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2 NATURAL OPERATORS ON CONFORMAL MANIFOLDS
Preface

This dissertation is based on a written version of my lecture series held during
my visiting professorship at the University of Vienna in the Fall term 1991/1992. T
acknowledge gratefully the support and kind hospitality of the University during my
visit. The motivating interest of the listeners forced me to study deeply the subject
which became one of the main interests of my scientific research nowadays. Since
the last year, a joint seminar of J. Bures, V. Soucek and myself devoted especially to
this topic works at the Charles University in Prag. The general setting for the study
of the natural operators originates in the work of the seminar of I. Kolaf during
the last ten years in Brno and in the Middle-European Seminar organized jointly
by I. Kolaf and P. Michor in Brno and Vienna since 1985. The recent monograph
[KolaF, Michor, Slovék, 93] collects the most of the results of this cooperation.

The submitted version of the lecture notes, first distributed at the University of
Vienna in 1992, has been revised and essentially extended. The Sections 4 and 8
present my original results; the rest of the text collects the necessary background
for the theory of natural operators on conformal manifolds which is really difficult
to be found in one place. The exposition covers the topics assumed as well known
(to specialists) in the survey paper [Baston, Eastwood, 90] and those regularly
applied in the fairly many other recent papers concerning the naturality problems
in conformal geometry. So a graduate student of differential geometry should be
able to start an active work in this area after studying the lecture notes. The
bibliography is far from being complete, however I have involved all papers which
I have seen by myself and which thereby have influenced the text.

My approach combines the general methods developed for the study of the nat-
urality problems in the above mentioned monograph [Kolaf, Michor, Slovak, 93],
which are more suited for solving concrete (even non-linear) problems, but which
have not been worked out in the category of conformal manifolds there, and the
methods from the representation theory employed by some of the cited authors
(which apply then only to linear problems, of course). The latter methods are very
powerful and they lead to very nice general classification results, but on the other
hand, these results are rather implicit. I believe, that my approach should lead to
new concrete results in the near future as well. The whole text might seem strange
since we are seeking for natural operators, but neither we apply the results nor
we state what they are good for. But the applications are rather non-trivial as a
rule, the interested reader can find some of them in [Baston, Eastwood, 90], [Feffer-
man, 79], [Fefferman, Graham, 85] for the conformal invariants and [Atiyah, Bott,
Patodi, 73], [Gilkey, 84] for the Riemannian invariants. Typically, a classification
result on all natural operators helps to describe properties of rather concrete geo-
metric objects. Moreover, the theory of the natural operators is itself rich enough
to be treated separately.

The reader is assumed to be familiar with standard finite dimensional differential
geometry. The study of some parts of the monograph [Kolaf, Michor, Slovik,
93] will be probably necessary for a detailed understanding. Further, a detailed
treatment of the representation theory cannot be involved in the text, but I offer
at least brief overviews, mainly in the Appendix.

In the first preparatory section I try to motivate the naturality problems, to
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indicate the connections to representation theory and to fix some notation. The
next section explains the basic setting for naturality problems and in the third one,
I develop the necessary theory of natural tensors (the so called Weyl’s theory).
Section 4 is based on my recent papers [Slovdk, 92a], [Slovak, 92b]. In fact, it
presents the first step towards the classification in Section 8, since all conformal
invariants must be first of all Riemannian invariants. Furthermore, the results
present a nice application showing the power of the general approach to (non-linear)
naturality problems mentioned above.

Next, I describe thoroughly the flat conformal structures and their morphisms
which is applied immediately to the description of all first order linear natural
conformal operators which do not vanish on conformally flat manifolds in Section
6. In fact, this section covers a result by Fegan from 1970 which is a special case of
the later general classification. But I like to present some of the ideas of the later
development in a more concrete setting. Among these operators, there are some
living on bundles involving more structure, the spin bundles. These are treated
in Section 7 by means of the Clifford algebras. In particular, this introduces the
reader to the famous Dirac operators.

Section 8 presents a general classification of all natural operators on conformally
flat manifolds based on the representation theory of parabolic subalgebras in the
orthogonal groups and the classifications of Riemannian invariants from Section
4. This is the core of the dissertation. The results were partially known, but I
have never found a concise proof in the literature. The presented classification also
corrects some unprecise claims from the survey [Baston, Eastwood, 90].

In the last section, I discuss the problem whether the latter operators extend
to operators on the whole category of conformal manifolds. This is a very subtle
question and even the definition of the conformally invariant operators varies from
author to author. This happens since the conformal manifolds are not locally
homogeneous and, moreover, the most of interesting vector bundles do not live
on all manifolds (the existence of the conformal weights makes the difference with
respect to the Riemannian case). One approach is to take the implicit description
of all Riemannian invariants, to modify slightly the definition of the naturality and
to try to find out those operators which are invariant with respect to all scalar
deformations of the metrics. This is the way undertaken by Branson, Qrsted,
Winsch and others. We shall discuss another approach, the point of which 1is to
classify first the linear operations on the conformally flat manifolds and then to
use certain geometrical methods to extend the latter operators to all conformal
manifolds. The geometry involved is based on the canonical Cartan connection
on conformal manifolds which is treated first and then I indicate how the general
methods work.

Some short parts of the exposition follow [Kolaf, Michor, Slovak, 93], in partic-
ular 3.1 — 3.8 and 3.21 of this text are based on Section 24 (prepared by I. Kolarf),
3.15 — 3.20 and Section 4 extend my exposition from Section 33 of the monograph.
The style of the whole text is rather brief, an active cooperation of the reader is
assumed.

Brno, 1993 Jan Slovak



4 NATURAL OPERATORS ON CONFORMAL MANIFOLDS
1. Introduction

1.1. Geometric operators. In general, operators are rules transforming sections
of one bundle into sections of another one. In differential geometry, we often meet
manifolds with some more structure, like Riemannian or symplectic manifolds and
the isomorphisms respecting these distinguished structures. Then the most impor-
tant bundles are those with a distinguished action of the isomorphisms on their
sections, the bundles of geometric objects. The geometric (or invariant or nat-
ural) operators are those operators which intertwine the distinguished actions of
the isomorphims. The latter expresses that the definition of such operators does
not involve any special choice and the operators are then defined invariantly on all
objects from the category in question. These rough ideas are behind the formal
definitions in Section 2, see in particular 2.12. Let us demonstrate the concept of
the natural operators on the simplest case, the operations on functions.

Let us start with the operators D: C®°(M,R) — C*°(E) of order 1, i.e. Df(x)
depends only on the first derivatives of f at x, and the symbol F denotes the un-
known target vector bundle with an action of the isomorphisms. We first require the
invariance with respect to the action of all diffeomorphisms given by @, (f) = fop™!
and we ask the (rather trivial) question: What are the linear operators D defined
on C*(R™ R) intertwining the actions of all local diffeomorphisms ¢: R™ — R™?
Since the action is transitive on R™, it is enough to restrict ourselves to a single point
z € R™ say & = 0, and since we assume the order is one, D is in fact determined
by a mapping D:ReR™ — F, (now F, is the standard fiber of the unknown
bundle). This mapping D is linear and its dual mapping goes D*: B —R@oR™.
First of all the mappings commute with the linear isomorphisms and so D* in-
tertwines the induced actions of GL(m,R) on the standard fibers. But the right
hand side is precisely the decomposition into G'L(m, R )-irreducible components and
so the unknown standard fiber must be either R or R™*. By the Schur’s lemma,
the first possibility corresponds to scalar multiples of the identity operator, the
second one yields a scalar multiple of D*((dz!)*)(f) = (dz*)*(Df) = gg,. Thus
Df = gg, dx’ or Df = f up to constant multiples and the only possible target
is the cotangent bundle or C'°*°(M,R). In this way we have classified all invariant
local linear operators of order one on functions.

There is a general classification result proved independently by [Terng, 78] and
[Kirillov, 77]: All natural linear operators on arbitrary tensor bundles (invariant
with respect to the tensorial action of all local diffefomorphisms) are compositions
of exterior differentials and invariant algebraic tensor operations (i.e. operations of
order zero). Hence there are no operations of higher order on functions natural
with respect to all diffeomorphisms.

There are two very well known examples of second order operators on C'*°(R™)

O*f O*f
Af = Seioat Tt B Laplace operator
o f O*f .
af = Ry 4 FF Klein-Gordon (wave) operator.

As we have mentioned, they cannot be modified to become invariant with respect
to all diffeomorphisms which is equivalent to the statement: these local expressions
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cannot be extended to invariantly defined operators on functions on arbitrary man-
ifolds. However, we can still reach this if we restrict ourselves to manifolds with
suitable structure. We shall consider Riemannian manifolds or pseudo-Riemannian
manifolds but first we have to fix some notation.

1.2. Abstract index formalism. The typical subjects of natural operations
are tensor fields with several covariant and contravariant components. The latter
means, we take the vector space V= R™ or V = (, and consider the tensor
product ®?V @ @ V* with the standard representation of GL(m,K), K =R or C.
For each m-dimensional manifold M we define the tensor bundle 7”9 A as the
associated vector bundle to the first order frame bundle on M corresponding to the
above tensor product with V = R™. The tensor fields are sections of these tensor
bundles or their subbundles. In local coordinates, a tensor in a point € M is
an N-tuple of scalars for suitable N, the tensor fields are then N-tuples of scalar-
valued functions f;i;; On complex m-dimensional manifolds we get the complex
tensor bundles on replacing R by C. If we use the complex scalars on real manifolds,
we get the complexifications of the real bundles in question.

There are several basic operations like permutations of the copies of V or V*
in the tensor products, linear combinations of such permutations and evaluations
with respect to one chosen copy of V and one copy of V* | the so called contraction
or trace. In order to be able to indicate such operations without explicit use of
local coordinates, we shall use a kind of ‘abstract markers’ or ‘labels’ for the copies
of V and V*. So V% and V7 means two distinct copies of V and the expressions
1, %, firirete. will always denote tensors in V&, V% Vi@ ...@ Vir or
the corresponding tensor fields, respectively. The same labels used as subscripts
indicate isomorphic but distinct copies of the dual V* and the concatenation of
such symbols expresses the tensor product. Hence, in general we should distinguish
carefully the order of the subscripts and superscripts, i.e. we should write %, €
VeV but 4 € V* @ V. It is generally adopted in a large part of geometry
to forget about the order of subscripts and superscripts, but we shall be forced to
follow this convention exactly when dealing with Riemannian manifolds and spinors
later on.

Now, it 1s easy to write down the above mentioned operations. The permuta-
tions of the copies of V or V* result in precisely the same permutations of the
subscripts or superscripts. The linear combinations of tensors are denoted simply
as linear combinations of the formal expressions. In particular, the alternation and
symmetrization are important enough to have a special notation: (a...b) means
symmetrization over the indicated indices, [a...b] is the alternation, {a...b} is the
sum over cyclic permutations. We adopt the so called summation convention which
means that any occurrence of the same label once among the superscripts and once
in the subscripts denotes a contraction with respect to the indicated entries.

If we distinguish a linear isomorphism g.;: V — V¥ i.e. gq € V* ® V*, then
there is its inverse g% € V@V . We can apply these isomorphisms to each copy of V
or V" in the tensor products which can be indicated as a contraction with the proper

e e - P AN
and to consider the contractions over all repeated indices in the latter sense. In
particular, g%, = ¢%°g. = 6%, the ‘Kronecker delta’. The latter will apply in
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our discussion on operations on pseudo-Riemannian manifolds. Of course, then we
have to take care of the order of the indices, this is very important if g4; is not
symmetric.

If not disabled explicitly, all italic indices in the further text will be used in the
above context. If we shall need the concrete values in some coordinates, we shall
use the same symbols but underlined.

1.3. Riemannian invariants. There are two important tools available: the rising
and lowering of indices by means of the (pseudo-) metric and the canonical Levi-
Civita connection. The latter can substitute the usual derivatives, the former allows
to take traces (contractions). The covariant derivative with respect to the Levi-
Civita connection is defined on each vector bundle associated with the (pseudo-)
Riemannian linear frame bundle. Hence we consider the composition (the first
covariant derivative coincides with the exterior derivative d)

v v
C®(M,R) — C®(T* M) — C®(T*M & T*M).

The target of this composed operator decomposes into subbundles invariant with
respect to (pseudo-) Riemannian local isomorphisms. We have

T"M@T*M ~ A*M @ S*T*M ~ A*M & (S*T*)oM @ (M x R)

where the mid term means the trace-free part of the symmetric forms while the last
one corresponds to the traces (f;; — t;] + (f(55) — %taaglj) + %taaglj in the Rie-
mannian case, m being the dimension). The composition of the above operator with
the projection onto the third term is the operator VoV, : C°(M,R) — C™(M,R),
[ — VoV.f = ¢g®*V,Vyf which coincides with the Laplace operator in the flat
Riemannian case and the wave operator in the flat pseudo-Riemannian case.

The projection onto the antisymmetric part is zero (the Ricci identity) while
the projection onto the symmetric trace-free part yields another invariantly defined
operator.

1.4. The conformal invariance. We have seen that there are very few linear
operators living on all manifolds and there 1s a plenty of them on Riemannian man-
ifolds. But the restriction to manifolds with more structure brings also another
interesting phenomenon — there exist more geometric objects, i.e. more bundles
with distinguished actions of the isomorphisms in question. In the (pseudo-) Rie-
mannian case, all the new objects live in some tensor bundles, they form only finer
decompositions into irreducible parts. However, in general there might appear quite
different new objects, 1.e. the distinguished actions are not restrictions of some ac-
tion of all diffeomorphisms. The conformal manifolds are manifolds equipped with
a class of pseudo-metrics which are all equal up to a multiple by a scalar function.
Hence the distances in the individual metrics from the class differ but the angles
are the same ones. In particular the ‘light cone’ in the pseudo-Riemannian case is
defined invariantly. There are more local isomorphisms of conformal manifolds than
in the Riemannian case, but much less than the set of all local diffeomorphisms.
We shall see that each of them is globally determined by its derivatives up to the
second order in an arbitrary point. Nevertheless, there are not many invariantly
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defined operators and it 1s a rather hard problem to describe them. Only very few
of them live in tensor bundles, but on each tensor bundle, the restricted action of
the group GL(m,R)to O(m,R) on the standard fiber can be extended to the center
R C GL(m,R) which also belongs to the conformal isomorphisms on the flat con-
formal manifold R™. This extensions are given by multiplication with an arbitrary
fixed power of the elements of the center and the negative of the power is called
the conformal weight of the resulting bundles. Such tensors with weights are also
called (tensor valued) densities with conformal weight. They can be interpreted as
follows: With respect to a fixed metric from the conformal class, the densities of
weight o are represented by usual tensors, but if we deform the metric into § = f?g
(this is achieved by the action of —f.id at a point), then the corresponding tensors
are multiplied by f.

Choosing the proper weights on the bundles, we can sometimes eliminate the
effect of the deformation of the metric by a scalar function and some of the pseudo-
Riemannian invariant operators become then conformally invariant. These rough
definitions and ideas will be discussed in detail later on. Now we illustrate only the
complexity of the problems on some concrete explicit calculations.

1.5. The conformal curvature. The Riemannian covariant derivative is invari-
antly defined. We shall see in Section 4 that all natural operators on (pseudo-)
Riemannian manifolds are built from this covariant derivative and the Riemannian
curvature. So we have to inspect how the covariant derivative transforms if we
deform the metric.

If we deform g — § = f?.g with a positive function f, then we get the deformed
Christoffel symbols

—>
—~
=

l

. 1. R R
= 590+ Gk — 9 )

T P
=T+ 5f gL (2 Sy + 2fif gk — 21 Fow)

=T + 62 (frgyy + Fgie — Fiow)
=T + Yed) + i85 — Thyne

where the (‘concrete’) indices after comma denote the values of partial derivatives,
the comma is omitted for functions and Y, := V(log f). The latter coincides with
the Lie derivative in the direction of the a’s coordinate by definition. According to
our general conventions, T, denotes the corresponding 1-form while T is the corre-
sponding vector field g?*Y;. The coordinate expression for the covariant derivative
is

axL 0X
VaXt= oot I, Xt VX, = 675 — T4 Xy

If we insert our expression for the deformed Christoffel symbols and use the general
abstract index notation, we can write

(1) VaX? = Vo X0 4+ T8t XF 4 7, X — Yy, XF
(2) VaXp = VaXy — TaXp — ToXa + THgau X
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We recall that V,X; must be understood as one symbol, a 2-form.

The curvature can be defined by R.2X°¢ = (V,Vy — V3 V4) X9, where the
iterated covariant derivative is taken with respect to two different connections,
both induced from the same Levi-Civita connection on the Riemannian linear frame
bundle. A direct computation yields

(3) Rabcd = fz(Rabcd + Eacgbd - Ebcgad + Ebdgac - Eadgbc)
1
Hap = varrb - TaTb + §TcTcgab

where the tensor field Z is symmetric (notice VT = V,Vi(log f) and the second
covariant derivative is symmetric on functions). The curvature on a (pseudo-)
Riemannian manifold M is a section of the tensor bundle ®*7T*M which is a sum
of several subbundles invariant with respect to isometries. Hence also the curvature
splits into several parts. Since the curvature satisfies several identities:
Rapea = Rcdaba Rapea = _Rabdca R{abc}d =0

(the last one is the Bianchi identity), the most of these summands are zero. Let us
find the non-zero ones.

The Ricei curvature R, is defined as the trace R,. = Rapep and the trace
R = R, 1s called the scalar curvature. Let us write Cypeqg = Raped + Sapeq Tor the

trace-free part of the curvature, i.e. both Cyp.q and Sgp.q are well defined. Let us
try to find a symmetric tensor P, satisfying

Sabcd = Pacgbd - Pbcgad + Pbdgac — Ladfbe-

Since the tensor Sgpeq is completely determined by its traces (see the definition),
it suffices to consider the traces of this formal equation to find the tensor P,;. We
obtain

(4) _Rac = Sabcb = mPac - Pac + Pbbgac - Pac
= (m - 2)Pac + Pbbgac
(5) —R =594 =2mP," — P,* — P, = (2m — 2)P,°

and so P, exists and is uniquely determined in dimensions greater then two. We
shall write briefly P := P,®. In dimension two, the full curvature tensor is deter-
mined by its component R1212 and is therefore irreducible. In general the conformal
geometry is essentially different in dimension two and we shall always assume m > 3
in the sequel.

Now, if we compare the deformation of Rgpeq in (3) with the expression for
the trace part Sgpeq = Caped — Rapeq, We see that the whole deformation of Rgp.?
belongs to the trace part (the expression f~? disappears during the rising of the
index). Hence the trace-free part Cyp.? is conformally invariant. We call it the Weyl
curvature or conformal curvature. At the same time, we have found the deformation
of Puy:

i 1
(6) Pab = Pab - varrb + TaTb - §TcTcgab
and the trace of this expression yields

2—m

(7) P=f"%P-V'T, + =5 T"Ta).
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1.6. The conformal Laplace operator. Let us compute the deformation of
the usual Laplace operator V¢V, cf. 1.3. Using the above formulas, we get for

functions h: @ah = V,h and
VoVah = ViVeh — ToVah + Y* g0, Vih
VoVeh = 72 (V4 Vah — TyVah + YF 3o Vih).

This formula does not seem to promise anything, but let us try to consider the
functions A with some conformal weight. This means, the latter geometric objects
can be represented by a function which changes together with a deformation of
the metric and we have to apply the deformed Laplace operator to this ‘deformed
function’. If the conformal weight is «, we have h = f*h. Hence using several times

the formula V,(f*h) = af*" IV, fh + foV.h = f¥*(aYsh + V,h) we obtain

ViVh = g2 (Vb(f“(offah + Vah)) = T f*(aYeh + Vh)
— Yo f(aTph 4+ Vih) + TEgpa f(aTih + th))
= gabfa_z (a(VbTa)h + OzszTah + aTa(Vbh) + aTb(Vah) + ViVih—aT T, h

— Tb(Vah) —aY,Toh — Ta(Vbh) + aTkgbaTkh + Tkgba(vkh))

= fo-2 (vavah + (a2 —2a4+am)TYh+ a(VIT)h+ 20 —2+ m)Ta(Vah))

If we compare this formula with the deformation of P derived in 1.5.(7), we find two
similar terms, —V®7T, and Z_TmTaTa. The first term in our formula corresponds to
the usual Laplace operator and so it seems that we could eliminate the deformation
by adding a suitable multiple of P and considering suitable conformal weights. The
effect of the weight should cancel the last term in the formula,i.e. 20 — 2+ m = 0.

This yields a = Z_Tm and with this weight we have

Ph=f77" (Pf— VT, f + Q_Tmraraf).

Further, (a? — 2o+ am) = — (2—Tm>2 and so
R —2-m 2 — A 2—m -
VOVh 4 TmPh = 75 (vavah n Tm(P - fZP)h) n TmPh

—2—-m 2—m
2 -

(VIVf +

—r Pf).

Now, we can consider the values of the operator V'V, + Z_TmP on the conformal
—2—m
2

densities with weight Z_Tm as conformal densities with the weight and we get
a conformally invariant operator, the so called conformal Laplace operator.
In the dimension four we get the operator

1
D:VGVG—P:VGVG—I—ER

which transforms the (scalar) densities with weight —1 into (scalar) densities with
weight —3.
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2. Invariant operators

In the sequel, we shall write C™°Y for the space of all local smooth sections of a

fibered manifold Y.}

2.1. Local linear operators. Let Y, Y’ be fibered manifolds with a common base
M. A local operator is a mapping D: C°Y — C°Y’ such that for all s € C*Y
defined at # € M, Ds(x) depends only on the germ of s at z. If Y is a vector
bundle, then C*°Y carries a natural vector space structure (defined pointwise). An
operator D: C®Y — CY" is called smooth if smoothly parameterized curves of
sections are transformed into smoothly parameterized ones.

Theorem. [Peetre, 59] Let F, B’ be two (finite dimensional) vector bundles with
common base M. FEach local linear operator D: C®°F — C*FE’ has locally finite
order, i.e. for each relatively compact coordinate neighborhood U on M there is an
order k such that the values of the operator depend only on the partial derivatives
of the sections up to the order k over the points from U.

We shall not prove this theorem, it follows from a much more general non-linear
result proved in [Slovik, 88], see also 4.5 or [KolaF, Michor, Slovik, 93].

Let us point out, that the formulation of this theorem is not satisfactory, first
of all because of the lack of the invariant definition of the order. The solution is to
use the language of jets which is well suited for discussion on differential operators
on manifolds.

2.2. Jets. Two smooth mappings g, f: M — N have the same jet of order r at
z € M (r-jet briefly) if the values and partial derivatives up to the order r of f and
¢ at x coincide in some local coordinates (equivalently in all local coordinates) at
z and f(z). We write j7f = j7g and the corresponding equivalence class is called
an r-jet with source # and target f(z). The composition of jets is defined by the
composition of the representatives, i.e. j;(x)g ojrf=ygr(gof).

One has to prove that this definition is correct (which is an easy exercise in
analysis).?

The rule which associates the set J"(M, N) of all r-jets with source in M and
target in N to each couple (M, N') of manifolds and the map J"(f,¢): J"(M,N) —
J"(M',N’), to each couple (f: M — M' g: N — N’) of local diffeomorphisms
defined by the obvious compositions (inverse to f on right, ¢ on left), is a covariant
functor from the category M f,, x M f, with values in sets. The local diffeome-
orphisms are globally defined and locally invertible maps and M f,, denotes the
category of m-dimensional manifolds and local diffeomorphisms. We shall write
also JJ(M,N), J"(M,N), and J,(M, N), for spaces of jets with fixed source or

n fact, it would be more precise to use the language of sheaves but I am sure we will not get
any trouble when speaking about globally defined sections.

2The reader can find a much more geometric definition and a thorough treatment of all basic
properties in [Kol4F, Michor, Slovédk, 93]. Roughly, we define the contact of order r for smooth
functions R — R and then j7 f = j7¢ if and only if ho f oc and h o g o ¢ have contact of order r at
0 € R for all smooth curves c: R — M, ¢(0) = &, and functions h: N — R, h(f(z)) = 0. In this
setting, jets have a clear geometric meaning depending only on the structure of smooth functions
on the real line.
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target or both. Since J"(R™,R"™) admits canonical representatives for the jets — the
Taylor polynomials, there is a canonical structure of a fiber bundle over R™ x R”
on this jet space. The composition is the truncated composition of the polyno-
mials by definition, hence smooth. Thus, the functoriality ensures that there is a
uniquely defined structure of a fiber bundle on each J"(M,N) over M x N with
standard fibers JJ(R™ ,R")y and the composition is smooth. There are also the
obvious bundle projections 7% : J" (M, N) — J*(M, N).

