally, �(x) = 1(c) the homotheties (dilatations) x 7! �x are de�ned globally, �(x) = �� isconstant(d) the inversions x 7! jx�x0j�2(x�x0) are de�ned for all x with jx�x0j2 6= 0,�(x) is a constant multiple of jx� x0j�2.To see that the inversions are really conformal, let us write down the tangent of theinversion f with x0 = 0 at x evaluated on �. We get Txf:� = jxj�2��2h�; xijxj�4x,so that jxj4jTxf:�j2 = h� � 2h�;xihx;xi x; � � 2h�;xihx;xi xi = h�; �i. This yields the � as statedin (d).These four types of mappings generate a pseudogroup of local conformal trans-formations. If the dimension m = 2, then there is a plenty of other locally de�nedconformal transformations, for each complex analytic function is conformal. Weshall restrict ourselves to the case m � 3 in the rest of this section.5.4. The Liouville theorem. All smooth local conformal transformations onthe pseudo-Euclidean space Rm0+n, m0 + n � 3, are generated by the mappings5.3.(a){(d).Proof. The indices in this proof will be always concrete (no `Penrose abstract indexnotation'). Let us consider a locally de�ned conformalmapping f : Rm! Rm. Thismeans, the Jacobi matrix D = D(x) = (@fi(x)@xj ) is an element of CO(m0; n;R) foreach x from the domain. Equivalently, for each tangent vector � at x we havejD(x):�j2 = (�(x))2j�j2 for some �xed smooth positive function �. We shall usethe brief notation D�(x) := Tf � �(x) for an arbitrary vector �eld �. Consider alocal frame �1; : : : ; �m at x belonging to the at O(m0; n;R)-structure, e.g. we mayidentify �1; : : : ; �m with the standard basis of Rm. We shall view � as constantvector �elds on Rm. Then we have (globally)(1) 0 = h�i; �ji = hD�i; D�ji; i 6= j:If we di�erentiate the latter equality in the direction of a third vector �eld �k, weget(2) 0 = @�k hD�i; D�ji = h@�kD�i; D�ji+ hD�i; @�kD�j i:Now, we �x three di�erent indices i, j, k (recall m � 3) and we write down (2) threetimes with a cyclic permutation of these indices. Since our choice of the �'s is avery special one, we have @�iD�j = @�jD�i (in fact D�k(x) =Pi(@fi=@xk)(x)�i(x)and �i is constant, and so the latter claim follows from the symmetry of the secondpartial derivatives). Thus, if we add the �rst two equalities and subtract the thirdone, we obtain h@�iD�j ; D�ki = 0:



48 NATURAL OPERATORS ON CONFORMAL MANIFOLDSSince this holds for each k with k 6= i, k 6= j, there are functions �ij and �ij suchthat(3) @�iD�j = �ijD�i + �ijD�j :By the de�nition, these functions satisfy(4) �ij = 1jD�ij2 h@�iD�j ; D�ii = 12�2j�ij2@�j hD�i; D�ii = 1�@�j��ij = 1�@�i�:Let us denote �(x) = 1�(x) . The Hessian H = @2�(x)@xi@xj is a bilinear form at each xfrom the domain.Sublemma. It holds H(x) = �g(x) with � constant.Proof. We shall write y = f(x). Using (3) and (4) we express @�i@�j (�y):(5) @�i@�j (�y) = (@�i@�j�)y + (@�j�)D�i + (@�i�)D�j + �(@�i@�jy) == (@�i@�j�)y + �(�ijD�i + �ijD�j) � 1�2 (@�j�)D�i � 1�2 (@�i�)D�j = (@�i@�j�)y:If we di�erentiate (5) with respect to �k, we get@�k@�i@�j (�y) = (@�i@�j�)D�k + (@�k@�i@�j�)y:Since two of the three terms commute in i, j, k, the third one must commute aswell. Hence we have for two linear independent vectors D�k and D�i the equality(@�i@�j�)D�k = (@�k@�j�)D�i . This implies H(�i; �j) = 0 for all i 6= j. Since thevectors satisfy h�i; �ji = 0, the latter means Hij(x) = �(x)gij = 0 for all di�erentindices i, j. Since the function � is invariant with respect to isometries, Hii(x) aredetermined by H11 =: �(x) and Hij(x) = �(x)gij for all indices i and j. We choosenow an arbitrary third index k and di�erentiate@�k@�i@�j� = (@�k�)h�i; �ji:The left hand side is commutative in i and k, so we geth(@�k�)�i � (@�i�)�k; �ji = 0:Since all the three vectors are linearly independent, the latter implies @�k� = 0 andso � is constant. �The sublemma yields the system of partial di�erential equations for � which iseasy to solve: @2�@xi@xj = �gij�(x) = 1�(x) = a1jx� x0j2 + b1; a1; b1 2 R:



5. CONFORMALLY FLAT MANIFOLDS 49If we apply the same procedure to the inverse mapping x = f�1(y) we get�(y) = 1�(y) = 1� = a2jy � y0j2 + b2and so the relation �(x)�(y) = 1 yields the implicit description of f(6) (a1jx� x0j2 + b1)(a2jy � y0j2 + b2) = 1:Composing with translations we can arrange x0 = y0 = f(0) = 0. The implicitexpression (6) shows that f transforms spheres into spheres. Let us �x x withjxj2 > 0 (if jxj2 � 0 for all x, we can go through the whole proof with �g insteadof g) and let us de�ne a curve [0;1) ! Rm, t 7! x(t) = tjxjx. This curve istransformed into a curve y(t) = f(x(t)) and we can evaluate the value jyj = jf(x)jas follows (notice jyj2 > 0 as jxj2 > 0)jyj = Z jxj0 djy(t)jdt dt = Z jxj0 �(x(t))dt = Z jxj0 1a1t2 + b1dt:The integral on the right-hand side is a transcendent function in jxj, except a1b1 =0. In view of (6), either a1 = 0 or b1 = 0.Assume a1 = 0. Hence both � and � are constant and so (5) shows that y = f(x)is linear. Consequently f must be an element from CO(m0; n).If b1 = 0, then the composition of f with the inversion reduces the situation tothe previous case and the Liouville theorem is proved. �5.5. Stereographic projections. We would like to de�ne the conformal trans-formations globally on a suitable conformally at manifold since then they willform a �nite dimensional Lie group and the conformal invariance of operatorswill be better understood. For this reason we have to pass from the pseudo-Euclidean spaces to pseudo-spheres. Consider the pseudo-Euclidean space Rm withthe canonical pseudo-metric described by the matrix J = �Im0 00 �In� and thespace Rm+2 = R�Rm0+n �R equipped with the formS = 0@ 0 0 10 J 01 0 01AThis is a realization of the pseudo-Euclidean space with signature (m0 + 1; n+ 1)and the `light cone' xTSx = 0 of all vectors with jxj2 = 0 describes a quadric inthe projective space Pm+1(R). This quadric is called the M�obius space S(m0 ;n). Weshall identify the M�obius space with the pseudo-sphere S(m0 ;n), at least locally.Consider a (`�nite') point (z; y) = (z; y1; : : : ; ym) 2 Rm+1, jyj2 + z2 = 1, on the(pseudo-) sphere yTJy+z2 = 1. Let us de�ne a point in Pm+1(R) with homogeneouscoordinates (x0; : : : ; xm+1)x0 = 1p2(z � 1); xm+1 = 1p2(z + 1); x1 = y1; : : : ; xm = ym:



50 NATURAL OPERATORS ON CONFORMAL MANIFOLDSClearly xTSx = z2�1+yTJy = 0, hence we have de�ned a mapping � transformingthe `�nite part' of the pseudo-sphere into S(m0 ;n). We claim that this mapping isinjective and in the positive de�nite case even bijective.Indeed, let us take x = (1; p; q) = (1; p1; : : : ; pm; q) 2 S(m0 ;n) and try to �nd somesuitable multiple of these homogeneous coordinates to obtain the correspondingpoint ��1(x) = (z; y) on the pseudo-sphere. So let us consider a multiple of the�rst and the last coordinates and try to �nd the factor so that the �rst two relationsin the de�nition of � are satis�ed: c = 1p2(z�1), cq = 1p2 (z+1), i.e. z = p2c+1 =p2cq � 1. So a good possibility seems to be c = p2q�1 . Since x 2 S(m0 ;n), we have2q = �jpj2. Hence c = �p21+ 12 jpj2 and z = �212 jpj2+1 + 1 = 12 jpj2�112 jpj2+1 . A direct evaluationshows z2 + c2jpj2 = 1 so that we really get a point of the pseudo-sphere and wehad no free choice. If the signature is (m; 0), we have a global bijection (the pointwith z = 1 is obtained if we replace the roles of the �rst and the last homogeneouscoordinate), but if the metric is inde�nite, we need 12 jpj2 6= �1.Every vector p 2 Rm de�nes the matrix P = 0@ 0 0 0p 0 00 �pTJ 01A which lies inthe Lie algebra o(m0 + 1; n + 1) (i.e. P TS + SP = 0). Applying the exponentialmapping, we obtain a matrix in O(m0 + 1; n+ 1)(1) expP = 0@ 1 0 0p Im 0�12 jpj2 �pTJ 11AIn this way we get a mapping  : Rm! S(m0;n)(2) p 7! exp0@ 0 0 0p 0 00 �pTJ 01A0@ 1001A = 0@ 1p�12 jpj21AFor all points with jpj2 6= �2 we can compose this mapping with the inverse ofthe above injection � of the pseudo-sphere and we get the so called stereographicprojection ' : Rm! S(m0 ;n)(3) p 7! (z; y) = ( 12 jpj2 � 112 jp2j+ 1 ; �p2p12 jpj2 + 1) 2 S(m0 ;n) � Rm+1:S(m0 ;n)Rm/'''') iiiij' S(m0 ;n)u y �



5. CONFORMALLY FLAT MANIFOLDS 51Lemma. The mapping ' is conformal with the corresponding `dilatation function'(�(p))2 = 2( 12 jpj2+1)2 .Proof. Let us write Rm0+n+1 = R�Rm0+n where the second term in the productis the pseudo-Euclidean space with signature (m0; n) while the �rst one is the usualR. Let a be the vector (1; 0; : : : ; 0) 2 R� Rm0+n, i.e. ha; xi = 0 if and only ifx 2 f0g �Rm0+n.If we compose our sterographic projection with multiplication p 7! �p2p weget the more usual formula for the stereographic projection. This compositioncorresponds to the translation of the whole `projection hyper-plane' in Rm+1 to thepoint (1 �p2)a and taking the symmetry with respect to the origin. Both thesemaps are conformal, so we can work with the more usual formula(4) �'(p) = 2jpj2 + 1p+ jpj2 � 1jpj2 + 1ain our proof. In order to prove that (4) is conform, we have to evaluate jTp':�j fora tangent vector � at a point from the domain of �'. We haveTp �':� = 2�(jpj2 + 1)� 4ph�; pi+ 4ah�; pi(jpj2 + 1)2j(jpj2 + 1)2Tp �'�j2 = j2�(jpj2+ 1)� 4ph�; pi+ 4ah�; pij2 = 4(jpj2 + 1)2h�; �i:The dilatation for the ' in the statement of the proposition is obtained by inserting1p2p into the latter formula.5.6. The group of conformal transformations. The Lie group O(m0+1; n+1)acts transitively on the M�obius space S(m0;n). We shall use 5.5.(2) for a represen-tation of all local conformal transformations on the pseudo-Euclidean Rm0+n asglobal transformations of S(m0 ;n).(a) A 2 O(m0; n), i.e. jApj2 = jpj2, yields0@ 1p�12 jpj21A 7! 0@ 1 0 00 A 00 0 11A0@ 1p�12 jpj21A = 0@ 1Ap�12 jpj21A(b) the translation p 7! p+ q corresponds to the action of expQ, cf. 5.5.(1)0@ 1p�12 jpj21A 7! 0@ 1 0 0q Im 0�12 jqj2 �qTJ 11A0@ 1p�12 jpj21A = 0@ 1p+ q�12 (jpj2 + jqj2 + 2hq; pi)1A(c) the dilatation p 7! �p, � 6= 0, is expressed by0@ 1p�12 jpj21A 7! 0@��1 0 00 Im 00 0 �1A0@ 1p�12 jpj21A = 0@ ��1p�12�jpj21A = 0@ 1�p�12 j�pj21A



52 NATURAL OPERATORS ON CONFORMAL MANIFOLDS(d) the inversion p 7! 1jpj2 p is not de�ned at jpj = 0, but the correspondingtransformation on S(m0 ;n) is de�ned globally by0@ 1p�12 jpj21A 7! 0@ 0 0 �20 Im 0�12 0 0 1A0@ 1p�12 jpj21A = 0@ jpj2p�12 1AIf jpj 6= 0 the value equals to xT = (1; 1jpj2 p;�12 jpj�2).Using the inversion, we see that all these transformations are well de�ned also inthe points with homogeneous coordinates starting with x0 = 0.5.7. Spheres as homogeneous spaces. The transformations 5.6.(a){(d) gener-ate the whole group O(m0+1; n+1) and, together with the conformal sterographicprojections, they de�ne a smooth atlas and a conformal structure on S(m0 ;n). Sinceall conformal transformations of S(m0;n) must be locally generated by those fromO(m0 + 1; n+ 1), the elements from O(m0 + 1; n+ 1) exhaust exactly all conformaltransformations on S(m0 ;n). Let us �x the point x = (1; 0: : : : ; 0) 2 S(m0 ;n). Itsisotropy group B consists of matrices of the form0@ a�1 q �0 A �0 0 a1Awhere A 2 O(m0; n), q 2 Rm, a 2 R, a 6= 0, and the stars indicate expressionsdetermined by A, and q. This subgroup is called the Poincar�e conformal group.Consequently, we have identi�ed the pseudo-spheres (or, more precise, the M�obiusspaces) with the homogeneous spaces O(m0 + 1; n + 1)=B and the canonical leftactions of O(m0 + 1; n+ 1) on them exhausts just all conformal transformations.The same description with complex orthogonal groups applies to the complexconfomal spheres.5.8. The conformal structure on S(m0 ;n). If we employ the stereographic pro-jection, we can identify elements h from the Poincar�e conformal group with locallyde�ned di�eomorphisms �(h) on Rm0+n. By our construction and by the Liouvilletheorem, �(h) = idRm if and only if j20(�(h)) = j20 idRm and we can identify theLie group B with a subgroup of invJ2x(S(m0 ;n); S(m0 ;n))x, and via the stereographicprojection with a subgroup in the jet group G2m. The situation can be describedby a diagram O(m0 + 1; n+ 1)u w?����� P 2S(m0 ;n)uP 2Rm'''')P 2'uRm� ' [[[[[]'S(m0 ;n) wid S(m0;n)



5. CONFORMALLY FLAT MANIFOLDS 53The stereographic projection determines a locally de�ned map O(m0 + 1; n+ 1)!P 2Rm indicated in the diagram. This map is equivariant with respect to the prin-cipal action of the Poincar�e conformal group and extends to a global map. Conse-quently, O(m0 + 1; n+ 1) can be viewed as a reduction of the second frame bundleP 2S(m0 ;n). This will be of basic importance later on for linking the results obtainedin the at case with the conformal invariance on curved conformal manifolds.5.9. Proposition. The Lie algebra b of the group B � O(m0+1; n+1) decomposesas a sum of b0 = co(m0; n) and b1 = Rm� with the projections0@�a 0 00 A 00 0 a1A 7! A+ aIm 0@ 0 q 00 0 �JqT0 0 0 1A 7! qwhere A 2 o(m0n), a 2 R, q 2 Rm�.The whole algebra decomposes as o(m0 +1; n+1) = b�1+ b0+ b1, where b�1 =Rm corresponds to the Abelian group of the `translations', see 5.5.(2), and thisdecomposition is a grading. All three summands are subalgebras, b�1 are Abelian.The remaining non-trivial commutators are [A;A0] = AA0 � A0A, [A; p] = Ap,[q; A] = qA and [p; q] = pq � J(pq)TJ+ (qp)Im with A;A0 2 co(m0; n), p 2 b�1,q 2 b1. Further,(1) There is the distinguished element E = �Im 2 b0 satisfyingbi = fX 2 o(m0 + 1; n+ 1); [E;X] = iXg; i = �1; 0; 1:(2) The linear endomorphism � : g! g de�ned for all Xi 2 bi by�(X�1 +X0 +X1) = �X�1 +X0 �X1is an ivolutive automorphism of g(3) hb�1 + b1; b0i = 0, i.e. b�1 and b1 are orthogonal to b0 with respect to theKilling form(4) the Killing form is zero on b�1 and b1(5) b1 and b�1 are dual spaces with respect to the Killing form(6) the adjoint representations of b0 on b�1 and b1 are contragredient repre-sentations on the dual spacesProof. The proof of the �rst part consists in obvious computations of the commu-tators and veri�cations that the values are in the proper subspaces. Let us show atleast one case. Given q 2 Rm� and p 2 Rm we have240@ 0 0 0p 0 00 �pTJ 01A ;0@ 0 q 00 0 �JqT0 0 0 1A35 = 0@�qp 0 00 pq � JqTpTJ 00 0 pT qT 1A= (pq � JqTpTJ+ qpIm)The other cases are even easier.



54 NATURAL OPERATORS ON CONFORMAL MANIFOLDSKnowing the commutator relations, (1) and (2) are obvious. Since the Killingform is invariant with respect to �, we gethX�1 +X1; X0i = h�(X�1 +X1); �(X0)i = �hX�1 +X1; X0iand (3) follows. We have adX�1adY�1 = 0 on b�1 (since the value would be inb�3) and so the Killing form must be zero on b�1. Similarly for b1.In order to prove (5), let us assume hX�1; b1i = 0. Then (3) and (4) implyhX�1; gi = 0 and so X�1 = 0. Analogously we proceed for hX1; gi and this proves(5).Since the Killing form is invariant under the action of adX0, we havehad(X0)X�1; X1i = �hX�1; ad(X0)X1i;X�1 2 b�1, X0 2 b0. This veri�es (6). �5.10. The Lie subalgebra b1 � b corresponds in the jet picture to the kernel ofthe projection G2m ! G1m. The Lie algebras of the jet groups are the algebras ofjets of formal vector �elds with the bracket being the negative of the jets of the Liebrackets of the formal �elds, see [Kol�a�r, Michor, Slov�ak, 93, Section 13].The Lie subgroup B1 in G2m corresponding to b1 is described easily using ouridenti�cations of the generators of the conformal mappings. Notice that the inver-sion 5.6.(d) exchanges the subgroups corresponding to b�1. Since we know that b�1corresponds to translations, see 5.6.(b), we get the mappingRm! Rm determinedby expq, q 2 Rm�, by composing two inversions with the appropriate translationby q: x 7! 1jxj2x 7! 1jxj2x+ q 7! 1jxj2x+ qj 1jxj2x+ qj2 = x+ jx2jq1 + 2hx; qi+ jxj2jqj2 :A tedious but elementary calculation shows that the �rst derivative at the origin isthe identity while the second derivative at the origin evaluated at vectors � and �is D2(0)(�; �) = 2(h�; �iq � h�; qi� � h�; qi�). In the usual coordinates (aij; aijk) onG2m this means B1 = f(�ij ; aijk); aijk = qagaigjk� qagak�ij � qagaj �ik; qa 2 Rm�g whereg is the pseudo-metric in question.Now, B=B1 = CO(m0; n;R) and so O(m0 + 1; n + 1;R)=B1 � P 1S(m0 ;n) is theconformal structure on the pseudo-sphere in the proper sense of De�nition 5.1. Theabove reduction of P 2S(m0;n) to O(m0+1; n+1;R) is the so called �rst prolongationof the �rst order CO(m0; n)-structure, we shall give more details on this constructionat the beginning of Section 9.5.11. Remark. All the previous development can be repeated with the connectedcomponent of the unit, the subgroup SO0(m0+1; n+1), instead of O(m0+1; n+1)without any essential di�erence.17 Hence the oriented pseudo-spheres are the homo-geneous spaces SO0(m0 + 1; n+ 1)=B (with a smaller B then above, the connectedcomponent of the unit). On the Lie algebra level, everything remains unchanged.The above discussion on the homogeneous spaces remains also unchanged in thecomplex case where we do not have to distinguish the signatures. So the complexm-dimensional sphere is the homogeneous space SO0(m+2; C )=B or O(m+2; C )=Bwhere the B's are the complex conformal Poincar�e subgroups.17In the not positive de�nite case, there are four connected components, two of them form thespecial pseudo-orthogonal group SO(m0; n;R).



6. THE FIRST ORDER NATURAL OPERATORS 556. The �rst order natural operatorsFirst of all we have to describe the natural bundles on conformalmanifolds. So letus discuss briey the linear representations of the Poincar�e conformal group, i.e. thenatural vector bundles in the category of conformal manifolds, cf. 2.12. Roughlyspeaking, the natural bundles on a manifold M with a B-structure are bundlesequipped with an action of the group BM of the local Mfm(B)-isomorphisms. Inour case, the Poincar�e conformal group B is the group of all conformal transforma-tions �xing a point of the sphere. In 5.1, we de�ned the conformal structure as thereductions of the �rst order frame bundles to the group CO(m0; n;R). If we de�nea reduction PM of the second order frame bundle P 2M to the Poincar�e conformalgroup B, then the quotient PM=B1 � P 1M is a reduction to CO(m0; n;R) andthe same is valid for the connected components of the units. On the other hand,the general theory of prolongations of G-structures yields that P is just the �rstprolongation of the latter conformal structure, see Section 9.18 We shall see, thereis a naturally de�ned subbundle PM � P 2M with structure group B on each con-formal manifold and so, given a representation of B, there are the correspondingbundles (associated to PM ) on all conformal manifoldsM .Our general problem is to �nd all linear operators transforming sections of suchbundles which intertwine the actions of the conformal transformations, i.e. whichare natural.We want also to involve the so called two-valued representations, i.e. the rep-resentations of the double covering of the Poincar�e group. Of course, there is atopological obstruction to the existence of the corresponding vector bundles, butsince the classi�cation problem of natural operators is a local one, we can alwaysrestrict ourselves to manifolds with a distinguished covering of the reduction of theframe bundle, the so called spin structure. The spheres are always spin manifoldsand so we can use the global formulation in the terms of homogeneous vector bun-dles on spheres, cf. 2.10. But having a representation of a double covering of thejet group in question has another, more unpleasant consequence. We cannot usedirectly our de�nition of the natural operators, for there is no canonical action ofthe conformal transformations on the sections of the bundles. Thus we have to usethe de�nition from 2.14 which does apply. In a large extent, the latter di�cultywill be avoided using the in�nitesimal version of naturality.In this section, we shall employ the classical structure theory of semisimple Liealgebras and their representations in order to describe the �rst order operators.Our main reference is the thin introduction [Samelson, 89], where the reader canlearn quickly all necessary topics. A brief survey of some elementary concepts andresults is also involved in Section 10.18The �rst order structures give direct access to all �rst jets of mappings belonging to thestructure. The prolongations describe directly higher order jets of the morphisms. The conformalstructures form one of very few examples where only �nitely many non-trivial prolongations areavailable. In fact already the second prolongation is trivial which reects the global dependenceof conformal morphisms on 2-jets at a single point. The O(m0; n;R)-structures have no non-trivialprolongation since the isometries are determined by the �rst jets at one point. But for example,the groups of morphisms of symplectic manifolds are in�nite dimensional and the symplecticstructures admit prolongations of any order.



56 NATURAL OPERATORS ON CONFORMAL MANIFOLDS6.1. Let us remind the construction from 2.11, 2.12. For each closed Lie sub-group in the jet group B � Grm we obtain a category of manifolds with B-structures,Mfm(B). In particular there are distinguished natural principal bundlesP : Mfm(B) ! PBm(B) with structure group B over the m-dimensional objects.For each linear representation � : B ! GL(V ) we obtain the corresponding nat-ural bundle F�. The Lie derivative of sections of natural bundles is de�ned forall vector �elds with ows formed by morphisms of the category Mfm(B), the socalled Mfm(B)-�elds. But the values are in the vertical bundles. If the bundlesthemselves are vector bundles, we recover the usual Lie derivative and it is easyto see that the linear natural operators have to commute with the Lie derivativeand vice versa. For the proofs see [Kol�a�r, Michor, Slov�ak, 93, Section 48] or [Cap,Slov�ak, 92] where the result is proved in the non-linear setting. Each natural bun-dle F� admits the so called ow operator F�, a natural operator which transformsMfm(B)-�elds on M into vector �elds on FM . The ow of its value F�X is de-�ned by the application of the functor F� to the ow of the Mfm(B)-�eld X. IfP : Mfm(B) ! PBm(B) is a natural principal bundle, then PX is right invariantfor allMfm(B)-�elds X.Let us consider a linear representation � of the Lie group B in a vector space Vand the associated bundle F�M to the principal bundle p : PM !M . Let us writefu; vg for the class in F�M determined by (u; v) 2 PM � V . The Lie derivative ofthe V -valued functions on PM is de�ned as usual.Lemma. The set of all smooth section C1(F�M ) is identi�ed with the set of B-equivariant mappings in C1(PM;V )B , s 7! ~s, s(p(u)) = fu; ~s(u)g, and for allMfm(B)-�elds X 2 X (M ) and sections s 2 C1(F�M ). The Lie derivative LXscorresponds to LPX~s.Proof. We have only to write down explicitely the de�nition of the Lie derivativeand to compare it with the identi�cation from the lemma. �6.2. The natural operators. In view of the above discussion, we can de�ne thenatural linear operators D as those systems of operators for which DM (LPX~s) =LPX(DM ~s) for all sections and Mfm(B)-�elds. We get exactly the linear naturaloperators acting on the natural bundles on the categories over manifolds with B-structures (de�ned separately for each manifold), but with this formulation we areable to involve also some covering fenomena. Let us consider P and B as in 6.1, acovering �B of B and two representations �1, �2 of �B in V andW . Then some of thenatural bundles PM can be covered by principal �B-bundles �PM . Let us considerthe manifoldsM together with such coverings �PM as distinguished objects. Now,each �PM yields the bundles F�iM and each Mfm(B)-�eld X determines a uniqueright invariant lift, denoted by the same symbol PX, on �PM . Hence in this settingwe can de�ne natural operators between bundles corresponding to representationsof the �nite dimensional coverings of B. Of course, such operators need not to bede�ned on all Mf(B)-objects M , they are well de�ned only on those ones wherethe coverings �PM do exist, cf. 2.14.De�nition. Let �1 : �B ! GL(V ), �2 : �B ! GL(W ) be �nite dimensional linearrepresentations. A system of local operators DM : C1(F�1M )! C1(F�2M ),M 2ObMfm(B), is called an in�nitesimally natural operator if and only if D(LPX ~s) =



6. THE FIRST ORDER NATURAL OPERATORS 57LPX(D~s) for all Mfm(B)-�elds X on M , and DU (sjU ) = DM (s)jU for all sections 2 C1(F�1M ) and open submanifolds U � M .In the sequel, we shall write B for the connected component of the unit inthe Poincar�e conformal group and G for the connected component of the unit inO(m0 + 1; n + 1) or their double coverings. We have described in detail the Liealgebra g of G, g = b�1 � b0 � b1 in the last section. We have seen that thesubgroup of conformal transformations of the sphere S(m0 ;n) �xing a point can beidenti�ed with a subgroup in the second jet group G2m. As mentioned above, thereis the natural principal bundle functor P � P 2 on the conformal manifolds andeach representation � : B ! GL(V ) gives rise to a vector bundle functor F� onMfm(B), FM = PM �� V . The representations of its double-covering will bereferred to as two-valued representations of B, the classical terminology which isuseful since we shall work on the level of Lie algebras.In order to get general information on the invariant operators, we have to restrictour class of natural vector bundles to those coming from (�nite dimensional) irre-ducible representations of B. Unfortunately, we exclude a lot of representations ofB which are not completely reducible, but we still cover all �rst order bundles. Thenormal subgroup B1 corresponding to b1 is commutative and B=B1 is isomorphicto SO0(m0; n;R)�R� (or its double-covering), where R� means the commutativemultiplicative group in R (remember, SO0(m0; n;R) denotes the connected com-ponent of the unit for all signatures of the metrics). On the Lie algebra level, weget the induced representation �0 = Te� and the ideal b1 acts by nilpotent endo-morphisms by the Engel's theorem (b = b0 � b1 is the Levi decomposition). Bythe irreducibility, the action of b1 must be trivial. Thus, � is a trivial extensionof an irreducible representation �1 of SO0(m0; n;R)� R� and the vector bundlesin question are associated bundles P1 ��1 V , where P1 = P=B1 � P 1 is a subbundle in the linear frame bundle with structure group SO0(m0; n;R)� R�. Onthe spin manifoldsM , the principal bundle P1M lifts to ~P1M with structure groupSpin(m0; n;R)�R� and there is the associated vector bundle ~P1M �� V for eachtwo-valued representation � of SO0(m0; n;R)�R�.6.3. The conformal weight. The reductive part b0 in the Levi decompositionb = b0 � b1 decomposes further to the center and the semisimple part, b0 =R�o(m0; n;R). So an irreducible representation �� of b0 (i.e. also of b) is determinedby an element � from the dual of the center R� and a dominant integral weight �for o(m0; n;R). The element �� is a real number called the conformal weight ofthe irreducible representation ��. We shall write V� for the irreducible o(m0; n;R)-module corresponding to the given dominant weight � and V�(�) will denote theirreducible representation with the conformal weight �. The action of t + A 2R�o(m0; n;R) on v 2 V�(�) is v 7! ��t:v+(A:v) where the dot denotes the action ofo(m0; n;R) and the multiplication by a scalar is without notation. On the Lie grouplevel we get (tA):v = t��(A:v). The sign convention is used so that the conformalweight of the metrics is two. This enables the usual identi�cation of sections of thebundles with a conformal weight � with the sections of the corresponding bundleson the underlying Riemannian manifolds (without the conformal weight) whichdepend on the chosen metric and `rescale' by multiplication by the function f� ifthe metric is rescaled by f2.