For each fibered manifold Y over M we define the k-th jet prolongation J*Y C
JE¥(M,Y) over M as the subbundle of all jets of local sections. Clearly, J*(M,Y)
can be defined as the quotient of C'*°Y and the smooth structure is the induced
one. For each local section s € C°°Y, there is its k-th prolongation j*s € C*°(J*Y)
defined by j*s(x) = jEs. If E is avector bundle over M, then J* E is a vector bundle
with the operations defined on the representatives. Analogous constructions can be
performed for & = co. We shall not need them (if then without any differentiable
structure) and so the modifications are left to the reader.

2.3. The tangent and cotangent bundles. It is easy to verify that the tangent
functor T equals to J}(R, ) - the usual ‘kinematic’ definition of tangent vectors.
Notice that the tangent maps are defined through composition of jets.

Similarly, 7% = J1( ,R)o. In this definition, 7* M always carries a natural
vector bundle structure, TM is its dual bundle (with (jéc,jcl(o)f) = ji(foec) eR).
More generally, J"(M,R)g is a bundle of algebras.

2.4. Proposition. The fiber J(M,N), equals to the algebra homomorphisms
Hom(J;; (N, R)o, Jz (M, R)o).

Proof. Given j; f with target y we define ¢: JJ (N, R)o — J7(M,R)o by (jyg) =
Ji(g o f). Since the algebra J;(N,}R)o is generated by the coordinate functions in
arbitrary local coordinates, we can set the values on ¢ on the jets of these functions
arbitrarily. This defines an element from the other algebra. O

Notice: If » = 1 we get the identification of J}(M, N), with linear mappings
Hom(T, M, T, N), since the multiplication on Ty N is zero and the latter claim is
dual to the proposition above.

2.5. Differential operators. Let Y, Y’ be two fibered manifolds with a common
base M. We say that an operator D: C®°Y — CY” is of order 0 < k < oo if
the equality jis = jlq always implies Ds(x) = Dg(x). Clearly, this is equivalent
to the existence of a mapping Dy: J*Y — Y’ which satisfies Ds(x) = Dy(j%s)
for all s € C°Y defined at . Then Ds = Dy, o j¥s so that j® plays the role of
a universal operator of order k. Differential operators are the smooth operators
D: C®Y — (C%Y’ of a finite order k. We shall often use the brief notation
‘D:J*Y — Y’ is a differential operator’.

Now, we can reformulate Proposition 2.1 easily as follows: Let £ and E' be two
vector bundles with a common compact base M. Then each local linear operator
is a differential operator. Consequently, all local linear operators are expressed by
smooth linear mappings Dy, : J*E — E'.

2.6. Invariant operators. Let Y, Y’ be two bundles with a common base M and
let G be a group, A: G — Aut(Y), A': G — Aut(Y”) be two group homomorphisms



12 NATURAL OPERATORS ON CONFORMAL MANIFOLDS

with values in the fiber bundle automorphisms. Let us write A, A’ for the induced
actions on M. There is the canonical action of G on the spaces of sections defined by
(Ag)e(s)(x) = A 050 Ag_l(x) and similarly for A'. An operator D: C*Y — C*°Y’
is said to be G-invariant if Do (Ay). = (Ay)« 0D for all g € G. In fact the mapping
D is G-equivariant (i.e. it intertwines the actions), but we use the traditional name
invariant for operators. On the other hand, we shall use the word G-invariant for
elements under invariant action of G and an invariant operator in the above sense
is such an element in the space of all operators C*°Y — (Y’ with the induced
action of (.

The action of G on C*®Y defines of course the canonical action of G on J*Y,
we shall use the same notation A, for both. We have (/\g)*(j’xcs) = jig(x)((/\g)*s).

A differential operator D: C*Y — C*°Y”’ is G-invariant if and only if the corre-
sponding mapping Dy : J¥Y — Y is G-equivariant. The proof is evident.

Proposition. Assume G is a Lie group, the action A is smooth and the induced
action A on M 1is transitive. Then there is a bijection between smooth G-invariant
differential operators D: C™®Y — C*Y' and G -equivariant smooth mappings
JEY — Y/ where x is an arbitrary fixed point in M and G, its isotropy group.

Proof. If D is invariant, then the corresponding mapping Dy on the jet bundle
must be G-equivariant. The isotropy group G respects the fiber JXY and so the
restriction of Dy to this fiber must be Gg-equivariant. On the other hand, each G-
equivariant smooth mapping J¥Y — Y gives rise to a smooth equivariant mapping
JPY — Y’ defined by the action of G and this defines a G-invariant differential
operator. It is an easy exercise to work out more details. O

2.7. Proposition. Let E'— M be a vector bundle. For each k € N the following
sequence is exact

. 2k
k o gk =1 k-1
0 —S"T"M@F — J'F —— J""'EF — 0.

Proof. Consider X = (jifi O - Ojify)@e € S*T*"M @ E with f;: M — R,
flx) = 0, e € E;. Let us choose some ¢ € C®F with ¢(z) = e and define
s € C®FE by s(y) = fi(y)f2(y) ... fr(y)q(y). Then jE~1s = 0 since at least one of
the functions i1s not differentiated and hence zero at x and, for the same reason,
the element i(X @ e) := j¥s does not depend on our choice of ¢q. Obviously, i is
injective. Using local vector bundle coordinates at 0 € E,, the jets of sections lying
in the kernel of the jet projection are generated by those of the form of s and so
the image of ¢ coincides with the kernel. 0O

2.8. The symbols. Let £ and E’ be two vector bundles with a common base
M and let D: J*E — E’ be a differential operator. The composition ¢ = D o
i: SPT*M ® E — E' is called the symbol of D.

k

Tp—1

0— —S"T"M o E—t . J'E JlE

RaNC

E/
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Two differential operators with the same symbol (so in particular of the same
order) differ by an operator of a lower order.

If GG is a (Lie) group acting on M, i.e. we have a homomorphism A: G —
Diff(M), then there is the induced action A”" of G on T* M defined by /\5* GGLp) =

(T*Ag)(j;f) =i (x)(f o Ag_l) for each g € (G. This must be a correct definition
since we have used the functoriality of 7™ (the functor is covariant — hence the in-
verse involved!). The same procedure applies to a large class of functor on manifolds
which involves e.g. all tensor bundles, cf. 2.12.

Now, given actions of G on E and E’ we have a well defined action of G also on
S¥T*M ® E and we get

Proposition. If D: J*E — E' is a G-invariant linear differential operator, then
its symbol o: S*T*M @ E — E' is G-equivariant.

Proof. We have only to prove that i is G-equivariant but this is more or less
evident. 0O

This simple result is often very useful as it allows to exclude the existence of
invariant operators. On the other hand, not every equivariant map S*7*M @ E —
E’ is a symbol of an invariant operator.

2.9. Examples. We start with the simplest example, the exterior differential on
functions. So EM = M xR, E' =T*M, D: JY (M xR)— E'and o: T*"M @ R =
T*M — E'. Consider G = Diff(M). If D is G-invariant, then ¢ must be G-
equivariant, too. The action of Diff(M) on M is transitive and smooth if M is
connected and the action of the isotropy group Diff, (M) on T M factorizes through
the well known linear action of GL(m,R). We can restrict ourselves to M = R™,
z = 0, for our operators are local.

Let us assume E’ is not fixed but suppose that the action of Diffy(R™) on E}
also factorizes through GL(m) and is irreducible. Since the action on TFR™ = R™*
is also irreducible, o is a multiple of the identity and, moreover, there is no other
possibility for £ beside E/ = T*M. Thus, the only Diff(M)-invariant local first
order linear operator on functions is the exterior differential, up to the identity
and scalar multiples. Notice, if the target space corresponds to a decomposable
representation of the linear group, then the operator must be a sum of multiples of
the exterior differentials and identities with values in the irreducible components.

The symbol of the exterior differential d: A*T* M — A®+1T* M is the alternation
Alt: T*M @ A*T*M — A*HIT*M. We shall see that this is the only GL(m)-
equivariant map between these spaces and so d must be unique up to multiples
(and lower order terms).

The mapping id: S*T*M @ R — S?T* M is of course Diff( M )-invariant, but we
shall see that this is not a symbol of an invariant differential operator.

2.10. Operators on homogeneous bundles. We have seen that the descrip-
tion of invariant operators reduces to the description of some equivariant mappings
(between finite dimensional manifolds) if the action on the base manifold is transi-
tive. The most common situation is, we are given a manifold M with a transitive
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action of a finite dimensional® Lie group (. Let & € M be fixed and write B = G,
for its isotropy group. Hence M = (/B and the projection p: G — M is a prin-
cipal fiber bundle with structure group B. Given any Lie group homomorphism
A: B — Diff(S), there is the associated bundle Y = G x S over M with standard
fiber S. We call this bundle a homogeneous bundle over the homogeneous space
M. If S is a vector space and A: B — GL(V), we get a vector bundle. This con-
struction is functorial in the principal fiber bundle entry and so there is an induced
action on Y to each action A’ with values in the principal bundle automorphisms of
G. In particular, the Lie group GG acts on itself via left translations, let us denote
this action by a dot. We have g.(h x t) = gh xx t and there is the induced action
A on C°Y.

Consider now the space C°°(G, S)? of all B-equivariant mappings which means
s(gh) = Ap-1(s(g)). There is the obvious left action of (& there, g.s(h) = s(¢~1h).

Lemma. We identify C*°Y = C*(G,S)P as spaces with a left action of G via
s~ &, u Xy 8(u) = s(p(u)).
Proof. The identification is well defined, for u.b x5 5(u.b) = w.b x Ap-1(5(w))

u X §(u), b € B. Under this identification, the actions of G coincide: (g.s)(p(u))
997 u <) 5(g7 u) = ux, 5(g7tw). O

This simple lemma is very important since we can view the G-invariant operators
on homogeneous bundles as operators on S-valued functions on the principal bundle
(G — (/B which are invariant with respect to the left translations.

2.11. The geometric structures. The r-th order frame bundle P"M on an m-
dimensional manifold M is defined as the bundle of all invertible jets inv.JJ (R™, M)
over M. This is a principal bundle with structure group G7, := invJJ(R™ /R™),
the so called jet group, and the principal action defined by the composition of jets.
This construction is functorial, i.e. we have the local principal fiber bundle isomor-
phism Pf: P"M — P" N for each local diffeomorphism f: M — N which is defined
by the composition of jets. The elements in the frame bundles are ‘local coordinate
charts up to order r’ and the elements in the jet groups are ‘transformations of
coordinates up to order r’.

Definition. Let B C G}, be a closed Lie subgroup. A B-structure on a manifold
M is a reduction FM — P"M to the structure group B. The category M fin(B)
consists of m-dimensional manifolds with B-structures and local diffeomorphisms
f: M — N satisfying P"f(FM) C FN.

2.12. Geometric objects and operators. Let us consider a closed Lie subgroup
B C (7, and its action A: B — Diff(S) on a manifold S. This defines the functor
E:Mfn(B) = Mf, E(M,FM):=FM xS and Ef := P"f x,ids|E(M, FM).
These bundles are called bundle functors or natural bundles or bundles of geometric
objects, their sections are called geometric objects on M f,(B) (more precisely, the
bundles functors are the functors, the geometric objects are sections of their values).
If A is a linear representation of B in a vector space V, then the corresponding

3We could certainly admit here infinite dimensional Lie groups as well, but our aim is to apply
tools from finite dimensional representation theory to find all the equivariant mappings and so we
have to proceed in another way if dealing with say G = Diff(M)
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geometric objects are sections of vector bundles. For each manifold with a B-
structure (M, F'M), there is the subgroup By C Diff(M) of all local M f,, (B)-
isomorphisms and its action on all geometric objects on M (i.e. on sections of the
bundles corresponding to representations of B). We shall denote the latter action
corresponding to A: B — Diff(S) by A.. Let us remark that even if we deal with
linear representation, we cannot restrict ourselves to the irreducible representations
since the action of the nilpotent kernel of the jet projections to the first order must
then act trivially.

Definition. Let £ and E’ be two arbitrary bundle functors on M f,,(B). A natural
operator D: ' — E' is a system of Bys-invariant local smooth operators D, par)
C®(EM) — C*(E'M) invariant with respect to restrictions to open submanifolds
(with the restricted B-structures). More precisely, all Dy par) are smooth, and
for all local M f,,(B)-isomorphisms f: M — N and sections s; € C®(EM), sa €
C*®(EN), the right-hand square commutes whenever the left-hand one does

D51

EM—L _n E'M
EN 22 N %2 piy

Notice, that the latter definition involves both the locality of the operators and
invariance of them with respect to restrictions to open submanifolds.?

2.13. Lemma. Let B C G},. The B-structures i: F'M — P"M correspond
bijectively to smooth sections of Py, /B.

Proof. Fach reduction i: FM < P"M induces a map i: FM — P"M/B. If o,
are local sections of FFM with domains covering the base M, then the transition
functions of their composition with ¢ are identities and so they determine a global
smooth section of P"M/B. On the other hand, each global section of P"M/B
can be locally obtained as a projection of local smooth sections of P"M. Their
transition functions must have values in B, hence we get a reduction. O

2.14. The coverings of structure groups. Let B be a covering of the Lie group
B C Gj, and write /\/lfm(é) for the category of m-dimensional manifolds M with a
distinguished covering F M of the reduction F'M of the frame bundle P* M to B, and
distinguished coverings Ff of the values F'f on M f,,(B)-morphisms f. Repeating
the above construction of the associated spaces, each representation A: B — Diff(.5)
gives rise to the functor Fj, the bundle functor corresponding to A. A natural
operator D: F — F, is a system of local operators Dy : C®(F\M) — C®(F, M)

which commute with the actions of the M fi, (B)-morphisms and behave well with

4The reader interested in axiomatic description of geometric objects and operators is advised
to [Kolaf, Michor, Slovdk, 93]. Roughly, all functors on categories ”similar” to M f,,(B) with
some mild conditions are of the above form (the conditions do not involve regularity and the
”dependence on jets”, so that this description needs a long and involved analytical proof). One
can also define more general operators which "extend” the base, but we shall not treat them in
this text.
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respect to restrictions to open submanifolds. The exact formulation mimics the
above definition.?

2.15. Examples of linear natural operators.

(1) Take B = GL(m,R). The irreducible representations are invariant subbun-
dles of tensor bundles. The natural operators are Diff(M )-invariant operators, i.e.
they have to commute with pullbacks of tensor fields. One can prove that all of
them are constructed by means of the standard operations from the tensor algebra
(cf. 3.6) and the exterior derivatives on exterior forms. In particular, all of them
have order one, see [Kirillov, 77] or [Terng, 78]. We shall comment on this in more
details later.

(2) Consider B = SL(m,R) = {A € GL(m,R);detA = 1}. We claim that
the B-structures are fixed volume forms on the manifolds. Indeed, it is easy to
verify PYM/SL(m,R)= A™T*M \ {0}. Hence, the local diffeomorphisms in Bgm
are just the unimodular ones, i.e. those preserving the canonical volume form. In
a similar way, we can describe the manifolds with a fixed tensor field of some
given type in the terms of B-structures. For example O(m) yields Riemannian
manifolds and local isometries. Also in the case B = SL(m) all operators are built
from tensor algebra operations and exterior differentials. However, we have to take
into account the natural equivalence 7' — A™~1T* and also A™T* — A%T™* (the

functors are defined on M f,,,(B)). In this way, there also appears the second order

d d
operation A™~1T* — A™T* — AT* — T*. The first d in this composition also
corresponds to the divergence of vector fields, the whole operation to the differential
of divergence.®

2.16. The Riemannian case. If B = O(m), we have the natural equivalence
T — T* and so there are many linear natural operators. Some of them can be
easily obtained using the canonical Levi-Civita connection I' on the tensor bundles
E over Riemannian manifolds which can be viewed as a distinguished section of
7 JIE — E.

Thus, we get a splitting of the exact sequence from 2.7 in the special case k£ = 1.
The induced splitting of on the left is just the well known Riemannian covariant
derivative V on F. In fact, the Riemannian covariant derivative is a first order
natural operator available on each first order natural bundle. Since the values
of the natural bundle are associated bundles to the linear frame bundles and the
above values of V are section of another tensor bundle, there is also the Riemannian
covariant derivative. In this way, we can define the iterated covariant derivative
VE JFE — @FT*M @ E. We claim that the symmetrization V¥ of V¥ is a splitting
of the above mentioned exact sequence. Indeed, in coordinates, we express the
iterated covariant derivative as the sum of the usual partial derivatives (which are
symmetric) and a polynomial expression depending on (k — 1)-jet of the connection

5In fact, we have used the concept of the so called gauge natural operators in the sense of [Eck,
81]. The gauge natural bundles are functors on principal fiber bundles with values fibered over
the base manifolds, see [Kol4F, Michor, Slovdk, 93, Chapter XII] for detailed treatment.

SExactly as in the example (1), the latter operators exhaust all linear natural operators in the
category of manifolds with fixed volume forms, up to decompositions into irreducible components,
identities and scalar multiples, for more comments see [KolaF, Michor, Slovdk, 93], the proofs are

in [Kirillov 77], [Rudakov, 74], [Rudakov, 75]
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and (k — 1)-jet of the section of E. Moreover, the degrees of the homogeneous
components of this polynomial in the entry from F are non-zero. Hence on the
image of i: S*T* @ . — JFE, we get just the inverse to ¢, c¢.f. 2.7. Since vk
is natural on Riemannian manifolds, we get a natural operator to each ‘natural
symbol’ (i.e. a natural operator of order zero between the appropriate bundles):

vk T
0—— ST o E———J'F "= "' — 0
1
L
E/

For example, the contraction Tr: S?R™* — R corresponds to the well known
Laplacian. Unfortunately, we cannot describe easily all operators in this way as we
do not know explicitly, how the Riemannian connection may enter (their influence
need not be linear or even polynomial a priori). So we have to solve the nonlinear
problem of finding all ‘natural symbols’; if we want to describe all natural linear
operators on Riemannian manifolds.

An important feature is that the group of all M f,,(O(m))-morphisms on a Rie-
mannian manifold is a finite dimensional Lie group. Unfortunately, its action is
rarely transitive. But if this is the case, e.g. for the flat Riemannian manifold R™
or the spheres, then we can view the bundles of geometric objects as homogeneous
bundles as described in 2.9.

2.17. Remark. Let us notice the importance of Lemma 2.13. Namely, the quo-
tients P" M /B form bundle functors on the whole category M f,,, with the action of
local diffeomorphisms defined on the representatives of the cosets. Thus if we want
to discuss natural operators on some category M f,,,(B) and if the arguments of the
operators happen to be geometric objects on the whole M f,,, then we can always
add the B-structures to the arguments of the operators and solve the problem in
the category M fn, (it is a nice exercise to verify that this is really equivalent —
see [KolaF, Michor, Slovék, 93] for more details if neccessary). We shall see later
on that all linear representations of SL(m,R) and O(m,n,R) live in tensor spaces.
Since the invariant subspaces are always images of natural linear projections and
they are naturally linearly embedded into the whole space, we can also overcome
the fact that there are much more invariant subspaces in the tensor spaces in the
unimodular or pseudo-Riemannian case there. Let us also notice, that we would be
able to treat the unimodular case directly, but serious problems arise in the Rie-
mannian one as the objects do not admit a transitive action of the local isometries
and so we cannot reduce the classification problem to finding equivariant mappings
between finite dimensional manifolds, cf. 2.6.

We need some additional work to incorporate also the spinor fields into this
setting, we shall apply the approach from 2.14.

3. Invariant tensors

3.1. Definition. Let GG be a Lie group with a representation ¢ on a finite dimen-
sional vector space V (real or complex). Then the representation ¢ on V* is defined



18 NATURAL OPERATORS ON CONFORMAL MANIFOLDS

by ¢4(v*)(v) = v"(¢4-1(v)) and the tensor products of these representations yield
representations on all @ V* @ @V . All the above actions of G will be often de-
noted simply by a dot. An invariant tensor in the latter space is an element ¢ with

Gt=1.

3.2. Lemma. A linear mapping f: QP V*@®1V — @ V* @®°*V is G-equivariant
if and only if the corresponding element f® ¢ @P*V* @ @117V is G-invariant. If
f is polynomial and (G-equivariant, then each homogeneous component of f is G-
equivariant.

Proof. It follows immediately from the definition of the tensor product of repre-
sentations and the identification involved. O

3.3. The total polarization of a homogeneous polynomial f: W7 — Wy of degree
k between vector spaces (or affine spaces) is a linear mapping Pf: S¥W; — W,
defined as follows. The first order term in the (partial) Taylor polynomial f(x +
ty) = f(x#) +tPf(x,y) + ... is a polynomial map of degree ¥ — 1 in #. The k-th
iteration Ppf = Py(Py_1f) is k-linear and symmetric in variables v, ...,y € W1
and independent of . Let Pf be the corresponding linear map. The original map

f is obtained back through f(z) = Pf(z ® -- - ® ).

Lemma. A polynomial mapping f: @ V1V — @"V*@&®°V is G-equivariant
and homogeneous if and only if its total polarization is G-equivariant.

Proof. Notice that the actions are linear. O

The aim of this section is to describe all G-invariant tensors for some of the
classical subgroups of GL(m,C) or GL(m,R). If we shall not specialize the field
K = C or K = R, the arguments and results will apply to both cases. In the view
of the above lemmas, this will describe G-equivariant polynomial maps.

Let us start with GLT(m,R), the group of real invertible matrices with positive
determinant, or the full linear group GL(m, C). As before, we shall use the ‘Penrose
abstract index notation’, i.e. usual indices denote a kind of abstract labels and if
they should be concrete numbers, they are indicated by underlined letters, cf. 1.2.

3.4. Definition. Let us denote by 6]2: the identity tensor in V* @ V, i.e. the trace
(evaluation) Tr: V* @ V — K. For every permutation o € S, r € N, we define the
elementary invariant tensor I € @"V* @ "V of degree r, 17 = 6?;(1) ...62{:“).

Evidently, all 1% are GL(m)-invariant tensors, hence also GL*(m,R)-invariant
tensors.

3.5. Theorem. All GLT(m,R)-invariant tensors are linear combinations of the
elementary invariant tensors. In particular, a non-zero invariant tensor lies in a
tensor space @1V @ @"V* with ¢ = r.

All GL(m, C)-invariant tensors are linear combinations of elementary invariant
tensors.

Proof. Let G = GLT(m,R) or G = GL(m,C) and let V be real or complex,
respectively. The elements a € G and their inverses a are identified with a§,5§ €
V* ® V and the invariance of ¢ € RPV* @ @1V 1is expressed through a system of
tensor equations

J1 Ja ki kgl ~lp _ 4d1da
(1) Ay - @ty Ay a =1
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where the aj» ’s are copies of an arbitrary element in GG. In particular, if we substitute

=
Hence either ¢ = 0 or p = ¢. So let us assume p = ¢.
Evaluating for concrete values of indices we see that (1) is equivalent to

. , Jood Jog o
a; = cb;, c € R, ¢ > 0, then we get e?PE 7 =t 7 for all concrete indices.
iy, iy,

J1 Jp ki ky _ ky kpiji--Jp
ay, @y byt = e T T
and this is further equivalent to
i1 ip ¢f1 Jpgkikp iy ip 4 J1---Jp gk kp
(2) ag .. 'akp‘Sh . .6Z»p Gt =g e ot .6lp .

Since the ‘variables’ a;;» run through an open subset of a Euclidean space (}Rm2

or @”2), the ‘coefficients’ of the same expressions in a’s must coincide on both
sides. Taken into account that the concrete values of the monomials in a’s are
symmetric in the simultaneous permutations of superscripts and subscripts, we get
the equivalent form of (2)7

1 Jr ey ko) _ Z ks ko) girip
(3) Z 6i0(1) "'6i0(p)tll...lp - 611 "'6lp tia(l)...ig(p)'
gES, gES,
) L. .
Assume first m > p and let us define scalar coefficients ¢, := t;(f—; o)’ Consider

the equations (3) with concrete indices 11 =4 =1,...,j =i, =p. Then only the
term with o = id remains on the left hand side, and so we get

Ky By Zo (1) = (p)

e DR )

gES,

Thus, the theorem is proved for m > p.

If m < p, then we would still like to view (3) as a system of equations for t’s on
the left hand side, while those on the right should be known.® But the rank of this
system is not maximal and we have to add some suitable equations.

Consider the homogeneous system in p! tensorial variables X, = (X,);' [ ”
[
corresponding to (3)
'?—'1 ‘?_'P J—
(4) D0 bl Ko =0
gES,
and let 7% = (Zg);il.:'lip, a =1,...,r, be a fundamental system of its solutions.

Let us further consider the system of r equations (with the same variables as in

(4)) -
(5) Sz = Y (2] T (K =0

gES, gES, -
For each tensor X € @ V* @ @PV let us write ¢.X for the action by permutation
of superscripts.

"The same system of equations is obtained by differentiating (1) with respect to a; at the unit
and collecting the corresponding terms together (evaluated at 5; € gl(m)).
8H. Weyl presents a general tool for the reduction of the considerations to m > p, the so called

Capelli identity, see [Weyl, 39, Chapter II, section 4]. We shall proceed more elementary following
[Gurevich, 48] and [Kol4F, Michor, Slovak, 93].
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Sublemma. For each X the system of tensors X, = 0.X, 0 € §,, is a solution of

(5).

P10y wlo=1(yte=1(p) iy ip ki .k,
Proof. We have (Xa)jl...jp =X = 5;%(1) = ~6k0(p)Xj1...jp

lemma 1s obvious. O

so that the

Now, it remains to notice that the rank of the system (4) and (5) (considered
with concrete indices as a linear system for p! tensorial variables) is maximal. This
is shown easily: if X, is a solution of both systems, then, in particular, X, =
>, caZS, o € K But then (5) yields

0= cal2, Z8X0) = 30 3 el 280 7 (X0 1
k

= SO (X

In particular, >, ((Xa)ill}" )2 =0 and so all X, are zero.

Sublemma. Let ¢ € @V* @ @V be a fixed tensor and let r! tensors X, satisfy
the system

B L Xy =y i g7
Jo(1) Jam) ™7 Jo()--Jo(p)
gES, gES,

> ZeX,

gES,

0 a=1,...,r

Then every X, is a linear combination of the elementary invariant tensors.

Proof. Since the system (4) and (5) has full rank, there must be a subsystem (4”)
in (4) such that the system (4’) and (5) is linearly independent and has still full
rank. Consider the corresponding subsystem in the statement of the lemma and
apply the Cramer rule for modules. O

Now Theorem 3.5 follows easily: if ¢ is invariant, it satisfies (3) and the system of
tensors X, = 0.t is a solution of the system from the above lemma with ¢ =¢. O

Theorem 3.5 and Lemma 3.2 imply the following implicit description of all linear
equivariant mappings between tensor spaces.

3.6. Corollary. All GLT(m,R)-equivariant or G L(m)-equivariant linear map-
pings between tensor spaces are obtained through a finite iteration of the following
steps

(a) permutation of indices

(b) tensor product with invariant tensors

(¢c) trace with respect to one subscript and one superscript
(d)

linear combinations.

d
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3.7. Polynomial equivariant mappings. Let Wi, Wy be G L(im)-invariant sub-
spaces in tensor spaces V73 = QFV* @ @1V, Vo = @"V* @ ®°V. There are equi-
variant projections py: Vi — Wi, po: Vo — Wy and the equivariant inclusions
Ji1: W1 — Vi, ja: Wa — V5 (the former can be defined by extending a fixed basis of
the invariant subspace). Since p; are the left inverses to j;, all GL(m)-equivariant
linear maps f: W7 — W, are also described by 3.6. Thus, we know all polynomial
G L(m)-equivariant mappings f: W, — Wa, cf. Lemma 3.3.

f

W1 4>W2

4 [jl jz] ]Pz

V1 -~ V2

3.8. Examples. Let us take V; = Vo = ®"V, and p; be either the alternation
or the symmetrization. A polynomial mapping f: W7 — Wy commutes with the
action of the center of GL(m) and therefore f is linear. Hence all polynomial
G L(m)-equivariant mappings

(1) S"V — S"V are the constant multiples of the identity

(2) A"V — A"V are the constant multiples of the identity

(3) @V — S"V are the constant multiples of the symmetrization

(4) @V — A"V are the constant multiples of the alternation

(5) SV — @"V and A"V — @"V are the constant multiples of the inclusion.

3.9. SL(m)-invariant tensors. Next we shall restrict our group G to SL(m,R)
or SL(m,C). Let us write also GT = {4 € GL(m,R);detA = £1}. We shall not
need to modify the proof of 3.5 for these groups since we shall be able to reduce
this case to Theorem 3.5.

First of all we have to notice the existence of the invariant tensor v € A™V* | the
canonical volume form, and its dual contravariant tensor 5 € A™ V. Further, there
are the linear isomorphisms a: V — A™=1V* 3: V* — A™=1V defined by a(v) =
iy(V), B(v*) = iy=n. Thus, we may restrict ourselves to invariant tensors in @PV™*,
i.e. to invariant linear mappings f: @ V — K. Let us denote W = A™V*\ {0},
the space of volume forms with the restriction of the action of G*. Given f, we

define
o WxV =K o((det Ay, t) = f(AL).

Lemma. If f is G- or G*-invariant, then @ is well defined and G L(m)-invariant.

Proof. Since the action of G or G* on Wis A.v = (det A)~1v, this follows directly
from the definition of ¢.

We would like to extend @ to a polynomial G'L(m)-invariant map on A™V™ x
®@PV, for then we can apply directly Theorem 3.5. The mapping ¢ gives rise to a
mapping ¢: GL(m) x @V — K ¢(A,t) = ¢(A.v,t) and for each t € @V we get
the restriction ¢;: GL(m) — K which is polynomial and G- or G*-invariant.
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3.10. Lemma. If ¢: GL(m) — C is polynomial and SL(m,C)-invariant, then
there is a polynomial ¢: C — C such that P(A) = 1/:(det A). If+ is G*-invariant,
then we can find ¢ with P(A) = 1/:((det AV, If¢: GLY(m) — R is SL(m,R)-
invariant, then there is polynomial ¢ with P(A) = 1/:(det A) defined on positive real
numbers.

a 0

Proof. Let us define i: K — gl(m,K), i(a)= (0 I
m—1

GL(m) 4

oo

KA\ {0}

IfK = C, then A = i(det A) mod SL(m). IfK = R and det A > 0 then A = i(det 4)
mod SL(m). If det A < 0 then A = i(—det A) mod SL(m) = i(det A) mod G*
and so ¥(a) = ¢Y(—a). O

3.11. Theorem. If t € @*V* @ ®?V is SL(m) invariant and non-zero, then
p—q=km, k € Z. All SL(m)-invariant maps between SL(m)-invariant subspaces
of tensor spaces are exhausted by those obtained by iterating a finite number of
steps 3.6.(a)—(d) and

(i) the tensors v and 1 are invariant.

). Then we get

K

If f is G* invariant, we have to replace (i) by

(i’) the tensors v @ v, v @y, n ® 1 are invariant.

Proof. As discussed in 3.9, we may restrict ourselves to (G-invariant mappings
f @’V — K and we have constructed the polynomial G'L(m)-invariant mapping
¢: GL(m) x @V — K. For each t € @V, the restricted map ¢;: GL(m) — K
satisfies the assumptions of Lemma 3.10. Assume first K = C. Then we can extend
the map ¢; to the whole space A”V* and we obtain a homogeneous polynomial
mapping ¢: A”V* x @V linear in the second entry. The total polarization of ¢
is a GL(m)-invariant mapping S*(A™V*) @ @V — C. Thus it results from finite
iteration of the steps 3.6.(a)-(d). The original mappingis f(¢) = ¢(Im, 1) = &(v, t).
Thus, taking into account V = A™~'V* this proves the theorem in the complex
case. Indeed, ift € @"V* @ ®°V 1s invariant, then ¢ is viewed as an invariant linear
mapping @ tM=DsY — Cand so v+ (m — 1)s = km, i.e. r —s = (k — s)m.

Consider now the real case and an SL(m,R)-invariant linear map f: @V — R.
Since the description of all GL*(m,R)-invariant tensors coincides with that of
G'L(m,R)-invariant ones, we can repeat step by step the above proof on replacing
GL(m) by GLT(m,R).

If f is G*-invariant, then we turn back to G L(m,R) invariant ¢y, but the total
polarization will happen to be a map S?¥(A™V*) @ @V — C. Hence the number
v treats in f must be even.? 0O

9The description can also be deduced by a standard trick which might be useful at another
occasion as well: we could describe only the GE-invariant tensors. On the space T of all SL(m,R)-
invariant tensors, there is an action of Zg = Gj:/SL(m7 R) which splits 7 into the +1 eigen spaces
I4,7Z_. Then notice,if t €Z_, then v @t €T .
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3.12. Relative invariant tensors. A tensor { € QPV* @ @1V 1s called relative
G L(m)-invariant if there is a x: GL(m) — K with A2 = x(A)t for all A € GL(m).

Clearly ¥ must be a continuous character of GL(m).

Theorem. The relative invariant tensors are exactly the SL(m)-invariant tensors.
In particular, if t € @V* @ @1V is relative G L(m)-invariant and non-zero, then
p—q=km, k €Z, and the corresponding character y is (det A)*.

Proof. First, let us notice how easily we can find all continuous characters of
G L(m) using Theorem 3.5. Since y must be a continuous Lie group homomorphism,
it must be smooth. The corresponding Lie algebra homomorphism x’: V* @V — K
is Ad-invariant (y’' o Ad = T,y o T.Conj = T.(x o Conj) = y’ since the action on
C is trivial). Further, Ad(A) is exactly the standard representation of GL(m) on
V* @ V. Thus, ' is a scalar multiple of the trace and so y|GLt(A) = (det A)¥,
k € R, in the real case while x(A) = (det A)*, k € C, in the complex case. This
shows ¢ is SL(m)-invariant and the description of all such ¢ from Theorem 3.11
finishes the proof. 0O

3.13. Irreducible representations. Later on we shall often treat only irre-
ducible representations and we shall also need to pass from the real to the complex
situation or back. The latter is usually denoted as the ‘complexification’ and ‘re-
alification’. Let us describe briefly the irreducible representations of G'L(m) and
SL(m), the (pseudo-)orthogonal groups will follow later, the details can be found
e.g. in [Boerner, 67]. In the case G = GL(m) this is a problem closed to 3.5. In-
deed, as discussed in 3.7, each invariant subspace 1s an image of a GG-equivariant
projection and for contravariant tensors of degree r all such projections are ob-
tained through actions of the permutation group S,. Let D, be the group ring of
S, which acts obviously on the (contravariant) tensors. The idempotents e € D,
which represent the irreducible representations D,.e C D, of S, (and these corre-
spond to polynomial irreducible representations of GL(m)) are described with the
help of the so called standard Young diagram. The latter is given by a system
ny > ng > --- > np, > 0 of natural numbers with ny + .-+ n, = r which is
graphically described by

ny |

n3

"y D
with numbers 1, ..., m written inside the individual boxes in such a way that they
increase in the columns and do not decrease in the rows. Labeling the boxes by
numbers 1,..., 7, such a diagram determines an element ¢ € D, defined as the

composition of the sum of all permutations indicated in the rows and the alternated
sum of the permutations in the columns. Hence the image of the corresponding
projection @V — W is obtained by numbering the indices of the tensors and
applying the corresponding symmetrizations and alternations. For example, given

the diagram | |  with (1,2) in the row and (1,3) in the column, we get the
projection @3V — W, tUk v ($10k 4 iik) o g0k 4 gitk _ 4kjE 4k Notice, we
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permute the tensors according to the original numbering of indices, the permutation
leading to t*¥ in the last term lies in S?V ® V which is further reducible!

Fach such diagram (without the numbers inside) with the number of rows less
than or equal to m determines in this way an irreducible polynomial representation
of GL(m,C) with dimension equal to the number of the possible standard Young
diagrams of the same shape. Two diagrams with different shapes correspond to
inequivalent representations. We shall denote the representation corresponding to
the diagram described by ni,...,n, by the symbol C'(”le 0y OF C'(”le o) where
we set n; = 0 for all j > p. Let us remark that in view of Theorem 3.5 the
proof of the irreducibility is a combinatorial problem in the representation theory
of the symmetric group.!® The representations C'(”Zh”wnp exhaust all irreducible
polynomial representations of GL(m,C), see [Boerner, 67, Chapter V, section 5].
These representations remain irreducible if we restrict the group to SL(m,C) but
some of them coincide (notice that this follows from Theorem 3.11). On the other
hand, they exhaust all rational representations of SL(m,C) and each continuous
representation of SL(m,C) is rational and completely reducible, hence polynomial
(remember C™* = A™~1C™). This is not true for GL(m,C) where only all ra-
tional representations are completely reducible and there are some reducible but
not completely reducible ones!!. All rational representation of GL(m, C) are of the
form (det A)kC'(”fllw k € Z. For the proofs we refer to [Boerner, 67, Chapter
V, section 8].

Given a real Lie group G and its linear action on a real vector space W, there
is the induced action of G on W @ C and if the action on W is reducible, then also
the action on W ® C is reducible. If GG is one of the matrix groups discussed above
or O(m,R), SO(m,R), SO(m, n,R), then the latter action is extended to an action
of the corresponding complex group. In [Boerner, 67, p.164] we find the following
statement

Snp))

Theorem. The irreducible rational representations of the groups G L(m, C) remain
irreducible if restricted to the subgroups GL(m,R), SL(m,C), SL(m,R), U(m),
SU(m).12

10See [Boerner, 67, Chapter IV]). Roughly speaking, any further permutations can be built
from those concerning only indices lying either in rows or in columns and so a composition with
further permutations yields some ‘conjugated elements’.

11 As well known, a representation of a semisimple complex Lie group is completely reducible
and a representation of a general complex Lie group is completely reducible if and only if its
restriction to the radical is. In our case, the radical is the one-dimensional center of GL(m, C),
while the semisimple part is SL(m, C).

12The proof is surprisingly elementary. Roughly speaking, if the restricted representation were
reducible, then there would be a ‘common null box’ in all the matrices of the representation
in a suitable basis. Hence there are non-zero linear forms on g{(W) which annihilate all the
matrices of the representation. The composition of these forms with the representation matrices
vields rational functions on GL(m) which are zero on all matrices from the subgroups in question.
These subgroups have enough points to assure that these rational functions are zero identically
and, thus, the original representation must be reducible. In the case of SU(m), there is a similar
trick available using the representation of the Lie algebra and for U(m) we apply the results for
SU(m) and SL(m,C). A similar reasoning will become an important step in our discussion on
(pseudo-)orthogonal groups below.
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3.14. Examples. The standard representation on K™ is the C'(”f 0,...,0) (there is
only one index, no symmetry), K* corresponds to (det A)_lC(”f L0y The space

®2?K admits two indices and so its decomposition must correspond to the diagrams

Dj and , 1.e. the symmetrization and alternation. In the decomposition

of @K, there appear only the diagrams , and . We should

notice that we have not discussed at all the multiplicit_ies of these representations!

3.15. O(m)-invariant tensors. We shall proceed in a way similar to 3.11. Re-
call O(m) = {4 € GL(m);A.go = go} where go € S?V* is the canonical Eu-
clidean metric (or its complex analog). Given g¢ in the space S_ZI_V* of positive
definite non-degenerate 2-forms (non-degenerate in the complex case), this defines
an isomorphism g: V. — V* and its inverse g: V* — V. Clearly g9 and gy are
O(m)-equivariant and therefore we do not have to consider both covariant and
contravariant entries of the tensors. Thus, we have to describe all O(m)-invariant
linear mappings f: ® V — K. Given such f we define ¢: S_ZI_V* x @YV — K
by @(A.go,t) := f(A.t). Since GL(m).go = S1V* and f is O(m)-invariant, ¢ is
well defined and G L(m)-invariant. Similarly to 3.11, we need to extend ¢ to a
polynomial G'L(m)-invariant mapping on the whole space S?*V* x @”V. This will
be possible using the next two lemmas which are interesting for themselves.'3

Since we want to treat at the same time metrics with arbitrary signature (in
the real case — in complex situation they are all equivalent), we need some more
notation. We write O(m,n) = {A € GL(m); AJAT = J} where J = (Hén ?I ),

n

so that the matrices from O(m, n) preserve the canonical pseudo-metric of signature
m on K™1". This definition makes sense not only for K = R or K = C but for
any other extension I of R as well. Further, the Zariski connected components
of O(m,n,IL) are always algebraic varieties in L(m+7)* and there is the canonical
inclusion O(m, n,IK) C O(m,n,LL).

3.16. Lemma. Let I be any algebraic extension of R and let f: O(m,n,L.) — 1L
be a rational function. If f vanishes on O(m,n,R), then f is zero.

Proof. We shall write o(m,n) = {A € gl(m + n,R); AJ + JAT = 0} for the real
Lie algebra of the pseudo-orthogonal group. Let us consider the Caley map

C:o(m,n) — GL(m), C(S)=(1+S)(1—-8)*

defined for all S with det(1—S) # 0. This is injective and rational. Further we claim
that the image lies in O(m, n) and C' admits a rational inverse C~1: O(m, n,R) —

13The proofs of these lemmas (and also that one of the description of the invariant tensors)
follow [Atiyah, Bott, Patodi, 73, p. 323], where the positive definite real case is presented.
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o(m, n). Indeed, we have J = J~1 J = JT SJ +JST =0 and so

CS)J(CS)T = 1+ 9)(1 =81 -5 (1 +5T)
1+ 8)J —JS=STT+ 577871+ 5T
1+ 5)(J(1=8)(1+S)" L1+ ST

J—IS) M1+ STy =701+ 81+ 5T =17

(
(
(
(

Further, if Z = (1 + S)(1 — S)~! then S = (Z — 1)(1 + Z)~! whenever both
expressions are defined and it remains only to verify S = (Z—1)(1+2)~! € o(m, n)
if ZJZ% = J. The latter means (Z — 1)(1+ Z2)"'J+ J(1+ 25y~ (ZT - 1) = 0,
but in order to see that the left hand side is zero we can multiply it by invertible
matrices. Let us multiply by (1 + Z7)J on the left and by J(1 + Z) on the right.
This yields (1 + Z7)J(Z — 1) + (ZT — 1)J(1 + Z) which is zero.

Hence we have proved: the connected component of the unit in O(m,n) is bira-
tionally isomorphic to the real affine space o(m,n).

Thus, if f vanishes at all real points, then the composition with this isomorphism
is a zero rational map on an affine space and hence all coefficients of the representing
polynomials vanish. This proves the lemma for the connected component of the
unit.

It remains to know that O(m,n,R) consists of four connected components de-
termined by the signs of the two subdeterminants along the diagonal corresponding
to the matrices I,,, and —I,, in J, see [Boerner, 67, p.297]. Hence we can compose

the mapping C'(S) with multiplication by one of the four matrices (61 g) with

A= +1 0 , B = +1 0 . This yields the result for all connected
0 Hm—l 0 Hn—l

components of O(m,n,R). O

3.17. Lemma. Let h: GL(m + n) — K be a polynomial or rational O(m,n)-
invariant mapping. Then there is a polynomial or rational mapping F' defined on
the space of all symmetric matrices such that h(A) = F(AT JA) for all A € GL(m),
respectively.

Proof. In dimension one, we deal with the well known assertion that each even
polynomial A, i.e. h(z) = h(—z), is a polynomial in 2% and analogously for rational
mappings. However in higher dimensions, the proof is quite non trivial.

We shall prove the polynomial case, the rational one follows by omitting some
extensions. If we were in the real situation, then A extends to a complex valued
function h: GL(m,C) — C which is O(m, n, C)-invariant by virtue of Lemma 3.16.
Indeed, consider hy: O(m,n,C) — C, ha(B) := h(BA)—h(A). This is polynomial
for each A € GL(m,C) and it vanishes on real matrices, hence also on the complex
ones and this is the invariance we require. Thus we can restrict ourselves to the
complex case.

First notice that if AT JA = P with P non singular and if there is a symmetric
Q with QJQ = P, then A lies in the O(m,n)-orbit of @. Indeed, @ is also non
singular and B = AQ ™! satisfies BTJB = Q7 'ATJAQ~' = Q~'PQ~' = J. Each

symmetric matrix P admits a symmetric square root in the complex domain. Let
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us construct this as follows. Take P = BT DB with D diagonal, BT JB = J. Write
V/D for the diagonal matrix consisting of square roots of the eigen values of D and
take the matrix D' = BT+/Jv/DB. This satisfies DTip = BTDB = P and is
well defined. So it suffices to restrict ourselves to symmetric matrices.

Finally, since O(m, n, C) is isomorphic to O(m + n, C), it is sufficient to restrict
ourselves to O(m, C). Notice, the isomorphismis induced by constant multiplication
of first m coordinates in C by i. Hence the corresponding isomorphism on non-
degenerate symmetric matrices is AT A — AT JA which is well defined, see above.
Hence we want to find a polynomial map g satisfying h(Q) = ¢(Q?) for all symmetric
matrices.

As already mentioned, there is the square root VP = Q for each symmetric
P =BTDB, VP = BT'\/DB. But we should express @ as a universal polynomial
in the elements p;; of the matrix P. If all eigen values A; of P are different, then

we can write

- P— )

0= AT

1= J#L
In order to make this to a polynomial expression, we have first to extend the field of
complex numbers to the field I of rational functions (i.e. the elements are ratios of
polynomials in p;;’s). So for matrices with entries from I, all eigen values depend
polynomially on p;;’s. We also need their square roots to express ¢}, but we shall
see that after inserting Q@ = /P into h(@) all square roots will factor out. For
any fixed P, let us consider the splitting field IL over I with respect to the roots
of the equation det(P — A?) = 0. So V/P is polynomial over IL. Now the basic fact
is, that for any automorphism o: L — L from the Galois group of L over L we
have (¢@)?> = 0P = P and since both @ and o are symmetric, B = cQQQ~! is
orthogonal.

Using Lemma 3.16, we get ch(Q) = h(c@) = h(BQ) = h(Q). Since this holds
for all o, h(Q) lies in I and so h(Q) = ¢(Q?) for a rational function g.

The latter equality remains true if P = Q? is a real or complex symmetric matrix
such that all its eigen values are distinct and the denominator of g(P) is non zero.
If g = F/G for two polynomials F' and G, we get F(ATA) = h(A)G(AT A). If we
choose A so that G(AT A) = 0 and h is a polynomial, we get F(AT A) = 0. Hence
if h is polynomial, then g i1s a globally defined rational function without poles and
so a polynomial.

Thus, we have found a rational function (a polynomial in the polynomial case)
F on the space of symmetric matrices such that h(A) = F(AT A) holds for a Zariski
open set in gl(m). O

3.18. Theorem'. All O(m,n)-equivariant mappings between invariant sub-
spaces of tensor spaces are constructed by a finite iteration of steps 3.6.(a)—(d)
and

(i) the tensors gy and gy are invariant.

Proof. Let us continue the discussion from 3.15 and denote for a moment S_ZI_V*,
V = K"™T" the space of metrics of some fixed signature m. Thus, we want to

14This is the famous Weyl’s theorem, [Weyl, 39]
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describe all O(m, n)-invariant linear maps f: @F V — K. Tt suffices to prove that
all such maps are complete contractions over permuted indices (this means there
is an even number of indices there and we choose a half of them, shift them to the
other position using go and then apply some complete contraction). If we are in the
real situation, then f extends to the complexified spaces and becomes O(m,n, C)-
invariant, cf. Lemma 3.16. Hence we shall restrict ourselves to K = C. (We could
also stick to O(m), for all signatures are equivalent now).

The mapping f defines an O(im, n)-invariant mapping ¢: GL(m+n)x @V — C,
w(A,1) = f(Al). By Lemma 3.17, every restricted map ¢;: GL(m +n) — C
satisfies ;(A) = hy(AT JA) for certain polynomial h; and so we get a polynomial
mapping h: S?V* x @V — C linear in the second entry. For all B, A € GL(m+n)
we have h((B~1)TATJAB~! Bt) = f(AB~'B.t) = f(At) = h(ATJA t) and so
h: S?V* x @V — K is GL(m + n)-invariant. Then the composition of h with the
symmetrization yields a polynomial G L(m + n)-invariant map @*V* x @’V — C,
linear in the second entry. Each homogeneous component of degree s + 1 is also
G L(m)-invariant and so its total polarization is a linear G'L(m)-invariant map
®: @2 V*©@@PV — C. Hence, by Theorem 3.5, p = 2s and ® is a sum of complete
contractions over possible permutations of indices. Since the original mapping f is

given by f(t) = h(J,t), the Weyl’s theorem follows. O

3.19. Special (pseudo-) orthogonal group. This is the case we shall be most
interested in later on.

Theorem. All SO(m,n)-equivariant linear mappings between SO(m, n)-invariant
subspaces in tensor spaces are obtained through a finite iteration of steps 3.6.(a)—(d)
and

(i) go € V" @ V* and gy € V ® V are invariant (the pseudo-metric and its
inverse)
(il) v € A™V"™ is invariant (the canonical volume form).