58 NATURAL OPERATORS ON CONFORMAL MANIFOLDSFor example, let us consider the standard GL(m;R)-representations Rm, Rm�,�m�1R�. With the restrictions of the representations to the pseudo orthogonalgroups, all these O(m0; n;R)-representation are equivalent. However, the restric-tions to the conformal groups yield representations with the conformal weights �1,1 and m � 1.6.4. Representations of the conformal groups. In 10.10 and 10.11, we �ndthe description of the irreducible representations of the complex orthogonal algebrasin the terms of the dominant weights. There is a general theorem, [Zhelobenko, 70,p. 526] which enables to use this description also in the real case.Let G be a semisimple real connected Lie Group and GC be its connected complexform. Then each irreducible �nite dimensional representation of G is uniquelydetermined (up to equivalence) by one of the dominant weights of a covering of GC.If we start with a concrete dominant weight, we take the corresponding complexrepresentation space, we view this space as a complexi�cation of a real one andrestrict the action of the complex group to the real subgroup. It is even possi-ble to verify directly that we get irreducible representations in this way using themethod mentioned in the footnote in 3.13 and Lemma 3.16 where we proved thatSO0(m0; n;R) is birationally isomorphic to an a�ne space.Of course, there is a di�erence concerning the possible conformal weights. Ifdealing with representations of the Lie algebras, they are quite arbitrary elementsin the center of co0(m0; n;K), hence arbitrary real or complex numbers. Howeveronly in the real case all of them also exponentiate to representations of the connectedcomponents of the unit in CSO0(m0; n;R).6.5. Remark. For many Lie subgroups B � Grm, the category Mfm(B) of man-ifolds with B-structures involves enough local isomorphisms to be locally homo-geneous (i.e. there is a local model for all objects and morphisms) and all localisomorphisms belong to ows ofMfm(B)-�elds. In such a situation, the in�nitesi-mally natural operators are systems of operators commuting with the actions of themorphisms, hence the usual natural operators. For detailed discussion see [Cap,Slov�ak, 92].Unfortunately, dealing with the category of conformal manifolds, we are veryfar from the latter situation. On the contrary, the manifolds (generically) admitno conformal vector �elds, and the objects are highly non-homogeneous. Thus,our de�nition of in�nitesimally natural operators yields systems of operators whichcommute with the actions of the morphisms on subcategories which are homoge-neous enough, e.g. on the locally conformally at manifolds.6.6. The �rst order operators on conformal manifolds. In the rest of thissection, we shall solve the following problem: For a given dimension m �nd allnon-zero �rst order natural operators D : F�;� ! F�;� between the vector bundlescorresponding to dominant weights �, � of o(m0; n;R) and conformal weights �, �.So let us �x the weights �, �, �, � and write E ! S(m0;n), F ! S(m0;n) forvalues of the corresponding natural bundles E�;�, F�;� on the pseudo-spheres. Letus notice that the pseudo-spheres are always spin manifolds, so that this is possiblefor all dominant weights. In view of the general theory of natural bundles, thedescription of all in�nitessimally natural operators on the pseudo-spheres and their



6. THE FIRST ORDER NATURAL OPERATORS 59open submanifolds yields the description of all natural operators on the conformallyat Riemannian manifolds.In general, it is a di�cult problem to �nd all possible extensions of a givenoperator to the whole category of conformal Riemannian manifolds, we shall touchit in Section 9. However, dealing with �rst order operators only, the situation isvery simple and we can give a complete answer just now.Our �rst observation will be that each �rst order operator D : C1E ! C1F onthe pseudo-sphere with the at conformal structure which intertwines the actionof the conformal isomorphisms determines a natural operator de�ned on the wholecategory of conformal manifolds. In view of this fact, we shall often refer to D asto a natural operator on the conformal manifolds in the sequel.6.7. Proposition. Every in�nitesimally natural �rst order operator D : C1E !C1F is invariant with respect to the whole group SO0(m0 + 1; n+ 1) of conformaltransformations and extends to a natural operator ~D on the whole category oforiented conformal manifolds and their morphisms.19Proof. Let us write briey G for the connected component of the unit of thepseudo-orthogonal group or the spin group. The pseudo-spheres are then homoge-neous spaces G=B. As discussed in 2.10, the left action of h 2 G on the sections(viewed as mappings in C1(G; V�(�))B) is given by the left multiplication by theinverse h�1. This action coincides with the induced action of the principal bundlemorphism h (acting by left multiplication) on the sections viewed as elements inC1(E), see 2.10. Thus, given a ow of a conformal vector �eld (i.e. a one-parametersubgroup in G) its action on the sections is just the left multiplication by exptXfor some element X in the Lie algebra of G. If we di�erentiate this action, we getjust the Lie derivative with respect to �X, where X stands for the right invariantvector �eld now. So the ow lifts to a one parametric subgroup of principal bundlemorphisms which are just the ow of the above right invariant vector �eld. Hencethe in�nitesimal invariance is equivalent to the usual invariance with respect tothe whole group G, for the image of the exponential mapping generates the wholeconnected component of the unit.20Now, assume we have found an in�nitesimally invariant operator D : C1E !C1F . We have to prove thatD extends uniquely to the whole category of conformalmanifolds, i.e. D determines the linear �rst order operators DM : C1F�(�)M !F�(�)M for all conformal manifoldsM and, moreover, if we deal with representa-19The description of the morphisms is a little unpleasant, in general. In the positive de�nitecase, the latter are just the local conformal isomorphisms keeping the orientations, so there are noproblems. However, in the case of a general signature, there are four components of the unit andtwo of them are described by the value of the determinant (i.e. they form SL(m;R)\O(m0; n;R))and they are further distinguished by certain subdeterminants.20The equivalenceof in�nitesimal invariance and the usual invariance remains valid also for theB-structures with in�nite dimensional groups of automorphisms, see [Cap, Slovak, 92]. In fact, theabove arguments involve a lot of identi�cations. A geometric de�nition of the Lie di�erentiationleads to an operation with values in the vertical bundles (since the Lie derivative should havevalues in the `tangent space to the space of sections' being itself a derivative of curves) and usingthis de�nition, the whole problem becomes very clear, provided the dimension of the group oftransformations in question is �nite. In the cited paper, the main point is to apply suitableanalytical tools in order to reduce the problem to a �nite dimensional one.



60 NATURAL OPERATORS ON CONFORMAL MANIFOLDStions of the pseudo-orthogonal groups then the latter operators have to intertwinethe actions of the local conformal isomorphisms while in the spin case they have tointertwine with the acton of the coverings, see 2.14.Each �rst order operator DM factorizes through a mapping D1M de�ned on the�rst jets of sections, see 2.5. Let us �x a point x 2 M and consider the normalcoordinates with respect to one of the metrics in the conformal class. If we composethe latter mapping with the inverse to the stereographic projection, we get a locallyde�ned mapping ' : S(m0 ;n) ! M with '(0) = x, where 0 2 G=B = S(m0 ;n) is thepoint represented by the unit e 2 G, and the second jet j20' transforms the atconformal metric on the sphere into the �rst jet of the conformal metric onM at x.Having 'we also have the principal �ber bundle morphismP 1' : P 1S(m0 ;n) ! P 1Mand we can choose its covering ~P 1', if necessary. The restrictions of the �rst jetprolongations of the induced mappings on the associated bundles to the �bers over0 depend only on j20'. Hence we can transform the �rst jets of sections of thehomogeneous bundles on the pseudo-sphere at 0 into �rst jets of sections of thecorresponding bundles on M at x using the second jet j20' only, see the diagrambelow. The induced mappings �i de�ne the restriction of the mapping D1M tothe �ber over x which also depends only on the second jet of ' at 0 (and ourchoice of the covering if any). If we choose another �' instead of ' with �'(x) =0 and �' transforming the �rst jets of the conformal metric on M into the atconformal metric on the sphere, then their second jets di�er by a jet of a conformaltransformation on S(m0 ;n) (more explicitly, by a left action of an element from G).Since the operator DS(m0 ;n) is a �rst order operator which is invariant with respectto the action of G by the �rst part of the proof, the whole mapping DSm0 ;n iscompletely determined by the restriction of the induced mapping on the �rst jetsof sections to the �ber over zero. Thus every choice of ' leads to the same mappingD1M on the �ber over x and we have got a well de�ned �rst order operator DM onall confomal Riemannian (spin) manifolds M .On the other hand, the action of an arbitrary local transformation f : M ! Non the �rst jets of sections of F�(�)M depends on the second jets of f in theunderlying points and so the action of each local conformal transformation f : M !N (or the appropriate covering in the spin case) is reected pointwise as an actionof a conformal mapping on the sphere in a similar way, see the diagram below.Consequently, DS(m0 ;n) extends canonically to a system of �rst order operators DMinvariant with respect to all local conformal isomorphisms.J10E w�1uDS(m0n) � J1x(F�;�M )AAAAD u DM wJ1F�;�f J1f(x)(F�;�N )uDNAAAADS(m0 ;n) w' M wf NF0���� w�2 (F�;�M )xhhhk wF�;�f (F�;�N )f(x)hhhk�



6. THE FIRST ORDER NATURAL OPERATORS 616.8. Remarks. We can formulate the �rst part of the above proposition for theinvariant operators on homogeneous bundles, cf. 2.10. Then the �rst part of theproof shows that the in�nitesimal naturality is equivalent to the invariance of theoperators with respect to the action of the group elements by the left multiplicationand the proof goes through for every connected �nite dimensional Lie group Gand its closed Lie subgroup B. Such operators are usually called the translationinvariant operators on homogeneous vector bundles.In the other part of the proof, we found certain canonical extension of a giventranslation invariant operator to the whole category of conformal manifolds. Butwe have not mentioned any uniqueness. If we forget about the spin cases, wecan formulate the whole naturality problem for operators on natural bundles overthe whole category of m-dimensional manifolds, we add the metrics as additionalarguments and the conformal invariance is then reected as a special kind of ho-mogeneity in the metric argument (cf. Section 4). From this point of view, theabove uniqueness problem reads: How far is the natural operator determined by itsrestriction to the conformally at metrics on Rm? For higher order operators, eventhe existence problem of such an extension has not been solved yet in general.6.9. The symbols. By the de�nition, the in�nitesimally conformally invari-ant �rst order operators on the pseudo-spheres DS(m0 ;n) are in bijection with g-equivariant mappings D : (J1E)0 ! F on the �ber over 0 2 S(m0 ;n), see 2.6. Thelatter vector space splits as a sum of the representation space V = V�(�) andV1 = V 
Rm� = V 
 (g=b)�, we shall write J10E = V � V1.Recall from 2.9 that there is the exact sequence(1) 0 �! V 
 (g=b)� i�! V � V1 �10�! V �! 0and the composition D � i de�nes the symbol of D which is equivariant too. Wehave seen in 2.16 that in the Riemannian case each equivariant symbol is a symbolof a natural operator and it follows from the results of Section 4 that all �rst ordernatural operators on Riemannian manifolds are obtained as composition of the �rstcovariant derivative and an operator of order zero in the covariant derivative butof an arbitrary order in the metric itself.The conformal situation is quite similar in the �rst order case, however there aremuch more bundles but less operators. Each conformally invariant linear operatoris clearly invariant with respect to all isometries of any metric in the class. We shalldistinguish some of these Riemannian invariant operators, we shall show that thereare uniquely de�ned conformal weights of the bundles for which we get conformallyinvariant operators and we shall prove that there are no other invariant operatorson the pseudo-spheres.Let us write E�(�) for the homogeneous vector bundle over pseudo-sphere corre-sponding to the dominant weight � of o(m0; n) and conformal weight �. The symbolV� will denote the corresponding o(m0; n)-module. For further notation concerningthe weights see the Appendix.6.10. Theorem [Fegan, 76]. Let � be a dominant weight of o(m0; n), m0+n = m,and let Rm� 
 V� = P� V� be the decomposition into irreducible representations



62 NATURAL OPERATORS ON CONFORMAL MANIFOLDSwith dominant weights � of o(m0; n). Let us de�ne�(�; �) = 12(m � 1) + h�; 2� + �i � h�; 2� + �iwhere � is half the sum of all positive roots of o(m0; n) (equivalently � is the lowestform, i.e. the sum of all fundamental forms) and h ; i is the Killing form.Then, beside the zero operators and the constant multiples of the identities, alllinear in�nitesimally natural �rst order operators which are de�ned on the sec-tions of the vector bundles E�;� with some conformal weight � are given by theprojections �� � r : C1(E�(�)) r�! C1(Rm�
 E�(�)) ���! C1(E�(�))of the �rst covariant derivatives with respect to an arbitrary metric from the con-formal class onto the irreducible components V�, and the conformal weight of E�;�is then � = �(�; �), while the conformal weight of E�(�) equals to �(�; �) + 1.Furthermore, each irreducible component V� has multiplicity one and all thedominant weights � are listed below:(i) If m = 2l, then � = �� ei, 1 � i � l.(ii) If m = 2l+1 and el appears in � with a non-zero coe�cient, then � = ��ei,1 � i � l, or � = �.(iii) If m = 2l + 1 and el does not appear in �, then � = � � ei, 1 � i � l � 1,or � = �+ el.For the notation concerning the weights see 10.10. Let us notice that the weights�ei are (possibly) not dominant, while the resulting � must be dominant and soonly some values of i are allowed for each given �.6.11. Remarks. We shall present concrete examples in 6.21 and 6.22, in fact wewill specify the latter theorem for all fundamental weights �.As we have seen, the operators DS(m0 ;n) extend canonically to natural operatorsde�ned for all conformal manifolds. Of course, there are operators like the tensorproduct with conformal curvature which cannot appear in our list since they arezero on the conformally at manifolds.Even for the integral weights, we cannot treat the problem in the same manneras for Riemannianmanifolds in Section 4, since only very speci�c conformal weightsallow the existence of the operators. A possibility to overcome this di�culty is toincorporate the general conformalweights as certain homogeneity condition (linkingthe argument of our linear operation and the metric) into the concept of the naturaloperators. This is the point of view adopted by many authors, see e.g. [�rsted, 81],[Branson, 85], [W�unsch, 86].6.12. The complex case. We shall see that the description of all in�nitesimallynatural operators on the homogeneous complex vector bundles on the complexspheres coincides with the real situation. In fact we shall prove both theoremstogether. We shall keep the same notation as in the real case for the complex bun-dles. Theorem 6.10 remains true without any change, i.e. all operators result from



6. THE FIRST ORDER NATURAL OPERATORS 63decompositions of the target space of the complex Riemannian covariant derivative,Cm�
V� =P� V�, into complex irreducible representations with dominant weights� of o(m0; n) (which is in fact the same as in the real case) and the conformal weightsare prescribed by the same formula.6.13. Idea of the proof. The whole proof will need several lemmas, but themain idea is quite simple. Let us consider some in�nitesimally natural operator Dand let us come back to the brief notation from 6.6 and 6.9, so that V�(�) = V ,E�(�) = E, J10E = V � V1 and write V�(�) = W .Consider an equivariant symbol mapping � : V1 = (g=b)�
V !W . If we dualizethe sequence 6.9.(1) and �, we get0 g=b
 V �u (J10E)�u i� V �u (�10)� 0uW �u�� OOOOOPD�We have a non-trivial action of b1 on the term in the middle of the row, but b1acts trivially on the three remaining non-zero terms. Since W , and so also W �, isirreducible, �� must be a linear combination of embeddings of co(m0; n)-invariantlinear subspaces. Since D� is g-equivariant, the image of D� must be an invariantsubspace with a trivial action of b1. Now it is easy to read from the diagram theconditions for � being a symbol of an invariant operator. However, we shall proceedin a more direct way:If there is a non-zero element y 2 (J10E)� with the trivial action of the wholeb1, then the whole linear subspace generated by the orbit b0:y consists of pointswith the trivial action of b1. We assume that W is irreducible and so D� must be alinear combination of embeddings of irreducible components. Since the conformalweight of the action on (V1)� is by one less then that on V �, we have either y 2 V �or y 2 (V1)�. The �rst possibility yields the constant multiples of the identityoperator, for both V and W are irreducible. Hence we have got: the existence of anon-trivial linear in�nitesimally conformally invariant operator D is equivalent tothe existence of a vector y 2 (V1)� with a trivial action of b1.If we deal with a concrete bundle E = E�;�, then this is a very good starting pointto �nd all operators de�ned on E. Indeed, it is enough to �nd all y's with trivialactions of b1 which are at the same time highest weight vectors for o(m0; n;R). Thelatter means, we have a rather explicit system of equations for such y's. Moreover,this point of view restricts the whole proof to certain discussion on the highestweight vectors. It is convenient to prove the theorem in the complex case andspecialize at the very end to the real case. In particular we sahll not need to takecare of the signature of our metric.For given concrete bundles we even do not have to insist on the irreducibilityof the representations. However in our general setting we have to proceed moreintricate than to use directly the above idea.6.14. The action on the �rst jets. For every b=b1-module E there is a verysimple formula for the action of g on the dual of the �rst jet space. Notice, wedo not require that the representation is irreducible here. In fact, this is a very



64 NATURAL OPERATORS ON CONFORMAL MANIFOLDSspecial case of the identi�cation of (J10 E)� with the universal enveloping algebraof g which we shall use heavily in Section 8.Lemma. We have (J10E)� = V � � (b�1 
 V �) with the action of b1 on the secondsummand given by X:(a
y) = �[X; a]:y 2 V �, while the action of b0 is X:(a
y) =�[X; a]
 y + a 
X:y.Proof. Clearly J10E = V � (b�1 
 V ) as a vector space. The sections can beconsidered as B-equivariant mappings s : G ! V , hence also b-equivariant. Thejets from the �ber in question are then identi�ed with the expressions j1es, e 2 Gbeing the unit. The induced action of b must be also respected. As derived in 6.7,the action of X 2 g is given by the Lie derivative L�X with respect to the rightinvariant vector �eld X on G.We shall identify an element a
 y 2 (V1)� with the linear functional de�ned byha
 y; j1esi = hLas(e); yi. Now it is easy to express the action of b:hX:(a
 y); j1esi = �ha 
 y;X:j1esi = �ha 
 y; j1e (L�Xs)i= hLaLXs(e); yi = hLXLas(e); yi + hL[a;X]s(e); yi= hLas(e); X:yi � hL[X;a]s(e); yi:If X 2 b1, then its action on y is zero and [X; a] 2 b0 and we get the �rst formula.Similarly we get the other expression for X 2 b0. �6.15. Let us pass to the complex setting now. The action of the kernel b1 can bewritten as a linear mapping ' : b1 
 Cm 
 V � ! V �. Since b1 = Cm� , this givesrise to the induced linear mapping  : Cm 
 V � ! Cm 
 V �.Lemma. There is a non-zero element in (V1)� with trivial action of b1 if and onlyif  is singular.Proof. Notice  (Y )(X) = '(X 
 Y ). �6.16. Lemma. It holds  = ��Im�B, where � is the conformal weight of E andB is de�ned by B(a 
 y) =Pk ek 
 (aek � J(aek)J):y.Proof. We have �rst to work out the formula for '. This is easy using Lemma6.14 and the description of g from 5.9. For all X 2 Cm� , a 2 Cm , y 2 V �'(X 
 a
 y) = �[X; a]:y = �(XaIm+ (aX � J(aX)TJ)):yThis yields  (ei 
 y)(ek) = ��ki Im:y � (eiek � J(eiek)TJ):y (ei 
 y) = ��(ei 
 y) �Xk ek 
 (eiek � J(eiek)J):y �



6. THE FIRST ORDER NATURAL OPERATORS 656.17. Lemma. B = CCm
1+1
CV��CCm
V � . Here CY stands for the Casimiroperator of an o(m)-module Y .Proof. We shall verify the formula for the even dimension m = 2p, the odd caseis analogous. Let us express B(ej 
 y) in terms of the matrices Eij and try toget an expression in the action of the root elements h!k�!l , cf. 10.10. We writehk = E2k�1;2k�1�E2k;2k for the orthogonal basis of the Cartan algebra. We haveh!k�!l :ei = 0 for nearly all j and an elementary (but long) computation leads to(J is now the symmetric matrix used in 10.10)B(ej 
 y) = mXk=1 ek 
 (Ejk � JEkjJ):y = X!l�!kl>k h!l�!k :ej 
 h!k�!l :y++ X!l�!kl<k h!l�!k :ej 
 h!k�!l :y + pXk=1hk:ej 
 hk:yThe Killing form h ; i on the dual to the real part of the Cartan subalgebra h0 = Rpis the standard Euclidean scalar product with factor �12 . Hence by the de�nition,our root elements satisfy hh!k�!l ; h!l�!ki = 1 and hhk; hki = �2. Thus the rootelements h!k�!l together with the multiples 1p2hk form two dual bases of the Liealgebra with respect to the Killing form. In view of this choice of dual bases Ai,Bi, the above formula for B reads B(a 
 y) = �Pi(Ai:a
 Bi:y +Bi:a
 Ai:y).The Casimir operator of a representation ' (one of the possible de�nitions) isgiven by the action of an arbitrary pair of dual basisAi, Bi throughP'(Ai)�'(Bi).This is independent of our choice of the basis, see e.g. [Samelson, 89, p. 120]. Bythe de�nition of the tensor product of representations we getCCm
V �(a
 y) =Xi AiBi(a 
 y)= �PiAiBi:a�
 y + a
 �AiBi�:y +Pi(Ai:a
Bi:y + Bi:a
Ai:y)= (CCm 
 1)(a
 y) + (1
 CV � )� B(a
 y)and the lemma is proved. �A classical result states, [Samelson, 89, p. 121]6.18. Proposition. The Casimir operator of the irreducible representation cor-responding to a dominant weight � is C� = h�; � + 2�i where 2� is the sum of allpositive roots and h ; i is the Killing metric.6.19. Corollary. CCm = �12(m � 1).Proof. As mentioned in the formulation of Theorem 6.10, half the sum of allpositive roots equals to the sum of all fundamental forms (the so called lowestform), see [Samelson, p. 91]. Hence we can compute: If m = 2l + 1, then twice thelowest form equals 2� = (2l�1)e1+(2l�3)e2 � � �+el = (m�2)e1+� � �+(m�2l)el andfor m = 2l we get (surprisingly) the same 2� = (2l�2)e1+(2l�4)e1+ � � �+2el�1 =



66 NATURAL OPERATORS ON CONFORMAL MANIFOLDS(m � 2)e1 + � � �+ (m � 2l)el. The dominant form corresponding to Cm and Rm ise1 and the Killing form di�ers by the factor �12 from the Euclidean one. HenceCC = he1; e1 + 2�i = he1; e1 + (m � 2)e1i = �12(m � 1). �Now we are able to prove the most of Theorem 6.10. The operator D : C1E !C1F must be invariant with respect to the isometries of each of the metrics fromthe conformal class. In view of the discussion from Section 4, D must be expressedby means of the �rst covariant derivative only (every curvature term would killthe operator on the Euclidean space). Hence it must be determined by some pro-jection of V1 onto an irreducible component corresponding to a dominant weight�. Such a projection gives rise to an invariant operator (i.e. we are able to �ndsuitable conformal weights for the bundles) if and only if the restriction of  tothis component is singular. The Casimir operator CCm
V � is constant on the ir-reducible components and the mapping  is singular if and only if �� is an eigenvalue of B by Lemma 6.16. The latter means �� = CRm 
 1 + 1 
 C� � C� =�12 (m � 1) + h�; 2� + �i � h�; 2� + �i by Lemma 6.17. This is the formula for theconformal weights in Theorem 6.10.6.20. The last claim we need for the proof of Theorem 6.10 is that each dominantweight � which appears in Rm 
 V has multiplicity one and we have to �nd all ofthem. We shall use the Klimyk's formula, see [Samelson, 89, p. 128], and since weknow all weights of Rm this happens to be rather easy.Our notation will slightly di�er from that in Samelson. Let us denote A� theoperator on the weights given by A�(�) = Ps2W (sgns)��s(�) where the sum goesover the Weyl group and the Kronecker � symbol is zero or one as usual. By thede�nition, A�(�) = sgnsAs(�)(�) = sgnsA�(s(�)) and A� 6= 0 if and only if �is regular, i.e. it cannot belong to one of the walls of the Weyl chambers (if � isregular, then all elements s(�), s 2W , are distinct, but if � is on a wall, then thereis s with sgns = �1 and s(�) = �). The functionals A� with � dominant are calledthe elementary alternating functionals.Consider now two dominant weights �1, �2 and the decomposition of the tensorproduct V�1 
 V�2 =P� n�V� where n� are the multiplicities and we sum over alldominant weights �. The Klimyk's formula reads:Proposition. For each dominant weight � the multiplicity n� is given byn� =X� m�A�+�2+�(� + �)where the sum goes over all (not only dominant) weights � of V�1 , m� is themultiplicity of the weight � in V�1 and � is the lowest form.We shall apply the proposition to V�1 = Cm and �2 = �. In order to �nd allweights � appearing in Cm , we have to apply the Weyl group to the dominantweight e1. According to the descriptions in 10.10, we can get all �ei, 1 � i � l,where l is the rank of the algebra as usual, and additionally the weight 0 in the odddimensional case. Since the corresponding weight spaces yield the full dimensionof Cm , we have found all weights.



6. THE FIRST ORDER NATURAL OPERATORS 67Now, let us notice that for a dominant weight � and strongly dominant weight� (i.e. � is not on a wall of the fundamental Weyl chamber), we always haveA�(�) = � 1 if � = �0 otherwise.In our case, � = 12((m� 2)e1+(m� 4)e2+ � � �+(m� 2l)el), �+ � must be stronglydominant by the de�nition, but we also haveSublemma. �+�+� is dominant for all weights � appearing in Cm with the onlyexception when � = �el and � does not involve el.Proof. A weight is dominant if it is a linear combination of the fundamentalweights with non-negative coe�cients, i.e. they are of the form Pl1�iei with all�i integral or half-integral and �1 � � � � � �l � 0 in the odd dimensional caseand �1 � � � � � j�lj in the even dimensions. But for the weight � + � we have�1 > �2 > � � � > �l�1 and �l�1 > �l � 12 or �l�1 > j�lj in the even or odd di-mensional cases, respectively. So we can always subtract ei in the even dimensionalcase without running away from the class of dominant weights. The same holds inthe odd dimensions m except � does not involve el, for then we get �l = �1 afterthe subtraction. Adding of ei or the zero weight cannot cause any di�culty. �Now, everything is prepared to �nish the proof of Theorem 6.10. By the Klimyk'sformula, the multiplicity equals either zero or one in the cases 6.10.(i) and (ii), fortwo di�erent weights � cannot contribute to the same multiplicity. The multiplicityone is obtained if and only if � = � � ei is dominant. In the case 6.10.(iii) we canapply the same argument, except i = l and this possibility remains for check. Letus choose the element s 2 W with s(ei) = ei, 1 � i � l � 1, and s(el) = �el, cf.10.10. Hence s(� + � � el) = � + � and so if we choose � with � = � � el thenthe contribution of the weight �el cancels with the contribution of the weight zero.This proves the case 6.10.(iii) and Theorem 6.10 is proved in the complex case. Butits real version follows immediately since we can complexify the space V ��V �1 andseek for the heighest weight vectors with trivial actions of b1 there. During thecomplexi�cation, the highest weight vectors either remain the same ones or theyare doubled. Thus each real morphism must be reected also in the complex caseand each complex highest weight vector gives rise to a morphism in the real case.This completes the proof of Theorem 6.10.6.21. Examples. Let us discuss the operators de�ned on the fundamental repre-sentations of SO0(m0; n;R).Take �rst � = e1 + � � �+ ei, 1 � i < l if m = 2l + 1, 1 � i < l � 1 if m = 2l. Aswe know, this dominant weights correspond to the exterior forms of degree i. It iseasy to �nd all irreducible components in Rm�
V� (It is the same as for Rm
V�):�1 = e1 + � � �+ ei�1 + ei + ei+1�2 = e1 + � � �+ ei�1�3 = 2e1 + e2 + � � �+ ei:The �1 and �3 result from adding one ej , the �2 is the only possibility obtainedthrough subtracting an ej. We should notice that the dominant weight �1 = e1 +



68 NATURAL OPERATORS ON CONFORMAL MANIFOLDS� � �+ el does not describe the l-th degree exterior forms but only the self-dual part
l+, i.e. the +1-eigen space of the Hodge operator.We have to work out the conformal weights. The formula from Theorem 6.10yields �j = 12(m � 1)� h�; � + 2�i+ h�j ; �j + 2�i j = 1; 2; 3and, as used several times above, the Killing form di�ers form the standard Eu-clidean product by the factor �12 . Hence we get�1 = 12(m � 1)�he1 + � � �+ ei; (m� 1)e1+ � � �+ (m� 2i+ 1)ei + (m� 2i� 2)ei+1 + : : : (m� 2l)eli+he1 + � � �+ ei+1; (m� 1)e1 + � � �+ (m� 2i� 1)ei+1 + : : : (m � 2l)eli == 12(m � 1) + hei+1; (m� 2i � 1)ei+1i = 12(m� 1�m + 2i+ 1) = iThis computation was a good test for the formula since the operator correspondingto �1 must be of course the exterior derivative which is invariant with respect toall di�eomorphisms. Therefore, we have known from the beginning that the weightmust correspond to the restriction of the canonical tensor representation of GL(m).(In the case i = l� 1, the operator is the composition of d with the projection ontothe irreducible component 
l+ or 
l�.)A similar computation for �2 leads to �2 = 12 (m � 1) � hei; (m � 2i + 1)eii =12 (m�1+m�2i+1) = m� i. This yields the codi�erential � acting on the bundleof exterior forms of degree i with conformal weight m � i and valued in exteriorforms of degree i � 1 with conformal weight m � i+ 1.For �3 we get �3 = 12 (m � 1) � he1; (m � 1)e1i � h2e1;me1i = 12(m � 1 +m �1� 2m) = �1. As an operator invariant with respect to the isometries, this is thetrace-free part of the covariant derivative symmetrized in the last two indices.6.22. Examples. Let us consider the remaining fundamental representation � =12 (e1+ � � �+el) in the odd dimensional case m = 2l+1. We get only two possibilitiesfor the weights �1 = ��2 = 12(3e1 + e2 + � � �+ el):The conformal weight �1 equals 12 (m�1) and we evaluate �2 = 12 (m�1)�h12e1; (m�32 )e1i+ h32e1; (m� 12 )e1i = 12(m� 1+ 12m� 34 � 32m+ 34 ) = �12 . We shall see in thenext section that �1 corresponds to the Dirac operator while the other one yieldsthe twistor operator.If the dimension is m = 2l, we have still to discuss two fundamental repre-sentations �+ = 12 (e1 + � � � + el) and �� = 12(e1 + � � � + el�1 � el). We get the



7. THE SPINORS AND THE DIRAC OPERATORS 69components �+1 = 12(e1 + � � �+ el�1 � el)�+2 = 12(3e1 + e2 + � � �+ el)��1 = 12(e1 + � � �+ el)��2 = 12(3e1 + e2 + � � �+ el�1 � el)The weights ��1 correspond to the Dirac operators, the other ones to the twistoroperators. The conformal weights are: ��1 = 12 (m � 1) and ��2 = �12 .7. The spinors and the Dirac operatorsWe want to work out a geometric description of the bundles corresponding to thehalf integral dominant forms from the proceeding section and, of course, also of theoperators between them, at least for those discussed in the Examples 6.22. Firstof all we need to understand the double coverings of the orthogonal groups. Themost e�cient way is to view them as subgroups in the so called Cli�ord algebras.Hence we start with the necessary algebraic considerations. The topic is standardand can be found in several nice books, see e.g. [Budinich, Trautman, 88], [Lawson,Michelsohn, 89], [Gilkey, 84].7.1. Cli�ord algebras. Let K be any commutative �eld, V be a �nite dimensionalvector space over K and let Q be a quadratic form on V . We write T (V ) =P1k=0
kV for the tensor algebra of V and C`(V ) = T (V )=IQ is the quotient algebrawith respect to the two-sided ideal IQ � T (V ) generated by the expressions x
x�Q(x), x 2 V . The K-algebra C`(V ) is called the Cli�ord algebra. The compositionV ! T (V ) ! T (V )=IQ de�nes the injection iQ : V ! C`(V ), for if v � w 2 IQthen it cannot be an element in V � T (V ) for homogeneity reasons. We shalloften identify V with iQ(V ) � C`(V ) in the sequel. The tensor multiplication onT (V ) induces a multiplication on C`(V ) which we shall denote by �. The canonical�ltration F q � T (V ), F q = Pqk=0
kV , induces a �ltration on C`(V ) denotedby F iIQ . In this way we get a canonical grading on C`(V ). As a vector space,C`(V ) = F 0IQ + F 1IQ=F 0IQ + F 2IQ=F 1IQ + : : : . The exterior forms are also a quotientof the tensor algebra, T (V )=J with J = hx 
 y + y 
 xi. Since Q(x + y) =(x+ y) � (x + y) = Q(x) + Q(y) + x � y + y � x on V , the identity mapping on thetensor algebra T (V ) induces the isomorphisms�i(V ) = F i=(F i�1 + J \ F i) ' F i=(F i�1 + IQ \ F i) = F iIQ=F i�1IQ :Thus, the Cli�ord algebra C`(V ) is as a vector space isomorphic to the exterioralgebra �(V ). In particular, its dimension is 2dimV and if ei, i = 1; : : : ;m, is abasis of iQ(V ), then the unit 1 2 K together with the products ei1 � � � � � eip ,i1 < � � � < ip, form the basis for C`(V ) (as a vector space). The multiplication on