Proof. The theorem follows from 3.18 by means of the trick mentioned as a foot-
note in 3.11. Indeed, the SO(m, n)-invariant tensors split into the +1-eigenspaces
for the induced action of Zy = O(m,n)/SO(m,n) and once a tensor appears in
the —1-eigenspace, its tensor product with v belongs to the other one; i.e. it is
O(m, n)-invariant. Since the canonical volume element has components Vi i
(=" det(gg))l/zeilmimﬂ where ¢; ;|
tensor, this proves the theorem. 0O

4n

4. are the components of the Levi-Civita

3.20. Remark. In dimension m = 1, every polynomial can be expressed as a sum
of an odd polynomial and an even one. We generalized the description of the even
polynomials in Lemma 3.16, but there is also an analogy to the above splitting of
polynomials:

Lemma. Let h: GL(m + n) — K be a rational or polynomial SO(m, n)-invariant
mapping, then there are rational or polynomial mappings F', G defined on the space
of all symmetric matrices such that h(A) = F(ATJA) + (det A)~*G(AT JA) for all
A € GL(m), respectively.

Proof. Let 7 be the space of all SO(im, n)-invariant rational functions h: GL(m+
n) — K. There is the action of Z? = O(m,n)/SO(m,n) on Z. Hence T is splitted
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into the eigen spaces 7, and Z_. If h_ € Z_| then the map h_ given by A —
(det A)h_(A) lies in Z4, i.e. is O(m, n)-invariant. Now we can split A as a sum
of elements from Z1, h = hy + h_, and apply Lemma 3.15 to both hy and h_.
Consequently, h_(A) = (det A)_liz_ has the desired form. The polynomial case is
completely analogous. O

As a consequence of this lemma, we can identify the ring of rational func-
tions on the ‘space of all (pseudo-) metrics’ GL(m + n)/O(m,n) with the ring
Klgi; , (det gij)_%] (notice, the metric corresponding to [A] € GL(m + n)/O(m,n)
is (AAT sign(det A))).

Let us also remark, the analogous statements to Lemmas 3.17 and 3.20 are
available for the right actions of the orthogonal subgroups. Indeed, we have only
to consider g(A) = h(A™1), to apply the lemmas and then to notice that in the
polynomial case we get polynomials.

We shall end this section with an analytical proposition which is often useful to
avold the polynomiality assumption, i.e. to describe all smooth equivariant map-
pings.

Consider a product V7 x ... x V, of finite dimensional vector spaces and write
zieVi,t=1,...,n.

3.21 Proposition'®. Let f: Vi x ... x V,, — K be a smooth function and let
a; > 0, b be real numbers such that

(1) ko f(er,. . 2n) = f(k® ... k%)

holds for every real number k > 0. Then f is a sum of homogeneous polynomials
of degrees d; in x; satisfying the relation

(2) ardy + -+ and, = b.

If there are no non-negative integers dy, ... ,d, with the property (2), then f is the
zero function.

Proof. Assume first b < 0. If there were f(#1,...,2,) # 0, then the limit of
the right-hand side of (1) for & — 04 would be f(0,...,0), while the limit of the
left-hand side would be improper. Hence f is zero identically.

In the case b > 0 we write ¢ = min(aq,...,a,) and r = [%](:the integer part
of the ratio g) We claim that all partial derivatives of the order r 4+ 1 of every
function f satisfying (1) vanish identically. Differentiating (1) with respect to 2/,

we obtaln
y Of(1, ... 2n) 0 OF (R ay, oo kOmay)
k - = k% - .
ozl OxJ

Hence for % we have (1) with b replaced by b — a;. This implies that every partial

derivative of the order r 4+ 1 of f satisfies (1) with a negative exponent on the
left-hand side, so that it is the zero function by the first part of the proof.

15The so called Homogeneous function theorem, cf. [Kola#, Michor, Slovak, 93, Theorem 24.1].
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Since all the partial derivatives of f of order r+1 vanish identically, the remainder
in the r-th order Taylor expansion of f at the origin vanishes identically as well, so
that f is a polynomial of order at most r. For every monomial 27" ... 2% of degree
|ov;| in 2;, we have

(k™ )™ (k%) = ka1|a1|+~~+an|an|x?1 Lzl

Since k is an arbitrary positive real number, a non-zero polynomial satisfies (1) if

and only if (2) holds. O

Let us remark that the assumption a; > 0,i=1,...  n,is essential. For example,
all smooth functions f(z,y) of two independent variables satisfying f(kz, k~1y) =
fla,y) for all k # 0 are of the form ¢(zy), where ¢(t) is any smooth function of
one variable. In this case we have a; =1, as = -1, b = 0.

4. Operators on (pseudo-) Riemannian manifolds

4.1. Our next problem is: Let us consider two representations Ap, Ag of G, =
GL(m,R)in DiffS, DifftS” and the corresponding bundle functors F and F, see 2.12.
We shall consider them as functors on the category M f,, (O(m/, n,R)) of (m’ + n)-
dimensional pseudo-Riemannian manifolds with signature m’,n and local isome-
tries. Find all natural operators D: F' — FE on the category M f,,, (O(m/, n,R))!

The most common examples for the functors are the identity action on R™
(corresponds to the tangent functor T), its contragredient action on R™* (yields
T*) and their tensor products. We shall denote T(@r) the natural bundle of p-times
covariant and ¢-times contravariant tensors. Hence C'™ (T(‘”’)M) are local tensor
fields on the manifold M. In particular, we shall study in detail the operations on
exterior forms.

It does not seem to be satisfactory that we restrict ourselves to bundle functors
on the whole category M f,1,. But this has two good reasons: all (univalued)
linear representations of O(m’,n) are invariant subspaces of some tensor spaces
(with the restricted usual action), see the Appendix, and dealing with the whole
tensor spaces we can add the metrics themselves to the arguments of the operators
as discussed in 2.17. So we shall deal with natural operators S_ZI_T* x " — K
where S_zl_ T* stands for the bundle functor of pseudo-Riemannian metrics with some
fixed signature (m’,n) and the cross denotes the product in the category of bundle
functors and their natural transformations (i.e. the values are the fibred products
over the base manifolds). The only disadvantage, namely we cannot treat directly
the O(m’, n)-invariant subspaces is not serious, see 2.17 and 3.7.

A more detailed explanation of the technical tools sketched below in 4.2 — 4.9
can be found in [KolaF, Michor, Slovik, 93, Sections 28, 33], the exposition follows
[Slovak, 92a], [Slovak, 92b].

4.2. The orbit reduction. In our situation, all the manifolds are locally isomor-
phic to R™+7 and the action of Diﬂ(le+”) is transitive. Let us assume first
that the operators are of finite order £ and so we can use 2.6 and the whole
classification problem reduces to the finding of all GE*l-equivariant mappings
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fr A= Jé“(S_zl_Rm* X QPFR™ @ @IR™) — @"R™ @ @*R™ (the latter mappings
correspond to natural operators 7(¢F) — T(7) on pseudo-Riemannian manifolds
which are of order k in both the tensors and the metrics). We see immediately
that on the target of the equivariant mapping f, the action is of order one, i.e.
the whole kernel K = kerﬂ'lf"'1 in GE*! acts trivially. This shows that f must
be constant on the orbits of K in the domain. If we succeed in the description
of the corresponding orbit space A/K with the canonical action of G , then all
our equivariant mappings f with values in some G! -space Z will factor through
Gl -equivariant mappings g: A/K — Z.

First we shall present such a procedure for operations depending on connections.
Since there is the canonical Levi-Civita connection on each pseudo-Riemannian
manifold this will be helpful even in the Riemannian case.

There is a simple criterion for such descriptions: Let ¢: G — H be a Lie group
homomorphism with kernel K| M be a G-space, () be an H-space andlet p: M — Q)
be a p-equivariant surjective submersion, i.e. p(gx) = p(g)p(z) forallz € M, g € G.
We can consider every H-space N as a (G-space via .

Lemma. Ifeach p~'(q), ¢ € Q, is a K-orbit in M, then Q = M/K. Consequently,
there is a bijection between the G-maps f: M — N and the H-maps g: Q — N

given by f =gop. O

4.3. Operations on manifolds with connection. The linear connections on
m-dimensional manifolds are sections of the natural bundle QP! = J1PL/GL .
This expresses the definition of principal connections as right invariant horizontal
distributions. The bundle of symmetric connections (i.e. without torsion) will be
denoted by @, P'.

A classical observation due probably to Veblen or Schouten claims that the natu-
ral operators of order k£ on tensor fields depending on connections factorize through
the covariant derivatives of the arguments up to the order k& and through the cur-
vature and its covariant derivatives up to the order £ — 1. Several authors derived
more precise formulations involving some further assumptions, see e.g. [Lubczonok,
72], [Atiyah, Bott, Patodi, 73], [Epstein, 75], [Krupka, Janyska, 90]. A (rather
technical) verification of such reduction without any additional assumption is pre-
sented in the framework of natural operators by Kolaf in [Kolaf, Michor, Slovak,
93, Section 28]. The proof is based on the above orbit reduction principle. On the
set-theoretical level, this is a more or less classical technical computation, but the
subtle point 1s the smoothness.

Let F be a first order bundle functor on M f,,, £ be an open natural subbundle
of a natural vector bundle £ on M f,,. The curvature and its covariant derivatives
are natural operators py: @, P! — Ry, with values in tensor bundles Ry, RpR™ =
R™ x Wy, Wy = R™ @ R™ @ AZR™, Wiy1 = Wi @ R™. Similarly, the covariant
differentiation of sections of E forms natural operators d: QP! x E — Ej,, where
Eq = E, EqR™ = R™ %V, dg is the inclusion, FyR™ = R x Vi, Vip1 = Ve Q@R™*.
Let us write D* = (po,...,pe—2,do,...,dp): Q- P! x E — RF=2 x E* where
R'=Ryx...x Ry, E'= Eyx ...x E;. All D* are natural operators.

In view of the lemma above, the next assertion shows that there are bundle
functors Z*(E) such that all k-th order natural operators Q. P! x E — F factor
through natural transformations Z¥ — F'.
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Lemma. There are sub bundle functors Z* C R*=% x E* such that D*: Q,P' x
E — Z* and the associated maps D*: JE=HQ, P'R™) x JE(ER™) — ZFR™ are
surjective submersions for all k. Furthermore, for each point z € Z¥R™ the preim-
age (D*)~1(2) forms one orbit under the action of the kernel Bf"'l of the projection

k+1. ~k+1 1
o GEL - G

4.4. Proposition. For every natural operator D: Q. P! x E — F which depends
on k-jets of sections of the bundles EM and on (k—1)-jets of the connections, there
is a unique natural transformation (i.e. a zero order natural operator) D:zFk - F
such that D = D o D*.

Furthermore, D is polynomial if and only if D is polynomial, and D is polynomial
in all variables except those from Vi with smooth real functions on Vy as coefficients
if and only if D is polynomial with smooth real functions on Vy as coeflicients.

Proof. We have only to prove to polynomiality.
Let us write S; for the tensor space R™ @ S*T?R™* @ = Sy for the standard
fiber of the bundle of symmetric connections and

S JEHR™ Q) = JETHQ,PITR™) — Sy x ... x Sp_y

be the ‘symmetrization of the derivatives of the Christoffel symbols’ (i.e. we express
the jet space Jg_l(QTPlRm) as the sum of the tensor spaces corresponding to the
individual degrees of derivatives and apply the symmetrization to the individual
summands). A more or less classical construction in local coordinates leads to a
polynomial mapping

1/;:Wox...ka_szO><...><Vk><(So><...><Sk_1)—>Jé“_l(Rm,Q)xJé“(]Rm,V)

such that 1 o (D* x 8) is the identity on JE=HR™, Q) x JEH(R™, V).
Since the standard fiber Vi of the bundle EFyR™ is embedded identically into
ZF(E)oR™ by D* we get also the last statement. O

4.5. The finiteness of the order. Even if we have no estimate on the order,
we can get an analogous result. The way is paved by the non-linear version of the
Peetre theorem proved in [Slovak, 88]. The general result is rather technical and
so we formulate a special case which we shall need.

Proposition. LetY — M andY’ — M be fibered manifoldsand let D: C*(Y) —
C*(Y") be a smooth local operator. Then for every fixed section s € C*°(Y') and
for every compact set K C M, there is an order r € N and a neighborhood V of s
in the compact open C'*°-topology such that for every x € K and sy, s» € V the
condition jis1 = jisa implies Ds1(x) = Dsa(z).

As a direct consequence of this result, we see that each natural operator D: F' —
E is of order k£ = oo and so D is determined by the associated GrP-equivariant map
D: JP(FR™) — EgR™.

Let us remark that a stronger version of the above proposition (without the
smoothness assumption) is also proved in [Kolaf, Michor, Slovak, 93, Theorem 19.7]
and 1t 1s applied there in an alternative proof of the regularity and the finiteness
of the order of bundle functors which avoids the original manipulation with infinite
dimensional Lie groups G2, cf. [Epstein, Thurston, 79].

m



4. OPERATORS ON (PSEUDO-) RIEMANNIAN MANIFOLDS 33

4.6. Lemma. Let F': Mf,, — FM be an arbitrary bundle functor and p > ¢
be non-negative integers. Then every natural operator D: Q; P! x T4P) — F has
finite order.

Proof. Let us write £ = Q, P! x T(4?) By 4.5, D is determined by the associated
map D: JP(FR™) — FyR™ induced by Dgm. Furthermore, for every jet ji°s €
J§P(ER™) there is an order r < oo, a neighborhood U, of jis in J§(ER™) and
a smooth mapping D,: U, C JJ(EFR™) — FyR™ such that for all ji°¢ € V; :=
(72°)~LU, we have D(j5°¢) = Dr(jhq). The naturality of D implies that if the
open neighborhood U, is the maximal one with this property, then V, is G%7-
invariant. The induced action of G} turns J¥(ER™) into a sum of G} -invariant
linear subspaces in the tensor spaces (R™ @ @ T2R™) @ (@ R™ @ @ HR™) £ < k.
Since r > s, the action of the homotheties (i.e. the center) in G}, shows, that the
orbit of any neighborhood of the jet j&0 of the zero section under the action of G
coincides with the whole space J§(ER™). O

4.7. Now, we come back to our natural operators Q,P! x F — F without any
assumption on the order. Proceeding as in the proof of 4.6, we obtain an open
filtration of the whole fiber J5°((Q, Pt x E)R™) consisting of maximal G°?-invariant
open subsets Vi where the associated mapping D factorizes through Dy : 7% (Vi) C
JE(Q- P! x EYR™) — FyR™. Now, we can apply the same procedure as in the
finite order case to this invariant open submanifolds 77°(V%).

Let us define the functor Z* as the inverse limit of Z* k € N, with respect
to the obvious natural transformations (projections) 7f: Z¥ — Z¢ k > ¢, and
similarly D*®°: Q,P' x E — Z°.

Theorem. For every natural operator D: Q, P! x E — F there is a unique natural
transformation D: Z° — F such that D = D o D™, Furthermore, for every m-
dimensional compact manifold M and every section s € C*°(Q,P'M xy EM),
there is a finite order k and a neighborhood V of s in the C*-topology such that

Dy |(D*) (V) = (75°)* (D ) for some (Dy)ar: (D*)ar (V) — C®(Z* M)
DM|V = (Dk)M ¢ (Dk)M|V

In words, a natural operator D: @), x F — F' is determined in all coordinate
charts of an arbitrary m-dimensional manifold M by a universal smooth mapping
defined on the curvatures and all their covariant derivatives and on the sections
of EM and all their covariant derivatives, which depends ‘locally’ only on finite
number of these arguments.

4.8. The pseudo-Riemannian case. Let us write S_zl_ T* for the bundle functor of
pseudo-Riemannian metrics with some fixed signature on m-dimensional manifolds.

On pseudo-Riemannian manifolds, there is the natural operator I': S_ZI_T* —
Q, P! defined by the Levi-Civitd connection. Every operator S_ZI_T* x F —= F
can be viewed as an operator @,P' x S_ZI_T* x F — F independent of the first
argument. Since S_ZI_T* C S?T* is an open sub bundle functor, we can consider the
compositions D* o (T, id): S_ZI_T* x E —Q,P'x S_ZI_T* x B — RF-2x (S_ZI_T* x Bk
and apply Proposition 4.4. Since all covariant derivatives of the metric with respect
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to the metric connection are zero (the parallel transport consists of isometries), the
covariant derivatives of the metric will not appear in the codomain of the operators
D* after the composition. Hence we get

Proposition. There are sub bundle functors Z* C RF=? x E* such that DF o
(T,id): S_ZI_T* x B — S_ZI_T* x Z* and the associated mappings D* on the jet spaces
are surjective submersions with the preimages (D*)~!(z) forming one orbit under
the action of the kernel BF*1 of the projection miT': GE+' — G . Hence for all
k, and for every k-th order natural operator D : S_ZI_T* x FE — F, there is a natural

transformation D : S_ZI_T* x 7% — F such that D = Do D* o (T x id).

For the proof see [Slovak, 92a] or [Kolaf, Michor, Slovak, 93, Section 33]. Let us
notice that the bundles Z* M involve the curvature of the Riemannian connection
on M, its covariant derivatives, and the covariant derivatives of the sections of EM .
Similarly as above, we define the inverse limits Z*° and D™ and we get

Corollary. For every natural operator D: S_ZI_T* x E — F there is a natural
transformation D: S3T* x Z°° — F such that D = Do D™ o (T,id). Fur-
thermore, for every m-dimensional compact manifold M and every section s €
C°°(S3T*M xyr EM), there is a finite order k and a neighborhood V of s in the
C*-topology such that

Dy |[(D™ o (T, id))a (V) =
where (Dk)M: (Dk o (I id)u (V) — C'OO(ZkM)
Dy |V = (Dy)ar o (D) pr o (T, id)yr| V-

4.9. The polynomial operations. We call a natural operator D: S_ZI_T* xE —F
a polynomial operator on (pseudo-) Riemannian manifolds if the associated map
D: JSO(S_ZI_]R’”) x J§°(EFR™) — FyRR™ depends polynomially on k-jets of sections of
ER™ for some k.

By the nonlinear Peetre theorem, this means that for each Riemannian manifold
(M, g) the operator Dyy is given by a universal polynomial expression depending on
the derivatives of the sections of EM but the coefficients are functions depending
on (locally finitely many) derivatives of the metric.

Let us consider now a k-th order operator D and the natural transformation D
corresponding to D, see 4.8. In the center of normal coordinates, each metric has
the canonical pseudo-Euclidean form gg and so the whole transformation D is deter-
mined by the restriction of the associated map D to {go} x ZER™. This restriction
is polynomial if and only if D depends polynomially on elements from Z¥R™, the
metric g;; and the square root of the inverse of its determinant det(g;;). Indeed, in
order to find the transformation of coordinates which maps the canonical pseudo-
euclidean metric to g;; we need to decompose g;; = AJAT with A € GL(m,R), cf.
3.17. The same applies to D: if this G7-equivariant map depends polynomially on
the derivatives of the metric and the jets of sections of FIR™, then the values of the
metric appear in D polynomially through g;; and the square root of the inverse of
its determinant det(g;;).
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Now, let us fix g;;. Since I' depends polynomially on the 1-jet of the metric
and the values of the inverse metric, it follows that D depends polynomially on the
elements from Z¥R™ if and only if D depends polynomially on the derivatives of the
metric g;; and on the jets of the sections of E (with functions of g;; as coefficients),
and this happens if and only if D depends polynomially on the jets of the metrics,
the jets of the sections of £ and on the square root of the inverse of the determinant
of (gij)-

Let us remark that such operations were introduced in [Atiyah, Bott, Patodi,
73] under the name regular operators, a reason why they should be distinguished
can be also found in 3.20.

4.10. Before studying the (pseudo-) Riemannian case, we shall treat the operations
depending on connections. On the way we shall prepare all necessary tools for
solving our initial problem .

Let us first discuss the natural operators D: Q, P! x T(7) — 7(@r) with r > s.

Proposition. All natural operators Q, P xT(5") — T(4P) are obtained by a finite
iteration of the following steps:

(a) the tensor field and its covariant derivatives with respect to the connection
are invariant

(b) the curvature of the connection and its covariant derivatives are invariant

(¢) tensor multiplication is invariant

(d) GL(m,R)-equivariant operations on the tensors determine invariant opera-
tions (i.e. trace, permutations of indices)

(e) linear combinations (over R ) of invariant operators are invariant

In particular, they are all polynomial.

Proof. By 4.6, every such operator has some finite order k and so it is determined
by a smooth GE*2-equivariant map f = (f;ll;;f) JER™ Q) x JER™ V) — S,
where @) is the standard fiber of the connection bundle, V = @°*R™ @ @"R™* and
S = RIR™ @ QFR™*. Let us assume, we have chosen k in such a way that f
depends on (k — 1)-jets of the connections only. If we apply the equivariance of f
with respect to the transformation 2 — ¢~1z, ¢ € R positive, from the center of

1
G,,, we get
P—q 11,44 I I $1...0¢ $1...0¢ _
¢ fjl...jp(rzya""Fzy,ﬁl..lk_l’vjl...jr’""Ujl...jrﬁl...zk)_
_ plidg £ ket r—s_ i1...05 r—s+4k_ 1.5
= fjl.ujp(cfw,...,c Liier tnis€ v e vjlnjr‘eanek)

where the subscripts ¢; denote the usual derivatives. By 3.21 f;ll;;f

must be sums
of homogeneous polynomials.

Now, 4.4 and 2.6 imply that there is a unique smooth'G}n—equivariant map ¢ on
ZER™ which is a restriction of a polynomial map § = (gx;‘;) Wox...x Wg_a X
Vo x ... x Vi — S and satisfies f = g o D¥. Therefore the coordinate expression of
our operator is given by polynomial mappings

TR i B1.ds by s
gjl,,,jp(Rjkla s Ry i Vi vjl...jrml...mk)
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where the subscripts m; denote the covariant derivatives. If we apply once more
the equivariance with respect to the homotheties c_léjl» € GL,, we get

Zl~~~Zq( i $1...0¢ $1...0¢ ) _

p—q i 1.0 1.t
¢ gjl...]p Gkl 0 ]klml...mk_z’vyl...]T’""U]l...]rml...mk -
_ d1edg s 2 i k pi r—s_%1...0s k4+r—s i1...05
= gjl...jp(c Rjkla - € Rjklml...mk_z O U e € vjl...jrml...mk)'
This homogeneity implies that the ¢’s must be sums of homogeneous polynomials
of degrees a; and by in the variables R, . and v, satisfying
(1) 2ap+ - kag_o+(r—s)bg+ -+ (k+r—s)bp=p—q.

Now we consider the total polarization of each multi homogeneous component to
obtain linear mappings

SUOW D@ S 2 W@ SV @@ 8%V, — S,

The description of all invariant tensors (see 3.7) implies that the polynomials in
question are linearly generated by monomials obtained by multiplying an appropri-
ate number of \./arigbles Rty mas v;’i::}iml...m[ an.d. applying G L(m)-equivariant
operations. This yields the statement of the proposition. O

If ¢ = p, then the polynomials must be of degree zero, and so only the GL(m)-
invariant tensors can appear. If ¢—p < 0, there are no non negative integers solving
(1) and so all natural operators in question are the zero operators only.

4.11. In order to determine all natural operators D: Q, P! x T(%") — AT™* we have
to consider the case s = 0 in the above construction, to contract all superscripts
and to apply the alternation on all remaining subscripts at the very end.

Every G L(m,R)-invariant polynomial P defined on R™ @ R™* determines via
the Chern-Weil construction a natural form, i.e. a natural operator of our type
independent of the second argument. In particular, the homogeneous components
of the invariant polynomial det(I,, + A) give rise to the Chern forms ¢,. The wedge
product of exterior forms defines the algebra structure on the space of all operators
in question.

Theorem. The algebra of all natural operators D: QP x T(O") — AT* is gen-
erated by the alternation, the exterior derivative d and the Chern forms c¢,. The
operators which do not depend on the second argument are generated by the Chern
forms only.

In particular, we see that all natural forms have even degrees. Since the exterior
differential is natural, they must be closed.

4.12. In the proof of this result, we shall need several lemmas. The most of the
covariant derivatives of the curvature and of the forms which are involved in the
general construction from 4.10 are disabled by some of their symmetries during the
final alternation. Let us first recall the antisymmetry of the curvature form, the
first and the second Bianchi identity. We have

(1) Rj’kl = - j’lk
(2) R+ Ry + Ry =0
(3) tm T Bmg + R ppr = 0.
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Lemma. The alternation of R:

i kimy..m. over any 3 indices among the first three
or four subscripts is zero.