70 NATURAL OPERATORS ON CONFORMAL MANIFOLDSC`(V ) does not respect the grading, so the Cli�ord algebra C`(V ) is not aZ-gradedalgebra, however the induced Z2-grading C`(V ) = C`0(V ) + C`1(V ) is respected(with the proper signs). As vector spaces, the homogeneous components C`i(V ),i = 0; 1, are isomorphic to the even and odd degree exterior forms in �(V ), and sothey have the same dimension 2dimV�1. The Cli�ord algebra C`(V ) is universal withrespect to the linear maps ' : V ! A with the property '(x)2 = Q(x)1, where A isan arbitrary K-algebra: Indeed, each linear ' extends to an algebra homomorphismon the tensor algebra T (V ), but this extension is trivial on the ideal IQ, hence itfactors to an algebra homomorphism on C`(V ).7.2. There are several canonical automorphisms or anti-automorphisms of C`(V ):First of all, the map de�ned by x = x1
 � � �
 xp 7! xt = xp 
 � � �
 x1 on T (V )leaves the ideal IQ invariant and so we get the induced mapping y 7! yt on C`(V ),a well de�ned anti-automorphism.Further, there is the algebra automorphism� generated by�iQ: we have �(x)2 =Q(x)1, x 2 V , and so � extends by the universal property. This homomorphismacts by multiplication by �1 and the Z2-grading of C`(V ) consists just of the +1and �1-eigen spaces of �.Finally, we have the `bar' anti-automorphism x 7! �x = �(xt).7.3. We shall consider only K = R or K = C and Q will be always the canonicalquadratic form with signature (p; q), p + q = m, where m is the dimension of V =Km . The corresponding Cli�ord algebras will be denoted by C`m(R) or C`m(p; q)and C`m(C ) (in the complex case there is no reason to point out the signature ofQ). Since (V 
RV )
RC = (V 
RC )
C (V 
RC ), we have C`m(C ) = C`m(R)
RC .Thus, we can often discuss both cases together.Let us �x ei 2 Rm, the canonical base. Hence Q(ei; ej) = 0 for all i 6= j, whileQ(ei; ei) = �1. Thus, C`m(p; q) is an algebra generated by 1 2 R and ei subject tothe relations ei � ej = �ej � ei if i 6= j, ei � ei = 1, 1 � i � p, and ei � ei = �1,p < i � m. Once we have �xed the orthonormal basis, there is the distinguishedelement � = e1 � � � � � em, the so called volume element in C`m(K).Now, the idea is to �nd a suitable subgroup of invertible elements in C`m(p; q)acting on Rm by isometries.We consider Rm as the subspace Rm � C`m(R) and so we can always act byconjugation (accomplished with suitable sign changes): Rm 3 y 7! �(x) � y � x�1 2C`m(R), with x 2 C`m(R)�, the multiplicative group of invertible elements in C`(V ).The subgroup � � C`m(R)� of elements with �(x) � y � x�1 2 Rm for all y 2 Rmis called the Cli�ord group. Let us denote by � : � ! GL(m) the induced grouphomomorphism. In [Atiyah, Bott, Shapiro, 64], � is called the twisted adjointrepresentation of � on Rm. It is easy to see that all three canonical maps from 7.2preserve �. Let us further de�ne another mapping N : � ! �, N (x) = x � �x, i.e.�(N (x)) = �(x) � �(�x).We de�ne the Pin(p; q) as the subset fy 2 � � C`m(p; q);N (y) = 1 or N (y) =�1g. Let us notice that the multiplicative subgroup C`m(p; q)� in C`m(p; q) is a Liegroup (a closed subgroup of a matrix group) and Pin(p; q) is a closed subset, bythe de�nition.7.4. Theorem. Pin(p; q) is a Lie subgroup in the Cli�ord group. The restriction�jPin(p; q) is a surjection of Pin(p; q) onto O(p; q) with kernelZ2 = f�1g � �. Let



7. THE SPINORS AND THE DIRAC OPERATORS 71Spin(p; q) be the inverse image of the connected component of the unit SO0(p; q) �O(p; q). If m � 3, then the restriction � : Spin(p; q) ! SO0(p; q) is the non-trivialconnected and simply connected double covering of SO0(p; q).Proof. First of all we have to show that � has values in the subgroup of all isome-tries and this requires to study the kernels of � and N . Then it will be easy to seethat our choice of the subset Pin(p; q) yields a subgroup, i.e. a Lie group by theremark at the end of 7.3, and that �jPin(p; q) is surjective.Sublemma. The kernel of � : �! GL(m) is precisely the multiplicative subgroupR� � � generated by 1. For each x 2 � the value N (x) belongs also to R�.Proof. Let x 2 ker�, so that �(x) � y = y � x for all y 2 Rm. As an element inC`m(R), x decomposes into the homogeneous parts x = x0 + x1 and the conditionfor x being in the kernel splits into two conditions(1) x0 � y = y � x0 and x1 � y = �y � x1:As usual ei are the elements of the canonical basis in Rm. Let us �x some ei andwrite x0 = a0 + ei � a1, x1 = b1 + ei � b0, where the elements a0, a1, b1, b0 donot involve ei. The �rst condition in (1) with y = ei now implies a0 � ei + ei �a1 � ei = ei � a0 + ei � ei � a1. Since a0 is an even element without ei while a1is an odd one, we have a0 � ei = ei � a0 and a1 � ei = �ei � a1. Hence we getei � a0 � Q(ei)a1 = ei � a0 + Q(ei)a1, so that a1 = 0 and therefore the even partx0 does not involve ei. Since i was arbitrary, x0 is a multiple of 1. Similarly, thesecond condition in (1) yields b1 � ei + b0 � ei � ei = �ei � b1 � ei � b0 � ei where b1is odd and b0 even. Thus, �ei � b1+ b0Q(ei) = �ei � b1� b0Q(ei) and so b0 is zero,x1 does not involve any ei, i.e. x1 is a multiple of 1. On the other hand, x1 is odd,hence zero, and the �rst claim is proved.Since yt = y for all y 2 Rm, we have �(x) � y � x�1 = (xt)�1 � y � �(xt) and so(�(�(xt)) � �(x))(y) = y, since �2 is the identity on C`m(R). Thus, we have shownthat N (x) � ker� for all x 2 �. �Now, N (x � y) = x � y � �y � �x = x � N (y) � �x = x � �x � N (y) = N (x)N (y)and so N : � ! R� is a group homomorphism. Moreover N (�(x)) = �(x) �xt = �(N (x)) = N (x), for N (x) is an element of degree zero. But this impliesN (�(x)(y)) = N (�(x))N (y)N (x�1) = N (y) for all x 2 � and y 2 Rm. For each el-ement x 2 Rm, N (x) = x�(�x) = �x�x = �Q(x), i.e. N jRm is the negative of thestandard scalar product with signature (p; q). But then the formula for N (�(x)(y))claims precisely � : �! O(p; q).Let us write hx; yi for the scalar product of x, y 2 Rm induced by Q. For allelements y 2 Rm � C`m(p; q) with N (y) = �Q(y) = 1 and x 2 Rm we havey�1 = �y and �(y)(x) = �(y) � x � y�1 = y � x � y = x+ 2hx; yiywhere the last equality follows from 2hx; yi + Q(x) + Q(y) = (x + y) � (x + y) =Q(x) + Q(y) + x � y + y � x. Similarly, if Q(y) = 1, then y = y�1 and�(y)(x) = �y � x � y = x� 2hx; yihy; yi y



72 NATURAL OPERATORS ON CONFORMAL MANIFOLDSand this formula holds for both cases. It is well known in the de�nite case thatthe latter transformations are precisely all reections in hyperplanes in Rm whichgenerate the whole orthogonal group O(m;R). Since the real groups of pseudo-orthogonal transformations all admit the same complexi�cation, they must be alsogenerated by these transformations (this argument applies immediately for the con-nected components of the unit, the whole groups need more detailed consideration).Thus � : Pin(p; q) ! O(p; q) is onto. The kernel of this map is the intersectionker� \ fN (x)2 = 1g. Since the kernel of � coincides with the multiplicative groupR� and N (�:1) = �2, the kernel of �jPin(p; q) must be Z2 (as a multiplicativegroup).We already know that Spin(p; q) is a double covering of SO0(p; q). In order toshow that this is a non-trivial covering, it su�ces to connect +1 and �1, i.e. theelements of the kernel of �jSpin(p; q), by a curve in Spin(p; q). Let us considert 7! c(t) = a(t) + b(t)e1 � e2. We have N (a(t) + b(t)e1 � e2) = (a(t) + b(t)e1 � e2) �(a(t) + b(t)e2 � e1) = a(t)2 + b(t)2Q(e2)Q(e1). If Q(e1)Q(e2) = 1, then we choosea(t) = cos t, b(t) = sin t. Then N (c(t)) = 1 and c(0) = 1, c(�) = �1 so that ityields a suitable curve. If m > 2, we can always �nd two generators ei, ej withQ(ei)Q(ej) = 1. Since SO0(p; q) is connected by our de�nition and its fundamentalgroup isZ2 ifm � 3, Spin(p; q) must be simply connected in dimensionsm � 3. �7.5. Remark. Let us consider the positive de�nite case O(m;R). Each element�(y) 2 O(m;R) equals to a composition xp � : : : � x1 of reections in hyperplanesand we have seen, there are always elements yi 2 Rm � � with �(yi) = xi. ByTheorem 7.4, there is y 2 Pin(m), y = �yp � � � � � y1. Let us write Pinj(m) =Pin(m)\C`jm(R), j = 0; 1. The element y must be either in Pin0(m) or in Pin1(m).But we know that y 2 Spin(m) if and only if the number of the reections involvedis even. Thus Spin(m) = Pin0(m) and we see that the elements in Spin(m) arejust the products y = y1 � � � � � y2j with yi 2 Rm, Q(y) = �1. Then y�1 = ytand �(y)(x) = y � x � yt. Let us remark that Spin(2; 0) and Spin(0; 2) are alsonon-trivial coverings by the argument from the proof. Since they are generated bye1 � e2, they are one-dimensional (N (a:1 + be1 � e2) = 1). As a double-covering ofthe circle S1 � R2 it must also be S1.In the case of a general signature, we still get Spin(m) � Pin0(m) but the wholePin0(m) is not involved. The group SO0(1; 1) equals R so that it does not admita non-trivial covering.7.6. The complex spin groups. We have noticed that the complex Cli�ordalgebras are C`m(C ) = C`m(R)
RC , i.e. the complexi�ed real Cli�ord algebras. Allthe previous de�nitions and considerations have their complex analogies (workingbest with the negative de�nite bilinear form Q) and we get the complex groupsPin(m; C ) and Spin(m; C ) which are non-trivial double coverings of the complexorthogonal group if m � 2. We shall see below that all the real spin groups arematrix groups and their complexi�cations are just the complex spin groups.Let us remark that there are other complex Lie groups sitting in the complexCli�ord algebras, the groups PinC(m) which are important in the K-theory. Thelatter groups are quite di�erent from Pin(m; C ) de�ned above and should be care-fully distinguished. Namely, we can change our de�nition of the basic operation bysetting �C(x
 z) = �(x)
 z, (x
 z)T = xt 
 �z and the `bar' operation and NC is



7. THE SPINORS AND THE DIRAC OPERATORS 73de�ned in terms of �C and ( )T as before. The (other) complex Cli�ord group �Ccontains the elements x 2 C`m(R)
 C with �C(x) � y � x�1 2 Rm for all y 2 Rm(so it might be bigger).Going through the above proof, nearly everything goes through with R� replacedby C � (notice that the generators ei which are used in the proof remain the same,i.e. real) and the mapping � takes values in the real orthogonal group O(m;R).We de�ne the complex group PinC(m) as the kernel of NC : �C ! C � . At theend we get as before that the kernel of � consists of non-zero complex numbers1 
 z 2 C`m(C ) with NC(1 
 z) = z�z = 1. Thus, we get for all m � 1 the exactsequences of Lie groups1 �! U (1) �! PinC(m) �! O(m;R)�! 11 �! U (1) �! Pin(m;R)�Z2 U (1) �! Pin(m;R)=Z2 �! 1:This induces an isomorphism PinC(m) ' Pin(m;R)�Z2 U (1).7.7. It is possible to view the Cli�ord algebras as matrix algebras, the concreteidenti�cations will require some e�ort. Let us write Matm(K) for the algebra of(m �m)-matrices over K, i.e. End(K). Beside the real and complex numbers, weshall also meet K = H , the quaternions.Proposition. There are the following identities of algebras:Matm(K) 'Matm(R)
RK over KMatm(R)
Matn(R)'Matmn(R) over RC 
RC ' C � C over CC 
RH 'Mat2(C ) over CH 
RH 'Mat4(R) over R:Proof. The �rst identity is clear. In the second one, we de�ne the tensor productof the generating matrices Eij 
 Epq as the block matrix A = (Aab) with Aij =Epq and Akl = 0 for all other indices. This generates the required isomorphism.The third one is de�ned on generators as follows: p�1 
 1 7! p�1 � p�1 and1
p�1 7! p�1 ��p�1. Hence we get a
 b 7! (ab; a�b).The algebras Mat2(R) and Mat2(C ) are generated by two matrices� = �0 11 0� and � = �1 00 �1�which form a linear bases together with the identity matrix I2 and the matrix� = �� = �0 �11 0 � :These matrices satisfy �� = ���, �2 = �2 = ��2 = I2.The next isomorphism is obtained through p�1
1 7! p�1I2, 1
 i 7! �p�1�,1
 j 7! � on generators.The last isomorphism is de�ned on the generators by 1
i 7! �
�, 1
k 7! �
� ,i 
 1 7! � 
 �, k 
 1 7! � 
 �. �



74 NATURAL OPERATORS ON CONFORMAL MANIFOLDS7.8 Proposition. There are isomorphismsC`2(2; 0)
RC`m(p; q) ' C`m+2(q + 2; p)C`2(1; 1)
RC`m(p; q) ' C`m+2(p+ 1; q + 1)C`2(0; 2)
RC`m(p; q) ' C`m+2(q; p+ 2):The low-dimensional algebras and their even parts areC`1(1; 0) ' R�R C`01(1; 0) ' RC`1(0; 1) ' C C`01(0; 1) ' RC`2(2; 0) ' Mat2(R) C`02(2; 0) ' CC`2(1; 1) ' Mat2(R) C`02(1; 1) ' R�RC`(0; 2) ' H C`02(0; 2) ' C :Proof. We shall give explicit formulas for these isomorphisms on the generators.Let us consider the canonical basis ei in Rm, f1, f2 inR2, and e0j inRm+2. Let usde�ne the elements g1 = f1
1, g2 = f2
1, gi+2 = f1�f2
ei in the tensor productsof the Cli�ord algebras. We shall show that the linear map  de�ned by  (e0j ) = gjsatis�es in all three cases the universal property from 7.1 and so extends to an alge-bra homomorphism. If j = 1 or j = 2, we get  (e0j)2 = fj
1�fj
1 = Q(fj)1
1 andfor e0i+2 it holds  (e0i+2)2 = (f1 �f2
ei)� (f1 �f2
ei) = �Q(ei)Q(f1)Q(f2)(1
1).Hence the roles of p and q interchange and two positive or two negative dimen-sions are added, or we add one positive and one negative dimension and the p andq remain. Then  extends to an algebra homomorphism and since the spaces inquestion have equal dimensions and generators are transformed into generators, itmust be an isomorphism.In the algebra C`1(1; 0), there is the generator e1 with e21 = 1. Hence C`1(1; 0) =R�R and the even part is 1Rwith the isomorphism de�ned by 1 7! (1; 1), e1 7!(1;�1). Similarly, e1 with e21 = �1 is the generator of C`1(0; 1) and so e1 7! p�1de�nes the isomorphism with C . The even part is then 1R.The algebra C`2(2; 0) is generated by e1, e2 with e21 = e22 = 1, e1 � e2 = �e2 � e1.We de�ne e1 7! �, e2 7! � and the matrices � and � are declared as odd elements.Then 1 and � are even, �2 = �1 and we get the required isomorphisms.If the signature is (1; 1), we associate e1 to � (the positive dimension), whilee2 7! �. The latter are the odd elements and so the even subalgebra is generatedby 1 and � , hence equals to R�R.Finally, in the negative de�nite case e21 = e22 = �1 and we can identify e1 and e2with the generators i, j of the quaternions H. �7.9. Proposition. For each dimension m it holdsC`m+8(p+ 8; q) ' C`m+8(p+ 4; q+ 4) ' C`m+8(p; q + 8) ' C`m(p; q)
Mat16(R)C`m+2(C ) ' C`m(C ) 
Mat2(C ):The Cli�ord algebras in dimensions less then eight are listed below for all de�nitescalar products.



7. THE SPINORS AND THE DIRAC OPERATORS 75m C`m(0;m) C`m(m; 0) C`m(C )0 R R C1 C R�R C � C2 H Mat2(R) Mat2(C )3 H � H Mat2(C ) Mat2(C ) �Mat2(C )4 Mat2(H) Mat2(H) Mat4(C )5 Mat4(C ) Mat2(H) �Mat2(H) Mat4(C ) �Mat4(C )6 Mat8(R) Mat4(H) Mat8(C )7 Mat8(R)�Mat8(R) Mat8(C ) Mat8(C ) �Mat8(C )8 Mat16(R) Mat16(R) Mat16(C )Proof. The whole statement follows from the two above propositions, see [Bu-dinich, Trautman, 88] if more details are necessary. �7.10. Proposition. Let e0i, i = 1; : : : ;m + 1, be the canonical basis on Rm+1,ei, i = 1; : : : ;m, be that on Rm, and let ' : Rm ! C`0m+1(p; q + 1) be de�ned by'(ei) = e0m+1�e0i. Then ' extends uniquely to the algebra isomorphism C`m(p; q) 'C`0m+1(p; q + 1). If we take e0i, i = 0; : : : ;m, as basis of Rm+1 and de�ne '(ei) =e00 �e0i, we obtain the isomorphism C`m(p; q) ' C`0m+1(q+1; p). In the complex casewe have C`m(C ) ' C`0m+1(C ). Furthermore, C`0m(p; q) ' C`0m(q; p).Proof. Since '(ei)2 = e0j � e0i � e0j � e0i = �Q(e0j)Q(e0i), ' extends uniquely by theuniversal property of the Cli�ord algebras if Q(e0j) = �1 and Q(e0i) = Q(ei) orif Q(e0j) = 1 and Q(e0i) = �Q(ei). This leads to homomorphisms between theindicated algebras. Since ' maps the generators of C`m(p; q) to distinct elements,it must be injective. The dimensions of both spaces are equal and so ' is always anisomorphism. The complex case follows from the real considerations with negativede�nite scalar product.The last isomorphism is obtained by composing the above isomorphisms but itcan be also de�ned directly by ei � ej 7! �e0i � e0j . Indeed, the latter elementsgenerate the even parts and the mapping is induced from ei 
 ej 7! �e0i
 e0j whichleaves invariant the ideal hx
 y + y 
 x� 2Q(x; y)i �Pk
2kRm. The even partsare just the quotients by this ideal and so the homomorphism which is obvious onthe tensor algebra descends to the even parts of the Cli�ord algebras. �7.11. Remark. Let us notice that the propositions above yield explicit identi�-cations of the Cli�ord algebras with the (sums of) matrix algebras (as promised atthe beginning of 7.7) and describe also explicitly the even parts of them. The wholesituation is described by the 64 Cli�ord algebras C`m(p; q) with 0 � p; q � 7, theso called spinorial chessboard. We can �nd the main properties of Cli�ord algebrasin this scheme.It is possible to describe all real Cli�ord algebras by means of the so called real



76 NATURAL OPERATORS ON CONFORMAL MANIFOLDSclock, [Budinich, Trautman, 88].R�R w0 R444461R����7 Cu2Cu 6744445 H����3H H � Hu 4The usage: given p and q compute �rst the `hour' � such that q�p = 8a+� wherea 2 Zand 0 � � � 7. Then the algebras adjacent to the corresponding arrowdetermine the type of C`0p+q (p; q) (the source) and C`p+q(p; q) (the target). Thedimension of the full algebra is 2p+q and we get the Cli�ord algebra by taking theproper matrix algebra.For example: p = 2 and q = 1 yield � = 7 and so C`3(2; 1) = Mat2(R)�Mat2(R)while C`03(2; 1) = Mat2(R).Similarly C`8(3; 5) = Mat8(H), for in this case � = 2 and dimMat8(H) = 28,C`08(3; 5) = Mat8(C ).7.12. Cli�ord modules. A complex vector space V with an algebra homomor-phism � : C`m(C ) ! End(V ) is called a (complex) Cli�ord module, � is called arepresentation of C`m(C ). Similarly a real vector space with a representation of areal Cli�ord algebra is called a (real) Cli�ord module. In fact, our aim is to un-derstand the representations of the spin groups. However the study of the Cli�ordmodules is a good way:Proposition. There are bijections between the representations of Spin(m+1; C ),the representations of C`m(C ) and the representations of C`0m+1(C ). Furthermore,the decompositions into irreducible representations coincide.Proof. We consider the canonical negative-de�nite scalar product. The image ofSpin(m+1; C ) � C`0m+1(C ) in the inverse of the isomorphism' from 7.10 generatesthe whole Cli�ord algebra C`m(C ) and the latter is isomorphic to C`0m+1(C ). Sinceall the relations on the generators live in the image of the spin group as well, boththe statements of the proposition are clear. �7.13. Spinor bundles. Given any Cli�ord module V with the representation of the real Cli�ord algebra C`m(p; q), there is the corresponding bundle FM !Mover each oriented pseudo-Riemannianm-dimensional manifoldM with a �xed spinstructure (and the proper signature of the metric). This bundle is constructed asthe associated bundle to the principal spin bundle PM ! M with respect to thegiven representation . More generally, for each oriented pseudo-Riemannian vectorbundle E with a spin structure there is the spinor bundle C` (E) = PSpin(E)� Vwhere the dimension of �bers in E is m and PSpin(E) is a covering of the SO0(p; q)-frame bundle of E with structure group Spin(p; q).



7. THE SPINORS AND THE DIRAC OPERATORS 777.14. The Cli�ordmultiplication. As we have seen in the proof of Theorem 7.4,the twisted adjoint representation of the Cli�ord group acts onRm by the reectionsand this is equivalent to the usual action of the spin group onRm obtained from theidentical representation of GL(m;R). Thus the tangent functor T can be viewedas a very special example of a spinor bundle.Proposition. For each Cli�ord module V there is the mapping � : Rm
V ! Vde�ned by y 
 v 7! (y)(v), y 2 Rm � C`m(p; q) which is Spin(p; q)-equivariantwith respect to the twisted adjoint action on Rm and the action . An analogousmapping arises for complex Cli�ord modules.Proof. For all x 2 Spin(p; q), y 2 Rm and v 2 V we have�(x) � y � x�1 
 (x):v 7! (x)(y)(x�1)(x):v = (x)(y):vsince each element x 2 Spin(p; q) is even and so � disappears (the dot means theapplication of the endomorphisms). �This map is called the Cli�ord multiplication and since it is equivariant it extendsto natural transformations de�ned on spinor bundles. Furthermore, there is thecanonical natural equivalence T � ! T between the tangent and cotangent bundleson Riemannian manifolds. Hence there is also the natural bilinear transformation�M : T �M 
 FM ! FM for each spinor bundle FM . We shall call all thesemappings Cli�ord multiplications.7.15. The Dirac operators. For each spinor bundle FM on an oriented pseudo-Riemannian spin manifoldM , there is the canonical Levi-Civit�a (or Riemannian)connection on the pseudo-orthogonal frame bundle. As an o(p; q)-valued right-invariant one-form, this connection lifts uniquely to the spin frame bundle on M .Let us write r for the corresponding covariant derivative on the associated vectorbundles. Then we have the following compositionD : C1(FM ) r�! C1(T �M 
 FM ) ��! C1(FM ):This operator is called the Dirac operator.7.16. Our next aim is to describe the so called Dirac spinors and Weyl spinorsand the Dirac operators on them. The regular representation of C`m(C ) is itsrepresentation on itself by left multiplication. This is a faithful representation.Proposition. The representations of the complex Cli�ord algebras are alwayscompletely reducible and each irreducible faithful representation of C`02n+1(C ) orC`2n(C ) is equivalent to a summand in the regular representation, i.e. to the iden-tical representation of Mat2n(C ) on C 2n . All irreducible faithful representations ofC`2n(C ) are equivalent.Proof. According to 7.7, the complex Cli�ord algebras are always isomorphic toa sum of full matrix algebras over C . Assume �rst m = 2n so that C`m(C ) =Mat2n(C ) and consider the regular representation of Mat2n(C )) on itself. Thematrix algebra decomposes under this representation into the sum of copies of



78 NATURAL OPERATORS ON CONFORMAL MANIFOLDSC 2n , each of them representing the matrices with one non-zero column allowed.All these representations are faithful (these are the identical representations ofMat2n(C ) = End(C 2n )). Such matrices with one (�xed) non-zero column formminimal left ideals.Let us consider a faithful irreducible representation ' of C`2n(C ) on some spaceS. Fix one of the above minimal ideals B and some elements v 2 S, x 2 B with'(x)(v) 6= 0. We de�ne f : B ! S, f(y) = '(y)(v). The regular representationfactors to a representation �B : C`2n(C ) ! End(B) (this is the above identical rep-resentation) and f intertwines �B and ' by its de�nition. Since f(B) containsnon-zero elements, and since �B is irreducible as B is minimal, f must be an iso-morphism.By a general theorem, each �nite dimensional representation of a sum of full ma-trix algebras over an algebraically closed �eld is completely reducible, see [Boerner,67, p. 68]21. Hence the proposition is proved for even dimensions. But C`0m+1(C ) =C`m(C ) by 7.10. �Let us notice that the complete reducibility of all representations of connectedcomponents of the identity in the complex pseudo-orthogonal groups also follows(cf. 7.12), for each representation of SO(p; q; C ) can be viewed as a representationof Spin(p; q; C ). The real case is then treated similarly to the discussion from 3.13.7.17. Proposition. The center Z of C`m(K) is 1K � �K if m is odd, and 1K ifm is even. The center of C`0m(K) equals to 1K � �K for even dimensions and 1K inodd dimensions.Proof. The proof goes similarly to the sublemma in 7.4. Consider an elementx 2 C`m(K) which commutes or anti-commutes with each element v 2 Km . We candecompose x = x0+ x1, the even and odd part of x, and the latter condition splitsinto x0 � ei � ei � x0 = 0; x1 � ei � ei � x1 = 0; i = 1; : : : ;m:Now, we �x ei and express x0 = a0 + ei � a1 where aj do not involve ei. Hencewe get a0 � ei + ei � a1 � ei � ei � a0 � ei � ei � a1 from the �rst condition anda0 is an even element while a1 is odd. Since they do not involve ei we obtainei � a0 �Q(ei)a1 � ei � a0 �Q(ei)a1. If x0 commutes, this yields 2Q(ei)a1 = 0, i.e.a1 = 0. Since i was arbitrary this means x0 does not involve any ei, hence belongsto K. If x0 anti-commutes, then we get 2ei � a0 = 0 and so x0 = ei � a1 where a1does not involve ei. Since this holds for all ei, x0 must be a multiple of e1 � � � �� emwhich is possible only if m is even.Similarly, write x1 = b1 + ei � b0 and apply the second condition. We get b1 �ei + ei � b0 � ei � ei � b1 � ei � ei � b0 = 0. Analogous considerations as above yieldb1 = 0 in the commuting case, so that x1 2 �K and is non-zero only for odd m. Ifx1 anti-commutes, then b0 = 0, i.e. x1 2 K, hence zero.So we have proved: if m is even, then K is the center and �K consists of allanti-commuting elements, while if m is odd, then the center is K � �K and thereare no anti-commuting elements beside zero there.21The proof involves only rather elementary manipulations with matrices, but it is not short.



7. THE SPINORS AND THE DIRAC OPERATORS 79Since the center of C`0m(K) consists of all elements which commute or anti-commute with elements from K � C`m(K), the last statement of the propositionfollows. �7.18. Dirac spinors and Weyl spinors. We have just proved that each of thealgebras C`2n(C ) and C`02n+1(C ) admits precisely one faithful irreducible represen-tation on the complex space S = C 2n , up to equivalence. The elements of thisrepresentation space S are called the Dirac spinors.For example, starting with V = C 3 , we get the complex 2-component spinors,often also called the Pauli spinors. If V = C 4 , the Dirac spinors are complex 4-component. Let us remember, the Cli�ord algebras are explicitly identi�ed withmatrix algebras in even dimensions and so the generators ei of C`2n(C ) act by theusual multiplication by the corresponding matrices i, the so called Dirac matrices.For the explicit expressions of the Dirac matrices in low dimensions see 7.7 and 7.8.Assume now, the dimension is even, m = 2n, and write  : C`m(C ) ! End(S) forthe faithful representation on the Dirac spinors. Fixing the canonical orthonormalbase ei in V = Cm , the volume element v = e1 � � � � � em satis�es v � v = �1.We de�ne v0 = v if v2 = 1, while v0 = p�1v in the other case, so that v02 = 1.Hence (v0) : S ! S splits S into the �1-eigen spaces S�. Since v0 is in thecenter of C`0m(C ), the restriction 0 = jC`0m(C ) decomposes as 0 = + � �,�(y) = 12(Id � (v0))(y) for all y 2 C`0m(C ). Thus, we have got two irreducibleinequivalent 2n�1-dimensional (but not faithful) representations. The elements inS+ and S� are called the Weyl spinors of positive and negative helicities. Theyare also called right and left Weyl spinors, or half-spinors (Chevalley) or reducedspinors (Penrose and Rindler).In view of 7.12, we have constructed two irreducible representations of the Liegroup Spin(2n; C ), + on S+ and � on S�, but also the irreducible representation of Spin(2n + 1; C ) on S.If we change our orientation of V , the volume element v is replaced by �v andso the roles of the helicities are interchanged.7.19. The odd dimensions. Let us consider the generating vector space V =C 2n �C and a generator e2n+1 in C`2n+1(C ) with Q(e2n+1) = 1, the scalar producton C 2n is as before (the positive de�nite one works well). Using  : C`2n(C ) !End(S), we can de�ne two irreducible representations of C`2n+1(C ) in S by setting0�(x) = �(x) for all x 2 C 2n � C`2n(C ), and 0�(e2n+1) = �((v0)) (notationform 7.18). The analogy to v0 in dimension 2n+1 is v00 = v0 �e2n+1, i.e. v00 �v00 = 1.Since 0�(v00) = �(v0) � (v0) = �Id, these representations cannot be faithful. Buttheir direct sum 0 = 0+ � 0� : C`2n+1(C ) ! End(S) � End(S)is a faithful representation in S � S. Of course, the representations 0+ and 0�are equivalent when restricted to the even part C`02n+1 and then equivalent to therepresentation .Let us notice that the 0� can be equivalently obtained from the representations� in the even dimensions using the isomorphism C`02n+2(C ) ' C`2n+1(C ).