Proof. Since the covariant derivative commutes with the tensor operations like the
permutation of indices, it suffices to discuss the variables Ry and Ry By (2),
the alternation over the subscripts in Rj»kl is zero and (3) yields the same for the

alternation on k, [, m in R’

kim0 view of (1), it remains to discuss the alternation

of Rj»klm on j, I, m. Then (1) implies R:

’ ; . .
kil = —ijkl and so we can rewrite this

alternation as follows

Ripim + Bt + Bt — Bk
+ Rk + By + Bojie — Bojie
+ B + Bijem T Bimjr — Bimje-

The first three entries on each row form a cyclic permutation and hence give zero.
The same applies to the last column. O

4.13. Lemma. For every tensor field t = (til...iq), the alternation of its second

covariant derivative Vt = (t; over all indices is zero.

1...quq+1lq+2)

Proof. Every linear connection F?k determines a connection I' with curvature R on
each vector bundle associated to the linear frame bundle. The components of R are
easily evaluated from Ry using the action of gl(m) on the tensor space in qpestion.
In our case, (aj») € GL(m) acts on a tensor w;, 4, by (aé)wilmiq = dgll .. ,ag;’wilmiq
where ~ denotes the components of the inverse matrix, and so given a tensor field ¢
. . - p
we get the expression of the contraction (R, t) = — o R?Ziq+1iq+2ti1...m...iq~ If the
connection is symmetric, then the Ricci identity yields Alt(V?¢) = (R, t), where the
alternation concerns only the last two indices. Hence we can apply our alternation

to this expression. Up to a constant multiple, we get

Z R Z Z Z SBNOLE i, (grtyioata) Lo ()Mo ()
S m g

cEX

Let us decompose this sum into summands with fixed m, s and all o(j) with j # s,
J#q+1,j#q+2. These summands have the form

-+ pm . .
+ ( > SgnURif,(s)ia(qmiqurz)t%u)mmmla(q)'
GEX3

Now the first Bianchi identity implies that all these summands vanish. O

4.14. Lemma. For every tensor t = (til...z’q), the alternation of the first covariant
derivative Vi coincides with the exterior differential d(Alt(t)).

Proof. Whenever the coordinate expressions of two natural operators coincide
in one coordinate chart, the operators are equal. The first covariant derivative
is of order zero in the connection argument, and at a fixed point the Christoffel
symbols are zero in a suitable coordinate system. But then the formula for the
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alternation of the covariant derivative of the tensor ¢ coincides with that for the
exterior differential of the alternated tensor at this point. O

Proof of Theorem 4.11. Let us continue in the discussion from 4.10 and con-
sider first a monomial in R’s and v’s containing at least one quantity Rj’klml...ms
with s > 0. Then there exists one term among the R’s in the product with three
free subscripts among the first four ones, or one term Rj»kl with all free subscripts,
so that the monomial vanishes after alternation. Further, 4.12.(1) and (2) imply
Rj»kl — ?kj = —Rﬁcl]». Hence we can restrict ourselves to contractions on the first
two subscripts in the R’s. Obviously, no subscript in the v’s can be contracted since
otherwise the alternation would kill one of the R’s. So in view of Lemma 4.13, only
the first order covariant derivatives can appear, and they yield the exterior deriva-
tives of the alternated tensor v by Lemma 4.14. Hence all the possible operators are

. ks ki Eg1 S .
generated by the expressions R, R ;.. .quef where the indices a, . . ., f remain

free for the alternation, v;,
of the theorem. O

and Alt(vi, . ,i,,,). This is a coordinate expression

T

4.15. Operations on functions. Up to now, we have assumed r > s > 0,
so that the case » = 0 was excluded. In this case we cannot use 4.6 and so we
must apply Theorem 4.7 instead of 4.4, but the codomain of the operations in
question will still ensure the polynomiality of the operations. By 4.7, each jet
(J§°T, j§°v) lies in some Goo-invariant open subset (in the inverse limit topology)
Vi C J§°(Q-PIR™ x R) such that the restriction of the associated mapping D of
the operator to Vj is determined by a (locally defined) G¥+2-equivariant mapping
[ JE®R™ Q) x JE(R™R) — S. Taking k large enough we can assume that the jet
of the zero section lies in V. Now, proceeding as in 4.6 and 4.10 we get for every
positive ¢ € R the homogeneity condition

p—gq 11,44 z z
¢ fjl...jp(rzy’""Fzy,ﬁl..lk_l’

I TR P, ) k
= fjl.“jp(cfij, N N N R PP OO Ve, 0y )-

Uy Uy) =

Thus, f is a polynomial mapping in all variables except v with functions of v as
coefficients.

Using 4.4 and 4.7, we pass to G} -equivariant mappings

i1...44 ; ;
jl...jp( Gkl s o Rjklml...mk_Q y Uy eeny Uml...mk)

with the homogeneity

p—q i1 i i _
¢ gjl...jp( jkl""’Rjklml...mk_g’v’""Um1~~~mk)—

i1..dp

2 i ki k
= ]1...]q(c Rjkla"'ac Rjklml. Uy, € Uy my )

L Mp_2)
Hence ¢ i1s polynomial with smooth functions in one real variable v as coefficients
and the degrees of its monomials satisfy 4.10.(1) with » = s = 0. Now we can
repeat the arguments from the end of 4.10 and we get
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Lemma. All natural operators D: Q,P' x T(®% — T(P) are obtained by iter-
ating the following steps. Given a function, we can compose the function with
arbitrary smooth function of one real variable, we can take covariant derivatives of
the function and the covariant derivatives of the curvature, we can tensorize, we can
apply any GL(m,R)-equivariant operation, and we can take linear combinations.

The arguments from the proof of 4.11 are also valid now and so we can extend
this theorem to the case of functions.

Theorem. The algebra of all natural operators D: Q. P x T(*:%) — AT* s gener-
ated by the compositions with arbitrary smooth functions of one real variable, the
exterior derivative d and the Chern forms c,.

4.16. There are many natural operators on pseudo-Riemannian manifolds. In par-
ticular, using the inverse metric we can contract on any couple of indices and the
complete contractions of suitable covariant derivatives of the curvature of the Levi-
Civita connection give rise to natural functions of all even orders greater then one.
Composing k natural functions with any fixed smooth function R* — R, we get a
new natural function. Since every natural form can be multiplied by any natural
function, we see that there is no hope to describe at least all natural forms in a way
similar to the above characterization of the Chern forms. However, in Riemannian
geometry we meet operations with a sort of homogeneity with respect to the change
of the scale of the metric and these can be described in more details.

Definition. Let F and I’ be natural bundles over m-dimensional manifolds. We
say that a natural operator D: S_ZI_T* x E — F is possibly-conformal, if D(c?g,s) =
D(g, s) for all metrics g, sections s, and all positive ¢ € R. If F' is a natural vector
bundle and D satisfies D(c%g,s) = ¢*D(g,s), then D is said to be homogeneous
with weight A.

Let us notice that the weight of the metric g;; is 2 (we consider the inclusion
g: S_ZI_T* — S2T™), that of its inverse g/ is —2, while the curvature and all its
covariant derivatives are conformal. The regular operators on Riemannian mani-
folds (cf. 4.9) homogeneous in the weight were studied extensively, see e.g. [Atiyah,
Bott, Patodi, 73], [Epstein, 75], [Stredder, 75]. Using the above approach, we shall
recover and generalize some of their results.

4.17. Recall S_zl_ T* means the bundle functor of pseudo-Riemannian metrics on m-
dimensional manifolds with some fixed signature. We shall discuss first the natural
operators D: S_ZI_T* x T — T(@P) with s < r. Similarly to 4.15, we use 4.8 to find
Goo-invariant open subsets Vj, in J§°((S57* x T(7))R™) forming a filtration of the
whole jet space. On these subsets D factorizes through smooth G¥+!-equivariant
mappings

T1...0 i1...0¢

fjll...jz = fji...ji(gija s i ey Vg i Ujl...jrzl...zk)~
defined on #3° V4. Using the action of the homotheties c_léjl: for large k’s, we get

i1...0¢

peg pitdg, N i1.s _
(1) « fjl...jp(gwa~~~agwll...£ka%1...jra~~~a“j1...jrz1...zk)—

_ plidgy 2 . 24k . r—s_ %1...05 r—s+4k_ i1...05
= jl...jp(c Gijy oo € ity g, € Uy e C Ujl...jrzl...zk)~
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Now, let us add the assumption that D is homogeneous with weight A, choose
the change g — ¢~2g of the scale of the metric and insert this new metric into (1).

We get

g pitdg, N i1 s B1.s _
¢ fjl...jp(gl]’ e il L Vi Ujl...jrzl...zk) =
g, ko r—s i1..4s res4k, i1 ds
= jl...jp(gwa~~~ac92321...Zkac Vil g€ jl...jrzl...zk)~

This formula shows that the mappings f;i;i are polynomialsin all variables except
g;; with functions in g;; as coefficients.

According to 4.8 and 4.9, the map D is on V; determined by a polynomial
mapping

IR IO P R— ; i iveds
w = (Wi (i Wikt Wikimy o mi_a V50 U oy i)

which is G} -equivariant on the values of the covariant derivatives of the curvatures
and the sections. If we apply once more the equivariance with respect to the
homothety  — ¢ 'z and at the same time the change of the scale of the metric
g — c 2g, we get

I i Rt Ry U U ) =
51 Rt Rty € T TR ).
This homogeneity shows that the polynomial functions wx;‘; must be sums of
homogeneous polynomials with degrees ay and b, in the variables Rj’klml...m[ and
Uy, Satislying
(2) 2a0+"'+kak—2+(r_5)bo+"~+(/€+r—5)bk —p—g—2)

and their coefficients are functions depending on g¢;;’s (in fact polynomials depend-
ing on g;; and on the square root of the inverse of the determinant of g;;, cf. 4.9).

Now, we shall fix g;; = go and use the O(m’, n, R)-equivariance of the homoge-
neous components of the polynomial mapping w. For this reason, we shall switch
to the variables Rijpim,. .m, = JiaRbimy . (the v’s remain). Using the stan-
dard polarization technique and Theorem 3.18, we get that each multi homoge-
neous component in question results from multiplication of variables R;;rim,,... m.,

11..9%

- L , L
U e S = 0L and application of some O(m’, n)-equivariant tensor

operations on the target space. Hence we have proved:

Theorem. All natural operators D: T¢") — TP) s < . on pseudo-Riemannian
manifolds which are homogeneous in weight result from a finite number of the
following steps:

(a) take tensor product of arbitrary covariant derivatives of the curvature tensor
or the covariant derivatives of the tensor fields form the domain

(b) tensorize by the metric or by its inverse

(¢) apply arbitrary G L(m)-equivariant operation

(d) take linear combinations.
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4.18. If the codomain of the operator is AT™, then all indices which were not con-
tracted must be alternated at the end of the above procedure. Since the metric is
a symmetric tensor, we get zero whenever using the above step (b) and alternat-
ing on both indices. But contracting over any of them has no proper effect, for
8ijtja,.. s = tijs,.. j.. So we can omit the step (b) at all.

Surprisingly enough we shall prove that among the homogeneous natural oper-
ators D: S_ZI_T* x T(") — AT* with non-negative weights, there are no other ones
then those obtained by the evaluation of the operators from Theorem 4.11 using
the Levi-Civita connection.

It is more suitable to discuss the curvatures and their covariant derivatives in
the form R;jzim,..m.. These are all of weight two. The Riemannian curvature
is a two-form with values in the algebra of skew-symmetric matrices, so we have

the symmetry R;iﬂ = —R%ﬂ in the positive definite case. The pseudo-Riemannian

curvature has values in ‘pseudo-skew-symmetric’ matrices, but after shifting the
index down, we get always the same symmetry, i.e.

(1) Riji = —Rjint-
Therefore, the evaluation of the Chern forms using the pseudo-Riemannian connec-
tion yields zero in degrees not divisible by four and the Pontrjagin forms in degrees

40.

Theorem. There are no non-zero homogeneous natural operators D: S_ZI_T* X
TOr) — AT* with a positive weight. The algebra of all possibly-conformal natural
operators D: S_ZI_T* x TO") — AT* is generated by the Pontrjagin forms Dy, the
alternation and the exterior differential. The operators which do not depend on the
second argument are generated by the Pontrjagin forms.'®

Proof. The theorem will follow quite easily from the above proposition using Lem-
mas 4.12-4.14 concerning the symmetries of the curvature of arbitrary torsion-free
connections and the one more symmetry specific for the pseudo-Riemannian cur-
vatures:

Sublemma. The alternation of R;jjim,...m, on arbitrary 3 indices among the first
four or five ones is zero.

Proof. Since the pseudo-Riemannian connections satisfy R;jr = Rgy; (this is a
consequence of (1) and Bianchi identity), Lemma4.12 and (1) yield this lemma. O

. . . . - . i1
Consider a monomial P with degrees a; in R;jrim,...m, and b, in Vi

In view of the above lemma, if P remains non zero after all alternations, then we
must contract on at least two indices in each Rs;rim,..m, With s > 0 and so we can
alternate over at most 2ag + - - -+ kag_2 + pbo + ... (p + k)by, indices. This means

16This generalizes the famous Gilkey theorem on the uniqueness of the Pontrjagin forms,
see [Gilkey, 73], [Atiyah, Bott, Patodi, 73]. The Gilkey theorem describes the regular possibly-
conformal natural forms in the Riemannian case, while we use no assumptions on the order or
polynomiality or regularity, only the smoothness. In [Gilkey, 75], the uniqueness of the Pontrjagin
forms is proved in the pseudo-Riemannian case as well. Let us remark, Gilkey proves his theorems
directly discussing the derivatives of the metric.
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p<2ap+--+kag_a+rbo+...(r+k)br = p—A. Consequently A < 0 if there is a
non-zero natural form with weight A. This proves the first assertion of the theorem.

Let A = 0. Since the weight of g%/ is —2, any contraction on two indices in the
monomial decreases the weight of the operator by 2. Every covariant derivative
Rijkim,..m, of the curvature has weight 2. So we must contract on exactly two
indices in each F;;zim,..m, Which implies, there are s+ 2 of them under alternation.
But then there must appear three alternated indices among the first five if s # 0.
This proves a3 = -+ = ap = 0. Moreover, there is no further contraction for
our disposal, and so any covariant derivative of the tensors of order greater then
one kills the whole monomial after alternation. Hence all the natural operators
are generated by the forms p,, the alternation and the exterior differential. This
completes the proof. 0O

4.19. Exactly in the same way as in 4.15, we can modify the proof of Theorem 4.18
for the case » = 0. In the implicit description of all operators D S_ZI_T* x 70,0
T(@r) in 3.3, we have to add the compositions with smooth real functions and we
get

Theorem. There are no non-zero homogeneous natural operators D: S_ZI_T* X
7.0 — AT* with a positive weight. The algebra of all possibly-conformal natural
operators D: S_ZI_T* x TO9) — AT* is generated by the Pontrjagin forms Dy, the
compositions with arbitrary smooth functions of one real variable and the exterior
differential. O

4.20. Linear operations homogeneous in weight. The discussion from the
proof of the Theorem 4.18 can be continued for any fixed negative weight. In par-
ticular, the situation is interesting for A = —2. Beside the well known codifferential
§: AP — AP~1 the compositions d o § and & o d (the Laplace-Beltrami operator is
A =8od+ dod), and the multiplication by the scalar curvature, there appear
some other simple operators. Let us describe this case in more detail for the linear
operators APT* — APT™ (in the Riemannian case and under stronger assumptions
this can be also found in [Stredder, 75]).

If compared with the proof of 4.18, we have exactly one more contraction for our
disposal in each monomial. Hence we might involve also more covariant derivatives.
But once there appears R;jrim,..m, with s > 0, we have never enough contractions
to kill a necessary number of indices. If R;;; appears, then no covariant derivative
of the argument can be involved for the same reason. So there are only the following
possibilities:

(1) RavadViy..ip, RabalisVia.iy)or RabirizVis...iyJabs Viy..ipaa> V[iy...ip_1aai,]

Here [...] denotes the alternation of the indicated indices and all natural operators
in question result from a linear combination of these five ones.
The codifferential § is defined as the formal adjoint to d, 1.e. we require

[ oy = [ .m0

for all formsw € QP~! 5 € QP with compact supports in U. Here { , ) is the induced
n
(pseudo-) Riemannian metric defined by (v, 4,,w;, .. ;,) = Z%Uil...z’pw““'lp, and v is
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the local Riemannian volume form on U. (U is small enough to allow the existence
of v, v ;i = ((=1)" det(gﬁ))l/zgilnim, where ¢;, ;. is the Levi-Civita tensor.)
Clearly, the definition does not depend on the orientation (i.e. on the choice of v)
and § is a local linear operator QP — QP ~!. Once we have chosen v, we can define
the Hodge star operator *: QF — QM~P by the equality (w,n)v = w A #. This
yields for w = v;;__;, the expression

i1...4
*o = p,vzl gV TP i,
Now, we compute easily for w € QF
kW = ;vjl Jpritde, jopirrrdmg = (1)
=4 b1 cely = .
p!(m —p)!
Further we get
(vd*)(v;, )_*(l o Jigy 1) =
Viy..ip) = p'v]1...]p[lm+1y tpt1...im]/) —
v F1.ip Eptikmbmyr, .
— p'(m _p)'vyl...]p[km+1y kp+1...km]1/ i1..8p-1 —

= (—1)p(m —p+ 1)Ui1...ip_1aa~

Let us choose w € P~ 5 € Q™ P and write the equation for § with w and *6:

0= /U(—1)p<m—p>dw An— /Uw A (%8 % 1) = / (=1)P=P)d(w A ).

U

Since this holds for all w and 75, we get *6% = (—1P(m=P)+Pd) and so, finally,
§ = (=1)Pmtmtl (ki) = (_1)(p+1>(m+1>(m —p+ Vi iy aa-

Now, we are ready to write down the generators from (1) (up to constant mul-
tiples).

4.21. Proposition. All linear operators APT* — APT™* on pseudo-Riemannian
manifolds which are homogeneous with weight —2 are linearly generated by the
following generators: the multiplication by scalar curvature, the contraction with
the Ricci curvature, the contraction with the full pseudo-Riemannian curvature ,
the compositions é o d and d o §.

4.22. Operations on oriented pseudo-Riemannian manifolds. Let us notice
that in the description of natural operators ST x E — F we used the O(m/, n)-
invariance as late as at the very end of 4.17 and that the whole proof of 4.18 uses
only the discussion on the steps from Proposition 4.17. Therefore, we can prove
easily:
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Theorem. All natural operators D: T©") — T(P) s < r on oriented pseudo-
Riemannian manifolds which are homogeneous in weight result from a finite number
of the following steps:

(a) take tensor product of arbitrary covariant derivatives of the curvature tensor
or the covariant derivatives of the tensor fields from the domain

) tensorize by the metric or by its inverse

) tensorize by the (pseudo-) Riemannian volume form v

) apply arbitrary G L(m)-equivariant operation

e) take linear combinations.

Proof. It remains to prove that the covariant derivatives of the volume form v
cannot be involved. But the latter are zero, for the covariant derivative is defined
through the parallel transport which consists of isometries. O

Let us remark that the latter theorem, as well as Theorems 4.17 and 4.10 are
valid also without the requirement s < r if we add the polynomiality assumption.

4.23. Possibly-conformal linear operators on forms. At the end of this sec-
tion, we prepare some technical results which shall be of fundamental importance in
our description of all conformally invariant operators on conformally flat manifolds
in Section 8.

As we have mentioned, the volume form v is defined by the expression v; ; =
(=" det(gy))l/zeilnim (the signature is (m/,n)) and so it is evidently homoge-
neous with weight m. Thus, the homogeneous weight of *: F — Q™7 P ism—2p. In
general, there exist more possibly-conformal natural operators in the oriented case.
First of all| if the dimension m = 2p is even, then **: QF — QP is identity up to sign
and we can split the space of p-forms, QF = Q’_I)_ ® O | where Q4 are the two eigen
spaces for x. We shall see later that these spaces are not only O(m’, n)-invariant
but even irreducible. If we compose the exterior differential d with the projections,
we get the operators d = d4 + d_ and the compositions d o d+ are not more zero.
Further, it might happen that composing enough d’s and *’s together, we get a
possibly-conformal operator. Let us write §, = #d*...d*: QIT! — Qm=¢=1 ¢ < p,
with m — 2¢ — 1 stars involved, and Dy =doé, od: Q7 — Q™74

Proposition. If the dimension m = 2p is even, then each operator D defined by
D=D;=dobjodorD=6é;0dor D=0, is a possibly-conformal natural operator
on oriented pseudo-Riemannian manifolds. In particular, D,_i: QP~1 — Qp+l
equals to d+d = dody —dod_. Up to constant multiples and up to terms
involving the curvature and its covariant derivatives, the operators D are the only
non-zero possibly-conformal linear natural operator on forms on (oriented) pseudo-
Riemannian manifolds beside the exterior differentials d, di+ and the identities.

If the dimension m is odd, then up to constant multiples and up to terms involv-
ing the curvature and its covariant derivatives, the only non-zero possibly-conformal
linear natural operators on forms on (oriented) pseudo-Riemannian manifolds are
the exterior differentials and the identities.

Proof. Clearly each operator D is natural. If we start in Q¢! and apply *dx,
then the mappings go: QIt! — Qm=4-1 s O™~9 s QF while the weights which
are added are: 0 — m —2¢ — 2 — m — 2¢ — 2 — —2 (the total is obvious — the
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weight of ). Hence if m = 2p, ¢ < p and if we start at QT! we reach weight zero
exactly after composing (m — 2¢ — 2)-times d«+ and applying * at the very end. In
all other cases we never get weight zero, for each turn around decreases the weight
by 2 and once we get back to the initial position with a negative weight in all three
last positions the hope is lost.

Let us now perform the discussion from 4.18 in this special situation and let us
restrict ourselves to the natural operators on the whole category of (not oriented)
pseudo-Riemannian manifolds. If we want to get a linear operator D: Q¢ — Q¢
which is non-zero on flat manifolds, then the only monomials which make sense
are of the form v;, 4.1, Since we do not admit the curvatures, we may restrict
ourselves to the flat case and so the covariant derivatives [ are symmetric. Thus
at most one index among the I’s may remain uncontracted and at most one can be
contracted with some of the i’s. Hence what we only can do is to involve 2s or 2s+1
or 2s + 2 derivatives, to choose s pairs, to contract them and to contract one of the
remaining indices (if any) with some of the ¢’s. Hence, up to constant multiples
and linear combinations, D =doé...odor D=06od...odor D=dob...0é or
D=4éod...ob and we get ¢ —g=1o0r 0 or 0 or —1, respectively.

On the space of all natural operators D: Q¢ — qu, there is the canonical action
of O(m',n)/SO(m’,n) = Zs and so each such operator is a sum D = D;+D_ where
Dy is invariant with respect to the change of orientation while D_ changes the sign.
If D is natural and possibly-conformal, then also both D4 and D_ are natural and
possibly-conformal. Now, notice that *o D_ is invariant with respect to the change
of orientation and D_ = £ *xD_. Thus, *xD_: Q? — Qm-d' and, up to constant
multiples and linear combinations, either m—q’ —¢ = 1 and ** D_ = *doé .. .od, or
m—q¢ —g=0and x+xD_ = +6od...odor x+*D_ = +doé... 08, orm—q —qg=—1
and *x D_ = x6od...0b. The last Hodge star in these operators acts on Q™4 and
so its weight is 2¢' —m. If m is odd then this can never kill the even negative weight
appearing through é8’s. Thus, there is no codifferential involved in the expression,
D_ =0 and D is either exterior differential or identity (up to constant multiples).
This proves the last statement of the proposition.

If m = 2p is even and 2¢' —m < 0, then the weight of * is negative and we get the
same result as in the odd-dimensional case. If 2¢’ —m > 0, then a simple discussion
shows that the only possible operators are those listed in the proposition. O

We can describe the most interesting operators by the following two diagrams,
separately for the even and odd dimension m.
The even case m = 2p:

Qb 4.t 4. ... 4 qp-! /Qp+1i,...i>9m—1i,9m
T
d_ d

o ]

Dy_1=d¥d=dody —dod_

Di=do(xd)™ ™3

Do=do(xd)™ ™!

The diagram is not commutative! The horizontal line is exact, but not the arrows
in the central diamond. On the other hand, all three operators Q#~! — Qrt!
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differ by constant multiples. The diagram does not exhaust all operators from the
proposition, but notice that the operators indicated on the arrows are unique, up
to multiples.

The odd-dimensional case coincides with the de Rham resolvent:

0 QO d Ql d . d Qm—l d Qm 0
We shall see later on, that the arrows in the above diagrams correspond exactly
to the conformal operators on forms on conformally flat manifolds.