80 NATURAL OPERATORS ON CONFORMAL MANIFOLDS7.20. The matrix realization. If we use explicitly the description in 7.7{7.10, we�nd the important generators of the matrix algebras which realize the isomorphismswith the Cli�ord algebras. However, their choice can be quite di�erent and we canget di�erent (but equivalent) representations of the Cli�ord algebras on the spinors.The matrices �, � and � are generators of Mat2(C ) and satisfy the same relationsas the generators e1, e2, e1 � e2 in C`2(C ) where we take the positive de�nite scalarproduct.Consider �rst the dimension m = 2n. Using the above matrices, we can de�negenerators of Mat2n(C )2j�1 = � 
 � � � 
 � 
 � 
 I2
 � � � 
 I22j = �p�1� 
 � � � 
 � 
 � 
 I2
 � � � 
 I2with � or � on the j-th place, which satisfy (i)2 = Im and ik = �ki for allk 6= i. Thus we have found a concrete realization of C`m(C ) as a matrix algebra, i.e.one possible explicit form of the Dirac matrices.22 If we consider the same tensorproducts of matrices, but we distribute the scalar multiplesp�1 in another suitableway, we get algebras isomorphic to Cli�ord algebras corresponding to a prescribedscalar product with any signature. In particular, if there are no p�1, we get theso called neutral Cli�ord algebras C`m(n; n; C ). Of course, all these choices lead toisomorphic algebras in the complex case, but they become important if we pass tothe real algebras and spinors, see below.Let us examine how the 2n equivalent spin representations  sit in the Cli�ordalgebra. Let us consider the elements yi = p�1e2i�1�e2i, so that the correspondingmatrices are Yi = p�12i�12i = I2 
 � � � 
 I2 
 � 
 I2
 � � � 
 I2 where � is onthe i-th place. The matrices Yi are diagonal block matrices with �In�i+1 in theblocks regularly changing the signs. Consider the right action of the matrix algebraon itself. This corresponds to the right action of the Cli�ord algebra on itself bymultiplication. Each of the 2n columns in Mat2n(C ) is precisely the simultaneouseigen space corresponding to uniquely prescribed sequence of signs �1 with respectto this right action. Thus, the spin spaces sit in the Cli�ord algebra (complex withpositive de�nite scalar product) as the simultaneous �1-eigen spaces for the rightactions of the elements yi.If the dimension is odd, m = 2n+1, we need one more generator. We can choose2n+1 = � 
 � � � 
 �which anticommutes with all the generators above and has square one.7.21. The real spinors. The complexi�cation of each real Cli�ord algebraC`m(p; q) is isomorphic to C`m(C ). Hence there is always an injection C`m(p; q)!C`m(C ) of algebras and so each representation of the complex Cli�ord algebra can22The procedure leading to such explicit representations consists in choosing a way how to passfrom a representation of C`2n(C) on S = C2n to a representation of C`2n+2(C) on S�S = C2n+1 .There are several well known extension procedures, let us mention the Brauer-Weyl extension, theCartan extension, the Dirac extension. We have used the latter one.



7. THE SPINORS AND THE DIRAC OPERATORS 81be restricted to the real one. This yields representations of C`m(p; q), but in com-plex vector spaces. These restrictions are irreducible if the complex representationsare irreducible which means that there are no invariant complex subspaces in therepresentation space.If we start with a real representation of C`m(p; q), we can complexify it to obtaina complex representation of the complexi�cation C`m(p; q) 
 C . However, if wehave started with the complex representation, the restriction to the real algebramay or may not admit an invariant real subspace in the representation space. Letus indicate very briey what can happen if we restrict the spin representations ofthe Cli�ord algebras. Much more details can be found in [Budinich, Trautman, 88,Section 7.2].Let us consider the dimension m = 2n = p + q. To each complex space W weassociate the complex conjugate space �W which is the same as W if viewed as areal vector space but the scalar multiplication by a 2 C di�ers from W by taking�a. If we write w for the elements of W then �w are the elements in �W , w 7! �w isthe identity of the real spaces. Each linear map f : W1 !W2 induces a linear map�f : �W1 ! �W2, �f ( �w) = f(w). The correspondence f 7! �f is not linear as �f 7! �� �f .The bar mapping is compatible with the duals, i.e. W � ' ( �W )� and the Hermiteanconjugate map to f is de�ned by �f t : �W �2 ! �W �1 .Consider now the restriction of the spin representation  : C`m(p; q) ! EndCSand the conjugate � : C`m(p; q)! EndC �S. We shall write � = p� q mod 8. Sincethe center of the Cli�ord algebra is the �eld of the scalars, there is a C -linearisomorphism C : S ! �S which intertwines the representations  and �, and whichsatis�es either �CC = Id if � = 0 or 2, or �CC = �Id if � = 4 or 6 (this needs ofcourse a proof). The �rst case is called real while the other one quaternionic. Inthe real case,  = + + � decomposes and � : C`m(p; q)! EndRS� are two realequivalent representations. The elements of S� are called the Majorana spinors (ofthe �rst kind). They can be also characterized by S� = fs 2 S; �C(�s) = �sg. Therestriction of  to C`0m(p; q) decomposes even in the complex case into the eigenspaces of the action of the suitable multiple of the volume element v0. The sametakes place for the complex conjugate space �S and �v0. One computes �(�v0) � C =(�1)�(��1)=2C � (v0) and so C respects the helicity if � = 0 or 4, but changes thehelicity if � = 2 or 6. If � = 2, then there are C -linear isomorphisms F� : S� ! S�constructed by means of v0 and C, but S� \ S� is zero for all combinations ofsigns. If � = 0 or � = 6 then we can �nd another decomposition of the Diracspinors, S = S+i � S�i with S�i = fs 2 S; �C�v0(�s) = �sg (notice �C�v0Cv0 = Id if� = 0 or � = 6). But these spinors, called Majorana spinors of the second kind, areinvariant under the action i(s) = p�1(s) of C`m(q; p) but not under the action of Clm(p; q). If � = 6, they are equivalent to the Majorana spinors of the �rst kindfor the algebra C`m(q; p) and we have once more the C -linear isomorphisms F�.The representations � are intertwined by the multiplication by p�1. If � = 0,then all representations , � are real and there are non-zero intersections of S�and S�i . Thus, the real form of S decomposes into four real 2n�1-dimensional spaceS�� , the so called Weyl-Majorana spinors. If � = 4, there are no Majorana spinors.7.22. Dirac operators on theWeyl spinors. Let us consider an even dimensionm = 2n and let us specialize the Cli�ord multiplication from 7.14 to the Cli�ord



82 NATURAL OPERATORS ON CONFORMAL MANIFOLDSmodules S� of Weyl spinors viewed as the complex representations of the realalgebras. We getProposition. The Cli�ord multiplication � : Rm
 S ! S interchanges the helic-ities, i.e. it restricts to the mappings � : Rm 
 S� ! S�. The same holds for thecomplex Cli�ord multiplication.Proof. It su�ces to check the mappings on the generators. Let us remember thatthe Weyl spinors are �1-eigen spaces for the v0, where v0 is either the volume v orp�1v. For all ei 2 Rm, s 2 S+ we get v0:(ei�s) = (v0 � ei)(s) = a(e1 � � � � � em �ei)(s) = a(�1)m�i(e1 � : : :^i � � � � em)(s) = (�1)i�1(�1)m�i(ei � v0) = �ei�(v0:s)since m is even (a is either 1 or p�1). �Let us also write � and �� for the (real) bundles over pseudo-Riemannian man-ifolds corresponding to the (complex) spin representations. Since the Riemanniancovariant derivative is a natural operator, it must respect subbundles coming fromSpin(2n)-invariant submodules. Hence the Dirac operator D : �! � decomposesas D� : �� ! ��in the even dimensions. We claim that the operators D and D� are the operatorsdiscussed in the Example 6.22. In order to see this explicitly, we have to �nd thehighest weights of the basic spin representations and for that reason we need a gooddescription of the Lie algebra.7.23. The Lie algebra o(m+ 1; C ). Write m+ 1 = 2n or m+ 1 = 2n+ 1 for thedimension. Let us consider the usual positive de�nite scalar product, hence the Liealgebra is generated (as a vector space) by the matrices Aij = Eij �Eji and theircommutators are (remember [Eij; Ekl] = �jkEil � �liEkj)[Aij; Akl] = �jkAil + �ilAjk � �jlAik � �ikAjl:The matrices Aij admit two eigen values, �1, the commutative subalgebra h gen-erated by A12; A34; : : : ; A2n�1;2n is the Cartan subalgebra. A general element in hhas the form X = �1A12 + � � �+ �nA2n�1;2n. The element (m1; : : : ;mn) 2 Cn� isa weight of a representation ' if all '(A2i�1;2i) admit a common eigen vector suchthat the corresponding eigen value for Hi = A2i�1;2i is p�1mi, i.e. the eigen valuefor X is p�1(m1�1 + � � �+mn�n).If we choose a (weak) order in h, then the highest weights are those ones withweight vectors under trivial action of the positive root elements, or equivalentlythe maximal ones in the chosen order. The multiplication of the weights by p�1corresponds to the isomorphism which transforms the scalar product we use now,to the scalar product we use in 10.10{10.11. Hence the fundamental weights remainunchanged.Consider now Spin(m + 1; C ) � C`0m+1(C ) ' C`m(C ). We shall identify o(m +1; C ) with a subspace in C`m(C ). Let us de�ne the bracket [ ; ] on C`m(C ) by[x; y] = x � y � y � x, i.e. [ei; ej] = 2ei � ej , i 6= j, for the generators, and write�0j = ej = ��j0, �ij = [ei; ej ]. Hence the 12n(n + 1) elements �jk with j < k are



7. THE SPINORS AND THE DIRAC OPERATORS 83linearly independent and �jk = ��kj. An elementary computation leads to thecommutators[�ij; �kl] = 4(�jk�il + �il�jk � �jl�ik � �ik�jl) for all i; j; k; l non-zero[�0j; �kl] = 4(�jk�0l � �jl�0k) for j; k; l non-zero[�0j; �0k] = �jk j; k 6= 0We would like to have generators Xij , 0 � i < j � m, which satisfy the samecommutator relations as the above generators Aij of o(m + 1; C ). First of all thecommutators have the right form in the case of indices di�erent from zero, up tothe multiple 14 . Further, if i = k then we need [Xij; Xkl] = �Xjl, so the �0j = ejmust be multiplied by some pure imaginary scalar. Finally, the second and thirdrows in the above commutators suggest �p�12 for this scalar factor and we shalluse the minus sign to �t with the earlier choice of the Dirac matrices i. Now onechecks by elementary computations that the choice of generatorsX0j = �p�12 �0j = �p�12 ejXjk = 14�jk = 12ej � ekleads really to a Lie algebra sitting in the Cli�ord algebra C`m(C ) which is isomor-phic to o(m + 1; C ). The bracket in this algebra is precisely the commutator andso there is the analogy to Proposition 7.12:Proposition. Each representation of the Cli�ord algebra C`mC induces the rep-resentation of the Lie algebra o(m + 1; C ) given by the restriction.Proof. The generators of C`m(C ) are contained in o(m+1; C ) and every represen-tation of the Cli�ord algebra respects the commutators by the de�nition. �In fact there is the other part of the proposition which we shall not need ingeneral: each representation of o(m+1; C ) induces a representation of the spin group(for the latter is simply connected) and therefore a representation of the Cli�ordalgebra C`m(C ) as well. However, the resulting representation may fail to be anextension of the original one. We shall need this correspondence of representationsonly for the spinors. This is the identical representation of the corresponding matrixalgebra and so it remains the same as a representation of the spin group.7.24. The weights of spin representations. Let us consider �rst the groupSpin(2n + 1; C ) and its faithful irreducible representation on the spinors S = C 2n(unique up to equivalence). The weights are evaluated from the corresponding rep-resentation of the Lie algebra o(2n+1; C ). If we view Spin(2n+1; C ) as a subgroupin the matrix algebra Mat22n(C ) then the representation is the identical one andso the induced representation of the Lie algebra is also the standard identical one.First of all we have to �nd the expression for the elements Hi 2 C`2n(C ) from theCartan algebra as elements in the corresponding matrix algebra. We shall use theexplicit representation of C`m(C ) as a matrix algebra from 7.20 (consult [Boerner,



84 NATURAL OPERATORS ON CONFORMAL MANIFOLDS67, Chapter VIII] for more details here or below if necessary). Let us recall the gen-erators 2j�1 = �
� � �
�
�
I2
� � �
I2 and 2j = �p�1�
� � �
�
�
I2
� � �
I2where � and � are at the j-th place and there are altogether n (2 � 2)-matrices inthe expressions.Now, we use the above description of the Cartan algebra with the zero indexreplaced by 2n + 1 (in fact the elements X0j will not appear explicitly at all, forthey do not belong to the Cartan subalgebra). ThenHi = 122j�12j = �p�12 I2
 � � � 
 I2
 � 
 I2
 � � � 
 I2;see the identities in 7.7. Thus, the Hi are diagonal matrices with the same numberof the entries 12p�1 and �12p�1. Inspecting the distribution of the signs, we seethat a common eigen vector in C 2n can involve only one non-zero entry. Hence theweights are precisely of the form (�12 ; : : : ;�12) and according to our choice of theorder, the highest among them is the weight (12 ; : : : ; 12 ). This shows that the spinrepresentation is really the remaining representation among those correspondingto the fundamental weights, see the last section. Thus, for the odd dimensionm = 2n + 1, all representations of Spin(m; C ) are involved in tensor products ofthe exterior forms of degrees less then n and the spin representation on S = C 2n .Since we know that all representations of the real spin groups are obtained fromsuitable complexi�cations, see 6.4, we can use the above result for the real case aswell (but it is not simple at all to get concrete results, cf. 7.21).7.25. The even dimensions. Consider now Spin(2n+2; C ), so we have to studythe representation of C`2n+1(C ). We can proceed analogously, but the Cartanalgebra contains now additionally the matrixHn+1 which has a quite di�erent form,for it corresponds to the generator X0;2n+1 = �p�12 e2n+1, see 7.23. In 7.19, wede�ned the two representations 0� of C`2n+1(C ) on S. On the (n+ 1)-st generatorthey were de�ned through the volume element with the proper scalar multiple. Ifwe perform the necessary identi�cation with a matrix in Mat2n(C ) we get the actionof H0n+1 = �p�12 � 
 � � � 
 �:This is also a diagonal matrix with the entries of the form �p�12 . If we inspectonce more the distribution of the signs, we conclude that the highest weights areprecisely (12 ; : : : ; 12 ;�12) and they correspond to the Weyl spinors with positive andnegative helicities.7.26. Tensor products of spin representations. We know from the represen-tation theory that all irreducible representations of the spin groups must appear inthe tensor products of the spin representations and the exterior forms, cf. 10.11.Let us describe the situation more explicitly in the even dimensional case, m = 2n.We shall write � for the complexi�cation �Rm 
 C (i.e. � = C`m(C ) as a vectorspace), �e and �o for the even and odd forms, while �� are the eigen spaces of theaction of the suitable multiple v0 as in the de�nition of the Weyl spinors. The leftmultiplication by the volume element plays the role of the Hodge star operator, inparticular, the splitting of the exterior form of degree n coincides with the splitting



7. THE SPINORS AND THE DIRAC OPERATORS 85�n� discussed in the last section. Beside these homogeneous forms, the spaces ��are generated by linear combinations from �p � �m�p.If we let act the spin group on the Cli�ord algebra by right multiplication byinverse elements, we get an equivalent representation and the decomposition into asum of 2n equivalent spin modules S exactly as in the decomposition in 7.16. Thisis best seen on the matrix realization: The generators Yi = 2i�1 � 2i of the evenpart of the Cli�ord algebra are symmetric (see 7.17) and the remaining 2i � 2i+1equals to p�1I2
 � � � 
 I2
 � 
 � 
 I2
 � � � 
 I2, hence is also symmetric. If weapply the transposition to these generators they should change the signs, but thiscorresponds to the transposition of the corresponding matrix generators. Thus,the transposition (ei1 � � � � � ei2p )t on C`0m(C ) corresponds to the transposition ofthe corresponding matrix accomplished with suitable sign depending on p mod 2.The spin representations as right C`0m(C )-modules are the rows in the matriceswith the right multiplication by the matrices from the algebra. We de�ne a linearmapping f : S 
 S ! C`m(C ) by f(u
 v) = u � vt, i.e. we view S 
 S as the tensorproduct of one left and one right Spin(m; C ) module. This is a linear isomorphism,which is easily seen on the matrices (Ej1E1k = Ejk, 1 � j; k � 2n, and so f issurjective, but the dimensions of � and S 
 S coincide). The (twisted) adjointrepresentation of Spin(m; C ) on Cm � C`m(C ) is precisely the usual standardrepresentation of SO(m; C ) and its extension to the whole algebra coincides withthe standard representation of SO(m; C ) on the exterior forms �. By the de�nition,f intertwines the action of C`m(C ) on S 
 S and the adjoint action (warning: theright-hand S is the right C`m module). We can also get information on the behaviorof subspaces:Proposition. There are the following equivalences of representations:� = S 
 S�+ = (S+ 
 S+)� (S+ 
 S�)�� = (S� 
 S+)� (S� 
 S�)�e = � (S+ 
 S+) � (S� 
 S�) if n is even(S� 
 S+)� (S+ 
 S�) if n is odd�o = � (S� 
 S+)� (S+ 
 S�) if n is even(S+ 
 S+) � (S� 
 S�) if n is oddProof. The �rst equivalence has been already proved, the isomorphism is u
vt 7!u � v. By the de�nition, �� are the eigen spaces of the left multiplication by v0,hence �+ = S+ 
 S and �� = S� 
 S. The volume element v0 satis�es v0t =(�1)2n(2n�1)=2v0 = (�1)nv0. In the proof of 7.22 we derived that each generator eicommutes with v0 with the change of its sign. Thus, the odd elements w in � areprecisely those with v0 � w � (v0)t = (�1)nv0 � w � v0 = (�1)degree of w(�1)nw andthis implies the description of the odd and even forms. �7.27. The inner products on spinors. Consider the space S of Dirac spinorswith the faithful representation  of C`2n(C ) or C`02n+1(C ) and its dual space S�with the representation t(a) = ((at))t. If restricted to the spin group, this



86 NATURAL OPERATORS ON CONFORMAL MANIFOLDSis precisely the contragredient representation. Since these representations mustbe equivalent, there is a linear isomorphism " : S ! S� intertwining these rep-resentations. This de�nes a bilinear non-degenerate form "(s1; s2) = "(s1)(s2)denoted by the same symbol. If we de�ne "t(s1)(s2) = "(s2; s1) we get a map-ping which must be proportional to " by the Schur's lemma. Since "tt = ", themultiple must be �1. This means " is either symmetric or skew. We can checkwhich of the possibilities takes place by evaluating "((a)(s); s) with suitable ele-ments a 2 C`2n(C ) and s 2 S. Let us pass to the matrix realization and choosea = � 
 � � � 
 � , i.e. a volume element, and s be the column vector with only the�rst entry non-zero. Hence (a)(s) = s, at = (�1)2n(2n�1)=2a = (�1)na and we get"(s; s) = "((a)s; s) = (at)t("(s))(s) = "(s; (at)(s)) = (�1)n"(s; s). Therefore,the inner product " is symmetric if n = 0 mod 2, while " is skew if n = 1 mod 2.The next question is: what about an inner product on the Weyl spinors? TheWeyl spinors are �1-eigen spaces for the multiplication by the proper volume ele-ment v0 and the same is true for the duals. We have seen (v0)t = (�1)nv0. Hence(v0)t � " = (�1)n" � (v0) and the inner product " restricts to the Weyl spinors ifn is even. We shall denote the products by "+ and "�.7.28. The four-dimensional case. Let us work out more explicit formulas in the(most interesting) case of dimension m = 2n = 4. The Dirac spinors are complex4-component. In the above identi�cation, the Dirac matrices are (i = p�1)1 = � 
 I2 = 0B@ 0 0 1 00 0 0 11 0 0 00 1 0 01CA 2 = �i� 
 I2 = 0B@ 0 0 i 00 0 0 i�i 0 0 00 �i 0 01CA3 = � 
 � = 0B@ 0 1 0 01 0 0 00 0 0 �10 0 �1 0 1CA 4 = �i� 
 � = 0B@ 0 i 0 0�i 0 0 00 0 0 �i0 0 i 0 1CAThe volume element is then� = � 
 � = 0B@ 1 0 0 00 �1 0 00 0 �1 00 0 0 11CA ; � � � = I4:Hence the Weyl spinors S+ and S� of positive and negative helicities are precisely(a; 0; 0; b) 2 C 2 � C 4 and (0; a; b; 0) 2 C 2 � C 4 . We have found that these rep-resentations are irreducible and their highest weights are �+ = 12(e1 + e2) and�� = 12(e1 � e2), see 10.11 and 6.22 for the notation. The tensor product S+ 
 S�must involve the representation corresponding to the dominant weight �++�� = e1with multiplicity one. But the dimension of the tensor product C 2 
 C 2 is exactlythe dimension of C 4 which corresponds to the weight e1. Thus, the tensor productof the two di�erent half-spin representations is equivalent to the identical represen-tation on C 4 . This shows how all tensor representations of SO(m; C ) arise fromthe fundamental ones, i.e. from the spin representations. In Proposition 7.26 we



7. THE SPINORS AND THE DIRAC OPERATORS 87proved �o = (S+
S�)� (S�
S+), hence the second summand corresponds to �3.The product S+ 
 S+ contains the invariant subspace with highest weight e1 + e2.However, its dimension is only 3.23 These are the positive exterior two-forms �2+.The remaining one dimensional space corresponds to the trivial representation onthe �eld of scalars, �0. Similarly S� 
 S� splits to one dimensional representation�4 and the other half �2� of �2.In conformal geometry, one often meets elements from tensor products of severalcopies of S+, S� and their duals S��, S�+, or even mixed with tensors. Similarlyas with the tensors in the previous text, we shall use the Penrose's abstract indexnotation. We have chosen the small italics superscripts (with possible further indiceslike a1, bp, etc.) as labels for distinct but isomorphic copies of Km , while the samelabels as subscripts indicate always copies of Km� . If we want a similar notation forspinors, we need two further kinds of labels. We choose the capital italic superscripts(with possible further indices) for copies of S+ and the same subscripts for S�+.The same labels with primes will indicate the spaces S� and S��. In view of theabove description of the tensor products of spinors, this becomes a very powerfulnotation (in the dimension 4). Let us add some further conventions. We haveproved tAA0 = ta (i.e. tensor product of S+ and S� is C 4 ) and we shall adopt thisconvention also for general expressions like : : :CjC 0j � � � = : : : cj : : : . The skew innerproducts " de�ned in 7.27 are elements "AB , "A0B0 , "AB , "A0B0 , antisymmetric inthe indices. These elements allow rising and lowering of indices similarly to thatinduced by a metric on tensors, but since they are antisymmetric we have to �x theusage of the indices: s:::A::: = "ABs:::B::: where the dots can involve both subscriptsand superscripts. In particular, "AB = "BC"AC = �"BC"CA = �"BA.The tensor product "+
 "� is a linear isomorphism C 4 ! C 4� which intertwinesthe standard representations and so it corresponds to the original scalar product gon C . This is expressed by "AB"A0B0 = gab. As seen on "AB = �"BA, we have tobe very careful to preserve the order of the primed and unprimed indices (includingsuperscripts and subscripts) separately, while the relative order of the primed andunprimed ones is not important. The symmetrizations and alternations in someentries are denoted on the indices exactly as with the tensor indices.A special convection concerns the pseudo-Riemannian covariant derivative r.This is an operator with one vector argument, hence we have denoted it by ra andits value on a tensor was rat::::::, understand as one symbol. Now we can use thecovariant derivative on all spinors and write rAA0t:::::: where the dots may involveall three types of indices. Moreover, we can rise and lower all indices, e.g. rAA0t::::::.Let us notice that this is a very e�ective notation. For example, Tab = TABA0B0 for23There is the famous Weyl's degree formula: The dimension of an irreducible representationcorresponding to a dominant form � isd� = Q�>0h�;�+ �iQ�>0h�; �iwhere the products go over all positive roots and � is half the sum of all positive roots.In our case the positive roots are chosen as e1 � e2 and e1 + e2, hence � = e1. The Killingform is the Euclidean scalar product up to a scalar multiple which does not play any role in theformula. For � = e1 + e2 we get immediately the dimension 3.



88 NATURAL OPERATORS ON CONFORMAL MANIFOLDSevery twice covariant tensor but T(AB)(A0B0) is a simple expression for its symmetrictrace-free part! This follows from the antisymmetry of "AB = �"BA which is usedin the trace.In 6.22, we found two other operators beside the Dirac operators. They arede�ned on the sections of the bundles �+ and �� of the Weyl spinors and theirvalues are in the bundles corresponding to the representations S+ 
 S+ 
 S� andS�
S+
S�. Now we are able to write down a simple formula for these operators:D(sB ) = r(AA0 sB); D(sB0 ) = r(A0A sB0):They have values in the required spaces, symmetric in the unprimed or primedindices and trace-free. The whole S+ 
 C 4 decomposes into S� and another spacecorresponding to the weight 12(3e1 + e1). (Its dimension is six as easily computedusing the Weyl's degree formula.) Similarlywe get the other case. The �rst operatoris called the twistor operator, its solutions are called the (global) twistors.8. Verma modules and natural operatorsIn this section we present the complete classi�cation of natural linear operatorson �rst order natural vector bundles on locally at conformal manifolds, which isachieved by means of the methods from representation theory. Our inspiration is[Baston, 90], and [Baston, Eastwood, 90], however we succeed also in the case ofsingular in�nitesimal characters and we present complete (and rather elementary)proofs. In particular, we correct some claims of the latter survey paper. Some basicnotions and results from representation theory are outlined in the Appendix.8.1. The main idea. Each locally at conformalmanifold is locally isomorphic tothe sphere, so that we shall restrict ourselves to the homogeneous bundles over the(pseudo-) spheres without loss of generality. Let us �x two such bundles E = E�and F = F� corresponding to irreducible representations V�, V�, for two weights �, �of g = o(m+2; C ), dominant for the Poincar�e conformal subalgebra b, i.e. V� and V�are (real or complex) representation spaces either for the Poincar�e conformal groupB or for its simply connected covering. This notation is di�erent form that used inSection 6, where the weights were dominant weights of o(m; C ) and the remaininginformation was involved in the conformal weight. The explanation of the presentnotation is in 10.13 and 10.14. Let us remind that all linear representations oforthogonal groups are completely reducible and the action of the nilpotent partmust be trivial in each irreducible representation of the Poincar�e algebra. Thus,the above restriction to the irreducible representations means in fact that we willdescribe operators on all �rst order natural bundles.In fact we used the general idea in the �rst order case in the proof of 6.10, cf.6.13. According to the non-linear version of the Peetre theorem, each local operatorD : C1(E�M )! C1(F�M ) on sections of bundles E�M and F�M over the samebase M factors through a mapping ~D : J1(E�M ) ! F�M , see [Slov�ak, 88] or[Kol�a�r, Michor, Slov�ak, 93]. For a linear operator we get even the �niteness of theorder and a smooth ~D : Jk(E�M ) ! F�M (this is the classical Peetre theorem).



8. VERMA MODULES AND NATURAL OPERATORS 89The locally at conformal manifolds are homogeneous enough to apply the generaltheory of natural bundles and operators, see Section 2. In particular, the wholeoperator is completely determined by the equivariant mapping ~DM : Jkx (EM ) !FxM for an arbitrary point x 2 M , with respect to the group of locally de�nedconformal isomorphisms at x keeping x �xed.Thus, in order to classify linear natural operators D : C1(E�) ! C1(F�) onlocally at conformal manifolds, we have to �nd all B-equivariant linear mappingsD : Jk0E� ! (F�)0 = V�, where 0 is the coset in G=B containing the unit e. Dual-izing this mapping, we get a B-equivariant mapping D� : (V�)� ! (Jk0E)�. Since(V�)� is irreducible, all such mappings are uniquely determined by the highestweight vectors in (Jk0E)� with the same weight as (V�)�. Then the mapping Dis the dual mapping to the corresponding inclusion. The main technical step is asuitable identi�cation of (Jk0E)�. In Section 6 we derived the action only up to the�rst order. Now, the most e�ective way is to deal with the direct limit of (Jk0E)�which will be identi�ed with a generalized Verma module.More exactly, we shall solve the whole classi�cation problem on the Lie algebralevel, i.e. we shall discuss the equivariance with respect to the action of the universalenveloping algebra U(g) on the duals of the jet spaces. Let us recall that this isan equivalent formulation of the problem as shown in 6.7 and 6.8. The passing tothe Lie algebras has two big advantages. First, we can forget about the coveringsand, which is more important, the derivatives with respect to constant vector �eldsenable us to work still in a single �ber but to involve the translations into theequivariance conditions at the same time.8.2. The U(g)-module (J10 E)�. As usual the sections of the homogeneous bundleE are identi�ed withB-equivariant mappingsG! V� and the jets of sections form asubmanifold in Jke (G; V�). Then the action ofG is given by the compositionwith theleft translation by the inverse, see 2.10. Let us identify the real universal envelopingalgebra U(g) with the Lie derivatives with respect to right invariant vector �eldson G and consider an element x
 v� 2 U(g)
 (V�)�. An element X 2 g � U(g) isidenti�ed with the Lie derivative L�X with respect to the right invariant vector �eldon G, see 6.1. This identi�cation is extended to the actions Lx for all x 2 U(g)k.Then we can associate an element in (Jk0E)� to each x 
 v� 2 U(g)k 
 V �� actingon jke s by (x 
 v�)(jke s) = hLxs(e); v�i. However this identi�cation is not one-to-one since for x 2 U(b) where b � g is the Lie algebra of B, we get the sameaction of x
 v� and 1
 x:v� where x:v� is the contragredient action. Let us writeI � (U(g)
V �� ) for the left U(g)-submodule generated by all x
v� �1
x:v� withv� 2 V �� , x 2 U(b) and de�neMb(V �� ) = (U(g) 
 V �� )=I = U(g)
U(b) V �� :This is the generalized Verma module corresponding to the weight � dominant forthe parabolic subalgebra b � g, see 10.18.We have g = b�1 � b and b�1 = Cm or b�1 = Rm is abelian. Hence by theproperties of the enveloping algebrasMb(V �� ) = U(b�1)
 V �� = 1Xk=0Sk(b�1) 
 V ��



90 NATURAL OPERATORS ON CONFORMAL MANIFOLDSwith the grading induced from that of the symmetric algebra. Choosing basis @i ofthe Lie algebra b�1 and completing it into a basis of g, we get the normal coordinateson a neighborhood of e 2 G and we see immediately that Mb(V �� ) coincides with(J10 E)� as a vector space. But the left actions of U(g) coincide by the de�nition.Let us write this action down explicitly. For this reason, we de�ne for every multiindex � = i1 : : : ij�j, i1 � � � � � ij�j, the linear map`� : Jk0E ! V�; `�(jke s) = (L�@i1 � : : : � L�@ij�js)(e):Since the elements in g�1 commute, we can view the elements in Sj�j(g�1) aslinear combinations of maps `�. This is precisely the above identi�cation. Letus denote `i = L�@i 2 b��1 = S1(b�1), so the elements `� can be viewed as`� = `i1 � : : : � `ij�j 2 Sj�j(b�1) and we have `� = 0 if j�j > k. Further, for everyX 2 g we shall denote ad`�:X = (�1)j�j[@i1 ; [: : : [@ij�j; X] : : : ]].Lemma. The action of elements Xq 2 bq on `� 
 v� 2 Sp 
 V �� isX�1:(`� 
 v�) = `� �X�1 
 v�X0:(`� 
 v�) = � X�+1i=�1�i�m (`� � [@i; X0])
 v� + `� 
X0:v�X1:(`� 
 v�) = X�+=�jj=1 `� 
 (ad` :X1):v� + X�+=�jj=1+1(`� � (ad` :X1)) 
 v�Proof24. We compute with ` = jk0X 2 bq`:(`� 
 v�)(jke s) = �(`� 
 v)(`:jke s) = (`� 
 v)(jke (LXs)) = h(`� � LXs)(e); v�iSince `j � LY = LY � `j + L[�@j;Y ] for all Y 2 g, 1 � j � n, and [@j; bl] � bl�1, weget`:(`� 
 v�)(jke s) = h`i1 : : : `ip�1LX`ips(0); v�i+ h`i1 : : : `ip�1L[�@ip ;X]s(0); v�i24The last formula also applies to the action of the isomorphism groups of other geometricstructures (like the symplectic or unimodular manifolds or simply all manifolds) on the duals ofjets of sections of natural bundles in the sense of 2.12. More explicitly, this formula with q = 1replaced by a general q � 0 describes the action of the Lie algebra of all vector �elds on thesections of the natural bundles. The natural linear operators are just those commuting with theaction of these vector �elds, see [Kol�a�r, Michor, Slov�ak, 93, Section 34] for more details. Thisformula is the main ingredient of the classi�cation of all linear natural operators on all manifolds,unimodular manifolds, symplectic manifolds, derived (with quite di�erent aim) in [Rudakov, 74,75], and the classi�cation of all bilinear natural operators on all manifolds due to [Grozman, 80],see also the excellent survey [Kirillov, 80], or [Kol�a�r, Michor, Slov�ak, 93, Section 34]. Of course,the methods used for the proofs must be quite di�erent since the groups are in�nite dimensional.The idea is to disable �rst all vectors with non-trivial action of the subalgebra g1 � g2 � : : : andthen apply the �nite dimensional representation theory of g0 on the remaining vectors, the socalled singular vectors. In fact we have described this idea explicitly in 6.13 in the conformal case.



8. VERMA MODULES AND NATURAL OPERATORS 91and the same procedure can be applied p times in order to get the Lie derivativeterms just at the left hand sides of the corresponding expressions. Each choice ofindices among i1; : : : ; ip determines just one summand of the outcome. Hence weobtain (the sum is taken also over repeating indices)`:(`� 
 v�)(jke s) = X�+=�h(ad` :`):`�s(e); v�i:Further ad` :` = 0 whenever jj > q + 1 and for all vector �elds Y 2 b0 � b1 wehave h(LY � `�s)(e); v�i = �h(`�s)(0);LY v�iso that only the terms with jj = q or jj = q + 1 can survive in the sum. Since` = jkeY 2 b0 acts on (the jet of constant section) v by `:v = L�Y v(0), we get theresult. �The formulas work in both real and complex domains.8.3. Consider now an equivariant mapping D� : V �� ! (Jk0E)�. The Verma mod-ules Mb(V �� ) and Mb(V �� ) are generated by the elements 1 
 v�� , 1 
 v�� where v��and v�� are the highest weight vectors. Thus, the mapping D� extends uniquelyto a homomorphism D� : Mb(V �� ) ! Mb(V �� ) of the U(g)-modules. On the otherhand, each such homomorphism clearly speci�es a translational invariant operator.Hence we have proved for both real and complex homogeneous bundlesTheorem. There is a bijective correspondence between the homomorphisms of thegeneralized Verma modules and the translational invariant operators on homoge-neous bundles.8.4. Remark. It might seem that we have successfully reduced our problem to analgebraic task and what remains is only to look somewhere, �nd the classi�cationof all homomorphisms and interpret them as di�erential operators. This is very farfrom the truth. First of all, the description of all homomorphisms is given in termsof the action of the Weyl group and a complete classi�cation is well known only forthe classical Verma modules, i.e. for Borel subalgebras B. In the conformal case,we meet the more general parabolic subgroups and here the classi�cation coveringall possible bundles has been found only recently. But say, we do not want to knowreally all operators, it could su�ce to be able to �nd complete lists of them actingon some concrete �xed bundles. Even then the results are not very satisfactorysince we �nd the extreme weight vectors and we know that the operators are thedual mappings to the identical embeddings up to a scalar factor, but we do not getexplicit formulas for the operators in this way. Nevertheless, the fact that we can besure that there is an operator between some given bundles is of great importance,cf. the deriving of the conformal Laplace operator in Section 1.In the rest of this section we mainly follow [Slov�ak, 92].8.5. The use of the in�nitesimal character. It turns out to be convenientto prove the classi�cation in the complex setting and at the very end to specifythe result to the real case. So we shall treat only complex groups and algebrasin the sequel. As explained in the Appendix, if two U(g) modules generated by



92 NATURAL OPERATORS ON CONFORMAL MANIFOLDSa single highest weight vector admit a homomorphism, then they must have thesame in�nitesimal character, see 10.17. Hence we have a rather strong restrictionon the possible homomorphisms between the Verma modules. The Harish-Chandratheorem reduces the problem to the study of the a�ne action of the Weyl groupW ,see 10.19 and 10.20. Thus, if there should exist an invariant operatorD : C1(E�)!C1(E�), for two weights dominant for b � g, then there must be an element w 2Wsuch that w:�� = ��, i.e. w(��+ �)� � = �� where �� and �� are the weights of thecontragredient representations and � is the lowest form.De�nition. If � is a weight dominant for b such that �+ � does not lie on a wallof a Weyl chamber, then the in�nitesimal character �� is said to be regular. Thein�nitesimal characters of the weights � with � + � lying on some wall are calledsingular. The in�nitesimal characters of weights � and � with the same cardinalityof the stabilizers of � + � and � + � in the Weyl group W are called equisingular.In particular, all regular in�nitesimal characters are equisingular.8.6. Notation for natural bundles. In 10.12 and 10.13, we explain the generalnotation for b-dominant weights by means of the Dynkin diagrams. We adopt thefollowing convention for natural vector bundles corresponding to such representa-tions:De�nition. A vector bundle corresponding to an irreducible representation whichis dual to that one with highest weight � will be denoted by the Dynkin diagramwith the values of � + � on the simple coroots inscribed over the correspondingnodes (� is the sum of fundamental weights as usual).This seems to be a very strange notation, but the passing to the duals reectsthe fact that we are describing the dual mappings to the operators and the shift by� simpli�es heavily our formulas. In fact, the dual representations are distinguishedonly by their opposite conformal weights (which is, of course, not the same as theinverting of the sign over the crossed node in general). Concrete examples are listedin 10.14 (we have only to take the duals). The expressions C1( b� d1� � � � � dn�2�� a�� c ) andC1( b� d1� � � �dn�1� > a�) mean the corresponding spaces of sections of the homogeneousvector bundles.8.7. The patterns of natural bundles. We discuss in 10.15 that the elementsin the Weyl group which map at least some of the weights dominant for b intoweights dominant for b form the so called parabolic subgraph W b of W . Let usdescribe this explicitly for the orthogonal algebras.Ifm = 4, we have b = � � � and let s1, s2, s3 be the simple roots as indicatedin g = s2� s1� s3� . The Weyl group consists of all permutations of four letters, thegenerators si correspond to the transposition of the i-th and (i+ 1)-st coordinates(in the proper ordering), see 10.10. If w 2 W p is di�erent from the identity, thenits decomposition into the generators must end with s1. A further discussion yields



8. VERMA MODULES AND NATURAL OPERATORS 93the parabolic subgraph W p s1s2hhhhjid w s1'''')hhhhj s1s2s3 w s1s2s3s1s1s3'''')More generally, in the even dimensions m = 2n we can describe W b symbolicallybyid w s1 w s1s2 w : : :s1s2 : : : sn�1sn�w s1s2 : : : sn�14446���� s1s2 : : : sn�1snsn+1 ws1s2 : : : sn�1sn+1AAACw s1s2 : : : sn�1snsn+1sn�1 w : : : w s1s2 : : : s2s1where the symbols si denote the reections corresponding to the simple roots indi-cated in the diagram s1� s2� � � � � sn�1�� sn�� sn+1.If m = 2n+ 1 we order the simple roots as indicated in s1� s2� � � � sn�>sn+1� and wegetid w s1 w : : : w s1 : : : sn+1 ww s1 : : : sn+1sn w : : : w s1s2 : : : s2s1The arrows describe the so called Bruhat order on W b, for a more detailed descrip-tion see e.g. [Boe, Collingwood, 85] or [Borho, Jantzen, 77].If a weight dominant for b has all coe�cients over the nodes integral then itsin�nitesimal character is regular if and only if there is a weight � with the samein�nitesimal character, which is dominant for the whole g. For such weights withregular in�nitesimal characters, the meaning of the above patterns is easy to ex-plain: We take the only weight � dominant for g with the in�nitesimal character�� and we let the elements from W b act on �+ � as indicated in the diagrams. Inthis way we get just all weights � + � with � dominant for b and with the samein�nitesimal character ��.The action of the simple reections from the Weyl group is described in 10.20.For example, let us consider a dominant weight � for g, � = a� b� c� with integersa, b, c > 0. The action of the reection s1 2 W corresponding to simple rootdenoted by the second node on � iss1:� = s1(� + �) � � = a+b� �b� b+c� :



94 NATURAL OPERATORS ON CONFORMAL MANIFOLDSSimilar simple computation yields the action of all elements in the directed graphW p from 10.15. Altogether we get the patternb� �b�a�a+b+c� [[]a� b� c� w a+b� �b� b+c� [[][[] b+c��a�b�c� a+b� w c��a�b�c� a�a+b+c� �b�c� b�[[]It is a straightforward computation to write down explicitly the patterns in thehigher dimensions. We shall do this in a quite formal way, i.e. the only restrictionon the coe�cients over the nodes of the left most weight is that this should belongto the closed fundamental Weyl chamber.Let us �x �rst a weight b� d1� � � � � dn�2�� a�� c with all coe�cients non-negative (butnot necessarily integral).b� d1� � � � � dn�2�� a�� c w �b� b+d1� d2� � � � � dn�2�� a�� c w �b�d1� b� d2+d1� � � � � dn�2�� a�� c w � � ��b�d�a� b� � � � � dn�3�� dn�2�� a+c+dn�2w �b�d� b� d1� � � � � dn�3�� a+dn�2�� c+dn�2NNP��� �b�d�a�c� b� d1� � � � � dn�3�� dn�2+c�� dn�2+a���PNN w�b�d�c� b� � � � � dn�3�� a+c+dn�2�� dn�2w �b�d�dn�2�a�c� b� d1� � � � � dn�3+dn�2�� c�� a w : : : w �b�2d�a�c� d1� � � � � dn�2�� c�� awhere d = d1 + � � �+ dn�2.The pattern for manifolds of dimension 2n+1 starts with a weight b� d1� � � �dn�1� > a�with non-negative coe�cientsb� d1� � � �dn�1�> a� w �b� d1+b� � � �dn�1� > a� w : : : w �b�d� b� � � �dn�2� >a+2dn�1� w �b�d�a� b� � � �dn�2� >a+2dn�1�w �b�d�dn�1�a� b� d1� � � �dn�2+dn�1�> a� w : : : w �b�2d�a� b+d1� d2� � � �dn�1� > a� w �b�2d�a� d1� � � �dn�1�> a�where d = d1 + � � �+ dn�1.Let us point out once more that the weights � in the patterns correspond to theduals of the standard �bers of the bundles and the coe�cients themselves are thevalues of �+ � on the simple corrots. In view of the above discussion we know thatall natural operators must appear between two bundles in the same pattern.



8. VERMA MODULES AND NATURAL OPERATORS 958.8. Each position in the pattern corresponds to just one Weyl chamber and theweights � which determine representations with regular in�nitesimal character arethose with �+ � not lying on a wall of a Weyl chamber. Thus, the unique positionof every representation with regular in�nitesimal character can be read o� thecoe�cients over the nodes. Let us call the non-negative coe�cients a; b; : : : overthe left-most weight in the pattern the coe�cients of the pattern.If some of the coe�cients of the pattern are not integral, then a lot of the listedweights are not dominant for b. If the stabilizer of a weight � under the a�neaction of the Weyl group is not trivial, then the pattern degenerates in such a waythat some of the weights are not dominant for b and the number of occurrencesof the remaining weights appearing in the pattern equals to the cardinality of thestabilizer of each of them.Lemma. The number of occurences of the b-dominant weights in the patternequals to the number of the zeros among its coe�cients increased by one.Proof. The claim follows from the explicite description of the patterns in 8.7. �8.9. The order of the operators. The conformal weights are easily computedby means of the coe�cients in the Dynkin diagrams as described in 10.14. Theconformal weight ! of the representation with the highest weight b� d1� � � � � dn�2�� a�� c is! = b+ d1 + � � �+ dn�2+ 12(a+ c) � nwhile the conformal weight of b� d1� � � �dn�1�> a� is! = b+ d1 + � � �+ dn�1 + 12a� 12(2n+ 1):The conformal weights of the natural bundles corresponding to such diagrams areobtained by taking the negative of the above formulas (this is our duality conven-tion).If there is a translational invariant operator D : C1((F�)�)! C1((F �� ) betweenthe complex bundles over complex pseudo-spheres, then its order is described eas-ily be means of the conformal weights of � and �. Let us remind that D cor-responds to the inclusion of the representation space V� into the Verma moduleMb(�). Since each homogeneous component in the grading of the Verma module isa g0-submodule, the image of the inclusion must be contained in one homogeneouscomponent. But the degree of this component is exactly the order of the operatorD. If !1 is the conformal weight of �, then the conformal weight of all irreduciblerepresentations in the i-th homogeneous component in Mb(�) is !1 � i. Thus, theoperator D has the order r = !1 � !2 where !2 is the conformal weight of �. Thiselementary observation will become one of the basic tools for the classi�cation.8.10. Translation functors. There is a general construction which allows totranslate the results on homomorphisms of Verma modules from one pattern toanother one, the so called Jantzen-Zuckerman functors, see e.g. [Zuckerman, 77].As before, let us write V� for the �nite dimensional irreducible representation with



96 NATURAL OPERATORS ON CONFORMAL MANIFOLDShighest weight � dominant for b. Further, write V �� for the module contragradientto V�, i.e. V �� has the lowest weight ��. Each U(g)-module decomposes completelyinto submodules with di�erent in�nitesimal characters, see e.g. [Zuckerman, 77].Let us write p� for the projections onto the modules with in�nitesimal character��. Hence given a weight � dominant for b and a weight � dominant for g, we cande�ne two functors '��+� = p�+� � (( )
 V�) � p� �+�� = p� � (( ) 
 V �� ) � p�+�where the action on the morphisms is de�ned by the tensor product with the iden-tity.These functors are de�ned on a large class of U(g)-modules involving the gen-eralized Verma modules. For technical reasons, we shall also allow � to be anarbitrary weight with s:� dominant for b for some s 2W b (then the projections p�and p�+� are well de�ned), but we shall always assume that � + � belongs to theclosed fundamental Weyl chamber which contains the weights corresponding to therepresentations appearing in the most left position in the patterns. In particular,this means that � is dominant for g if �� is regular and � is integral.Lemma.(1) The functor  �+�� is left adjoint to '��+�.(2) If the weights � and � + � are equisingular, then  �+�� (Mb(s:(� + �))) =Mb(s:�) and '��+�(Mb(s:�)) = Mb(s:(�+ �)) whenever s:� is dominant forb.Proof. Since V� is �nite dimensional, the space of homomorphismsHom(Mb(s:(�+�))
V �� ;Mb(s0:�)) is naturally isomorphic to Hom(Mb(s:(�+�));Mb(s0:�)
V�).In view of 8.5, only the summand p�(Mb(s:(� + �)) 
 V �� ) can contribute toHom(Mb(s:(� + �)) 
 V �� ;Mb(s0:�)) and similarly only p�+�(Mb(s0:�)
 V�)) con-tributes to the other homomorphisms. This shows the required natural equivalenceHom( �+�� (Mb(s:(� + �)));Mb(s0:�)) ' Hom(Mb(s:(�+ �)); '��+�(Mb(s0:�))):The other assertion is more di�cult to prove. A general theorem reads that ifthe weights � and �+� are equisingular, then the functors  �+�� and '��+� are themutually inverse natural equivalences on their de�nition domains, see [Zuckerman,77]. If we �x such weights � and �+ �, then for each s 2 W b the weights s:� ands:(�+ �) determine representations appearing at the same position in the patternsstarting with � and � + �. The in�nitesimal characters are the same ones for thewhole pattern and so the projection p� is the identity on Mb(s:�). FurtherMb(Vs:�)
 V� = 1Mi=0(Si(g�1)
 (Vs:� 
 V�))= 1Mi=0(Si(g�1)
 (�kj=1V�j )) = kMj=1Mb(V�j )



8. VERMA MODULES AND NATURAL OPERATORS 97The weights �j appearing in the tensor product and their multiplicities can bedetermined using one of the consequences of the Weyl character formula, e.g. thewell known Brower's formula or Klimyk's formula. Finally, the projection p�+�selects just those �j which lead to the prescribed in�nitesimal character ��+�.So we see that the value of '��+� on a generalized Verma module must be asum of generalized Verma modules. If we replace V� and � by V �� and � + �,we get the same result for the functor  �+�� . But since  �+�� � '��+� is naturallyequivalent to the identity, the values can always consist of only one generalizedVerma module. But there is certainly the weight � = s:(�+�) involved among theweights �j and this appears with multiplicity one. Thus for all s 2 W b we have'��+�(Mb(s:�)) = Mb(s:(� + �)) if s:� is dominant for b.Similarly we can analyze the functor  �+�� with � and � replaced by �� and�+ � and we get  �+�� (Mb(s:(� + �))) = Mb(s:�). �As a consequence of the lemma, we can pass from one pattern to another oneby adding integral weights with regular in�nitesimal character. In particular, oncewe describe all operators between the representations in one pattern, we can get alloperators in many other patterns by applying the above translations.8.11. The operators on exterior forms. All linear natural operators on Rie-mannian manifolds which do not disappear on at manifolds and which behavewell with respect to constant rescaling of the metric were described in 4.23. Thosewhich are natural on conformally at manifolds are indicated in the following twodiagrams. In the even dimension m = 2n they are all composed from the exteriordi�erential d and the Hodge star operator �.
n+hhhjd)'''d+
0 wd 
1 wd � � � wd 
n�1 
n+1 wd � � � wd 
2n�1 wd 
2n
p�CAAAd� ����dDp�1=d�d=d�d+�d�d� uD1=d�(�d)m�3 uD0=d�(�d)m�1 uThe odd-dimensional case (m = 2n+ 1) coincides with the de Rham resolvent:
0 wd 
1 wd � � � wd 
m�1 wd 
mAll of them are natural on locally at conformalmanifolds and there are no othernatural linear operators there. In view of the translation procedure and the formof our patterns, this solves the existence problem for operators which act betweenbundles determined by integral weights with regular in�nitesimal character. Inparticular, there is at most one operator between any two such bundles up toconstant multiples.8.12. Powers of the Laplace operator. We shall list more natural operatorson functions with conformal weights which appear in the patterns with singular



98 NATURAL OPERATORS ON CONFORMAL MANIFOLDSin�nitesimal character or in patterns with non-integral coe�cients. The coe�cientsof the Dynkin diagram correspond to a function space if and only if all of them equalto one except the coe�cient over the crossed node. Inspecting one of the patternswith singular in�nitesimal character from 8.7 which involves such an entry, we seeimmediately that either the coe�cients of the pattern are non-integral or some ofthem are zero. We shall omitt now the general discussion on all possibilities sincewe have to do this more complex in the proof of the main theorem below, but weshall describe the existing operators. In fact the translation procedure describedabove will produce all natural operators from those on exterior froms describedin 8.11, those on functions described below and the conformally invariant Diracoperators on Weyl spinors derived in 6.22.In the even dimension m = 2n we have for each 0 � i � n� 2 the translationalinvariant operator D : C1(�i� 1� � � � � 1�� 1�� 1) ! C1( �2n+i+2� 1� � � � � 1�� 1�� 1). This is theso called conformally invariant (n�i�1)-st power of the Laplacian which is de�nedby the complete contraction of the suitable iteration of the covariant derivative. Itsuniqueness is clear from the considerations in the category of Riemannianmanifolds(by evaluation in the Euclidean metric we exclude the curvatures but then the onlypossibility to end in functions is to take a complete contraction of iterated covariantderivative), its invariance is a matter of a direct evaluation of the e�ect of therescaling of the metric. In particular, the choice i = n � 2 yields the well knownconformally invariant Laplace operator.In the odd dimensions m = 2n+ 1 we also have only the powers of the Laplaceoperators. More explicitely, for each 0 � i � n�2 there is the translational invariantoperator D : C1( �i+ 12� 1� � � � 1�> 1� )! C1( �2n+i+ 12� 1� � � � 1�> 1� ). The invariance hasto be veri�ed by direct computation, the uniqueness follows from the Riemannianinvariance just as above.8.13. Theorem. For every two weights �, � dominant for b, the space of thenatural linear operators D : C1(F�M )! C1(F�M ) acting on smooth sections ofcomplex natural vector bundles over complex conformal Riemannian manifolds isat most one dimensional. All such non-trivial operators, i.e. those di�erent fromconstant multiples of the identities, are indicated in the patterns below. The labelsover the arrows indicate their orders.Let dimM = 2n, n > 1. The pattern starting with the weight b� d1� � � � � dn�2�� a�� c ,where all b, d1; : : : ; dn�2, a, c � 0, is �� wb � wd1 � � � wdn�2 �NNNPa����c �PNNN a���� c wdn�2 � � � wd1 � wb ��a+c u2d1+���+2dn�2+a+c u2b+2d1+���+2dn�2+a+c u



8. VERMA MODULES AND NATURAL OPERATORS 99All arrows in the diagram which join integral weights dominant for b describe anon-zero linear natural operator on conformally at manifolds and there are noother ones.If the dimension ofM is 2n+1, n > 0, then the non-zero linear natural operatorsact between bundles corresponding to weights with integral and half-integral coe�-cients. If the pattern starts with b� d1� � � �dn�1�> a� and all the coe�cients are positiveintegers, then the operators are exhausted exactly by those which are indicated bythe solid arrows in the diagram� wb � wd1 � � � wdn�1 � wa � wdn�1 � � � wd1 � wb �a u2d1+���+2dn�1+a u2b+2d1+���+2dn�1+a uwhile if some of the coe�cients are half-integral and the in�nitesimal character isregular, then we get exactly those operators indicated by the dashed arrows whichjoin weights dominant for b. If the in�nitesimal character of the pattern is singular,then there are no non-trivial operators in odd dimensions.Exactly the same classi�cation applies to natural linear operators acting onsmooth sections of real natural vector bundles over conformal Riemannian mani-folds with an arbitrary signature (m0; n0), m0+n0 = 2n � 4 or m0+n0 = 2n+1 � 3.Proof. The description of the general patterns and the computation of the confor-mal weights in 8.8 and 8.9 yield the possible orders of natural operators as indicatedon the labels over the arrows in the diagrams above. Since the order must be anon-negative integer, a careful inspection of the general patterns from 8.7 showsthat the coe�cients of the patterns must be half-integral. Moreover, if these coe�-cients are not integral and the dimension is even, then the only possibility to �nd aweight dominant for b is either to choose b half-integral or to take two half-integralcoe�cients over the adjacent nodes in the left-most weight or the couple (a; c) or thetriple (dn�2; a; c) must be half-integral, while all other coe�cients must be integral.The proof of this claim consist of an elementary discussion based on the form ofthe patterns from 8.7. But now, in view of the translation principle we can choosethe half-integral coe�cients to be 12 while the integral can be set to one. In thecase (a; c) is half-integral, the only two weights dominant for b are the two weightsjust in the middle, which are di�erent but the order should be zero. Thus thereis no non-zero operator available in this case. In all other cases listed above, theoperator should transform complex functions with suitable conformal weights intocomplex functions with another conformal weight, but the orders should be odd.However, if we apply the methods leading to the description of the Riemannianinvariants in Section 4, then we see that there is no such non-zero operator in theeven dimensional case. The reason is that the evaluation in the Euclidean metricexcludes all curvatures and after applying an odd number of covariant derivativeswe get into an odd tensor power of the covectors, but then there is no way how tocome to functions using the orthogonal invariant tensor operations. Hence thereare no non-zero linear natural operators acting between bundles with non-integralcoe�cients in the even dimensions.



100 NATURAL OPERATORS ON CONFORMAL MANIFOLDSIn order to �nish the description of the even dimensional case, we have now todiscuss case by case the in�nitesimal characters by means of the translations be-tween the equisingular ones. If the in�nitesimal character of the pattern is regular,then the assertion of the theorem follows from 8.11. We have seen in 8.8 that twopatterns have equisingular in�nitesimal characters if and only if they posses thesame number of zeros among their coe�cients. On the other hand, if there shouldexist a weight dominant for b in the pattern, then there can appear at most onezero, except the case a = c = 0, see 8.6.Assume �rst di = 0 for some 0 < i � n � 2, or b = 0. Then there are only twoweights dominant for b. Let us choose all other coe�cients equal to one. Hence theoperator should be de�ned on complex functions C1(�i� 1� � � � � 1�� 1�� 1) with values inC1( �2n+i+2� 1� � � � � 1�� 1�� 1) (we set i = 0 if we have chosen b = 0). Such operators doexist and they are unique up to scalar multiples, see 8.12.Now, let us choose a = 0 and suppose all other coe�cients equal to one. Thenwe have also only two weights which are dominant for b in the pattern. Thecorresponding operator C1( �n+1� 1� � � � � 1�� 1�� 2) ! C1(�n� 1� � � � � 1�� 2�� 1) exists and isunique up to constant multiples. It is just the conformally invariant Dirac operator.The choice c = 0 leads to the other Dirac operator on the basic spin representations.The last choice, a = c = 0 yields four identical weights and operators of order zero.This �nishes the discussion on the even dimensions.A quite di�erent situation appears in the odd dimensions. There we must admitalso the half-integral weights. If we combine our knowledge of the possible orderswith the requirement that the arrows which could indicate a natural operator mustjoin the nodes with weights dominant for b, we see that the only possibility is eitherto consider b half-integral or b and d1 half integral or two adjacent coe�cients di,di+1 half-integral or dn�1 half-integral. But then either the orders indicated overthe solid arrows are not integral or the weights are not dominant for b, so theyare all excluded. Now we can discuss the individual positions of the pattern forfunctions with suitable half-integral conformal weights. The whole discussion isquite similar to the above description of the sigular patterns in even dimensions.Let us �rst show this procedure on the case of the longest arrow. We considerthe weight 12� 1� � � � 1�> 1� , i.e. the operator should act on the complex functionswith conformal weight 12 . The order r = 2n of the operator is now even andthe complete contraction of the r-th iterated covariant derivative is just the n-th power of the Laplacian which is conformally invariant on at manifolds as anoperator acting on functions with conformal weight 12 with values in functions withconformal weight 12 + 2n. The uniqueness up to constant multiples is proved easilyin the category of Riemannian manifolds. Similarly we obtain (n� i)-th powers ofthe Laplacians C1( �i+ 12� 1� � � � 1� > 1� )! C1( �2n+i+ 12� 1� � � � 1� > 1� ) in the remainingcases listed above. The last possibility is dn�1 = 12 and it leads to the uniqueoperator C1( �n+ 12� 1� � � � 1� > 2� ) ! C1( �n� 12� 1� � � � 1�> 2� ) which is the conformallyinvariant Dirac operator on the basic spin representation.If the dimension is three, the whole pattern of weights starting with the func-tions with conformal weight 12 survives and the middle arrow corresponds to the



8. VERMA MODULES AND NATURAL OPERATORS 101conformally invariant Dirac operator acting on spinors with conformal weight one.If the pattern has a singular in�nitesimal character, then the weights must beintegral. Indeed, with some half-integral coe�cient we need the summation toneglect it, but then we cannot get o� the zeros among the coe�ecients. Similarly,there can appear only one zero among the coe�cients. If all non-zero coe�cientsequal one, then independent of our choice of the zero, we should �nd a non-trivialoperator acting on complex functions with an odd order. This is not possible forthe reason discussed above. Thus, there are no non-trivial operators acting betweenbundles with singular in�nitesimal character in the even dimensions.If we want to describe the natural operators in the real setting, then we alsohave to describe the singular highest weight vectors, but in the real generalizedVerma modules, see 8.3. But if we complexify the duals to the jet spaces, theneither we obtain the same set of highest weight vectors or some of them can bedoubled. In any case no new singular highest weights appear. Since the spacesof the natural operators are always at most one-dimensional in the complex case,either the highest weight vector generating the whole Verma module is doubled, orno other one can be doubled. Thus we may look for the singular highest weightvectors in the complex U(g)-moduleMb(�). This also implies the pleasant fact thatthe existence of the operators and some of their characteristics do not depend onthe signature (m0; n0). �8.14. Examples. Let us write down the complete patterns with the orders ofthe operators inscribed above the arrows, which exhaust all operators in dimensionfour. If some weights are not dominant for b they have to be ignored involving alladjacent arrows. b� �a�b�a+b+c� '')c][[aa� b� c� wb a+b� �b� b+c� b+c��a�b�c� a+b� wb c��a�b�c� a�a+b+c� �b�c� b����a][[c a+ c ua+ 2b+ c uAll coe�cients are non-negative integers. All linear natural operators on locallyat conformal manifolds are involved.In dimension three we start with b�> a� with all coe�cients integral or half-integral and non-zero. If the order is not integral we have to omit the correspondingarrow. b�> a� wb �b�>a+2b� wa �b�a�>a+2b� wb �b�a�> a�a+ 2b uUsing the general patterns, we can sometimes answer rather general questions.For example, if we want to �nd all linear natural operators, say of order two, on



102 NATURAL OPERATORS ON CONFORMAL MANIFOLDSconformal manifolds of dimension 2n such that their source and target bundlescoincide up to conformal weights, then they must correspond to the `long' arrowsin our patterns and a = c, cf. [Branson, 89, Theorem 3.14]. Now the exact formulasfor the orders yield lists of possible sources. In particular, we �nd the operatorsD2;k discovered by Branson for k < n. The operators D2;n appear in the centraldiamond, e.g. D2;2 : C1( 1� �1� 3�) ! C1( 3� �3� 1�) in the pattern which shouldstart with � = 0� 1� 2� , cf. [Branson, 89].8.15. Examples of the highest weights. In order to get some feeling howconcrete calculations work, let us discuss some examples in dimension four. Forthis reason we �x the generators of the Lie algebra gl(4; C ) as indicated by theposition in the matrix 0B@H1 X1 x2 x4Y1 H2 x1 x3y2 y1 H3 X2y4 y3 Y2 H41CAThe generators o� the diagonal together with hi = Hi �Hi+1, i = 1; 2; 3, generatethe Lie algebra sl(4; C ) ' o(6; C ). Then the summands in g = n��b = n��l�n aregenerated as follows: n = hxii, l = hXi; Yji, n� = hyii. The simple root elementsare �1 = X1, �2 = x1, �3 = X2. In the concrete calculations we shall need thecommutators of the root elements:[h1; [h2; [h3; [X1; [x1; [X2;Y1] �2Y1 Y1 0 h1 0 0Y2] 0 Y2 �2Y2 0 0 h3y1] y1 �2y1 y1 0 h2 0y2] �y2 �y2 y2 �y1 Y1 0y3] y3 �y3 �y3 0 �Y2 y1y4] �y4 0 �y4 �y3 0 y2Let us seek �rst for maximal weight vectors in Mb(V �� ) with � = 1� 1� 1� , i.e.we shall describe invariant operators on functions. Let us recall that the maximalweight vectors are the weight vectors for the Cartan algebra which are annihilatedby the simple root elements from b (i.e. by X1 and X2) and also by the whole n (i.e.we have to verify the vanishing of the action of x1 and the rest will follow). Hencewe can consider the elements P (yi; Yi) 2 U(g) given by `polynomial expressions' inyi, i = 1; 2; 3; 4, and Yj , j = 1; 2, let them act on the generating highest weightvector v 2 Mb(V �� ) and look which of the values have the desired properties. Thesimplest possibility is to consider y1:v. ThenXj :y1 
 v = [Xj; y1]
 v + y1 
Xj :v = [Xj ; y1]
 v = 0; j = 1; 2x1:y1 
 v = [x1; y1]
 v + y1 
 x1:v = 1
 [x1; y1]:v = 1
 h2:v = 0so that y1 
 v is a good candidate for a maximal weight vector. It remains tocomputehi:y1 
 v = [hi; y1]
 v + y1 
 hi:v = [hi; y1]
 v = 8><>: y1 
 v i = 1�2y1 
 v i = 2y1:v i = 3



8. VERMA MODULES AND NATURAL OPERATORS 103and so y1:v generates (as a maximal weight vector) a subspace in Mb(V �� ) isomor-phic to 2� �1� 2�. The standard �ber of the target bundle of the correspondingoperator is the dual, hence we get the bundle of 1-forms as the target of the oper-ators.Let us notice that the same computation yields also the operators correspondingto p+1� 1� r+1� ! p+2� �1� r+2� . In particular, p = r = 1 determines a �rstorder operator on vector �elds with values in symmetric two-forms with suitableconformal weight and its null-space consists of conformal vector �elds, cf. [Hitchin,80], while p = 1, r = 0 leads to the local twistor operator de�ned on spinors, cf.6.22 and 7.28.Similar direct computations showX1(y1y4 � y2y3) = �y1y3 + y1y4X1 + y1y3 � y2y3X1 = (y1y4 � y2y3)X1X2(y1y4 � y2y3) = y1y2 + y1y4X2 � y1y2 � y2y3X2 = (y1y4 � y2y3)X2x1(y1y4 � y2y3) = y4h2 + y4 + y3Y1 + y2Y2 + (y1y4 � y2y3)x1hi(y1y4 � y2y3) = � �2(y1y4 � y2y3) + (y1y4 � y2y3)h2 if i = 20 if i = 1; 3.If we choose � = 1� 0� 1� , the y4 entries in the third row cancel each other andthe Yj , j = 1; 2, act trivially on the highest weight vector. Hence we obtain a secondorder operator with values in the bundle corresponding to the dual of 1� �2� 1�,i.e. the conformal Laplacian on the at manifolds. If we replace the weight � by� = 1� �1+q� 1�, we get x1(y1y4 � y2y3)q:(1
 v) = 0 and the actions of Xi, i = 1; 2,and hj, j = 1; 3, remain trivial. The action of h2 yields that the resulting operatorhas the values in the bundles corresponding to 1� �1�q� 1�. These operators arecalled the powers of the Laplace operator, in particular, the case with q = 2 can beviewed as the square of the Laplace operator �2 acting on functions (with weightzero) with values in the functions with weight four, i.e. the longest arrow in thediagram in 8.13.The root elements Y1, Y2 can also appear in the polynomials but they do notincrease the order. For example, (�y3+y1Y2)(�2y3+y1Y2)(�3y3+y1Y2) determinesa third order operator 2� �1� 4� ! 5� �4� 1�, �A0(ABC) 7! rA(A0rBB0rCC0�D0)ABC ,see [Baston, 90].8.16. The Bernstein-Gelfand-Gelfand resolution. The original study of ho-momorphisms between Verma modules was made for a Borel subalgebra b � g,i.e. in the case of classical Verma modules. A complete classi�cation of them wasderived by [Verma, 68] and [Bernstein, Gelfand, Gelfand, 71]. The result (trans-lated into the language of di�erential operators) states: Let B � G be a connectedand simply connected subgroup in a connected and simply connected semisimplecomplex Lie group G with a Borel subalgebra b � g. If � is a dominant weightfor g, then there is a translational invariant operator D : C1(Ew:�)! C1(Ew0:�)acting on homogeneous bundles on G=B if and only if w � w0 in the Weyl groupW of g, see 10.15 for the notation.