4.24. Linear operators on functions. Another important information is the
description of all homogenous linear operators on functions with values in functions.
For each even number 2k € N we define the operator Ay: Q° — Q° by A(v) =
Vbiby . bibs, 1.€. We take the 2k-th covariant derivative of v and contract all indices.
Notice that if we change our choice of the contracted couples of indices then the
result differs by some expression built of curvatures and its covariant derivatives,
cf. 4.13. In particular, on the flat manifolds we get no difference. The operator A
is a homogeneous natural linear operator with weight —2k. In view of the above
discussion there is no other possibility for homogenous linear operators beside those
involving the curvature or its covariant derivatives. Thus we have proved:

Proposition. Up to constant multiples and up to terms involving the curvature
and its covariant derivatives, the operators Ay are the only linear homogeneous
natural operators defined on functions with values in functions. In particular, there
are no homogeneous operators with an odd weight.

5. Conformally flat manifolds

5.1. Conformal structures. A conformal (pseudo-Riemannian) manifold M is
an m-dimensional manifold with a CO(m’, n,R)-structure, m = m’ + n, see 2.11
for the definition. Hence M is a base manifold of a principal fiber bundle FFM C
PLM with structure group CO(m’,n,R). By 2.13, the latter bundles correspond
to sections of PLM/CO(m’,n,R). Whenever we choose representing local sections
with values in the cosets of P!M/CO(m',n,R), we get an induced reduction of
PM to O(m’/,n) and, moreover, if we take another representing local sections,
then the corresponding metric will be deformed by multiplication by a smooth
real function. Analogously we define the complex conformal structures on complex
manifolds.

Further, by the definition, a mapping f: M — N between conformal manifolds
is a morphism in M f,, (O(m’, n,R)) if and only if P1f(FM) C FN, and the latter
happens if and only if f preserves each metric from the conformal class up to
multiplication by a function. Thus, we can study the conformal local isomorphisms
by fixing an arbitrary metric from the given conformal class.

In this section, we shall deal mostly with the real manifolds.

5.2. Definition. The flat conformal structure FIR™ on R™ is determined by the
canonical (pseudo-) Euclidean metric. A conformal manifold (M, FM) is called

locally flat if each point z € M admits a local conformal isomorphism (M, FM) —
(R™ FTR™) defined at .
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5.3. Local conformal transformations on the flat R™. We shall write g = g;;
for the canonical (pseudo-) metric and its evaluation on vectors will be denoted by
(', ). Further we write |z|? for the value (z,z). Each local conformal isomorphism
[ determines the positive (locally defined) function A? defined by f.g = A%g. There
are four types of evident local conformal isomorphisms on R™:

(a) the transformations from O(m', n,R) are defined globally, A(z) =1

(b) the translations « — z + a are defined globally, A(z) =1

(¢) the homotheties (dilatations)  — Az are defined globally, A(x) = +A is
constant

(d) the inversions x — |& — x| ~?(z —zg) are defined for all z with |z —xq|? £ 0,

A(z) is a constant multiple of |z — zg|~2.
To see that the inversions are really conformal, let us write down the tangent of the
inversion f with zg = 0 at x evaluated on &. We get T}, f.€ = || 726 — 2(¢, x)|z|~*a,
so that || Ty f.€]? = (€ — %{’—;)lx,g - %{’—;)lx) = (&,&). This yields the A as stated
in (d).

These four types of mappings generate a pseudogroup of local conformal trans-
formations. If the dimension m = 2, then there is a plenty of other locally defined
conformal transformations, for each complex analytic function is conformal. We
shall restrict ourselves to the case m > 3 in the rest of this section.

5.4. The Liouville theorem. All smooth local conformal transformations on
the pseudo-Euclidean space R™ " m/ 4+ n > 3, are generated by the mappings

5.3.(a)—(d).
Proof. The indices in this proof will be always concrete (no ‘Penrose abstract index
notation’). Let us consider a locally defined conformal mapping f: R™ — R™. This

means, the Jacobi matrix D = D(z) = (%jﬂ) is an element of CO(m/, n,R) for
each x from the domain. Equivalently, for each tangent vector ¢ at = we have
|D(2).€]? = (A(2))?[¢]? for some fixed smooth positive function A. We shall use

the brief notation DE(x) := T'f o £(x) for an arbitrary vector field €. Consider a

local frame &1, ... ,&n at « belonging to the flat O(m’, n, R)-structure, e.g. we may
identify &, ... ,&, with the standard basis of R™. We shall view £ as constant
vector fields on R™. Then we have (globally)

If we differentiate the latter equality in the direction of a third vector field &, we
get

(2) 0 = O¢, (D&, D&;) = (¢, D&, DE;) + (DE;, 9¢, DE; ).

Now, we fix three different indices ¢, j, k (recall m > 3) and we write down (2) three
times with a cyclic permutation of these indices. Since our choice of the ¢’s is a
very special one, we have 0g, D&; = 0¢,; D&; (in fact D& (x) = S (0f; ) 02%)(2)&i ()
and &; is constant, and so the latter claim follows from the symmetry of the second
partial derivatives). Thus, if we add the first two equalities and subtract the third
one, we obtain

(0, DE;, Déyy = 0.
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Since this holds for each & with & # 4, k # j, there are functions p;; and v;; such
that

(3) 0¢, DE; = pi DE; + v DE; .

By the definition, these functions satisfy

1
(4) Hi; = |D€ |2<a§, g]a gl) 2/\2|€ |2653<D€Z’D€Z> - afj/\

Vij = Xa&/\.

Let us denote p(x) = A(lx). The Hessian H = %% is a bilinear form at each z

from the domain.
Sublemma. It holds H(z) = og(x) with o constant.
Proof. We shall write y = f(x). Using (3) and (4) we express ¢, ¢, (py):

(5)  O¢, 0, (py) = (0¢,0¢,p)y + (O, p) D& + (9e,p) DE; + p(O¢, 0g,y) =

1 1
= (96, 0¢; )y + p(psj D& +vi; DEj) — 15 (0, M) D& — 35 (06, A) D& = (9¢,0¢,p)y-
If we differentiate (5) with respect to &, we get

¢, O¢, Og; (py) = (O, 0¢,; p) DEx + (¢, 0¢, O p)y-

Since two of the three terms commute in i, j, k, the third one must commute as
well. Hence we have for two linear independent vectors D& and DE; the equality
(O¢, O¢,p) DEx = (0¢, 0, p)DE; . This implies H(E;, &) = 0 for all 4 # j. Since the
vectors satisfy (&;,€;) = 0, the latter means H;;(x) = o(2)g;; = 0 for all different
indices 4, j. Since the function p is invariant with respect to isometries, H;;(x) are
determined by Hy1 =: o(z) and H;;(z) = o(z)g;; for all indices i and j. We choose
now an arbitrary third index k and differentiate

afkafzaﬁjp = (65k0)<€2’€]>

The left hand side is commutative in ¢ and k, so we get

(O, 0)& = (0, 0)&k, &) = 0

Since all the three vectors are linearly independent, the latter implies 9¢, ¢ = 0 and
so o is constant. [

The sublemma yields the system of partial differential equations for p which is
easy to solve:

azp e s
Oxidni 79ij
1
p(z) = = ar|z — wo|” + by, ai, b € R.
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If we apply the same procedure to the inverse mapping = = f~1(y) we get

>
—_
<
=

Il

|

1
== =aly—yol* + by
p

and so the relation A(#)p(y) = 1 yields the implicit description of f
(6) (a1]e — 2ol 4 b1)(azly — yol” +b2) = 1.

Composing with translations we can arrange zg = yo = f(0) = 0. The implicit
expression (6) shows that f transforms spheres into spheres. Let us fix @ with
|z|? > 0 (if |z|* < 0 for all z, we can go through the whole proof with —g instead

of g) and let us define a curve [0,00) — R™, ¢t — z(t) = ﬁx This curve is

transformed into a curve y(¢) = f(x(t)) and we can evaluate the value |y| = |f(z)]
as follows (notice |y|> > 0 as |z|* > 0)

|z dly(t)| |z |z 1
= dt = Mz())dt = ——dt.
o= [ = [ = [ —s

The integral on the right-hand side is a transcendent function in |z|, except a;b; =
0. In view of (6), either a; = 0 or b; = 0.

Assume a; = 0. Hence both p and A are constant and so (5) shows that y = f(#)
is linear. Consequently f must be an element from C'O(m/, n).

If b1 = 0, then the composition of f with the inversion reduces the situation to
the previous case and the Liouville theorem is proved. [0

5.5. Stereographic projections. We would like to define the conformal trans-
formations globally on a suitable conformally flat manifold since then they will
form a finite dimensional Lie group and the conformal invariance of operators
will be better understood. For this reason we have to pass from the pseudo-
Euclidean spaces to pseudo-spheres. Consider the pseudo-Euclidean space R™ with

L0 ) and the

the canonical pseudo-metric described by the matrix J = ( 0 I
—in

space R™MT2 =R x R™+7 x R equipped with the form
0 0 1
S=1(10J 0
1 0 0

This is a realization of the pseudo-Euclidean space with signature (m’ + 1,n + 1)
and the ‘light cone’ 'Sz = 0 of all vectors with |z|? = 0 describes a quadric in
the projective space Py, 41(IR). This quadric is called the Mobius space S ). We

shall identify the Mobius space with the pseudo-sphere S(ml’”), at least locally.
Consider a (‘finite’) point (z,y) = (z,y%,...,y™) € R™*L |y|? + 22 = 1, on the

(pseudo-) sphere y* Jy+2% = 1. Let us define a point in Py, 1 (R ) with homogeneous

coordinates (2, ..., z™*1)

1
29 = —(z — 1),xm+1 =

5 (z4 1), et =yt . 2™ = y™.

Sl -
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Clearly 7 Sz = 22 —14+y” Jy = 0, hence we have defined a mapping ® transforming
the ‘finite part’ of the pseudo-sphere into S(;,s ). We claim that this mapping is
injective and in the positive definite case even bijective.

Indeed, let us take x = (1,p,q) = (1,p%, ..., p™,q) € S(m',n) and try to find some
suitable multiple of these homogeneous coordinates to obtain the corresponding
point ®~1(z) = (z,y) on the pseudo-sphere. So let us consider a multiple of the
first and the last coordinates and try to find the factor so that the first two relations
in the definition of ® are satisfied: ¢ = %(z— 1), cq = %(z—l—l), ie.z=v2c+1=

V2¢q — 1. So a good possibility seems to be ¢ = q_izl. Since x € S(ms n), we have

— 12 _ =2 _ =2 _ zlplP-1
2¢ = —|p|*. Hence ¢ = TILE and z = e +1= o
shows 22 + ¢?|p|? = 1 so that we really get a point of the pseudo-sphere and we
had no free choice. If the signature is (m, 0), we have a global bijection (the point
with z = 1 is obtained if we replace the roles of the first and the last homogeneous

coordinate), but if the metric is indefinite, we need %[p|? # —1.

A direct evaluation

0 0 0
Every vector p € R™ defines the matrix P = | p 0 0 | which lies in
0 —p'J 0

the Lie algebra o(m’ + 1,n + 1) (i.e. PTS + SP = 0). Applying the exponential
mapping, we obtain a matrix in O(m’ + 1,n+ 1)

1 0 0
(1) expP = p I,, O
—1lpl? —p"TI 1

In this way we get a mapping ¢: R™ — S0 )

0 0 0 1 1
(2) pr—exp | p 0 0 0] = P
0 —p'J 0 0 —3[p)?

For all points with |[p|? # —2 we can compose this mapping with the inverse of
the above injection @ of the pseudo-sphere and we get the so called stereographic
projection p: R™ — S(m'n)

tplP=1 —V/2p
slp?l+17 5lpl2+1

(3) p(2,y) = ( ) € Sm'n) c mmtt

S(m’,n)
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Lemma. The mapping ¢ is conformal with the corresponding ‘dilatation function’

(Ap))* = m-

Proof. Let us write R™' 7+l — B x R™'+7 where the second term in the product
is the pseudo-Euclidean space with signature (m’, n) while the first one is the usual
R. Let a be the vector (1,0,...,0) € R x R+ e (a,z) = 0 if and only if
ze {0} x RMHn,

If we compose our sterographic projection with multiplication p — —v/2p we
get the more usual formula for the stereographic projection. This composition
corresponds to the translation of the whole ‘projection hyper-plane’ in R™+! to the
point (1 — \/i)a and taking the symmetry with respect to the origin. Both these
maps are conformal, so we can work with the more usual formula

2 Ip|* =1
TP+ T PR

a

(4) ¢(p)

in our proof. In order to prove that (4) is conform, we have to evaluate |T,¢.§| for
a tangent vector £ at a point from the domain of ¢. We have

o 2(plP 4+ 1) — 4p(€, p) + 4a(s, p)
Tl = (o2 + 1)

|(IpI* + D* T @€ |* = 126(|p|* + 1) — 4p(&, p) + 4al&, p)|* = 4(Ip]” + 1)*(€, ).

The dilatation for the ¢ in the statement of the proposition is obtained by inserting
%p into the latter formula.

5.6. The group of conformal transformations. The Lie group O(m'+1,n+1)
acts transitively on the Mcbius space S(,r »). We shall use 5.5.(2) for a represen-

tation of all local conformal transformations on the pseudo-Euclidean R™+1 a5
global transformations of S,/ ).

(a) A€ O(m' n),ie. [Ap|? = |p|?, yields
1 1 0 0 1 1
v |=1{0 4 0 v = ap
—5lpl? 00 1) \—zlp —3lpl?

(b) the translation p — p + ¢ corresponds to the action of exp@, cf. 5.5.(1)

1 1 0 0 1 1
P — q I, O P = p+q
—3lpl? —1gl* —¢T7 1) \ =3p? —2(Ipl* + lg1* + 2{q, p))

(c) the dilatation p — Ap, A # 0, is expressed by

1 A0 0 1 AL 1
P — 0 I, 0 P = P
—3lpl? 0 0 X/ \—3lp]? —$Alpl? —$Ap)?
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(d) the inversion p — #p is not defined at |p| = 0, but the corresponding

transformation on S(,,/ ) is defined globally by

1 0 0 -2 1 Ip?
— 0 I, 0 P = p
—zp” -z 0 0 —5lpl? ~3

If |p| # 0 the value equals to z% = (1, #p, —%|p|_2).

Using the inversion, we see that all these transformations are well defined also in
the points with homogeneous coordinates starting with z° = 0.

5.7. Spheres as homogeneous spaces. The transformations 5.6.(a)—(d) gener-
ate the whole group O(m’ 4+ 1,n+ 1) and, together with the conformal sterographic
projections, they define a smooth atlas and a conformal structure on S(;, ). Since
all conformal transformations of S(,,/ ,) must be locally generated by those from
O(m' 4+ 1,n+ 1), the elements from O(m’ + 1, n+ 1) exhaust exactly all conformal
transformations on S, »). Let us fix the point z = (1,0....,0) € Stmny- s
isotropy group B consists of matrices of the form

-1

a q *
0 A «
0 0 a

where A € O(m',n), ¢ € R™, a € R, a # 0, and the stars indicate expressions
determined by A, and ¢. This subgroup is called the Poincaré conformal group.
Consequently, we have identified the pseudo-spheres (or, more precise, the Mobius
spaces) with the homogeneous spaces O(m’ 4+ 1,n 4+ 1)/B and the canonical left
actions of O(m’ + 1, n+ 1) on them exhausts just all conformal transformations.

The same description with complex orthogonal groups applies to the complex
confomal spheres.

5.8. The conformal structure on S(,, ). If we employ the stereographic pro-
jection, we can identify elements h from the Poincaré conformal group with locally
defined diffeomorphisms «(h) on R™+n By our construction and by the Liouville
theorem, a(h) = idg= if and only if jZ(a(h)) = jiidg= and we can identify the
Lie group B with a subgroup of inVsz(S(mzyn), S(m' n))z, and via the stereographic
projection with a subgroup in the jet group GZ,. The situation can be described
by a diagram

Oo(m' +1,n+1)

2
P S(mlyn)

~

-~
e /
~a 9

PZRm P ¥

|

S(m’,n) id S(m’,n)
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The stereographic projection determines a locally defined map O(m' + 1,n+1) —
P?R™ indicated in the diagram. This map is equivariant with respect to the prin-
cipal action of the Poincaré conformal group and extends to a global map. Conse-
quently, O(m’ + 1,n 4 1) can be viewed as a reduction of the second frame bundle
PZS(mzyn). This will be of basic importance later on for linking the results obtained
in the flat case with the conformal invariance on curved conformal manifolds.

5.9. Proposition. The Lie algebra b of the group B C O(m’+1, n+1) decomposes
as a sum of by = co(m’, n) and by = R™* with the projections

—a 0 0 0 ¢ 0
0 A 0] —A+al, 0 0 —J¢7 | —g¢
0 0 a 0 0 0

where A € o(m'n), a € R, ¢ € R™*,

The whole algebra decomposes as o(m' +1,n+1) = b_1 + by + by, where b_; =
R™ corresponds to the Abelian group of the ‘translations’, see 5.5.(2), and this
decomposition is a grading. All three summands are subalgebras, by, are Abelian.
The remaining non-trivial commutators are [A, A'] = AA" — A'A, [A,p] = Ap,
[9, A] = qA and [p,q] = pg — I(pg)"T + (qp)Lny with A, A" € co(m’,n), p € b_y,
q € by. Further,

(1) There is the distinguished element ¥ = —1,,, € by satisfying
b = {X €o(m’ +1,n+1); [E,X]=iX}, i=—1,0,L
(2) The linear endomorphism «: g — g defined for all X; € b; by
X1+ Xo+X1)=—-X1+X0— Xy

is an ivolutive automorphism of g

(3) (b_1 4 b1,bg) =0, i.e. b_y and by are orthogonal to by with respect to the
Killing form

(4) the Killing form is zero on b_; and by

(5) by and b_; are dual spaces with respect to the Killing form

(6) the adjoint representations of by on b_; and by are contragredient repre-
sentations on the dual spaces

Proof. The proof of the first part consists in obvious computations of the commu-
tators and verifications that the values are in the proper subspaces. Let us show at
least one case. Given ¢ € R™* and p € R™ we have

0 0 0 0 ¢ 0 —qp 0 0
p 0 0,10 0 =J¢")|=| 0 pg—J¢"p'T 0
0 —p~I 0 00 0 0 0 prqt

= (pq — J¢ " T+ qpl,)

The other cases are even easier.
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Knowing the commutator relations, (1) and (2) are obvious. Since the Killing
form is invariant with respect to «, we get

(Xo1 4+ X1, Xo) = (X1 + Xy), a(Xo)) = — (X1 + Xy, Xo)

and (3) follows. We have adX_j;adY_; = 0 on b_; (since the value would be in
b_3) and so the Killing form must be zero on b_;. Similarly for b;.

In order to prove (5), let us assume (X_1,b;) = 0. Then (3) and (4) imply
(X_1,9) =0 and so X_; = 0. Analogously we proceed for (X7, g) and this proves

Since the Killing form is invariant under the action of ad Xy, we have
<ad(X0)X_1,X1> = —<X_1, ad(Xo)X1>,
X411 € byy, Xo € by. This verifies (6). O

5.10. The Lie subalgebra b; C b corresponds in the jet picture to the kernel of
the projection GZ, — GL.. The Lie algebras of the jet groups are the algebras of
jets of formal vector fields with the bracket being the negative of the jets of the Lie
brackets of the formal fields, see [KolaF, Michor, Slovik, 93, Section 13].

The Lie subgroup B; in G2, corresponding to by is described easily using our
identifications of the generators of the conformal mappings. Notice that the inver-
sion 5.6.(d) exchanges the subgroups corresponding to by. Since we know that b_;
corresponds to translations, see 5.6.(b), we get the mapping R™ — R™ determined
by expq, ¢ € R™* by composing two inversions with the appropriate translation
by ¢: .

1 1 EEt e z + |2°q
= —=r— —=+ ¢ = .
|z[? |z[? e +al? 142z, q) + [2lql

A tedious but elementary calculation shows that the first derivative at the origin is
the identity while the second derivative at the origin evaluated at vectors ¢ and g
is D?(0)(&,n) = 2((n,&)q — (n,9)¢ — (€,¢)n). In the usual coordinates (aé, aék) on
G2, this means By = {(6§,a§k); aj»k = 4.9%jk —qagg(s]l: —qag}léi, qa € R™*} where
g is the pseudo-metric in question.

Now, B/By = CO(m',n,R) and so O(m' + 1,n+ 1,R)/B; C PlS(mzyn) is the
conformal structure on the pseudo-sphere in the proper sense of Definition 5.1. The
above reduction of PZS(mzyn) to O(m/+1,n+1,R)is the so called first prolongation
of the first order CO(m/, n)-structure, we shall give more details on this construction
at the beginning of Section 9.

5.11. Remark. All the previous development can be repeated with the connected
component of the unit, the subgroup SOg(m’+1,n+1), instead of O(m’ +1,n+1)
without any essential difference.’” Hence the oriented pseudo-spheres are the homo-
geneous spaces SOg(m’' +1,n+ 1)/ B (with a smaller B then above, the connected
component of the unit). On the Lie algebra level, everything remains unchanged.

The above discussion on the homogeneous spaces remains also unchanged in the
complex case where we do not have to distinguish the signatures. So the complex
m-dimensional sphere is the homogeneous space SOg(m+2,C)/B or O(m+2,C)/B
where the B’s are the complex conformal Poincaré subgroups.

17In the not positive definite case, there are four connected components, two of them form the
special pseudo-orthogonal group SO(m/, n,R).
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6. The first order natural operators

First of all we have to describe the natural bundles on conformal manifolds. So let
us discuss briefly the linear representations of the Poincaré conformal group, i.e. the
natural vector bundles in the category of conformal manifolds, cf. 2.12. Roughly
speaking, the natural bundles on a manifold M with a B-structure are bundles
equipped with an action of the group Bps of the local M f,,(B)-isomorphisms. In
our case, the Poincaré conformal group B is the group of all conformal transforma-
tions fixing a point of the sphere. In 5.1, we defined the conformal structure as the
reductions of the first order frame bundles to the group CO(m', n,R). If we define
a reduction PM of the second order frame bundle P?2M to the Poincaré conformal
group B, then the quotient PM/B; C P*M is a reduction to CO(m/,n,R) and
the same is valid for the connected components of the units. On the other hand,
the general theory of prolongations of G-structures yields that P is just the first
prolongation of the latter conformal structure, see Section 9.'® We shall see, there
is a naturally defined subbundle PM C P?M with structure group B on each con-
formal manifold and so, given a representation of B, there are the corresponding
bundles (associated to PM) on all conformal manifolds M.

Our general problem is to find all linear operators transforming sections of such
bundles which intertwine the actions of the conformal transformations, t.e. which
are natural.

We want also to involve the so called two-valued representations, i.e. the rep-
resentations of the double covering of the Poincaré group. Of course, there is a
topological obstruction to the existence of the corresponding vector bundles, but
since the classification problem of natural operators i1s a local one, we can always
restrict ourselves to manifolds with a distinguished covering of the reduction of the
frame bundle, the so called spin structure. The spheres are always spin manifolds
and so we can use the global formulation in the terms of homogeneous vector bun-
dles on spheres, cf. 2.10. But having a representation of a double covering of the
jet group in question has another, more unpleasant consequence. We cannot use
directly our definition of the natural operators, for there is no canonical action of
the conformal transformations on the sections of the bundles. Thus we have to use
the definition from 2.14 which does apply. In a large extent, the latter difficulty
will be avoided using the infinitesimal version of naturality.

In this section, we shall employ the classical structure theory of semisimple Lie
algebras and their representations in order to describe the first order operators.
Our main reference is the thin introduction [Samelson, 89], where the reader can
learn quickly all necessary topics. A brief survey of some elementary concepts and
results is also involved in Section 10.

18The first order structures give direct access to all first jets of mappings belonging to the
structure. The prolongations describe directly higher order jets of the morphisms. The conformal
structures form one of very few examples where only finitely many non-trivial prolongations are
available. In fact already the second prolongation is trivial which reflects the global dependence
of conformal morphisms on 2-jets at a single point. The O(m’, n, R)-structures have no non-trivial
prolongation since the isometries are determined by the first jets at one point. But for example,
the groups of morphisms of symplectic manifolds are infinite dimensional and the symplectic
structures admit prolongations of any order.
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6.1. Let us remind the construction from 2.11, 2.12. For each closed Lie sub-
group in the jet group B C (j, we obtain a category of manifolds with B-
structures, M f,,, (B). In particular there are distinguished natural principal bundles
P: Mfn(B) — PB,,(B) with structure group B over the m-dimensional objects.
For each linear representation A\: B — GL(V) we obtain the corresponding nat-
ural bundle F. The Lie derivative of sections of natural bundles is defined for
all vector fields with flows formed by morphisms of the category M f,(B), the so
called M f,, (B)-fields. But the values are in the vertical bundles. If the bundles
themselves are vector bundles, we recover the usual Lie derivative and it is easy
to see that the linear natural operators have to commute with the Lie derivative
and vice versa. For the proofs see [KoldF, Michor, Slovék, 93, Section 48] or [Cap,
Slovak, 92] where the result is proved in the non-linear setting. Each natural bun-
dle F, admits the so called flow operator Fj, a natural operator which transforms
M fm (B)-fields on M into vector fields on F'M. The flow of its value Fy X is de-
fined by the application of the functor Fi to the flow of the Mf,,(B)-field X. If
P: Mfn(B) — PBy(B) is a natural principal bundle, then PX is right invariant
for all M fp, (B)-fields X.