104 NATURAL OPERATORS ON CONFORMAL MANIFOLDSIn our conformal case, the Poincar�e conformal subgroup B is far from beinga Borel subgroup B0 � SO(m + 2; C ), but some of the homomorphisms can bederived from the Borel case using the natural �bration � : G=B0 ! G=B where B0is chosen to be contained in B. Let us give a rough idea.By the means of the latter �bration, we can lift bundles and their sections and wecan apply the result for the Borel case, however it might happen that the operatoracting on the sections of homogeneous bundles on G=B0 vanishes on the pullbacks ofthe original sections and so the invariant operator obtained in this way happens tobe the zero one. The operators obtained from the Borel case via this constructionare called the standard operators. But if this construction fails, there can stillexist non-trivial invariant operators. Such operators are called non-standard. TheLaplace operator 1� 0� 1� ! 1� �2� 1� is an example pointed out in [Baston,90] bringing also slightly more details on the latter construction.In our conformal case, the operators denoted by the straight arrows are thestandard operators, the other ones are non-standard. Without the non-standardoperators, this pattern is known as the Bernstein-Gelfand-Gelfand resolution whichgeneralizes the de Rham resolution.25 The operators corresponding to the longestarrow in our patterns are called the long operators (they correspond to the longestelement in the Weyl group). Only the long operators in these patterns might failto admit curved analogues, cf. Section 9.It is a di�cult problem (and probably unsolved in full generality) to specifyall homomorphisms of the generalized Verma modules in the general paraboliccase. However, the problem was solved for many cases with regular in�nitesimalcharacters se e.g. [Boe, Collingwood, 85a,b].9. The conformal connection andoperators on curved manifoldsIn the last section of this text we want to comment on natural operators onthe whole category of conformal manifolds. We shall only indicate some of theknown results, we provide the reader with further references and we sketch somedirections of possible development in the near future. We shall not mention all ofthe known constructions of invariant operators on curved conformal manifolds, adetailed survey with many references can be found in [Baston, Eastwood, 90].We discussed in Section 4 how all Riemannian invariants are constructed bymeans of the Levi-Civit�a connection. In the conformal case, we can use �rst theRiemannian invariance, then to build general formulas in terms of the covariantderivatives, and then to discuss which of them give rise to a conformally invariantoperator, i.e. to a natural operator on the category of conformal manifolds. This isthe approach used by many authors, see e.g. [Branson, 85], [�rsted, 81], [W�unsch,25On generalmanifolds, the de Rham sequence is used to resolve the sheaf of constant functions.On homogeneous manifolds we can resolve this constant sheaf in a more e�cient way. The pointis, on a homogeneous manifoldsM we have a natural choice of a distribution D in the tangentbundle T such that [D;D] = T and so it su�ces to use the vector �elds tangent to D in order torecognize the constants. More details of this point of view are found in [Baston, Eastwood, 89].



OPERATORS ON CURVED MANIFOLDS 10586]. They developed sophisticated in�nitesimalmethods for checking the invarianceof such operators.Another possibility is to use a canonical connection which does exist on theconformal manifolds, the so called Cartan connection. This can be viewed as ageneral connection on a suitable �ber bundle (i.e. not right-invariant) with veryspecial properties. This is the approach we would like to indicate in more details.We have to begin with the description of the Cartan connections. But �rst weneed to �nd the bundles where it lives, the �rst prolongations of the conformalstructures. This will also complete our development from Section 5.9.1. For every closed Lie subgroup B � Grm, the B-structures on m-dimensionalmanifolds were de�ned in 2.11. In Section 5, we identi�ed the conformal structureson the pseudo-spheres with such a structure of order two, while the conformal struc-tures were de�ned as �rst order structures in general, see 5.1. We have promisedto clarify how are these two kinds of structures related.Roughly speaking, the second order conformal structure is the �rst prolongationof the �rst order one. In order to make this idea more precise, we need to discussa little the prolongations of the �rst order structures. Usually, the latter meansa tower of B(k)-structures F (k) on F (k�1) such that F (k) � P 1(F (k�1)) is a �rstorder structure and the morphisms f : M ! M of these structures coincide (f isa morphism of F (1) if P 1(P 1f)(F (1)) � F (1)). Such prolongations always existbut they are not canonically de�ned. For a detailed exposition of this theory seee.g. [Kobayashi, 72, Chapter I]. However, our aim is to get the prolongation as areduction of the higher order frame bundle which is not so easy in general. Thereader who likes to believe that the two de�nitions of conformal structures coincide(or prefers to de�ne the conformal structures as second order ones) can skip thenext text up to 9.4.First we have to describe the prolongation Br � Gr+1m of the Lie group B �G1m = GL(m;R). The group BM � Di�M of the di�eomorphisms f satisfyingP 1f(FM ) � FM , cf. 2.12, determines the Lie subalgebra of the so called in�ni-tesimal automorphisms of the B-structure in the algebra of all vector �elds, whichconsists of the vector �elds X with ows FlXt in BM for small parameters t. AB-structure is called at if FM ' M � B, the trivial bundle. Let us considera at B-structure and a �xed point x 2 M . Then we have a subgroup B0 � Bof automorphisms �xing the point x and the Lie algebra b of in�nite jets of thein�nitesimal automorphisms at x (a subalgebra in the Lie algebra of the so calledformal vector �elds). As a Lie subalgebra of the in�nite jets of all vector �elds atx, the latter carries a canonical grading b = b�1 � b0 � b1 � : : : . In particularb0 � gl(m;R) is the Lie algebra of B. The jets jr+10 f of the automorphisms B0keeping the �xed point 0 2 Rm form the Lie groups Br � Gr+1m . Their Lie algebrasare the algebras b0 � b1 � b2 � � � � � br with grading. The simplest way how todescribe the Lie groups Br is to study these Lie algebras, since the nonlinear partsof the polynomial expressions for the jets of morphisms in B can be identi�ed withthe polynomial expressions for the elements in the subalgebra b1 � b2 � � � � .Without loss of generality, we may assume M = Rm with the standard coor-dinates and x = 0, the origin. Then the elements in homogeneous componentsbq of b have distinguished polynomial representatives Xq(x) = P�;i ai�x� @@xi (x).



106 NATURAL OPERATORS ON CONFORMAL MANIFOLDSThe condition on a vector �eld X to belong to b is P 1(FlXt )(FRm) � FRm forall small t, which means in local coordinates @@xj (FlXt )i 2 b0. If we di�eren-tiate with respect to t we get the condition on the coe�cients ai� in the form@@xj (P� ai�x�) 2 b0 � gl(m;R). But this condition is equivalent to the requirementthat the matrices (aijj1:::jq ) are elements in b0 for all �xed indices j1; : : : ; jq. Sincethe coe�cients ai� are symmetric in the subscripts, we have obtained an identi�ca-tion of bq with a subset in Sq+1(Rm�) 
Rm of symmetric (q + 1)-linear mappingss satisfying s( ; v1; : : : ; vq) 2 b0 � Rm�
Rm for all �xed elements v1; : : : ; vq. Thelinear subspaces bq are called the q-th prolongation of the Lie algebra b0. If bq = 0,then br = 0 for all r � q, by the de�nition. The smallest q with bq = 0 is called theorder of the Lie algebra b0. If bq 6= 0 for all q, then b0 is said to be of in�nite type.9.2. Examples. In order to illustrate the above procedure, let us discuss the Liealgebras o(m0; n;R) and co(m0; n;R),m0+ n = m, just now. Let us assume X 2 b1is a polynomial �eld in the �rst case. Then its coe�cients aijk can be viewed aselements aijk by means of the isomorphism provided by the pseudo-metric. Butthen we have the anti-symmetry aijk = �ajik for all signatures. Since aijk = aikj,we get aijk = �ajik = �ajki = akji = akij = �aikj = �aijkand so aijk = 0. Thus, the Lie algebra o(m0; n;R) is of order one.By the de�nition of the algebra co(m0; n;R), the kernel of the homomorphismco(m0; n;R) ! R, A 7! TrA, is just the Lie algebra o(m0; n;R). Since o(m0; n;R)has order one, the linear mapping b1 ! Rm�, X = (aijkxjxk @@xi ) 7! 1naiik 2 Rm�, isinjective (the kernel lies in the �rst prolongation of o(m0; n;R) and so is zero). Onthe other hand, each element qi 2 Rm� de�nes an element �qbgbi�jk+qbgbk�ij+qbgbj�ikwhich belongs to b1, cf. 5.10. Thus the latter formula de�nes the identi�cationb1 = Rm�. Let us consider X 2 b2 with coe�cients aijkl. For each l �xed we mustget an element from b1. Hence after lowering all superscripts, we can writeaijkl = �qil�jk + qkl�ij + qjl�ik:Since the coe�cients are symmetric in j, k, l, the trace satis�es abbkl = mqkl =abblk = mqlk. Further we have abbkl = abklb = �qbb�kl + qlk + qkl and so �qbb�kl =(m � 2)qkl. The trace of this expression yields (m � 2)qbb = �mqbb and thereforeqbb = 0. Then the last but one equality implies qij = 0 if m � 3. In this way, wehave proved that co(m0; n;R) is of order two in dimensions greater then two. (Indimension two, there is the isomorphism co(2;R)' gl(1; C ), hence it is an algebraof in�nite type.)A general theorem due to R. Palais claims that if the Lie algebra of all in�nites-imal automorphisms of a B-structure on M is �nite dimensional, then the groupB � Di�M is a �nite dimensional Lie group and the in�nitesimal automorphismsform its Lie algebra. In particular, this happens for each B-structure with the Liealgebra b0 of B of �nite order, see [Kobayashi, 72, Chapter I] for the proofs.9.3. The �rst order prolongation. There is the so called canonical form � 2
1(P 1M;Rm) (called also soldering form) de�ned by �(X) = '�1� (T�(X)) 2 Rm



OPERATORS ON CURVED MANIFOLDS 107where X 2 Tu(P 1M ), � : P 1M !M is the bundle projection and u = j10'. Equiv-alently, �(X) = j10'�1 � � � c if X = j10c.The B-structure FM is a subbundle in � : P 1M ! M , hence J1(FM ) �J1(P 1M ). If we choose a horizontal subspace H � TuP 1M , then �jH is an iso-morphism. Now, each y = j1xs 2 J1(FM ) determines a horizontal subspace Hy 2Ts(x)(FM ) and an isomorphismRm�b0 ! Ts(x)(FM ) given by (X;Y ) 7! �Y +X 0where �(X 0) = X, X0 2 Hy and �Y is the fundamental �eld corresponding to Y .Hence we can view the one-jets of the sections as elements in P 1(FM ). The actionsof the isomorphisms f : M !M on J1(FM ) depend on the second derivatives andwe shall try to �nd a subbundle in J1(FM ) carrying the structure of the principal�ber bundle with the structure group B1, which is preserved by the action of secondjets of the automorphisms of the B-structure. This can be constructed by means ofthe di�erential d� restricted to the tangent spaces to sections. Let us start with thenotion of the torsion. The torsion t of the B-structure FM is the smooth functiont on J1(FM ) with values in Hom(�2Rm;Rm)) de�ned byt(y)(�(X1) ^ �(X2)) = d�(X1; X2); y = j1xs; X1; X2 2 Hy � Ts(x)(FM ):The torsion t is equivariant with respect to the action of the vector group Rm��b0 with respect to the following actions. The transitive action on the bundleJ1(FM ) ! FM is de�ned by means of the above identi�cation Rm � b0 'Ts(x)(FM ) determined by j1xs, while the action on Hom(�2Rm;Rm) is given byA(w) = w+ @A, where A 2 Hom(Rm; b0) and @ : Hom(Rm; b0)! Hom(�2Rm; b0),(@f)(v1; v2) = �f(v2)v1+ f(v1)v2, is the Spencer operator. Hence we can factorizet by these action of Rm�� b0 and we get a mappingc : FM ! Hom(�2Rm;Rm)=(Rm�� b0)which is called the structure function of B.The space Rm is identi�ed with the (abelian) subalgebra of constant vector �eldsb�1 and so each value of t can be viewed as a cochain in C0;2(b�1; b�1 � b0 � � � � )in the Spencer bigraded complex. All cochains in C0;q are closed (since b�2 = 0)and we factorize precisely by the image of the di�erential @, cf. 10.21. Hence thevalues of c are in the Spencer bigraded cohomology space H0;2(b�1; b�1�b0�� � � ).If the structure function is zero, then there is a canonical way of the prolongationof the B-structure: The �rst jet prolongation J1(FM ) is embedded into the bundleof second semi-holonomic frames �P 2M and the vanishing of c is a necessary andsu�cient condition for the existence of a holonomic subbundle F 1M = i(J1(FM )\P 2M ). The latter is then the �rst prolongation with all required properties, see[Kol�a�r, 85] for details. Let us remark that the structure function is de�ned inthe latter paper by a nice geometrical construction using the di�erence tensor onsemiholonomic second frame bundle.In the conformal case, we compute in 10.21 that H0;2(b�1; g) = 0 and so thestructure function must be always zero. Thus there is the canonical second orderstructure F 1M � P 2M on conformal manifolds which is the �rst prolongation ofthe conformal structure FM � P 1M .2626If the structure function is not zero, the torsion still helps to get the usual (but not canonical)



108 NATURAL OPERATORS ON CONFORMAL MANIFOLDS9.4. Another construction of the prolongations is based on the torsion free connec-tions on FM . We shall need several technical tools.The second frame bundle, is equipped with a generalization of the solderingform, a form �(2) 2 
1(P 2M;Rm � g1m) de�ned as follows27. Each element u 2P 2xM , u = j20', determines a linear isomorphism ~u : Rm � g1m ! T�21 (u)P 1M (infact T0(P 1') : T(0;e)(Rm � G1m) ! TP 1M ). Now if X 2 TuP 2M then �(2)(X) =~u�1(T�21(X)), i.e. �(2)(X) = j10(P 1'�1 � �21 � c) if X = j10c. This canonical formdecomposes as �(2) = ��1 � �0 where ��1 is the pullback of the soldering form �on P 1M , ��1 = (�21)��, while �0 is g1m-valued. The values of �(2) can be viewed aselements in the Lie subalgebra of constant and linear vector �elds in the Lie algebraof formal vector �elds.Lemma. (1) For each X 2 g2m, �(2)(�X ) = T�21(X) 2 g1m = gl(m).(2) For each g 2 G2m, (rg)��(2) = Ad(g�1)�(2).(3) There is the structure equation d��1 + [�0; ��1] = 0.Proof. The �rst two statements follow easily from the de�nition of �(2). Let usprove the last one. We shall use the canonical local coordinates ui, uij, uijk onP 2Rm = Rm � GL(m;R) � Rm 
 S2Rm�. The coordinate expression of (3) isd�i = ��ik ^ �k, where ��1 = �i 
 ei, �0 = �ik 
 eki are the expressions withrespect to usual bases ei 2 b�1 = Rm, eki 2 gl(m;R) so that [eki ; ej] = �kj ei. Thede�nition of �(2) provides us with the coordinate expression for the di�erentials ofthe coordinate functions ui, uij on P 1Mdui = uij�jduij = uih�hj + uihj�h:Applying the di�erential to the �rst equality we get0 = duij ^ �j + uijd�j = uijd�j + uih�hj ^ �j + uihj�h ^ �jwhere the last term is zero, for uihj is symmetric in the subscripts. If we multiplyby the inverse matrix function vki to uij on the left, we obtain d�k = ��kj ^ �j asrequired. �9.5. A section of the bundle �21 : P 2M ! P 1M is called admissible if s(u:g) =s(u):g for all u 2 P 1M and g 2 G1m � G2m. The admissible sections are preciselysections of P 2M=G1m !M .Lemma. There is a bijective correspondence between local torsion-free connections� on P 1M and local admissible sections s� given by � = s���0.Proof. Given any local admissible section s : P 1M ! P 2M , the Lie algebra valuedone form � = s��0 is a local principal connection. One veri�es easily in localprolongations as mentioned at the very beginning. Every choice of a complementary subspace C 2Hom(�2Rm;Rm) to the subspace @(Hom(Rm; g)) determines the subspace t�1(C) � J1(FM).The bundle t�1(C) ! FM has the proper structure group (corresponding to the Lie subalgebrab1 � b0 � b1).27In general, a similar de�nition yields a form �(k) 2 
1(P kM;Rm� gkm) where gkm is the Liealgebra of Gkm



OPERATORS ON CURVED MANIFOLDS 109coordinates that � is without torsion. On the other hand, the coordinate expressionshows that each locally de�ned principal connection without torsion de�nes a localsection M ! P 2M=G1m, see [Kobayashi, 72, Proposition 7.1] for more details ifnecessary. �The value s�(u) depends only on the restriction of � to TuP 1M . Hence if weconsider a connection � of a B-structure FM � P 1M , then the admissible sections� de�nes the B-principal subbundle s�(FM ) � P 2M . Now, we can take the orbitB1(s�(FM )) � P 2M which is a B1-principal subbundle. Hence the problem whichremains is how to determine whether two di�erent torsion-free connections give riseto the same second order B1-structure. Such connections are called equivalent andthe set of all equivalence classes of connections belonging to certain B-structures isparameterized by sections of the associated bundles of the B-principal bundle FMwith respect to the representation of B on H1;1(b�1; g), cf. [Ochiai, 70] or [Baston,90]. This applies in particular to the conformal case, where the �rst prolongationB1 of the structure is just the Poincar�e conformal group and we compute in 10.21that the above mentioned cohomology is zero. In other words, all torsion-freeconnections on conformal manifolds are equivalent, see also [Kobayashi, 72] for amore elementary direct treatment. Thus the local prolongations do not depend onour choice of the connections and hence they can be glued into a unique reduction ofthe second frame bundle P 2M to the Poincar�e conformal group. In particular, wecan use the Levi-Civit�a connection with respect to any pseudo-Riemannian metricfrom the conformal class.9.6. The Cartan connections. We have established the existence of a canon-ical subbundle in the second order frame bundle on each conformal manifold, letus denote this principal bundle PM . We are interested in some analogy to theLevi-Civit�a connection for conformal manifolds. We shall see, that there exists acanonical Cartan connection which is unfortunately not a connection but more ananalogy of the Maurer-Cartan form on Lie groups.De�nition. Let G be a Lie group with a closed subgroup B and let dimG=B = m.A Cartan connection ! on a principal bundle P with m-dimensional base manifoldand structure group B is a g-valued one-form on P (g is the Lie algebra of G) withthe properties(1) !(�X ) = X for all X 2 b(2) (rg)�! = Ad(g�1)! for each g 2 B(3) !(Y ) 6= 0 for each non-zero Y 2 TPAs already mentioned, the Maurer-Cartan form on G is the simplest example ofa Cartan connection on the principal bundle G! G=B. The Cartan connection !on P can be viewed as a principal connection on the principal bundle P �B G withstructure group G.Similarly to the usual principal connections, we can write down the structureequation d! = �12 [!; !] + 
where 
 is some g-valued 2-form. This 2-form is called the curvature form of theCartan connection !.



110 NATURAL OPERATORS ON CONFORMAL MANIFOLDS9.7. Our next aim is to �nd canonical Cartan connections on the canonical subbun-dles PM in P 2M on conformalmanifolds. We shall follow the elementary treatmentfrom [Kobayashi, 72] using local coordinates but we shall review the whole story inthe language of the Spencer cohomologies later on.A Cartan connection ! and its curvature 
 on the canonical bundle PM canbe always decomposed as ! = !�1 � !0 � !1 and 
 = 
�1 � 
0 � 
1. But thisdecomposition is only b0-invariant and not (b0 � b1)-invariant.Lemma. (1) the restriction !�1 to each �ber of PM vanishes(2) the restriction of the b-component, i.e. !0�!1, to each �ber is the Maurer-Cartan form of b(3) the curvature is a horizontal 2-form, i.e. 
(X;Y ) = 0 if X is vertical(4) if !�1 = !1 
 e1 + � � � + !m 
 em for some �xed base of b�1, then thecurvature admits an expression 
 = Pi;j 12Kij!i ^ !j where Kij are g-valued functions.Proof. The assertions (1) and (2) follow directly form the de�nition of the Cartanconnections. Then the structure equation, restricted to any �ber, yields (3). Sinceeach Cartan connection ! de�nes an absolute parallelism on PM , the components!i, !ij, !j of !�1 � !0 � !1 with respect to basis of the components of the Liealgebra generate the whole algebra of the exterior forms �(M ). But then obviously(1){(3) imply (4). �9.8. Admissible Cartan connections. The restriction of the canonical form�(2)M 2 
1(P 2M;Rm � g1m) on an m-dimensional conformal manifold M to theprincipal subbundle P � P 2M with structure group B is an (Rm�b0)-valued form,we shall denote it by �P 2 
1(PM;Rm � b0). This decomposes as �P = ��1 � �0where ��1 2 
1(P; b�1) and �0 2 
1(P; b0). We have�0(�X0+X1 ) = X0 for each X0 +X1 2 b0 � b1(1) (rg)�(��1 � �0) = Ad(g�1)(��1 � �0)(2) ��1(Y ) = 0 if and only if Y is vertical(3) d��1 + [�0; ��1] = 0(4)and so there can exist Cartan connections ! = ��1 � �0 � !1 on P where !1 issubject of a free choice. Such Cartan connections are called admissible.The Maurer-Cartan equations of O(m + 1; 1;R) can be easily read o� 5.9 if wedecompose the bracket[!; !] = [!�1; !0] + ([!�1; !1] + [!0; !0]) + [!1; !0]:The structure equation for a Cartan connection ! consists then of the same termstogether with the curvature components:d!i = �!ik ^ !k + 
i(5) d!ij = �!ik ^ !kj � !i ^ !j � !i ^ !j + �ij!k ^ !k + 
ij(6) d!j = �!k ^ !kj +
j :(7)



OPERATORS ON CURVED MANIFOLDS 111If ! is admissible, then 
i = 0 by the de�nition and (5). Now, applying the exteriordi�erential d to (5) we get0 = d(!ij ^ !j) = d!ij ^ !j � !ij ^ d!j:If we substitute from (5) and (6) we obtain the Bianchi identity 
ij ^ !j = 0. Inthe expression 
ij = 12Kijkl!k ^ !l this meansKijkl +Kiklj +Kiljk = 0:9.9. Theorem. Let P be a principal bundle over an m-dimensional manifoldM , m � 3, with structure group B, the Poincar�e conformal group. If !�1 2
1(P; b�1) and !0 2 
1(P; b0) are two 1-forms satisfying the equalities 9.8.(1){(3) and the structure equation 9.8.(4), then there is a unique Cartan connection! = !�1 � !0 � !1, such that the curvature 
 = 
�1 � 
0 � 
1 satis�es 
�1 = 0and 
0 is in the trace-free part of the space of b0-valued 2-forms. In the standardbasis of the components of the Lie algebra, the latter means 
 = (0;
ij;
j) with
ij =X 12Kijkl!k ^ !l; XKijil = 0:Proof. Let us �rst prove the uniqueness. Consider two admissible Cartan connec-tions !, �! with the properties required in the theorem. Then the b�1-componentand b0-component of the di�erence �! � ! are zero by the de�nition and�!j � !j =Xk Ajk!kfor suitable functions Ajk on the principal bundle P . Now, direct computationusing 9.8.(5){(7) yields the expression for the di�erence of the curvatures �
ij�
ij =12Pkl( �Kijkl �Kijkl)!k ^ !l with�Kijkl �Kijkl = ��ilAjk + �ikAjl + �ijAkl � �ijAlk:Thus, the traces areXi ( �Kijil �Kijil) = (m � 2)Ajl + �jlXi AiiXij ( �Kijij �Kijij) = 2(m� 1)Xi Aiiand so Aij = 0 for all subscripts.Next we notice that there is a Cartan connection satisfying all requirements ifthere is at least one Cartan connection with the given components !�1 and !0.



112 NATURAL OPERATORS ON CONFORMAL MANIFOLDSThe point is, we write �! � ! as above and we �nd functions Aij such that �! willobey all the required properties. One veri�es easily that the right choice isAjk = 1m � 2� 12(m� 1)�jkXi;l Kilil �Xi Kijik�:In order to complete the proof, we have to construct an arbitrary Cartan con-nection ! with given components !�1 and !0. Since local Cartan connections onM can be glued together using the partition of unity on the manifoldM , it su�cesto construct the connections locally. (Another argument is, each such local Cartanconnection gives rise to a local connection with the required properties, but thelatter is unique and so we must get a globally well de�ned object.) If we choose asection � of P , we can de�ne !j = 0 on the tangent spaces to the section and sincethe values of !j are given also on the vertical tangent spaces by the de�nition and!j must be right invariant with respect to action of the Poincar�e group B, !j is wellde�ned by this choice. Explicitly, each vector Y 2 TuP , u = �(x):g, decomposesuniquely as Y = (rg)�(X1) + �X2 (u) with X1 2 T�(TxM ) and X2 2 b0 � b1. Thenby the de�nition !(Y ) = Ad(g�1)(!(X1)) +X2 �and this formula de�nes the values of !j.9.10. Remark. The local construction from the end of the above proof can bemodi�ed to produce a globally de�ned admissible Cartan connection by means ofa torsion-free connection on the `linear' frame bundle PM=B1.Let us consider such a connection � and the corresponding admissible sections� from 9.5. Now, we set !j = 0 on the image of s�, and we decompose eachY 2 TuP , u = s�(x):g with g 2 B1, uniquely as Y = (rg)�(X1) + �X2 (u) withX1 2 T�(Tx(PM=B1) and X2 2 b1. Then !(Y ) = Ad(g�1)(!(X1)) + X2 de�nes!j. One checks easily that this is an admissible Cartan connection.9.11. The conformal connection. For each conformal manifold M , we canapply the above theorem to the canonical principal subbundle PM � P 2M withstructure group B and the restriction �P of the canonical two-form �(2) on P 2Mto PM . Thus, there is the uniquely de�ned Cartan connection !M on PM suchthat !M = ��1 � �0 � (!M )1 and 
M = 0� (
M )0 � (
M )1 with values of (
M )0in the trace-free part of �2T �P 
 b0. This connection is called the normal Cartanconnection on M or the conformal connection on M . Usually, we shall omit thesubscript M in the sequel.As mentioned in 9.6, the Cartan connections can be viewed as the usual con-nections on the extended principal �ber bundle P �B G with structure group Gand so we get the induced connections on each associated bundle. In particular,we can consider the standard �ber G=B, the sphere. The associated bundle canbe viewed as the `pointwise compacti�ed tangent space' over the base manifoldM .The connection on this space is also called the conformal connection on M in theliterature.9.12. The cohomological interpretation. We present briey an alternativedescription of the conformal connection and its curvature. We follow [Ochiai, 70]and [Baston, 90].



OPERATORS ON CURVED MANIFOLDS 113Let us consider an arbitrary admissible Cartan connection ! = ��1 � �0 � !1on the canonical bundle PM over a conformal manifoldM and let us write brieyg = b�1 � b0 � b1 = o(m + 2). Further we shall use the notation !�1(X) for thevector �eld on P corresponding to an element X 2 g. In particular, we can rewritethe structure equation d! = 12 [!; !] + 
 as(1) 
(!�1(X); !�1(Y )) = [X;Y ]� !([!�1(X); !�1(Y )])for all X, Y 2 g (the values of ! on our particular �elds are constant and so the`Lie derivative part' of the di�erential disappear).For each u 2 P we de�ne the cochain W (u) 2 C1;2(b�1; g) by(2) W (u)(X;Y ) = 
0(!�1(X); !�1(Y )); X; Y 2 b�1:The di�erential @W is evaluated on three elements from b�1, and the formula from10.21 yields(3) @W (X;Y; Z) = [��1;
0](X;Y; Z)so that the Bianchi identity implies @W = 0. Hence W determines a cohomologyclass in H1;2(b�1; g).In the �rst part in the proof of Theorem 9.8 we proved in fact that this class isindependent of our choice of !1. The assumption on the values of 
0 in Theorem9.8 mean that we have to adjust !1 in such a way that W is the unique harmonicrepresentative of the class. Let us give some more details.Given any pair !, �! of admissible Cartan connections, there is the C2;1(b�1; g)-valued function f on P de�ned by�!�1(X) � !�1(X) = �!�1(f(X)); X 2 b�1:Since 
 is a horizontal form, we get( �W �W )(X;Y ) = (�
0 � 
0)(!�1(X); !�1(Y ))(4) = [��1; �!1 � !1](!�1(X); !�1(Y ))= @f(X;Y )(only the b1-valued entry in the structure equation can contribute to the last butone term). This shows that the cohomology class of W is uniquely de�ned.We can always construct an admissible Cartan connection ! on PM from localsections, see the proof of 9.8, or equivalently from the Levi-Civit�a connection of oneof the metrics from the conformal class by means of the construction from 9.4. Inorder to get the right one, we have to �nd the proper C2;1(b�1; g)-valued functionf . This is obtained as the solution of the equation(5) �f = �@�Wwhere � is the Laplace operator on the cochains and @� is the codi�erential, see10.22 for the notation and de�nitions. Indeed, then we can de�ne�!�1(X) = !�1(X) + !�1(f(X))



114 NATURAL OPERATORS ON CONFORMAL MANIFOLDSfor all X 2 b�1 and so �W = @f +W;see (4). Now, @� �W = @�@f + @�W = �f + @�W = 0 and so � �W = 0.Since we know from 10.21 that H2;1(b�1; g) = 0 in the conformal case, thissolution f is unique and we have recovered the uniqueness and existence of thenormal conformal connection.9.13. The conformal curvature. In the coordinate like description, the compo-nents of the curvature of the normal Cartan connection are 
ij = 12PKijkl!k ^ !land 
j =PKjkl. In the proof of 9.8 we deduced the Bianchi identity for 
ij . Ananalogous computation leads to the equalitiesXi !i ^ 
i = 0; !i ^ 
j � !j ^
i = 0:A further computation with traces veri�es also that 
1 vanishes whenever 
0 does,provided the dimension is at least four. Hence 
0 is the proper obstruction againstthe integrability of the conformal structures.Let us represent the b0-component 
0 of the curvature as a section of a suitablebundle. As mentioned in 10.21, the cohomology spaces H�(b�1; g) carry a canonicalb0-module structure. Hence the cohomology class of the function W on the canoni-cal bundle PM could represent a section of the associated bundle corresponding tothe b0-module H1;2(b�1; g) (viewed as (b0 � b1) -module via the trivial extension,if it satis�es the proper equivariance condition. Indeed, then we view W as anequivariant smooth mapping with values in the standard �ber, i.e. as a section.But the latter equivariance follows from the fact that 
0 is right invariant modulob1.In 10.21 we compute the highest weights of the representations of b0 occurringin H1;2(b�1; g) in the conformal case. One �nds, that in dimensions greater thenfour we get the irreducible conformally invariant part of the Riemann curvaturetensor, the so called Weyl curvature tensor, while in dimension four the latter stillsplits into two irreducible components.An interesting fenomenon appears in dimension three, where H1;2(b�1; g) = 0and so the Weyl curvature does not exist and has to be replaced by a third orderinvariant tensor. See [Baston, 90] for more comments.Now, let us come back to the natural operators on conformal manifolds.9.14. Let us �rst recall the meaning of `conformally invariant'. In the sense of thegeneral de�nition of Section 2, the natural operators are systems of operators de-�ned on sections of bundles with distinguished actions of the conformal morphismsand intertwining these actions, one for each conformal manifold. If we deal withspinor bundles, we have to consider the coverings of the morphisms to the spinstructures, see 2.14. It has no meaning to restrict this de�nition to individual man-ifolds, since in general there may be no conformal morphisms beside the identity,or only very few of them, and in such a case all operators would be `invariant'.However exactly those constructions on individual manifolds which make no useof some special choices extend into natural operators on all conformal manifolds.



OPERATORS ON CURVED MANIFOLDS 115All our operators are local and so we do not take care of the spin structures whichalways exist locally. The e�ect is that the operators we obtain might not exist onsome manifolds simply because of the lack of the de�nition domains.9.15. The `curved' translation principle. The translation procedure whichwas heavily used in Section 8 in the conformallyat case, was worked out in [Baston,90] by means of the normal Cartan connection for general conformal manifolds ofall dimensions greater then two.The inverse of the Cartan connection ! on the canonical bundle PM !M on aconformal manifoldM is an injective linear mapping!�1 : g! C1(TPM )where G = SO(m + 2; C ) and g is its Lie algebra. The right invariance of ! withrespect to the action of the conformal Poincar�e group B has the in�nitesimal form!�1([X;Y ]) = [!�1(X); !�1(Y )]; X 2 b; Y 2 g:Let us now �x two weights � and � dominant for b and write as usual V�, V�for the corresponding representation spaces. They de�ne the associated bundlesE�M = PM �� V� and E� = PM �� V� on all conformal (spin) manifolds (in the`spin case' PM means the lift to the double covering of the canonical bundle, see2.14).In order to �nd an invariant linear operator DM : C1(E�M ) ! C1(E�M ),we have to describe the dual mapping to its action on the in�nite jets of sectionsof the bundles. If we �x a point u 2 PM , the latter should be an invariantlyde�ned mapping fug �� V �� ! (J1u (PM;V�)B)�. Now we can employ the Cartanconnection. The domain of this map is a U(b)-module generated by a highest weightvector but the codomain is , with the help of !, too.Let us write A(g) for the quotient T (g)=hX
Y �Y 
X�[X;Y ]; X 2 b; Y 2 gi ofthe tensor algebra over g by the indicated ideal. A(g) is a U(b)-bimodule and U(g) isa quotient of A(g). As a vector space A(g) ' T (n�) 
 U(b) and the left b-modulesA(g) 
U(b) V �� cover the generalized Verma modules Mb(V �� ). In particular, themaximal weight vectors are de�ned in A(g)
U(b) V �� and they must cover maximalweight vectors in Mb(V �� ).Now the point is, the normalCartan connection identi�es the dual of the jet space(J1u (PM;V�)B)� with a quotient of A(g)
U(b) V �� , exactly as in the identi�cationin 8.2. Indeed, in Section 8 we made use of the special case of the normal Cartanconnection, the Maurer-Cartan form on g in the identi�cation of the right invariantvector �elds on G with U(g) and this was the crucial point of the identi�cationof the dual jet spaces. Now we can do the same, but we are allowed only to usecommutators of the form [X;Y ] with X 2 g, Y 2 b.If we �nd a maximal weight vector with weight � in A(g) 
U(b) V �� , then weobtain a uniquely de�ned mapping fug �� V �� ! (J1u (PM;V�)B)� and since wedeal with jets of right-invariant mappings, the latter cannot depend on our choiceof u in the �ber. Once such maximal weight vector exists in one �ber, we get itin all other ones as well and we obtain an invariant operator in this way. Eachsuch maximal weight vector covers a maximal weight vector in Mb(V �� ) and so the



116 NATURAL OPERATORS ON CONFORMAL MANIFOLDScorresponding operator can be viewed as an extension of the invariant operatoron the locally at conformal manifolds. Hence, in our algebraic reformulation, thequestion whether the invariant operators on at manifolds admit curved analoguesreads: do the maximal weight vectors in Mb(V �� ) lift to maximal weight vectors inA(g)
U(b) V �� ? A partial answer is given in [Baston, 90]:9.16. Lemma. Let � be an integral dominant weight for g = � � � � � � �����,let b = � � � � � � ����� and let w, w0 2 W b. If D : Mb(V �w0 :�) ! Mb(V �w:�)is a homomorphism of Verma modules, then the image of Mb(V �w0:�) is generatedby a maximal weight vector v which can be lifted to a maximal weight vector inA(g)
U(b) V �w:�, unless w = id and jw0j = 2n, the full dimension.In the formulation of the Lemma, we use terminology and notation introducedin the Appendix. In particular, W b means the parabolic subgraph, jw0j the lengthof its element. In order to prove the lemma one has to �nd an expression for themaximal weight vector v as a sum of terms of the form P 
 v0 with P 2 T (n�) andv0 2 V �w:� such that its maximality can be proved only by means of commutatorsof the form [X;Y ], X 2 b, Y 2 g. The complete proof is available in [Baston, 90]and is based heavily on the translation principle.The latter author claims also that an analogous lemma holds in odd dimensions.As a consequence, we get immediately the following general result on the existenceof natural operators.9.17. Theorem. All natural operators between natural vector bundles with reg-ular in�nitesimal characters on at conformal m-dimensional manifolds, m = 2neven, extend to bundles on curved m-dimensional conformal manifolds except thelong operators, i.e. those corresponding to the longest arrow in the diagram from8.13.In odd dimensions, all natural operators on locally at conformal manifoldsextend to a natural operator on the whole category.Though the proof of Lemma 9.16 consists in certain inductive construction, itprovides us with no direct method for writing down the formulas for the operators,cf. the situation in the at case, Remark 8.4. Nevertheless, there is a generalreason for which all these formulas are expression in the Levi-Civit�a connectionwith highest order term coinciding with the at case, accomplished with certainlower order correction terms. The correction terms are expressed only through theRicci curvature of the Levi-Civit�a connections and their formal expressions do notdepend on the choice of the metric in the conformal class.9.18. Remark. The problem which of the so called long operators admit curvedanalogues seems to be still unsolved, in general. There is the theorem due to[Graham, 90] which shows that the cube of the Laplace operator in dimensionfour has no curved analogue. (The proof consists of twenty nine pages of carefulelimination of all possible correction terms!) On the other hand, the operator�n : 
0 ! 
2n on 2n-dimensional manifolds is a long operator which admits acurved analogue. There is a conjecture that this is the only long operator whichdoes, see [Baston, Eastwood, 90].



OPERATORS ON CURVED MANIFOLDS 117Another unsolved problem is to clarify how far is the extension unique. Forexample, we can add multiples of 'a 7! Bda'a to the invariant operator Oa[1]!Od[�3], where Bda is the so called Bach tensor.9.19. Explicit formulas. If we choose a metric from the conformal class, we getthe admissible Cartan connection �! constructed from the Levi-Civit�a connection,see 9.10. Let ! be the normal Cartan connection. For each element X 2 n� wede�ne the vector �elds �X = �!�1(X) and X� = !�1(X). The two admissible Cartanconnections de�ne the C2;1(b�1; g)-valued f on the canonical bundle PM such thatX� = �X+!�1(f(X)), see 9.12. A homomorphismof Verma modules ' : Mb(V �� )!Mb(V �� ) is determined by the proper maximal weight vector in the target whichmust be of the form Pi P i(Xj)�i where the elements �i form a weight basis ofV �� , the Xj 's form a root space basis of n� and P i are homogeneous polynomials.These polynomialsmust be chosen according to Lemma9.16 and in order to obtain adi�erential operator, each occurrence ofXj must be replaced by the vector �eld X�j .Thus, in order to get di�erential operators in terms of the Levi-Civit�a connectionwe have to substitute X�j in terms of �X , ! and f . Then the monomials in �Xwill induce the di�erential operator obtained from projecting ra1 � � �rans into itsirreducible factor corresponding to the target bundle of the operator in questionand the terms !�1(f(Xj )) will build certain correction terms. A more careful studyof the two Cartan connections involved enables to express f as f = ���1@�r(�)where � is the Levi-Civit�a connection and @�r(�) is the Ricci curvature of �, ifviewed as a section of the appropriate induced bundle.The algorithmwhich leads to the explicit correction terms goes quite quick out ofhand with increasing order. In [Baston, 90], the correction terms were computed ingeneral for second order operators (with some particular examples of higher orderoperators involved). We add only two general remarks concerning this algorithm:If fYjg is a basis of the negative root spaces in g0, then in an expansion in termsof �Xi of an expression of the form X�i1X�i2 : : :X�in (Yj1Yj2 : : : Yjp :v)(1) the �rst element X�in gives rise to no correction terms(2) for each occurrence of a curvature correction term in the expansion, thereare two fewer occurrences of �Xi's in the result then X�i 's in the originalexpressionThe point (1) recovers the result form Section 6 where we proved that the �rstorder invariant operators always extend to the whole category without changingthe formal expression. From (2) it follows immediately, that the highest ordercorrection terms are of order at least two less than that of the leading term.9.20. Some other methods. The Gover's idea how to �nd explicit formulasof some invariant operators is to apply the standard technique of the twistor the-ory, the double �bration A G w�u � M where G is the bundle of nulldirections on a su�ciently small region M of a conformal manifold, A, the am-bitwistor space, is the space of null geodesics of M and �, � are the obviousprojections. In the at four-dimensional case, we have the homogeneous spaceM = SL(4; C )=( � � � ), the space of full ags in C 4 G = SL(4; C )=(� � � )and A = SL(4; C )=(� � � ). The twistor theory studies in detail the relationsbetween the homogeneous bundles on G andM, in particular, it is well known how



118 NATURAL OPERATORS ON CONFORMAL MANIFOLDSto induce operators acting on bundles over M from the operators acting on bundleover G. It turns out that all operators on bundles over G which involve only di�er-entiation in the directions of �bers of � descend to non-trivial operators on bundleson M. Such operators are called horizontal operators. [Gover, 89] proves that allhorizontal operators on the homogeneous space G in the at case have curved ana-logues and he also gives explicit method how to �nd the formulas for the correctionterms. Comparing these results with the discussion from Section 8 one �nds thatwhat we get in this way are precisely the standard operators and nothing else. Forexplicit formulas and details see [Gover, 89], a geometric description of this methodin terms of the canonical projective structures on curves in conformal manifolds isgiven in [Baston, Eastwood, 90].Let us further mention the methods related to Lie algebra cohomology and theFe�erman-Grahammethod, cf. [Fe�eman, Graham, 85] and [Baston, Eastwood, 90].A lot of the methods which were elaborated for the classi�cation of the conformalinvariants are e�cient also for some other, higher order geometries. The so calledalmost Hermitian symmetric structures are treated in [Baston, preprint, 90].9.21. Possible development. We shall mention only a few of areas where theinterested reader could �nd a lot of possibilities for his own activity.First, the representation theory provides the necessary background for similarclassi�cations in di�erent geometric categories with �nite dimensional spaces ofmorphisms. A lot of activity is visible in the literature in this direction. It seems,that even the specialists in the representation theory could pro�t from the geometricreformulations of their problems.Second, the construction of the operators on the curved manifolds should beexpressed in more geometric terms and some analogy to the general theory for Rie-mannian invariants could be achieved. The general theory of connections could bea good tool for that. One of the crucial questions reads: Are all natural opera-tors built of the above mentioned extensions of those living on the conformally atmanifolds and the Weyl conformal curvature?Further, the in�nitesimal naturality could be weakened by dropping the localityassumption. Are all such operators obtained by integration of local ones? In thecategory of all manifolds and mappings the answer to an analogous question is, yes,cf. [Cap, Slov�ak, to appear].Next, any e�ective algorithm for concrete formulas for the operators would behighly appreciated, even in the conformally at case (in fact we need the curvaturecorrection terms even in the conformally at case and may be that the contents ofthe above extension construction is that the same formulas apply).10. AppendixThis is a rather sketched overview of some basic facts concerning representationsof Lie algebras and Lie groups used in the main text. The main sources are: [Samel-son, 89], [Knapp, 86], [Zhelobenko, 70], [Naymark, 76], [Baston, 90], [Lepowsky, 77],[Zuckerman, 77].10.1. A representation � of a (real or complex) Lie group G on a �nite dimensional



10. APPENDIX 119(real or complex) vector space V is a Lie group homomorphism � : G ! GL(V ).Analogously, a representation of a Lie algebra g on V is a Lie algebra homomorphismg ! gl(V ). For every representation � : G ! GL(V ) of a Lie group, the tangentmap at the identity T� : g! gl(V ) is a representation of its Lie algebra. Given tworepresentations �1 on V1 and �2 on V2 of a Lie group G, a linear map f : V1 ! V2is called a G-module homomorphism if f(�1(a)(x)) = �2(a)(f(x)) for all a 2 G andall x 2 V . Analogously we de�ne the g-module homomorphisms. We say that therepresentations �1 and �2 are equivalent, if there is a G-module isomorphism (org-module isomorphism) f : V1 ! V2.A linear subspace W � V in the representation space V is called invariant if�(a)(W ) � W for all a 2 G (or a 2 g) and � is called irreducible if there is noproper invariant subspace W � V . A representation � is said to be completelyreducible if V decomposes into a direct sum of irreducible invariant subspaces. Adecomposition of a completely reducible representation is unique up to the orderingand equivalences.A representation � of a connected Lie group G is irreducible, or completely re-ducible if and only if the induced representation T� of its Lie algebra g is irreducible,or completely reducible, respectively.10.2. The commutator of two elements a1, a2 of a Lie group G is the elementa1a2a�11 a�12 in G. The closed subgroup K(S1; S2) generated by all commutatorsof elements s1 2 S1 � G, s2 2 S2 � G is called the commutator of subsets S1and S2. In particular, G0 := K(G;G) is called the derived group of the Lie groupG. We get two sequences of closed subgroups G(n) and G(n), n 2 N, de�ned byG(0) = G = G(0), G(n) = (G(n�1))0, G(n) = K(G;G(n�1)). A Lie group G is calledsolvable if G(n) = feg for some n 2 N, G is called nilpotent if G(n) = feg for somen 2 N. Since always G(n) � G(n), every nilpotent Lie group is solvable.The Lie bracket determines in each Lie algebra g two analogous sequences ofLie subalgebras: g = g(0) = g(0), g(n) = [g(n�1); g(n�1)], g(n) = [g; g(n�1)]. Thesequence g(n) is called the descending central sequence of g. A Lie algebra g iscalled solvable, or nilpotent if g(n) = 0, or g(n) = 0 for some n 2 N, respectively.Every nilpotent Lie algebra is solvable. If b is an ideal in g(n) such that the factorg(n)=b is commutative, then b � g(n+1). Consequently, a Lie algebra g is solvableif and only if there is a sequence of subalgebras g = b0 � b1 � � � � � bl = 0 wherebk+1 � bk is an ideal, 0 � k < l, and all factors bk=bk+1 are commutative.A connected Lie group is solvable or nilpotent if and only if its Lie algebra issolvable or nilpotent, respectively.Each Lie algebra g contains a unique maximal solvable ideal, the so called radicalr of g. Similarly, there is a unique maximal nilpotent ideal, we call it the nilradicaln. A Lie algebra g is called semisimple, if its radical is zero and its dimension ispositive, g is called simple if it contains no non-trivial ideals.The quotient g=r is always semisimple or trivial and we get the exact sequence0 �! r �! g �! g=r �! 0:The Levi-Malcev theorem states this sequence splits, i.e. each Lie algebra is a directsum g = r � s with r solvable and s semisimple or trivial.



120 NATURAL OPERATORS ON CONFORMAL MANIFOLDSThe Engel's theorem claims: A Lie subalgebra g � gl(m; C ) consisting entirelyof nilpotent operators is a nilpotent Lie algebra.A Lie algebra with a completely reducible adjoint representation is called re-ductive. If g is reductive, then its radical r coincides with the center z. The Levidecomposition g = l� n is a decomposition with l reductive while n nilpotent.10.3. The Killing form � on the Lie algebra g is the symmetric bilinear form de�nedby �(X;Y ) = Tr(adX � adY ), the trace of the composition of the adjoint actions.A Lie algebra is semisimple if and only if its Killing form is non-degenerate andits dimension is positive. A Lie algebra is solvable if and only if its Killing formvanishes identically on the derived algebra g0.10.4. Cartan subalgebra. A nilpotent Lie subalgebra h � g which is equal toits own normalizer is called a Cartan subalgebra. If g is complex and semisimplethis is equivalent to h maximal abelian with adH diagonizable for all H 2 h. Ifg = gl(m; C ) we take the subalgebra of all diagonal matrices for h. The dimensionl of h does not depend on the choice and we call it the rank of g.10.5. Roots and weights. Consider a representation � of a Lie algebra g in avector space V . An element � 2 g� is called a weight if there is a non zero vectorv 2 V such that �(x)v = �(x)v for all x 2 g. Then v is called the weight vector(corresponding to �). Every representation of a nilpotent algebra decomposes as asum of its weight spaces V� of weight vectors corresponding to the weights �.If h � g is a Cartan subalgebra, then the weights � of the adjoint representationof h in g are called roots of the algebra g with respect to h. The correspondingweight vectors X� are called the root elements (with respect to h), the weightspaces are called the root spaces. Since h is nilpotent, the whole algebra g splits asa sum of the root spaces g =P� g�.In the sequel we shall assume g is complex and semisimple. Let us considera representation � of g. Then there are the weight vectors corresponding to therestriction of � to the Cartan subalgebra. Let us write V� for the subspace consistingof the zero vector and all weight vectors corresponding to a weight � 2 h�. Sincethe Cartan subalgebra is nilpotent (even abelian), the whole representation spaceV is spanned by the weight vectors v 2 V�. So V = P� V� and there is only a�nite number of V� non-zero. The set of weight vectors is always invariant underthe action of the root elements in g, i.e. X�:V� � V�+�. In particular, this appliesto the splitting of a complex semisimple Lie algebra g into root spaces g� so that[g�; g�] � g�+�.A maximal solvable subalgebra b in a Lie algebra g is called a Borel subalgebra.Each Borel subalgebra contains a maximal commutative subalgebra h � g with theproperty that all operators adX, X 2 h, are diagonal in g, i.e. a Cartan subalgebra.The roots with root elements belonging to the chosen Borel subalgebra are calledpositive roots. Those positive roots which are not linear combinations of two di�er-ent positive roots with positive coe�cients are called simple roots (or fundamentalroots). Choosing an order on the simple roots, we get a weak order (sometimescalled lexicographic) on the set of all roots of g. The set of all roots is denotedby �, the space of positive roots by �+ � �. The set of all simple roots will bedenoted by �+0 . We always have �� = � and [g�; g��] � h.



10. APPENDIX 121The real vector subspace in h� generated by the roots is called the real parth�0 of h�. For semisimple algebras, the Killing form is non-degenerate and also itsrestriction to h is non-degenerate. Thus we get the induced isomorphism h ' h�.Using the induced isomorphism with the dual we obtain the real part h0 � h. Therestriction of the Killing form to the real part h0 is positive de�nite and so we �ndfor each � 2 h�0 a unique element h� 2 h0 such that hh�; Xi = �(X) for allX 2 h. IfX 2 g�, Y 2 g�� and hX;Y i = 1 then [X;Y ] = h�. The elements H� = 2hh�;h�ih�are called the coroots. The reason for this de�nition of H� will be clear in 10.9.The simple roots form a basis of h� and so each other root is a real linearcombinationP ai'i of the simple ones and, moreover, a root is positive if and onlyif all coe�cients ai are non-negative. For all roots, the coe�cients a1; : : : ; al, whereis the rank of g, are integral. In particular, all weights of a representation belongto the real part h�0. A weight � of a representation � is called the highest weight ifthere is no positive root � such that � + � is a weight of �.28Let us denote n+ the derived algebra [b+; b+] of the chosen Borel subalgebra (thesubalgebra of upper triangular matrices with zeros on the diagonal in the gl(m; C )case). A vector v in a g-module V is the highest weight vector (with respect to b+)if it is a weight vector with highest weight. This happens if and only if there is aweight � 2 h� such that x:v��(x)v = 0 for all x 2 h and x:v = 0 for all x 2 n+, i.e.v is a weight vector with the trivial action of [b+; b+]. (The latter condition showsthat � is the highest weight of the representation as de�ned above).The highest weight vectors always exist for complex �nite dimensional represen-tations of complex semisimple algebras (and some more general ones) and they areuniquely determined for the irreducible ones. The procedure of complexi�cationallows to use this for the real case as well.10.6. Examples. In order to have some simple examples, let us take g = gl(m; C ).The irreducible representations coincide in fact with irreducible representations ofsl(m; C ), see 3.13. We start with the highest weight of the identical representationon Rm corresponding to the tangent bundle T . The action of a = (akl ), akl = �kj �ilfor some j < i, (corresponding to the action of X = xi @@xj given by the negative ofthe Lie derivative) on a highest weight vector v must be zero, so that only its �rstcoordinate can be nonzero. Hence the weight is e1 2 Rm�.For the irreducible modules �pRm� we can express the action of X = xi @@xj on(constant) form ! through the Lie derivative L�X!. Since LXdxl = �ljdxi we getthat if X:! = 0 for all j < i then ! is a constant multiple of dxm�p+1 ^ � � � ^ dxm.Further, the action of L�xi=@xi on dxi1 ^ � � � ^ dxip is minus identity if i appearsamong the indices ij and zero if not. Hence the highest weight is �em�p+1�� � ��em .Similarly we compute the highest weight of the dual �pRm e1 + � � �+ ep and thehighest weight vector of SpRm� which is the symmetric tensor product of p copiesof dxm and the weight is �pem.10.7. Abstract root systems. The roots of a semisimple complex algebra forma geometric object with a very strong and nice geometric properties. Let us forget28Sometimes, the highest weights are also called `extreme' but we use this term for all weightsin the orbit of the highest weight under the Weyl group, see below.



122 NATURAL OPERATORS ON CONFORMAL MANIFOLDSfor a moment about the Lie algebras endowed with the Killing form and let us focuson the roots themselves.An (abstract) root system in a vector space V with respect to a de�nite bilinearform h ; i is a �nite non-empty subset R � V n f0g which satis�es(1) For all �, � 2 R, a�� := 2h�;�ih�;�i is an integer.(2) For all �, � 2 R, the vector � � a��:� belongs to R.(3) If � 2 R and a:� are both in R, then a = �1.Sometimes, this is also called reduced root system while the unreduced root systemsare de�ned by dropping condition (3).We can express the conditions (1) and (2) more geometrically: Let us denoteS�(�) = � � 2h�;�ih�;�i �, i.e. S� is the reection in V with respect to the hyperplaneorthogonal to �. The �rst two conditions are equivalent to(1') For all �, � 2 R, the di�erence S�(�) � � is an integral multiple of �.(2') The set of all roots is invariant under the action of all S�, � 2 R.The group of isometries of V which preserves the root system R is generated bythe refelections S� and is called the Weyl group of the (abstract) root system R.10.8. Weyl group. Let us come back to complex semisimple Lie algebras. Thereections S� corresponding to the root system of the Lie algebra g generate theWeyl group W of g. This is a group of isometries in h�0. The set � of roots is invari-ant under the action of the Weyl group. The hyperplane orthogonal to � in h�0 iscalled the singular plane of � (of height zero), we shall denote it by (�; 0). Clearly(�; 0) = (��; 0). The Weyl reection S� is identity on (�; 0) and interchanges thetwo half-spaces determined by (�; 0). We denote by D0 = [�2�+(�; 0). The com-plement h�0 nD0 is an open subset. Its connected components are bounded by partsof some singular planes (�; 0), the so called walls. These connected components arecalled the Weyl chambers of �. The Weyl group W permutes the Weyl chambersand if an element fromW leaves one chamber �xed (as a set), then it is the identity.Moreover, for each � 2 �, the orbit W:� meets each Weyl chamber in exactly onepoint.The union of the singular planes de�nes the (in�nitesimal) Cartan-Stiefel dia-gram D0.10.9. Dominant weights. Consider a Borel subalgebra b in a semisimple Liealgebra g with Cartan subalgebra h, and choose an order on the simple roots.The set of all simple roots is called the fundamental system. Recall that everypositive root is a linear combination of the simple roots with non-negative integralcoe�cients and the fundamental system is linearly independent. Hence the numberof simple roots equals the rank of the algebra. The coroots corresponding to thesimple roots are called the fundamental coroots.Let �i form the fundamental system of roots and write Hi for the fundamentalcoroots. Then the set f� 2 �; h�i; �i � 0; 1 � i � lg forms a Weyl chamber, theso called fundamental Weyl chamber. We consider the Weyl group as an abstractgroup acting on h�0. By the duality, the Weyl group acts also on h0 with thecontragredient representation. Then the coroots form a congruent root systemwith the fundamental coroots as the simple roots. The fundamental Weyl chamberconsists just of all H 2 h0 with �i(H) positive.