Let us consider a linear representation A of the Lie group B in a vector space V
and the associated bundle F\ M to the principal bundle p: PM — M. Let us write
{u, v} for the class in Fy M determined by (u,v) € PM x V. The Lie derivative of
the V-valued functions on PM is defined as usual.

Lemma. The set of all smooth section C*°(FyM) is identified with the set of B-
equivariant mappings in C°(PM, V)8 s — 5, s(p(u)) = {u,3(u)}, and for all
Mfm(B)-fields X € X(M) and sections s € C®(F\M). The Lie derivative Lxs
corresponds to Lpxs.

Proof. We have only to write down explicitely the definition of the Lie derivative
and to compare it with the identification from the lemma. O

6.2. The natural operators. In view of the above discussion, we can define the
natural linear operators D as those systems of operators for which Dy (Lpx3§) =
Lpx(Dar§) for all sections and M f,,, (B)-fields. We get exactly the linear natural
operators acting on the natural bundles on the categories over manifolds with B-
structures (defined separately for each manifold), but with this formulation we are
able to involve also some covering fenomena. Let us consider P and B as in 6.1, a
covering B of B and two representations Ay, A of B in V and W. Then some of the
natural bundles PM can be covered by principal B-bundles PM . Let us consider
the manifolds M together with such coverings PM as distinguished objects. Now,
each PM yields the bundles Fy, M and each M f,,(B)-field X determines a unique
right invariant lift, denoted by the same symbol PX, on PM. Hence in this setting
we can define natural operators between bundles corresponding to representations
of the finite dimensional coverings of B. Of course, such operators need not to be
defined on all M f(B)-objects M, they are well defined only on those ones where
the coverings PM do exist, cf. 2.14.

Definition. Let )\ : B — GL(V), Aa: B — GL(WW) be finite dimensional linear
representations. A system of local operators Dys: C®°(Fy, M) — C®(Fy\,M), M €
ObM fr (B), is called an infinitesimally natural operator if and only if D(Lpx$) =
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Lpx(D3) for all M f,(B)-fields X on M, and Dy (s|U) = Dy(s)|U for all section
s € C°(Fy, M) and open submanifolds U C M.

In the sequel, we shall write B for the connected component of the unit in
the Poincaré conformal group and G for the connected component of the unit in
O(m' 4+ 1,n + 1) or their double coverings. We have described in detail the Lie
algebra g of G, g = b_1 & by & by in the last section. We have seen that the
subgroup of conformal transformations of the sphere S, ) fixing a point can be
identified with a subgroup in the second jet group G2,. As mentioned above, there
is the natural principal bundle functor P C P? on the conformal manifolds and
each representation A: B — GL(V') gives rise to a vector bundle functor F on
Mfm(B), FM = PM x, V. The representations of its double-covering will be
referred to as two-valued representations of B, the classical terminology which is
useful since we shall work on the level of Lie algebras.

In order to get general information on the invariant operators, we have to restrict
our class of natural vector bundles to those coming from (finite dimensional) irre-
ducible representations of B. Unfortunately, we exclude a lot of representations of
B which are not completely reducible, but we still cover all first order bundles. The
normal subgroup B; corresponding to by is commutative and B/Bj is isomorphic
to SOg(m',n,R) x R* (or its double-covering), where R® means the commutative
multiplicative group in R (remember, SOg(m’', n,R) denotes the connected com-
ponent of the unit for all signatures of the metrics). On the Lie algebra level, we
get the induced representation A’ = T.A and the ideal b; acts by nilpotent endo-
morphisms by the Engel’s theorem (b = by & by is the Levi decomposition). By
the irreducibility, the action of by must be trivial. Thus, A is a trivial extension
of an irreducible representation A; of SOp(m',n,R) x R* and the vector bundles
in question are associated bundles P; x, V, where P, = P/B; C Pl is a sub
bundle in the linear frame bundle with structure group SOy(m/,n,R) x R*. On
the spin manifolds M, the principal bundle P; M lifts to Py M with structure group
Spin(m’,n,R) x R* and there is the associated vector bundle PiM x V for each
two-valued representation A of SOg(m/, n,R) x R*.

6.3. The conformal weight. The reductive part by in the Levi decomposition
b = by ® by decomposes further to the center and the semisimple part, by =
R@o(m’/,n,R). So an irreducible representation A of by (i.e. also of b) is determined
by an element « from the dual of the center R* and a dominant integral weight A
for o(m’,n,R). The element —« is a real number called the conformal weight of
the irreducible representation A. We shall write V) for the irreducible o(m’, n, R)-
module corresponding to the given dominant weight A and V) («) will denote the
irreducible representation with the conformal weight «. The action of t + A €
Rao(m',n,R)on v € Vy(«)is v — —at.v+(A.v) where the dot denotes the action of
o(m’,n,R) and the multiplication by a scalar is without notation. On the Lie group
level we get (tA).v =t~ *(A.v). The sign convention is used so that the conformal
weight of the metrics is two. This enables the usual identification of sections of the
bundles with a conformal weight « with the sections of the corresponding bundles
on the underlying Riemannian manifolds (without the conformal weight) which
depend on the chosen metric and ‘rescale’ by multiplication by the function f¢ if
the metric is rescaled by f2.
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For example, let us consider the standard G'L(m,R)-representations R R™*
A™IR*. With the restrictions of the representations to the pseudo orthogonal
groups, all these O(m/, n,R)-representation are equivalent. However, the restric-
tions to the conformal groups yield representations with the conformal weights —1,
1 and m —1.

6.4. Representations of the conformal groups. In 10.10 and 10.11, we find
the description of the irreducible representations of the complex orthogonal algebras
in the terms of the dominant weights. There is a general theorem, [Zhelobenko, 70,
p. 526] which enables to use this description also in the real case.

Let G be a semisimple real connected Lie Group and G¢ be its connected complex
form. Then each irreducible finite dimensional representation of (G is uniquely
determined (up to equivalence) by one of the dominant weights of a covering of Gg.

If we start with a concrete dominant weight, we take the corresponding complex
representation space, we view this space as a complexification of a real one and
restrict the action of the complex group to the real subgroup. It is even possi-
ble to verify directly that we get irreducible representations in this way using the
method mentioned in the footnote in 3.13 and Lemma 3.16 where we proved that
SOq(m',n,R) is birationally isomorphic to an affine space.

Of course, there is a difference concerning the possible conformal weights. If
dealing with representations of the Lie algebras, they are quite arbitrary elements
in the center of cog(m’, n,K), hence arbitrary real or complex numbers. However
only in the real case all of them also exponentiate to representations of the connected
components of the unit in CSOy(m’, n, R).

6.5. Remark. For many Lie subgroups B C G7,, the category M fi,(B) of man-
ifolds with B-structures involves enough local isomorphisms to be locally homo-
geneous (i.e. there is a local model for all objects and morphisms) and all local
isomorphisms belong to flows of M f,,, (B)-fields. In such a situation, the infinitesi-
mally natural operators are systems of operators commuting with the actions of the
morphisms, hence the usual natural operators. For detailed discussion see [Cap,
Slovak, 92].

Unfortunately, dealing with the category of conformal manifolds, we are very
far from the latter situation. On the contrary, the manifolds (generically) admit
no conformal vector fields, and the objects are highly non-homogeneous. Thus,
our definition of infinitesimally natural operators yields systems of operators which
commute with the actions of the morphisms on subcategories which are homoge-
neous enough, e.g. on the locally conformally flat manifolds.

6.6. The first order operators on conformal manifolds. In the rest of this
section, we shall solve the following problem: For a given dimension m find all
non-zero first order natural operators D: F) o — F, 5 between the vector bundles
corresponding to dominant weights X, p of o(m’,n,R) and conformal weights o, f.

So let us fix the weights A, p, o, B and write E' — S ny, £ — St py for
values of the corresponding natural bundles £ ., F), g on the pseudo-spheres. Let
us notice that the pseudo-spheres are always spin manifolds, so that this is possible
for all dominant weights. In view of the general theory of natural bundles; the
description of all infinitessimally natural operators on the pseudo-spheres and their
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open submanifolds yields the description of all natural operators on the conformally
flat Riemannian manifolds.

In general, it 1s a difficult problem to find all possible extensions of a given
operator to the whole category of conformal Riemannian manifolds, we shall touch
it in Section 9. However, dealing with first order operators only, the situation is
very simple and we can give a complete answer just now.

Our first observation will be that each first order operator D: C*F — C°°F on
the pseudo-sphere with the flat conformal structure which intertwines the action
of the conformal isomorphisms determines a natural operator defined on the whole
category of conformal manifolds. In view of this fact, we shall often refer to D as
to a natural operator on the conformal manifolds in the sequel.

6.7. Proposition. Every infinitesimally natural first order operator D: C*E —
C°°F is invariant with respect to the whole group SOg(m’ + 1,n+ 1) of conformal
transformations and extends to a natural operator D on the whole category of
oriented conformal manifolds and their morphisms.®

Proof. Let us write briefly G for the connected component of the unit of the
pseudo-orthogonal group or the spin group. The pseudo-spheres are then homoge-
neous spaces G/B. As discussed in 2.10, the left action of A € G on the sections
(viewed as mappings in C° (G, Va(a))?) is given by the left multiplication by the
inverse h~1. This action coincides with the induced action of the principal bundle
morphism A (acting by left multiplication) on the sections viewed as elements in
C®(F), see 2.10. Thus, given a flow of a conformal vector field (i.e. a one-parameter
subgroup in () its action on the sections is just the left multiplication by exptX
for some element X in the Lie algebra of G. If we differentiate this action, we get
just the Lie derivative with respect to —X, where X stands for the right invariant
vector field now. So the flow lifts to a one parametric subgroup of principal bundle
morphisms which are just the flow of the above right invariant vector field. Hence
the infinitesimal invariance is equivalent to the usual invariance with respect to
the whole group G, for the image of the exponential mapping generates the whole
connected component of the unit.?°

Now, assume we have found an infinitesimally invariant operator D: C®E —
C*°F. We have to prove that D extends uniquely to the whole category of conformal
manifolds, i.e. D determines the linear first order operators Dys: C® Fy(a)M —
F,(3)M for all conformal manifolds M and, moreover, if we deal with representa-

19The description of the morphisms is a little unpleasant, in general. In the positive definite
case, the latter are just the local conformal isomorphisms keeping the orientations, so there are no
problems. However, in the case of a general signature, there are four components of the unit and
two of them are described by the value of the determinant (i.e. they form SL(m,R)NO(m/, n,R))
and they are further distinguished by certain subdeterminants.

20 The equivalence of infinitesimal invariance and the usual invariance remains valid also for the
B-structures with infinite dimensional groups of automorphisms, see [Cap, Slovak, 92]. In fact, the
above arguments involve a lot of identifications. A geometric definition of the Lie differentiation
leads to an operation with values in the vertical bundles (since the Lie derivative should have
values in the ‘tangent space to the space of sections’ being itself a derivative of curves) and using
this definition, the whole problem becomes very clear, provided the dimension of the group of
transformations in question is finite. In the cited paper, the main point is to apply suitable
analytical tools in order to reduce the problem to a finite dimensional one.
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tions of the pseudo-orthogonal groups then the latter operators have to intertwine
the actions of the local conformal isomorphisms while in the spin case they have to
intertwine with the acton of the coverings, see 2.14.

Each first order operator Djys factorizes through a mapping D}, defined on the
first jets of sections, see 2.5. Let us fix a point # € M and consider the normal
coordinates with respect to one of the metrics in the conformal class. If we compose
the latter mapping with the inverse to the stereographic projection, we get a locally
defined mapping ¢: Sins n) — M with p(0) = x, where 0 € G/B = Sins p) is the
point represented by the unit e € G, and the second jet jZ¢ transforms the flat
conformal metric on the sphere into the first jet of the conformal metric on M at x.
Having ¢ we also have the principal fiber bundle morphism Ply: PlS(mzyn) — P'M

and we can choose its covering ]Slgo, if necessary. The restrictions of the first jet
prolongations of the induced mappings on the associated bundles to the fibers over
0 depend only on j2¢. Hence we can transform the first jets of sections of the
homogeneous bundles on the pseudo-sphere at 0 into first jets of sections of the
corresponding bundles on M at x using the second jet jZp only, see the diagram
below. The induced mappings ®; define the restriction of the mapping D3}, to
the fiber over # which also depends only on the second jet of ¢ at 0 (and our
choice of the covering if any). If we choose another @ instead of ¢ with g(z) =
0 and ¢ transforming the first jets of the conformal metric on M into the flat
conformal metric on the sphere, then their second jets differ by a jet of a conformal
transformation on S(,,s »y (more explicitly, by a left action of an element from &).
Since the operator DS(m/,n is a first order operator which is invariant with respect
to the action of G by the first part of the proof, the whole mapping Dgs_, 1is
completely determined by the restriction of the induced mapping on the ﬁrst)jets
of sections to the fiber over zero. Thus every choice of ¢ leads to the same mapping
D}, on the fiber over z and we have got a well defined first order operator Dys on
all confomal Riemannian (spin) manifolds M.

On the other hand, the action of an arbitrary local transformation f: M — N
on the first jets of sections of Fi(a)M depends on the second jets of f in the
underlying points and so the action of each local conformal transformation f: M —
N (or the appropriate covering in the spin case) is reflected pointwise as an action
of a conformal mapping on the sphere in a similar way, see the diagram below.
Consequently, DS(m/,n) extends canonically to a system of first order operators Dy
invariant with respect to all local conformal isomorphisms.

JLF o

JLE S B s T (FaaM) hel T}y (Fx,aN)
| i
\ / | D / !
4 fi i

DS gt ) S(m/ ) M i N | D

i i
/ \ 5 \ 5
® ; Fost N

Iy === s > (Fp,ﬁM)x p"(FPﬁN)f(l‘)
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6.8. Remarks. We can formulate the first part of the above proposition for the
invariant operators on homogeneous bundles, c¢f. 2.10. Then the first part of the
proof shows that the infinitesimal naturality is equivalent to the invariance of the
operators with respect to the action of the group elements by the left multiplication
and the proof goes through for every connected finite dimensional Lie group G
and 1ts closed Lie subgroup B. Such operators are usually called the translation
mwvariant operators on homogeneous vector bundles.

In the other part of the proof, we found certain canonical extension of a given
translation invariant operator to the whole category of conformal manifolds. But
we have not mentioned any uniqueness. If we forget about the spin cases, we
can formulate the whole naturality problem for operators on natural bundles over
the whole category of m-dimensional manifolds, we add the metrics as additional
arguments and the conformal invariance i1s then reflected as a special kind of ho-
mogeneity in the metric argument (cf. Section 4). From this point of view, the
above uniqueness problem reads: How far i1s the natural operator determined by its
restriction to the conformally flat metrics on R™? For higher order operators, even
the existence problem of such an extension has not been solved yet in general.

6.9. The symbols. By the definition, the infinitesimally conformally invari-
ant first order operators on the pseudo-spheres DS(m/,n) are in bijection with g-
equivariant mappings D: (J'E)y — F on the fiber over 0 € S(m’ n), see 2.6. The
latter vector space splits as a sum of the representation space V = Vy(«) and

Vi=VoR™ =V @ (g/b)*, we shall write JEE =V & V.

Recall from 2.9 that there is the exact sequence

(1) 0—Val/b) —Val —V—0

and the composition D o ¢ defines the symbol of D which is equivariant too. We
have seen in 2.16 that in the Riemannian case each equivariant symbol is a symbol
of a natural operator and it follows from the results of Section 4 that all first order
natural operators on Riemannian manifolds are obtained as composition of the first
covariant derivative and an operator of order zero in the covariant derivative but
of an arbitrary order in the metric itself.

The conformal situation is quite similar in the first order case, however there are
much more bundles but less operators. Each conformally invariant linear operator
is clearly invariant with respect to all isometries of any metric in the class. We shall
distinguish some of these Riemannian invariant operators, we shall show that there
are uniquely defined conformal weights of the bundles for which we get conformally
invariant operators and we shall prove that there are no other invariant operators
on the pseudo-spheres.

Let us write £y («) for the homogeneous vector bundle over pseudo-sphere corre-
sponding to the dominant weight A of o(m/, n) and conformal weight «. The symbol
Vi will denote the corresponding o(m’, n)-module. For further notation concerning
the weights see the Appendix.

6.10. Theorem [Fegan, 76]. Let A be a dominant weight of o(m’, n), m'+n = m,
and let R™ @ Vy = Zp V, be the decomposition into irreducible representations
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with dominant weights p of o(m’,n). Let us define
1
@A) = 2m = )+ (926 + ) = (1,264 )

where & is half the sum of all positive roots of o(m’, n) (equivalently 6 is the lowest
form, i.e. the sum of all fundamental forms) and { , } is the Killing form.

Then, beside the zero operators and the constant multiples of the identities, all
linear infinitesimally natural first order operators which are defined on the sec-
tions of the vector bundles E) , with some conformal weight « are given by the
projections

7y 0 V: O (Bx(0) — C¥(B™ @ By(a) — C(E,(3))

of the first covariant derivatives with respect to an arbitrary metric from the con-
formal class onto the irreducible components V,, and the conformal weight of F
is then o = «(A, p), while the conformal weight of E () equals to «(A, p) + 1.
Furthermore, each irreducible component V, has multiplicity one and all the
dominant weights p are listed below:
(i) fm=2l,thenp=XA+el 1 <i<l
(i) If m = 2{+1 and ' appears in X with a non-zero coefficient, then p = A+e',
1<i<l,orp=2A
(iii) If m = 20+ 1 and ¢' does not appear in A, then p = A+e', 1 <i <1,
orp=A+el.

For the notation concerning the weights see 10.10. Let us notice that the weights
+e' are (possibly) not dominant, while the resulting p must be dominant and so
only some values of ¢ are allowed for each given A.

6.11. Remarks. We shall present concrete examples in 6.21 and 6.22, in fact we
will specify the latter theorem for all fundamental weights A.

As we have seen, the operators DS(m/,n) extend canonically to natural operators
defined for all conformal manifolds. Of course, there are operators like the tensor
product with conformal curvature which cannot appear in our list since they are
zero on the conformally flat manifolds.

Even for the integral weights, we cannot treat the problem in the same manner
as for Riemannian manifolds in Section 4, since only very specific conformal weights
allow the existence of the operators. A possibility to overcome this difficulty is to
incorporate the general conformal weights as certain homogeneity condition (linking
the argument of our linear operation and the metric) into the concept of the natural
operators. This is the point of view adopted by many authors, see e.g. [@rsted, 81],
[Branson, 85], [Wiinsch, 86].

6.12. The complex case. We shall see that the description of all infinitesimally
natural operators on the homogeneous complex vector bundles on the complex
spheres coincides with the real situation. In fact we shall prove both theorems
together. We shall keep the same notation as in the real case for the complex bun-
dles. Theorem 6.10 remains true without any change, i.e. all operators result from
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decompositions of the target space of the complex Riemannian covariant derivative,
C™* oV, = Zp V,, into complex irreducible representations with dominant weights
pof o(m’/, n) (which is in fact the same as in the real case) and the conformal weights
are prescribed by the same formula.

6.13. Idea of the proof. The whole proof will need several lemmas, but the
main idea is quite simple. Let us consider some infinitesimally natural operator D
and let us come back to the brief notation from 6.6 and 6.9, so that Vy(«a) = V,
Ex(e) = E, JIE =V & V; and write V,(3) = W.

Consider an equivariant symbol mapping o: V4 = (g/b)* @V — W. If we dualize
the sequence 6.9.(1) and o, we get

% 1y*
0 g/bo vV —  (JlE)" (m0)" 1 0

//7
*
* D*.
o e
~
~

W*

We have a non-trivial action of b; on the term in the middle of the row, but by
acts trivially on the three remaining non-zero terms. Since W, and so also W*, is
irreducible, ¢* must be a linear combination of embeddings of co(m’, n)-invariant
linear subspaces. Since D* is g-equivariant, the image of D* must be an invariant
subspace with a trivial action of b;. Now it i1s easy to read from the diagram the
conditions for o being a symbol of an invariant operator. However, we shall proceed
in a more direct way:

If there is a non-zero element y € (JLE)* with the trivial action of the whole
by, then the whole linear subspace generated by the orbit bg.y consists of points
with the trivial action of b;. We assume that W is irreducible and so D* must be a
linear combination of embeddings of irreducible components. Since the conformal
weight of the action on (V1)* is by one less then that on V*, we have either y € V*
or y € (V1)*. The first possibility yields the constant multiples of the identity
operator, for both V' and W are irreducible. Hence we have got: the existence of a
non-trivial linear infinitesimally conformally invariant operator D is equivalent to
the existence of a vector y € (V1)* with a trivial action of b;.

If we deal with a concrete bundle £ = F) ,, then thisis a very good starting point
to find all operators defined on E. Indeed, it is enough to find all ¥’s with trivial
actions of by which are at the same time highest weight vectors for o(m’, n,R). The
latter means, we have a rather explicit system of equations for such y’s. Moreover,
this point of view restricts the whole proof to certain discussion on the highest
weight vectors. It is convenient to prove the theorem in the complex case and
specialize at the very end to the real case. In particular we sahll not need to take
care of the signature of our metric.

For given concrete bundles we even do not have to insist on the irreducibility
of the representations. However in our general setting we have to proceed more
intricate than to use directly the above idea.

6.14. The action on the first jets. For every b/b;-module E there is a very
simple formula for the action of g on the dual of the first jet space. Notice, we
do not require that the representation is irreducible here. In fact, this is a very
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special case of the identification of (J5°E)* with the universal enveloping algebra
of g which we shall use heavily in Section 8.

Lemma. We have (J}E)* = V* & (b_; ©® V*) with the action of by on the second
summand given by X.(a®y) = —[X, al.y € V*, while the action of by is X.(a®y) =
—[X,d@y+ta®X.y.

Proof. Clearly JIE = V & (b} @ V) as a vector space. The sections can be
considered as B-equivariant mappings s: G — V', hence also b-equivariant. The
jets from the fiber in question are then identified with the expressions jls, e € G
being the unit. The induced action of b must be also respected. As derived in 6.7,
the action of X € g is given by the Lie derivative £_x with respect to the right
invariant vector field X on G.

We shall identify an element a ® y € (V1)* with the linear functional defined by
(a®y,jls) = (Las(e),y). Now it is easy to express the action of b:

—(a®y, X.jes) = —(a @y, ji (L-x5))
(Lalxs(e),y) = (LxLas(e),y) + (LLa,x15(¢), Y)
= (Las(e), X.y) — (Lix,a5(e), y)-

(X.(a @), jes)

If X € by, then its action on y is zero and [X, a] € by and we get the first formula.
Similarly we get the other expression for X € by. O

6.15. Let us pass to the complex setting now. The action of the kernel by can be
written as a linear mapping ¢: by @ C" @ V* — V*. Since by = C™*, this gives
rise to the induced linear mapping ¢: C”* @ V¥ — C” @ V*.

Lemma. There is a non-zero element in (V1)* with trivial action of by if and only
if ¢ is singular.

Proof. Notice (Y)(X) = (X @Y). O

6.16. Lemma. It holds ¥ = —al,, — B, where « is the conformal weight of £ and
B is defined by B(a @ y) = >, ex @ (ae® — J(ae®)I).y.

Proof. We have first to work out the formula for ¢. This is easy using Lemma
6.14 and the description of g from 5.9. For all X e T [ a € C", y e V*

(X ®a®y)=—[X,al.y=—(Xal,, + (aX — J(aX)TJ)).y
This yields

Y(es @ y)(e") = =6/ Iy — (ere® = I(ee®)T D)y

Ple; Qy) = —ale; @y) — Zek @ (e;ef = I(e;eM) )y O
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6.17. Lemma. B = Ccn®1+1®Cy+ —Cgmgyv+. Here Cy stands for the Casimir
operator of an o(m)-module Y.