10. APPENDIX 123The lattice of all elements � in h�0 with �(H�) integral for all coroots H�, � 2 �,is called the lattice of integral forms. The dual basis �i to the simple coroots Hiis formed by the fundamental weights (or fundamental forms) of g. The integralweights � which satisfy �(Hi) � 0, i.e. �(H�) � 0 for all � 2 �+, are calleddominant. The set of all dominant weights is an Abelian semigroup generated bythe fundamental weights. Each highest weight of a representation of a complexsemisimple Lie algebra is dominant and each dominant weight is a highest weightof some irreducible representation. Since the tensor product of two irreduciblerepresentations always contains an irreducible representation with highest weightequal to the sum of the two highest weights, the so called Cartan product of the tworepresentations, all irreducible representations are generated by those correspondingto the dominant weights (more explicitly, they live in their tensor products).The sum of all fundamental weights � = �1 + � � �+ �l is called the lowest weight(or lowest dominant form). It holds � � S� is the sum of those positive roots thatbecome negative under S�1, S 2 W , and � is half the sum of all positive roots.As already mentioned, a representation space V of a complex semisimple Liealgebra splits into subspaces generated by the weight vectors. The weights arealways integral forms and the set of all weights of a representation ' is invariantunder the action of the Weyl group. In fact, together with �, all the forms �; � �sgn(�(H�))�; ��2sgn(�(H�))�; : : : ; ���(H�)� are weights of '. The multiplicitiesof the weights of ' are invariant with respect to the action of the Weyl group, i.e.m� = mS�, S 2 W .For each �nite dimensional representation, there is precisely one orbit W (�)under the Weyl group containing the highest weight. The elements � from thisorbit are called the extremal weights of the representation, they are independentof the choice of the positive roots and they can be characterized by h�; �i � h�; �ifor all weights � of the representation (the equality takes place if and only if �is extremal). On the other hand, for each integral weight � there is precisely onedominant weight in its orbit. Hence each integral weight is an extremal weight ofa uniquely de�ned �nite dimensional representation.10.10. Orthogonal algebras. The properties of the orthogonal algebras di�eressentially for even and odd dimensions. Moreover the dimensions m = 3, m = 4andm = 6 are exceptional, for the corresponding algebras are isomorphic to sl(2; C ),sl(2; C ) � sl(2; C ) and SL(4; C ) (the bar means the complex conjugation).(i) m = 2l + 1. We take the quadratic form de�ning the orthogonal group in theform xTJx = x20 + 2(x1x2 + x3x4 + � � � + x2l�1x2l), i.e. J = E00 + E12 + E21 +� � �+ E2l�1;2l + E2l;2l�1. The symbol Eij means a matrix with just one non-zeroelement placed in the i-th row and j-th column, ei are the elements from thestandard basis from Rm or Cm , ei the dual basis in the dual space. The abeliansubalgebra h = C l of diagonal matrices with (0; a1;�a1; : : : ; a1; : : : ; al;�al) is theCartan subalgebra and the real subspace of diagonal matrices of the same form in



124 NATURAL OPERATORS ON CONFORMAL MANIFOLDSh is the real subalgebra h0.29 The roots and root elements areei p2(E2i�1;0� E0;2i) 1 � i � l�ei p2(E0;2i�1� E2i;0) 1 � i � lei � ej E2i�1;2j�1� E2j;2i i 6= jei + ej E2j�1;2i�E2i�1;2j i < j�ei � ej E2i;2j�1�E2j;2i�1 i < jWe choose ei and ei � ej with i < j for the positive roots. The simple roots(fundamental system) are fe1 � e2; e2 � e3; : : : ; el�1 � el; elg. The fundamentalcoroots are H1 = e1 � e2, : : : , Hl�1 = el�1 � el, Hl = 2el. The fundamental Weylchamber is de�ned by a1 > a2 > � � � > al > 0 and the maximal root is e1 + e2.The Killing form is the EuclideanP(ei)2, up to a factor. The Weyl group containsthe exchange of any two axes (reexion with respect to ei � ej) and the changes ofsigns of any axis (corresponds to ei), i.e. W is the group of all permutations andchanging of signs on l variables.(ii) m = 2l. We consider the quadratic form xTJx= 2(x1x2 + � � �+ x2l�1x2l), i.e.J= E12 + E21 + : : : , the Cartan algebra h consists of diagonal matrices given by(a1;�a1; : : : ; al;�al). The roots and root elements areei � ej E2i�1;2j�1� E2j;2i i 6= jei + ej E2i�1;2j � E2j�1;2i i < j�ei � ej E2i;2j�1� E2j;2i�1 i < jThe order in h�0 is de�ned by (l � 1; l � 2; : : : ; 0) and the positive roots are theei � ej and ei + ej , i < j. The simple roots are e1 � e2; : : : ; el�1 � el; el�1 + el, thecorresponding coroots are H1 = e1 � e2; : : : ;Hl�1 = el�1 � el;Hl = el�1 + el. Thefundamental Weyl chamber is a1 > a2 > � � � > al�1 > jalj. The maximal root ise1+ e2. The Killing form is the EuclideanP(ei)2, up to a factor. The Weyl groupcontains the exchange of any two axes and the exchange of an arbitrary pair of axescoupled with the change of their signs. Thus W is the group of all permutationsand even number of sign changes in l variables.(iii) The algebras sl(l + 1; C ). Here the situation is most simple. The Cartanalgebra is the subalgebra of diagonal matrices with trace zero, the roots are �ij =ei�ej , i 6= j, the Eij, i 6= j are the corresponding root elements. The positive rootsare �ij with i < j and the simple roots are �12; �23; : : : ; �l;l+1 (the correspondingcoroots are e1 � e2; : : : ; el � el+1). The fundamental Weyl chamber consists ofelements with a1 > � � � > al+1 and the maximal root is e1� el+1 . The Killing formis also the Euclidean form up to a factor. The Weyl group W is the group of allpermutations in l + 1 variables.29Of course, the usual quadratic form must lead to the same relations, however let us noticethat then the real Cartan subalgebra does not consist of diagonal matrices, and involves purelyimaginary entries.



10. APPENDIX 12510.11. Representations of the complex orthogonal groups. All the groupsexcept SO(4; C ) are simple. An irreducible representation of a direct sum of twosemisimple Lie algebras is a tensor product of irreducible representations of thesummands.The sum �+� of highest weights of two irreducible representations of a semisim-ple Lie algebra is the highest weight in the tensor product of the two representationsand occurs with multiplicity one. The irreducible representation with the highestweight �+� is called the Cartan product of the original two representations. In thisway, the irreducible representations form a semigroup which is isomorphic to theset of dominant weights. The dominant weights are (freely) generated by the fun-damental weights. Let us list briey these fundamental representations and somemore information for the three types of algebras discussed in 10.10.(i) o(m); m = 2l + 1. The fundamental weights are �1 = e1, �2 = e1 + e2, : : : ,�l�1 = e1 + � � �+ el�1, �l = 12(e1 + � � � + el). The corresponding representationsto the �rst l � 1 weights are the (complex) exterior forms of degrees 1; : : : ; l � 1,the remaining representation is called the spin representation, we shall discuss it inthe next section. (Notice, the Hodge star identi�es some of the remaining exteriorforms, but still there is the degree l missing and so this must be expressed usingthe two-valued spin representation.)The set of dominant weights consists of all forms � = Pl1�iei with �1 � �2 �� � � � �l � 0 and either all �i are integral or all �i half-integral. The numbers(�1; : : :�l) are called the signature of the irreducible representation �. The signa-ture of the exterior forms of degree k is (1; : : : ; 1; 0; : : : ; 0) with k ones, k � l.(ii) o(m); m = 2l. The fundamental weights are �i = e1 + � � � + ei, 1 � i �l � 2, and �l�1 = 12 (e1 + � � � + el�1 � el), �l = 12(e1 + � � � + el�1 + el). Thecorresponding representations to the �rst l� 2 weights are as before the (complex)exterior forms of degrees 1; : : : ; l � 2, the remaining representations are called thehalf-spin representation, see the next section. The set of dominant weights consistsof all forms � =Pl1�iei with �1 � �2 � � � � � j�lj and either all �i are integral orall �i half-integral.(iii) sl(l + 1). The fundamental weights are �i = e1 + � � �+ ei, i = 1; : : : ; l, thecorresponding representations are the exterior forms (the representation on thehighest degree forms is trivial). The dominant forms are � = Pl1�iei with �1 ��2 � � � � � �l � 0 integral.All these facts are more or less easily obtained from the above description ofthe structure of the algebras in question (the Killing form is proportional to theEuclidean metric, so that it is easy to �nd the coroots and their dual basis). Letus also notice, that we can use the above description of both the structure andrepresentations also in the extreme dimensions, see e.g. [Jacobson, 62], if we omitthe objects which do not make sense. So for example, all representations must begenerated by the two spin representations for dimension four. This is the basicingredient of the `two-spin' formalism which we shall mention later on.It is important to know all weights involved in a given representation. This iseasy for the forms: the weights of �r, r � l, are simply ei1 + � � �+ eir , 1 � i1 <� � � < ir � l+ 1. These must be all involved as they form the orbit under the Weyl



126 NATURAL OPERATORS ON CONFORMAL MANIFOLDSgroup. On the other hand their number equals the dimension.10.12. Parabolic subalgebras. Let us �x a Borel subalgebra b � g in a complexreductive Lie algebra. Each subalgebra p containing b, i.e. b � p � g is calleda parabolic subalgebra. There is only a �nite number of parabolic subalgebrascontaining a �xed Borel algebra. All parabolic subalgebras (up to conjugation) areconstructed by a simple procedure:Let us write n� for the subalgebras generated by the positive or negative rootelements respectively, i.e. n+ = [b; b]. The whole algebra is a sumg = h� (��2�g�) = h� n+ � n� = n� � b:Let us �x a set � � �+0 of simple roots and write �� for its span in the set of allroots. Now we de�ne the subalgebrasl = h� (��2��g�); n = ��2�+n��g�; p = l� nBy the de�nition, p contains the whole Borel algebra b and the algebra g splits as avector space direct sum of Lie subalgebras g = n��p. The subalgebra l is reductive,n is nilpotent. Hence l is the reductive Levi factor of the parabolic subalgebra p.The semisimple factor is [l; l] = ��2��g� and l = h�� (��2��g�) where h� is thelinear subspace in h corresponding to � � h�.The parabolic subalgebras in semisimple complex algebras can be e�ectivelydenoted by means of the Dynkin diagrams if we replace the nodes corresponding tothe simple roots which are not in � by a cross. In the main text we need the algebrasSO(m + 2; C ) with m � 3. The Dynkin diagrams are (SO(6; C ) ' SL(4; C ))g = � � � � � � ����� if m = 2ng = � � � � � � > � if m = 2n+ 1g = � � � if m = 4 = 2nwhere all diagrams have n+ 1 nodes. The explicit description of the Poincar�e con-formal subalgebra b � o(m+ 2; C ), see 5.9, shows that b is a parabolic subalgebra,for the maximal solvable subalgebra in b must be maximal in the whole o(m+2; C )as well. Looking at the list of roots and root elements in 10.10, one can see thatthis parabolic subalgebra contains all root spaces corresponding to the negatives ofthe simple roots, except the �rst one. Henceb = � � � � � � ����� if m = 2nb = � � � � � � > � if m = 2n+ 1b = � � � if m = 4 = 2n.



10. APPENDIX 12710.13. Representations of parabolic subalgebras. In general, the represen-tations of the parabolic subalgebras of semisimple algebras need not be completelyreducible. But we shall still restrict ourselves to the irreducible ones. Let us �xa parabolic algebra p � g and its Levi decomposition p = l � n corresponding toa subset � � �+0 as above. If V is a �nite dimensional irreducible representationspace of p, then n acts by nilpotent endomorphisms by the Engel's theorem, and son acts trivially. The reductive part l decomposes into the semisimple factor s = [l; l]and the center z. We can always arrange h = (h\ s)� z. An irreducible representa-tion of p is determined by a dominant weight for s and an element from z� and sothe representation is speci�ed by a weight � for g such that �(H�) is a non-negativeinteger for all � 2 �. Such a weight is called dominant for p. We shall denote byV� the irreducible p module with highest weight �. More precisely, � decomposesinto a dominant weight �s for s and an element from z�, in the conformal case z isone-dimensional and the negative of the latter element in z� is just the conformalweight, cf. 6.3. We shall describe how to get the proper coe�cients in the examplesbelow.Notation. We shall express the representation determined by a dominant weight� for p by inscribing the values (� + �)(H�) on the fundamental coroots over thecorresponding nodes.10.14. Examples. Let us specify some important bundles in the conformal case.So we consider g = o(m+ 2; C ) and the Poincar�e conformal (parabolic) subalgebrab � g. Using the lists from 10.10 we can compute the values �(H�) for each highestweight �. More explicitly, the �rst and the second coroots are e1 � e2 and e2 � e3,the last one el�1 + el, in all dimensions m � 4. The conformal weight, as de�nedin 6.3 is determined by the coe�cient a1 at e1 in the expression of � as a sum ofsimple roots, see the explicit decomposition of o(m+2; C ) in 5.9 and notice the �aentry in the �rst row corresponding to the multiple aIm in the center. In order toget the coe�cient over the omitted node, we have �rst to �nd the coe�cient at e1in the combination of the fundamental weights indicated over the other nodes, tosubtract this coe�cient from the intended conformal weight and to place the resultover the crossed node. The rest of the coe�cients corresponds to the highest weightof the underlying representation of o(m; C ).For example, we can write down the basic spin representations, the tangent spaceCm , the cotangent space Cm� and the conformal scalar densities Lw:S� = 1� 1� 1� � � � 1� > 2�Cm� = 1� 2� 1� � � � 1� > 1�Cm = �1� 2� 1� � � � 1� > 1�Lw = �w+1� 1� 1� � � � 1� > 1� 9>>>>>>=>>>>>>; in odd dimension.



128 NATURAL OPERATORS ON CONFORMAL MANIFOLDSS�+ = 1� 1� 1� � � � 1� 1��� 2�� 1S�� = 1� 1� 1� � � � 1� 1��� 1�� 2Cm� = 1� 2� 1� � � � 1� 1��� 1�� 1Cm = �1� 2� 1� � � � 1� 1��� 1�� 1Lw = �w+1� 1� 1� � � � 1� 1��� 1�� 1
9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>; in even dimensionIn the dimension m+ 2 = 6, the diagrams are di�erent:S�+ = 2� 1� 1�S�� = 1� 1� 2�C 4� = 2� 1� 2�C 4 = 2� �1� 2�Lw = 1� �w+1� 1�Let us remember that the coe�cients over the nodes are precisely the coe�cientsat the fundamental dominant forms in the expression of the weight, but these arethe (possibly not dominant) weights of the whole algebra g. We know only thatthey are dominant for p. The usual `raising and lowering of indices' e�ects theconformal weight only. With the spin representations, we increase the coe�cientover the crossed node by one for each lowering of one subscript. In general, a spinor�eld s(A01:::A0p)(A1 :::Ar) with r symmetric primed superscripts and p unprimed oneswith conformal weight q is a section of the bundle corresponding to p+1� q+1� r+1�(the weight is 12 (p+ r) + q if all indices are down).30 The same diagrams are usedalso for the bundles corresponding to the dual (i.e. contragredient) representations.This strange notational convention is reasonable for the description of the operatorssince the corresponding morphism appear between modules corresponding to thedual representations.Sometimes the notation O(A01:::A0p)(A1:::Ar)[q] for the sheaf of all sections of thelatter bundle is also used for the bundle. Lowering of all indices e�ects the weight,so that the same diagram can denote O(A01:::A0p)(A1:::Ar)[p + q + r]. For examplethe tangent bundle TM � OAA0 � 2� �1� 2� while 
1 � OAA0 . Some further30The convention for the usage of primed and unprimed indices varies by di�erent authors, weuse that one from [Baston 90].



10. APPENDIX 129important bundles on four-dimensional manifolds are expressed below
2 = O(A0B0)[�1]� O(AB)[�1] = 3� �2� 1� � 1� �2� 3�
3 = OAA0 [�2] = 2� �3� 2�
4 = O[�4] = 1� �3� 1�S2T � = O(AB)(A0B0) �O[�2] = 3� �3� 3� � 1� �1� 1�10.15. The directed graph structure on the Weyl group. The number ofpositive roots in � which are transformed to negative ones by an element S 2 Wis called the length of S, we write jSj. Equivalently, the length of S is the minimalnumber of the reections corresponding to simple roots the composition of whichgives S. We de�ne the sign of S as sgnS = (�1)jSj.We connect two elements w, w0 in the Weyl groupW of some complex semisimplealgebra g by an arrow, w ! w0, if w0 = S�(w) for some root � 2 � of g andjw0j = jwj+ 1. This directed graph structure de�nes a partial order on W , w � w0if there is a directed path from w to w0 or w = w0.31 The whole Weyl groupis generated by the reections corresponding to the simple roots. If a parabolicsubalgebra p � g corresponding to � � �+0 is �xed, then there is the parabolicsubgroup Wp � W generated by the simple reections S�, � 2 �. We de�neW p = fw 2 W ; jS�wj = jwj + 1 for all � 2 �g. Equivalently, W p consists ofelements w 2 W with the property that if w�1� 2 ��+ and � 2 �+, then �belongs to the span of �+0 n �. Thus, W p consist just of elements from W whosereections send weights dominant for g into weights dominant for p.It is possible to prove that each w 2 W admits a unique decomposition asw = wpwp, with wp 2W p, wp 2 Wp, and jwj = jwpj+ jwpj.By the de�nition, there is the subgraph structure on W p and one can prove thatfor each w0 2 W p di�erent from the identity, there is some w 2 W p with w ! w0.These subgraphs are described explicitly for the conformal Poincar�e subalgebrasb � g = o(m + 2; C ) in 8.7.10.16. The enveloping algebra. For every �nite dimensional Lie algebra g overK = R or K = C , its universal enveloping algebra U(g) is de�ned as the quotientT (g)=I of the (real or complex) tensor algebra generated by the elements of g withrespect to the two-sided ideal I in T (g) generated by all x
 y� y
x� [x; y] for x,y 2 g. There is the induced increasing �ltration Uk(g) from that on T (g) and theinclusion i : g ! U(g). We have i([x; y]) = i(x)i(y) � i(y)i(x) for all x, y 2 g andU(g) has the following universal property:For each associative algebra A over K with identity and each linear mapping' : g ! A satisfying '([x; y]) = '(x)'(y) � '(y)'(x) for all x, y 2 g, there is aunique algebra homomorphism �' : U(g)! A such that �' � i = ' and �'(1) = 1.31This graph structure is de�ned in the same way on much more general groups, the so calledCoxeter groups, which are generated by a (�nite) set of idempotents S� like the Weyl groups.The strong partial order de�ned above is called the Bruhat order. The parabolic subgroupsand subgraphs are also de�ned in the same way using the subsets of the generators. A detailedtreatment can be found in [Hiller, 82].



130 NATURAL OPERATORS ON CONFORMAL MANIFOLDSAccording to the Birkho�-Witt theorem, the canonical inclusion i extends tovector space isomorphismsPk0 Sk(g) = Uk(g). These isomorphisms build an algebraisomorphism S(g) =Pk Sk(g) = U(g) if and only if g is abelian.As a consequence of the Birkho�-Witt theorem we get some canonical identi�-cations. Given a vector space basis xi of g, the vector space Uk(g) is generated bythe expressions xi1 : : :xil , i1 � i2 � � � � � il, l � k. If g = a � b is a direct sum ofvector spaces, then U(g) = U (a)U (b) = U (a) 
 U (b) where U (a) means the linearspan of the elements x1 : : :xl with xi 2 a and similarly for U (b).The real universal enveloping algebra U(g) of a Lie algebra of a connected Liegroup G is isomorphic to the algebra of left invariant vector �elds (or right invariantvector �elds) on G, i.e. to the algebra of left-invariant (or right-invariant) di�erentialoperators on the smooth functions on G.The adjoint representation adx : g! g, x 2 g extends into a derivation on U(g).If g is semisimple, then this representation is completely reducible. The subsetZ(g) � U(g) of elements y with adx(y) = 0 for all x 2 g is called the center of U(g).This is equivalent to the usual requirement that y commutes with all elements inU(g).10.17. U(g)-modules. Given a representation of a complex Lie algebra g, i.e. analgebra homomorphism' : g! EndV for some complex vector space V , there is theuniquely de�ned algebra homomorphism �' : U(g) ! EndV . If the representationis irreducible, then the actions of the elements from the center Z(g) � U(g) ofthe complex algebra must be multiplications by scalars. This can be viewed as analgebra homomorphism � : Z(g) ! C , the so called in�nitesimal character of therepresentation '.Suppose now, we have two irreducible representation V�, V� corresponding totwo dominant weights � and � for a semisimple complex Lie algebra g and anintertwining linear mapping D : V� ! V�, i.e. a U(g)-module homomorphism. Letus write �� and �� for the in�nitesimal characters of V� and V�. For every v 2 V�,z 2 Z(g) we have zD(v) = D(zv) = D(��(z)v) = ��(z)D(v) and so either �� = ��or D = 0. The same conclusion is true if both representations are generated by asingle highest weight vector.10.18. Verma modules. Let us consider �rst an arbitrary complex Lie algebrag and its subalgebra p. Given a representation of p in a �nite dimensional vectorspace V , we de�ne the induced representationInd(g; V ) = U(g)
U(p) V:The representation space V is canonically embedded into the induced representationInd(g; V ) via V 7! 1
C V ' U(p) 
U(p) V .In particular, if g is semisimple, p is a Borel subalgebra and if we consider the one-dimensional characters � of the Borel subalgebra p, then the induced representationsare called the Verma modules and denoted by M� (sometimes a shift in the weightis used in the notation for symmetry reasons: �� � instead of �, � being the lowestform). They always have the highest weight vector 1
1 which generates the wholeU(g)-module M�. The theory of Verma modules is well developed, in particularthere is a complete classi�cation of their homomorphisms.



10. APPENDIX 131In general, it is di�cult to work with the induced representations since thestructure of U(g) is complicated. However, if g is semisimple and p parabolic, thewhole situation is much more similar to the theory of Verma modules. Let us recallg = p � n� as a vector space direct sum of Lie subalgebras. Thus, given a �nitedimensional representation of p in V , we have U(g) 
U(p) V ' U(n�) 
C V (asvector spaces) by virtue of the Birkho�-Witt theorem. We shall denote this U(g)-module Mp(V ) and call it the generalized Verma module. If the representationis irreducible and corresponds to a dominant form � for p, then the U(g)-moduleMp(V�) is generated by the highest weight vector 1
v where v is the highest weightvector in V�.In particular, if the subalgebra n� is abelian, then U(n�) = S(n�), the symmetricalgebra and the latter is equal to the algebra S((n�)�) of polynomials on n�. Inthe conformal case we deal with the Poincar�e conformal parabolic subalgebra b �o(m+2; C ) and n� = Cm , the `subalgebra of translations' which is abelian, cf. 5.9.10.19. Homomorphisms of Verma modules. Consider dominant weights �and � for complex parabolic p � g and a homomorphism D : Mp(V�) ! Mp(V�)of U(g)-modules. The whole modules are generated by the highest weight vectors1
v� and 1
v�. Each element z 2 Z(g) from the center must preserve the highestweight vectors and acts by scalar multiplication by ��(z) and ��(z), the in�nitesimalcharacters of the representations. Hence a non-zero morphism can exist only if thein�nitesimal characters coincide, cf. 10.17. A classical theorem by Harish-Chandrastates that �� = �� if and only if � + � and � + � are conjugate under the actionof the Weyl group W of g, here � is the lowest form (half the sum of all positiveroots). The a�ne action of W on the weights � is de�ned for each w 2 W byw:� = w(� + �) � �. Thus, the above mentioned condition states: If there is anon-zero U(g)-module homomorphismMp(V�) ! Mp(V�) then there is some w inthe Weyl group of g such that w:� = �.If � is dominant for g, then all weights � dominant for p with the same in�nites-imal character �� = �� are given by fw:� ; w 2W pg.10.20. Action of the Weyl group on weights. Let us recall that a weightis denoted by inscribing its values on fundamental coroots over the correspondingnodes in the Dynkin diagram increased by 1. The action of the simple reectionson the weights can be described as follows, cf. [Baston, 90]. For each root � 2 �,the reection S� acts on the weight � by S�(�) = � � h�;H�i� where H� is thecoroot corresponding to �. Hence the coe�cients over the nodes are given byhS�(�);Hii+1 = h�;Hii�h�;H�ih�;Hii+1 where Hi are the simple coroots. If �is a simple root, then h�;Hii is the Cartan integer which is obtainable directly formthe Dynkin diagram. This yields the procedure for getting the new coe�cients overthe nodes after the a�ne action of a simple reection:Let a be the coe�cient of the i-th node corresponding to �. In order to get thecoe�cients over the nodes corresponding to S�i(�+ �), add a to the adjacent coef-�cients, with multiplicity if there is a multiple edge directed towards the adjacentnode, and replace a by �a.For example, if � is a� b� c� and we act by the middle simple reection, we getthe weight a+b� �b� b+c� . Similarly a� > b� transforms under the action of the �rst



132 NATURAL OPERATORS ON CONFORMAL MANIFOLDSsimple reection into �a� >2a+b� , while the second simple reection yields a+b� >�b� .10.21. The Lie algebra cohomologies. Consider an arbitrary Lie algebra gand a g-module A. The degree q cochains with coe�cients in A are de�ned as thespace Cq(g;A) of all (continuous) skew-symmetric q-linear A-valued forms on g.By the de�nition, Cq(g; A) = Hom(�q(g);A) carries a natural g-module structure.We de�ne the di�erential @ : Cq(g;A)! Cq+1(g;A) by the formula@c(X1; : : : ; Xq+1) = X1�s<t�q+1(�1)s+t�1c([Xs; Xt]; X1; : : :̂ s : : :̂ t : : : ; Xq+1)(1) + X1�s�q+1(�1)sXs:c(X1; : : :̂ s : : :Xq+1)One veri�es easily @2 = 0 and we obtain a complex by setting Cq(g;A) = 0 and@(Cq(g;A)) = 0 if q < 0. This complex is denoted by C�(g;A) and the correspond-ing cohomologies are denoted by Hq(g;A) and called the cohomologies of g withcoe�cients in A.We need this general de�nition in a special case. Let us consider an algebra withgrading g = g�1�g0�g1�: : : . Then g�1 is an abelian Lie subalgebra and g0 is a Liesubalgebra acting on all homogeneous components gp turning them into g0-modules.The whole g is a g�1-module via the adjoint action. The Lie algebra cohomologyH�(g�1; g) is called the Spencer cohomology. The grading of g induces a natu-ral grading on the cochains, C�(g�1; g) = Pp;q Cp;q(g�1; g) where Cp;q(g�1; g) �Cq(g�1; g) is the subset of gp�1-valued forms. Since the Lie algebra g�1 is abelian,only the second term remains in (1) and we get a di�erential @Cp;q(g�1; g) !Cp�1;q+1(g�1; g). The Spencer bigraded cohomology Hp;q(g�1; g) is the cohomologyof this complex,Hp;q(g�1; g) := @�1(0)\Cp;q(g�1; g)=@(Cp+1;q�1(g�1; g)). The ac-tion of g0 on the homogeneous components induces an action on the cochains whichintertwines the di�erential and so there is a distinguished g0-module structure onH�;�(g�1; g).In the main text, we need the conformal case where g = b�1 � b0 � b1 =o(m + 2; C ), b0 is the reductive part of the parabolic subalgebra b = b0 � b1. Allirreducible representations of b0 = co(m; C ) in H�(b�1; g) can be established by theKostant's theory (developed for general parabolic subalgebras in complex reductivealgebras), see [Vogan, 81, p. 123]: If A is a �nite dimensional b-module of highestweight �, then the irreducible �nite dimensional representations of g0 with highestweight � occur in H�(b�1;A) if and only if there is a w 2 W b � W such that� = w:� = w(� + �) � � and in that case it occurs in degree jwj with multiplicityone, (see 10.15 and 10.19 for the notation).In our situation, � is the maximal root (e1 + e2, see 10.10) and the a�ne actionof W b is described in 10.20. In particular, if we want to compute H�;1(b�1; g), wehave to evaluate the a�ne action of s1 if m � 4 (this is the only elements of length



10. APPENDIX 133one in W b, see 10.15 and 8.7)s1:� 2� 1� 2� � = 3� �1� 3�s1:� 1� 2� 1� � � � 1��� 1�� 1� = �1� 3� 1� � � � 1��� 1�� 1s1:� 1� 2� � � � 1� > 1� � = �1� 3� � � � 1� > 1�Since H0;1(b�1; g) = b�1 
 (b�1)�=b0 by the de�nition, this cohomology must benon-zero. Since there is only one irreducible representation available, the other two�rst order cohomologies must be zero. Hence H1;1(b�1; g) = H2;1(b�1; g) = 0, seealso [Baston, 90] or [Ochiai, 70].Similarly, we can compute the second cohomologies. In dimensions m > 4 wehave to compute (s1s2):�, in dimension m = 4, the second cohomologies have twosummands, (s1s2):� and (s1s3):�. We get the representations�3� 1� 3� � � � 1��� 1�� 1 m = 2n > 4�3� 1� 3� � � � 1� > 1� m = 2n+ 1 > 5�3� 1�1� > 5� m = 55� �3� 1� � 1� �3� 5� m = 4The conformal weights show that all these representations must occur in the coho-mology space H1;2(b�1; g) and so H0;2(b�1; g) = H2;2(b�1; g) = 0.The cohomologies of the complexi�ed algebras gC are the complexi�cations ofthe real cohomologies. Hence the vanishing of the above cohomology spaces in thecomplex case implies the vanishing of the same ones for the real conformal case aswell.10.22. The Hodge theory. Given a general Lie algebra g and a g-module, thechains Cq(g;A) are de�ned as the space A 
 �qg and the di�erential is de�ned by@(a
(X1^� � �^Xq)) =P1�s<t�q(�1)s+t�1a
([Xs; Xt]^X1^� � �̂ s � � �̂ t � � �^Xq)+P1�s<t�q(�1)sXs:a
 (X1 ^ � � �̂ s � � � ^Xq). Since @2 = 0 we obtain the homologyHq(g;A). If both the algebra g and the g-module A are �nite dimensional, thenHq(g;A�) = (Hq(g;A))�. Let us assume that g and A are moreover graded andthat there is a distinguished Hermitian metric in each homogeneous component gq.Then we can identify the cochains with their duals, i.e. Cq(g;A) ' Cq(g;A) andthe di�erential on the chains gives rise to @� : Cq(g;A)! Cq+1(g; A). The operator� = @�@ + @@� : Cq(g;A)! Cq(g;A) is called the Laplace operator. The cochainswith �(c) = 0 are called harmonic.In the conformal case we can express the adjoint di�erential using arbitrary basisxi of b�1 and the dual bases yi of b1 (b1 is dual to b�1 with the contragredientrepresentation of b0, see 5.9)@�c(X1; : : : ; Xq�1) = mXj=1[yj; c(xj; X1; : : : ; Xq�1)]



134 NATURAL OPERATORS ON CONFORMAL MANIFOLDSwhich is a linear mapping Cp;q(b�1; g) ! Cp+1;q�1(b�1; g). In each cohomologyclass of Hp;q(b�1; g) there is a unique harmonic representative f 2 Cp;q(b�1; g).The Laplace operator acts by scalar multiplication on irreducible representations ofb0 occurring in H�;�(b�1; g). More explicitly, if the irreducible representation hasthe highest weight � then � acts by12(h� + �;�+ �i � h�+ �; �+ �i)where � is the maximal root of g and � is the lowest form.ReferencesAtiyah, M.; Bott, R.; Patodi, V.K., On the heat equation and the index theorem, InventionesMath. 19 (1973), 279{330.Atiyah, M.; Bott, R.; Shapiro, A., Cli�ord modules, Topology 3 (1964), 3{38.Bailey, T. N,; Eastwood, M. G.; Graham, C. R., Invariant theory for conformal and CR geometry,preprint 1992.Baston, R. J., Verma modules and di�erential conformal invariants, J. Di�erential Geometry 32(1990), 851{898.Baston, R. J., Almost Hermitian symmetric manifolds, I: Local twistor theory; II: Di�erentialinvariants, Preprints (1990).Baston, R.J.; Eastwood, M.G., The Penrose Transform, Its Interaction with Representation The-ory, Clarenden press, Oxford, 1989.Baston, R.J.; Eastwood, M.G., Invariant operators, Twistors in mathematics and physics, LectureNotes in Mathematics 156, Cambridge University Press, 1990.Bernstein, I. N.; Gelfand, I. M.; Gelfand, S. I., Structure of representations generated by vectorsof highest weight, Funct. Anal. Appl. 5 (1971), 1{8.Boe, B. D.; Collingwood, D. H., A comparison theory for the structure of induced representationsI., J. of Algebra 94 (1985), 511-545.Boe, B. D.; Collingwood, D. H., A comparison theory for the structure of induced representationsII., Math. Z. 190 (1985), 1-11.Boerner, H., Darstellungen von Gruppen, 2nd ed., Springer,Grundlehrender math. Wissenschaften74, Berlin Heidelberg New York, 1967.Branson, T. P., Di�erential operators canonically associated to a conformal structure, Math.Scand. 57 (1985), 293{345.Branson, T. P., Conformal transformations, conformal change, and conformal covariants, Pro-ceedings of the Winter School on Geometry and Physics, Srni 1988, Suppl. Rendiconti CircoloMat. Palermo, Serie II 21 (1989), 115{134.Branson T. P., Second-order conformal covariants I., II., Kobenhavns universitet matematiskinstitut, Preprint Series, No. 2, 3, (1989).Budinich, P.; Trautman, A., The spinorial chessboard, Trieste Notes in Physics, Springer-Verlag,1988.Cap, A.; Slov�ak, J., In�nitesimally natural operators are natural, J. Di�. Geom. and Appl. 2(1992), 45{55.Eastwood, M. G., On the weights of conformally invariant operators, Twistor Newsl. 24 (1987),20{23.Eastwood, M. G.; Graham, C. R., Invariants of CR Densities, Proccedings of Symposia in PureMathematics, Part 2 52 (1991), 117{133.Eastwood, M. G.; Graham, C. R., Invariants of conformal densities, Duke Math. J. 63 (1991),633{671.Eastwood, M. G.; Rice, J. W., Conformally invariant di�erential operators on Minkowski spaceand their curved analogues, Commun. Math. Phys. 109 (1987), 207{228.
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