Proof. We shall verify the formula for the even dimension m = 2p, the odd case
is analogous. Let us express B(e; @ y) in terms of the matrices E;; and try to
get an expression in the action of the root elements h x4 1, cf. 10.10. We write
hiy = Eap—1,26—1 — Fag 21 for the orthogonal basis of the Cartan algebra. We have
hyrtot.€; = 0 for nearly all j and an elementary (but long) computation leads to
(J is now the symmetric matrix used in 10.10)

B(@j & y) = Z er X (E]'k — JEij).yI Z hwliwk.ej [029] hwkiwz.y—F

k=1 witw®
>k
P
+ Z Bt 4ok £ & horgor y + Z hk.ej ® hp.y
witw® k=1
i<k

The Killing form {, ) on the dual to the real part of the Cartan subalgebra hy = RP
is the standard Euclidean scalar product with factor —% . Hence by the definition,
our root elements satisfy (h xq,t, hipor) = 1 and {(hg, hy) = —2. Thus the root
elements h, x4, together with the multiples %hk form two dual bases of the Lie
algebra with respect to the Killing form. In view of this choice of dual bases A;,
B;, the above formula for B reads Bla @ y) = — > .(4;.a ® B;.y + Bi.a® A;.y).

The Casimir operator of a representation ¢ (one of the possible definitions) is
given by the action of an arbitrary pair of dual basis A;, B; through >~ ¢(A4;)ow(B;).
This is independent of our choice of the basis, see e.g. [Samelson, 89, p. 120]. By
the definition of the tensor product of representations we get

Comgv=(a @ y) = ZAiBi(a @Y)

= (Zz AZBZa) KLYy+a (Asz)y+ EZ(AZCL ® B;j.y+ B;.a ®A2y)
= (Cem @ 1)(a®y) +(1© Cy+) = Bla®y)

and the lemma is proved. 0O
A classical result states, [Samelson, 89, p. 121]

6.18. Proposition. The Casimir operator of the irreducible representation cor-
responding to a dominant weight X is C\ = (A, A + 26) where 26 is the sum of all
positive roots and { | ) is the Killing metric.

6.19. Corollary. Cgm = —%(m —1).

Proof. As mentioned in the formulation of Theorem 6.10, half the sum of all
positive roots equals to the sum of all fundamental forms (the so called lowest
form), see [Samelson, p. 91]. Hence we can compute: If m = 2 + 1, then twice the
lowest form equals 26 = (20—1)e! +(2(=3)e? - - -+e' = (m—2)el +- - -+(m—20)e' and
for m = 2{ we get (surprisingly) the same 26 = (20 —2)e! + (20 —4)el +-- 4271 =
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(m —2)e! 4+ -+ (m — 20)e'. The dominant form corresponding to C™ and R™ is
¢! and the Killing form differs by the factor —% from the Fuclidean one. Hence

Co = (el el +268) = (el el + (m — 2)et) = —%(m— 1. O

Now we are able to prove the most of Theorem 6.10. The operator D: O F —
C° F must be invariant with respect to the isometries of each of the metrics from
the conformal class. In view of the discussion from Section 4, D must be expressed
by means of the first covariant derivative only (every curvature term would kill
the operator on the Euclidean space). Hence it must be determined by some pro-
jection of V1 onto an irreducible component corresponding to a dominant weight
p. Such a projection gives rise to an invariant operator (i.e. we are able to find
suitable conformal weights for the bundles) if and only if the restriction of ¢ to
this component is singular. The Casimir operator Ccmgy« is constant on the ir-
reducible components and the mapping ¢ is singular if and only if —« is an eigen
value of B by Lemma 6.16. The latter means —a = Cg» @ 14+10 C\ — C, =
—%(m — 1)+ (A, 264+ X)) — (p,28 + p) by Lemma 6.17. This is the formula for the

conformal weights in Theorem 6.10.

6.20. The last claim we need for the proof of Theorem 6.10 is that each dominant
weight p which appears in R™ ® V has multiplicity one and we have to find all of
them. We shall use the Klimyk’s formula, see [Samelson, 89, p. 128], and since we
know all weights of R this happens to be rather easy.

Our notation will slightly differ from that in Samelson. Let us denote A, the
operator on the weights given by A4,(y) = Zsew(sgns)éf(y) where the sum goes
over the Weyl group and the Kronecker § symbol is zero or one as usual. By the
definition, A,(p) = sgnsA,,)(n) = sgnsA,(s(p)) and A, # 0 if and only if v
is regular, i.e. it cannot belong to one of the walls of the Weyl chambers (if v is
regular, then all elements s(v), s € W, are distinct, but if v is on a wall, then there
is s with sgns = —1 and s(v) = v). The functionals A, with v dominant are called
the elementary alternating functionals.

Consider now two dominant weights Ay, Ay and the decomposition of the tensor
product Vi, @ V), = Zp n,V, where n, are the multiplicities and we sum over all
dominant weights p. The Klimyk’s formula reads:

Proposition. For each dominant weight p the multiplicity n, is given by
np = Z Mo Agir,+5(p +6)
g

where the sum goes over all (not only dominant) weights o of Vi,, m, Is the
multiplicity of the weight o in V), and ¢ is the lowest form.

We shall apply the proposition to Vy, = C™ and Ay = A. In order to find all
weights ¢ appearing in C™ | we have to apply the Weyl group to the dominant
weight e'. According to the descriptions in 10.10, we can get all e, 1 < i < [,
where [ is the rank of the algebra as usual, and additionally the weight 0 in the odd
dimensional case. Since the corresponding weight spaces yield the full dimension
of C™ | we have found all weights.



6. THE FIRST ORDER NATURAL OPERATORS 67

Now, let us notice that for a dominant weight p and strongly dominant weight
v (i.e. v is not on a wall of the fundamental Weyl chamber), we always have

a0 = {

In our case, § = £((m—2)e! + (m—4)e + -+ (m—20)e'), p+ & must be strongly
dominant by the definition, but we also have

1 fpu=v

0 otherwise.

Sublemma. A+ o+ 6 is dominant for all weights o appearing in C™ with the only
exception when o = —e! and A does not involve é'.

Proof. A weight is dominant if it is a linear combination of the fundamental
weights with non-negative coefficients, i.e. they are of the form le azel with all

a; integral or half-integral and a; > -+ > «a; > 0 in the odd dimensional case
and «y > -+ > |ay| in the even dimensions. But for the weight A + é we have
ap > as > - > a_q and aj_; > a7 > + or aj_1 > |aq| in the even or odd di-

2 .
mensional cases, respectively. So we can always subtract e’ in the even dimensional

case without running away from the class of dominant weights. The same holds in
the odd dimensions m except A does not involve €', for then we get oy = —1 after
the subtraction. Adding of €* or the zero weight cannot cause any difficulty. O

Now, everything is prepared to finish the proof of Theorem 6.10. By the Klimyk’s
formula, the multiplicity equals either zero or one in the cases 6.10.(i) and (ii), for
two different weights ¢ cannot contribute to the same multiplicity. The multiplicity
one is obtained if and only if p = A £ e; is dominant. In the case 6.10.(iii) we can
apply the same argument, except ¢ = [ and this possibility remains for check. Let
us choose the element s € W with s(e!) = ¢, 1 < i < {— 1, and s(e') = —¢!, cf.
10.10. Hence s(6 + A —e') = 6 + A and so if we choose p with p = A — ¢! then
the contribution of the weight —e’ cancels with the contribution of the weight zero.
This proves the case 6.10.(iii) and Theorem 6.10 is proved in the complex case. But
its real version follows immediately since we can complexify the space V* @ V* and
seek for the heighest weight vectors with trivial actions of by there. During the
complexification, the highest weight vectors either remain the same ones or they
are doubled. Thus each real morphism must be reflected also in the complex case
and each complex highest weight vector gives rise to a morphism in the real case.
This completes the proof of Theorem 6.10.

6.21. Examples. Let us discuss the operators defined on the fundamental repre-
sentations of SOy(m’/, n, R).

Take first A=el + -+l 1<i<lifm=24+1,1<i<l—1ifm=2[ As
we know, this dominant weights correspond to the exterior forms of degree i. It is
easy to find all irreducible components in R™*® V3 (It is the same as for R™ ® Vy):

pr=e'+ -+t 4el 4Tt

po= et o it

ps =2t + el 4 et
The p; and ps result from adding one e/, the ps is the only possibility obtained
through subtracting an ¢/. We should notice that the dominant weight p; = e! +
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...+ €' does not describe the I-th degree exterior forms but only the self-dual part
Qfl_, i.e. the +1-eigen space of the Hodge operator.

We have to work out the conformal weights. The formula from Theorem 6.10
yields

1 .
aj = 5(m—1) = (A A+28) +{pj,p; +26)  j=123

and, as used several times above, the Killing form differs form the standard Eu-
clidean product by the factor —%. Hence we get

1
oy = §(m - 1)-

("4t m—Der - (m=2i+1)e' + (m—2i—2)eT 4. (m =20+
(' et (m—Del 4 F (m=2i— e’ 4 (m = 2D)e!) =
1

: , 1
:i(m—1)+(el+1,(m—2i—1)el+1):5(m—1—m—|—2i—|—1):i

This computation was a good test for the formula since the operator corresponding
to p1 must be of course the exterior derivative which is invariant with respect to
all diffeomorphisms. Therefore, we have known from the beginning that the weight
must correspond to the restriction of the canonical tensor representation of G L(m).
(In the case i = [ — 1, the operator is the composition of d with the projection onto
the irreducible component Qfl_ or QL)

A similar computation for ps leads to as = %(m — 1) = (e}, (m — 2i + 1)e?) =

$(m—1+m—2i+1) = m—i. This yields the codifferential § acting on the bundle
of exterior forms of degree ¢ with conformal weight m — ¢ and valued in exterior
forms of degree ¢ — 1 with conformal weight m — ¢+ 1.

For p3 we get az = $(m — 1) — (¢!, (m — 1)e') — (2¢*,me') = L(m — 1+ m —
1 —2m) = —1. As an operator invariant with respect to the isometries, this is the

trace-free part of the covariant derivative symmetrized in the last two indices.

6.22. Examples. Let us consider the remaining fundamental representation A =
%(61 +---+e') in the odd dimensional case m = 2[+1. We get only two possibilities
for the weights

pr=2A

1
p2:§(361—|—62—|—~~~—|—61).

1

The conformal weight oy equals %(m—l) and we evaluate as = %(m—l)—(%e , (m—

%)el) + (gel, (m— %)el) = %(m -1+ %m — % — %m—l— %) = —%. We shall see in the
next section that p; corresponds to the Dirac operator while the other one yields
the twistor operator.

If the dimension is m = 2I, we have still to discuss two fundamental repre-

sentations AT = 1(e!' +---+¢€') and A7 = L(e! + -+ /71 —€l). We get the
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components

1
03 :5(361+62+~~~—|—61_1—61)

The weights pli correspond to the Dirac operators, the other ones to the twistor
operators. The conformal weights are: ozli = %(m —1) and ozzi = —%.

7. The spinors and the Dirac operators

We want to work out a geometric description of the bundles corresponding to the
half integral dominant forms from the proceeding section and, of course, also of the
operators between them, at least for those discussed in the Examples 6.22. First
of all we need to understand the double coverings of the orthogonal groups. The
most efficient way is to view them as subgroups in the so called Clifford algebras.
Hence we start with the necessary algebraic considerations. The topic is standard
and can be found in several nice books, see e.g. [Budinich, Trautman, 88], [Lawson,

Michelsohn, 89], [Gilkey, 84].

7.1. Clifford algebras. Let K be any commutative field, V' be a finite dimensional
vector space over K and let @ be a quadratic form on V. We write T(V) =
S e, @FV for the tensor algebra of V and C/(V) = T(V)/Iq is the quotient algebra
with respect to the two-sided ideal I C T'(V) generated by the expressions x @z —
Q(z), x € V. The K-algebra C¢(V) is called the Clifford algebra. The composition
V — T(V) — T(V)/Ig defines the injection ig: V — CUV), for if v —w € Ig
then it cannot be an element in V' C T(V) for homogeneity reasons. We shall
often identify V' with ig(V) C C4V) in the sequel. The tensor multiplication on
T(V) induces a multiplication on C£(V') which we shall denote by *. The canonical
filtration F4 C T(V), F! = S1_,@"V, induces a filtration on C¢(V) denoted
by F}Q. In this way we get a canonical grading on C4(V). As a vector space,
CYUv) = FIOQ + F}Q/FPQ + 11712Q/F}Q + .... The exterior forms are also a quotient
of the tensor algebra, T(V)/J with J = (# @ y + y ® ). Since Q(z + y) =
(z+y)*x(e+y)=Q(x)+Qy)+ x+y+y+x on V, the identity mapping on the
tensor algebra T'(V') induces the isomorphisms

NV)=F/(F 4 InF) = F/(F 4 g N FY) = Fi /it

Thus, the Clifford algebra C4(V) is as a vector space isomorphic to the exterior
algebra A(V'). In particular, its dimension is 24V and if e;, i = 1,...,m, is a
basis of ig(V), then the unit 1 € K together with the products e;, * ---* ¢;,,
i1 < -+ < ip, form the basis for C4(V') (as a vector space). The multiplication on
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C(V') does not respect the grading, so the Clifford algebra C£(V) is not a Z-graded
algebra, however the induced Zs-grading C4(V) = C°(V) + C€*(V) is respected
(with the proper signs). As vector spaces, the homogeneous components C¢*(V),
i = 0,1, are isomorphic to the even and odd degree exterior forms in A(V'), and so
they have the same dimension 24™V =1 The Clifford algebra C¢(V) is universal with
respect to the linear maps ¢: V — A with the property ¢(z)? = Q(x)1, where A is
an arbitrary K-algebra: Indeed, each linear ¢ extends to an algebra homomorphism
on the tensor algebra 7'(V), but this extension is trivial on the ideal Iy, hence it
factors to an algebra homomorphism on C£(V').

7.2. There are several canonical automorphisms or anti-automorphisms of C£(V'):

First of all, the map defined by s =21 @ -+ - @zp —a' =2, ® - @ a1 on T(V)
leaves the ideal I invariant and so we get the induced mapping y — y* on C{(V),
a well defined anti-automorphism.

Further, there is the algebra automorphism « generated by —ig: we have a(z)? =
Q(z)l, z € V, and so « extends by the universal property. This homomorphism
acts by multiplication by +1 and the Za-grading of C£(V') consists just of the +1
and —1-eigen spaces of «.

Finally, we have the ‘bar’ anti-automorphism z — z = a(z?).

7.3. We shall consider only K = R or K = C and @ will be always the canonical
quadratic form with signature (p, ¢), p + ¢ = m, where m is the dimension of V' =
K™ . The corresponding Clifford algebras will be denoted by Cf,,(IR) or Clpy(p, q)
and C£,,(C) (in the complex case there is no reason to point out the signature of
Q). Since (VerV)@rC = (VorC)@c (Ver C), we have CLy, (C) = Cl, (R) @gC.
Thus, we can often discuss both cases together.

Let us fix ¢; € R™, the canonical base. Hence Q(e;,e;) = 0 for all ¢ # j, while
Q(e;,e;) = £1. Thus, Cly, (p, q) is an algebra generated by 1 € R and e; subject to
the relations e; xe; = —ej xe; i i £ j,egxe; =1, 1 <0 < p, and ¢; *x ¢; = —1,
p < i < m. Once we have fixed the orthonormal basis, there is the distinguished
element v = eq * - - - % ey, the so called volume element in Cl,, (K).

Now, the idea is to find a suitable subgroup of invertible elements in Cé,,(p, q)
acting on R™ by isometries.

We consider R™ as the subspace R™ C C¢,,(R) and so we can always act by
conjugation (accomplished with suitable sign changes): R™ 3 y — a(z)xy*z~1 €
Cly (R), with & € Cl, (R)*, the multiplicative group of invertible elements in C£(V).
The subgroup I' C Clp, (R)* of elements with a(z)*y* =1 € R™ for all y € R™
is called the Clifford group. Let us denote by p: T — GL(m) the induced group
homomorphism. In [Atiyah, Bott, Shapiro, 64], p is called the twisted adjoint
representation of I' on R™. It is easy to see that all three canonical maps from 7.2
preserve I'. Let us further define another mapping N: T' — T, N(z) = z % &, i.e.
AN () = plz) 0 p(&).

We define the Pin(p,q) as the subset {y € T' C Cln(p,¢); N(y) = L or N(y) =
—1}. Let us notice that the multiplicative subgroup Ct,, (p, ¢)* in Cy(p, q) is a Lie
group (a closed subgroup of a matrix group) and Pin(p,¢) is a closed subset, by
the definition.

7.4. Theorem. Pin(p,q) is a Lie subgroup in the Clifford group. The restriction
p|Pin(p, q) is a surjection of Pin(p, q) onto O(p, q) with kernel Zo = {+1} C T'. Let
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Spin(p, q) be the inverse image of the connected component of the unit SOy(p, ¢q) C
O(p,q). If m > 3, then the restriction p: Spin(p, q) — SOu(p, q) is the non-trivial
connected and simply connected double covering of SOy(p, ¢).

Proof. First of all we have to show that p has values in the subgroup of all isome-
tries and this requires to study the kernels of p and N. Then it will be easy to see
that our choice of the subset Pin(p,q) yields a subgroup, i.e. a Lie group by the
remark at the end of 7.3, and that p|Pin(p, q) is surjective.

Sublemma. The kernel of p: T' — GL(m) is precisely the multiplicative subgroup
R* C T generated by 1. For each x € T the value N(z) belongs also to R*.

Proof. Let x € kerp, so that a(z) *y = y*« for all y € R™. As an element in
Cly,(R), z decomposes into the homogeneous parts = 2 4+ 2! and the condition
for  being in the kernel splits into two conditions

(1) Pxy=yxz’ and zlxy=—yxaz’
As usual e; are the elements of the canonical basis in R™. Let us fix some e; and
write 20 = a® + ¢; * a', &' = b' + ¢; * b°, where the elements %, a', b, % do
not involve e;. The first condition in (1) with y = ¢; now implies a % e; + e; *
al xe; = e; xa® 4+ e; % e; x al. Since ap is an even element without e; while a’
is an odd one, we have a x¢; = ¢; * a® and a' * ¢; = —e; * a'. Hence we get
e; xa® — Q(e;)al = e; * a® + Q(e;)at, so that a! = 0 and therefore the even part
2% does not involve ¢;. Since ¢ was arbitrary, xp is a multiple of 1. Similarly, the
second condition in (1) yields b! * e; + 5% x e; % e; = —e; * b — e; x bY x ¢; where b!
is odd and b° even. Thus, —e; * b1 +0°Q(e;) = —e; b1 — b°Q(e;) and so b° is zero,
z! does not involve any e;, i.e. ! is a multiple of 1. On the other hand, z' is odd,
hence zero, and the first claim is proved.

Since y' = y for all y € R™ we have a(z)* y* z~1 = (21)7! x y* a(z’) and so
(p(a(x?)) o p(2))(y) = y, since a? is the identity on Cf,,(R). Thus, we have shown
that N(z) C kerpforallz € . O

Now, Nz *y) = axy+xy*T = c* N(y)*Z = e *xZ+ N(y) = N(x)N(y)
and so N: T' — R* is a group homomorphism. Moreover N(a(z)) = o(z) *
' = a(N(x)) = N(z), for N(z) is an element of degree zero. But this implies
N(p(z)(y)) = N(a(z))N(y)N(z~1) = N(y) for all z € T and y € R™. For each el-
ement # € R™ N(z) = xx(—x) = —z*xx = —Q(x), i.e. N|R™ is the negative of the
standard scalar product with signature (p, ¢). But then the formula for N(p(z)(y))
claims precisely p: T' — O(p, ¢).

Let us write (x,y) for the scalar product of z, y € R™ induced by @. For all
elements y € R™ C Clp(p,q) with N(y) = —Q(y) = 1 and # € R™ we have

y~! = —y and

1

py) () =aly)xexy™ =yrexy=2x+2{x,yy

where the last equality follows from 2{(z,y) + Q(z) + Q(y) = (z + y) * (x + y) =
Q(z) + Q(y) + x xy + y+ x. Similarly, if Q(y) = 1, then y = y~! and

2<$,y>y

py)(e) = —y*ax*xy=ux— )
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and this formula holds for both cases. It is well known in the definite case that
the latter transformations are precisely all reflections in hyperplanes in R™ which
generate the whole orthogonal group O(m,R). Since the real groups of pseudo-
orthogonal transformations all admit the same complexification, they must be also
generated by these transformations (this argument applies immediately for the con-
nected components of the unit, the whole groups need more detailed consideration).
Thus p: Pin(p,q) — O(p,q) is onto. The kernel of this map is the intersection
kerp N {N(z)? = 1}. Since the kernel of p coincides with the multiplicative group
R* and N(X.1) = A%, the kernel of p|Pin(p,q) must be Z, (as a multiplicative
group).

We already know that Spin(p,¢) is a double covering of SOqy(p, ¢). In order to
show that this is a non-trivial covering, it suffices to connect +1 and —1, i.e. the
elements of the kernel of p|Spin(p, q), by a curve in Spin(p,q). Let us consider
t—c(t) = a(t) + b(t)ey x ea. We have N(a(t) + b(t)ey * ea) = (a(t) + b(t)ey * ea) *
(a(t) + b(t)ez x e1) = a(t)? + b(¢)?Q(e2)Q(e1). If Q(e1)Q(e2) = 1, then we choose
a(t) = cost, b(t) = sint. Then N(c(t)) = 1 and ¢(0) = 1, e(m) = —1 so that it
yields a suitable curve. If m > 2, we can always find two generators e;, e; with
Q(e;)Q(e;) = 1. Since SOy(p, q) is connected by our definition and its fundamental
group is Zs if m > 3, Spin(p, ¢) must be simply connected in dimensions m > 3. O

7.5. Remark. Let us consider the positive definite case O(m,R). Each element
p(y) € O(m,R) equals to a composition z, o ... o z; of reflections in hyperplanes
and we have seen, there are always elements y; € R™ C T' with p(y;) = ;. By
Theorem 7.4, there is y € Pin(m), y = +y, * ---*y1. Let us write Pin/(m) =
Pin(m)NCH, (R),j = 0,1. The element y must be either in Pin®(m) orin Pin'(m).
But we know that y € Spin(m) if and only if the number of the reflections involved
is even. Thus Spin(m) = Pin°(m) and we see that the elements in Spin(m) are
just the products y = y1 * -+ x ya; with y; € R™, Q(y) = —1. Then y=* = ¢
and p(y)(z) = y * x *xy'. Let us remark that Spin(2,0) and Spin(0,2) are also
non-trivial coverings by the argument from the proof. Since they are generated by
€1 * €3, they are one-dimensional (N(a.l 4 bey * e2) = 1). As a double-covering of
the circle S' C R? it must also be S'.

In the case of a general signature, we still get Spin(m) C Pin°(m) but the whole
Pin®(m) is not involved. The group SOq(1, 1) equals R so that it does not admit
a non-trivial covering.

7.6. The complex spin groups. We have noticed that the complex Clifford
algebras are Cl,, (C) = Cly, (R)®gC, i.e. the complexified real Clifford algebras. All
the previous definitions and considerations have their complex analogies (working
best with the negative definite bilinear form @) and we get the complex groups
Pin(m,C) and Spin(m,C) which are non-trivial double coverings of the complex
orthogonal group if m > 2. We shall see below that all the real spin groups are
matrix groups and their complexifications are just the complex spin groups.

Let us remark that there are other complex Lie groups sitting in the complex
Clifford algebras, the groups Pin@(m) which are important in the K-theory. The
latter groups are quite different from Pin(m, C) defined above and should be care-
fully distinguished. Namely, we can change our definition of the basic operation by
setting ag(r @ 2) = a(2) ® 2, (r ® 2)T = 2' @ 7 and the ‘bar’ operation and N is
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defined in terms of a¢ and ( )T as before. The (other) complex Clifford group T'C
contains the elements z € Cl,,(R)® C with ag(z) *y*z~1 € R™ for all y € R™
(so it might be bigger).

Going through the above proof, nearly everything goes through with R* replaced
by C* (notice that the generators e; which are used in the proof remain the same,
i.e. real) and the mapping p takes values in the real orthogonal group O(m,R).
We define the complex group Pin@(m) as the kernel of NC: TC — C*. At the
end we get as before that the kernel of p consists of non-zero complex numbers
1® 2z € Cly(C) with N¢(1 ® 2) = 2z = 1. Thus, we get for all m > 1 the exact
sequences of Lie groups

1 —U(1) — Pin®(m) — O(m,R) — 1
1 — U(1) — Pin(m,R) xz, U(1) — Pin(m,R)/Zs — 1.
This induces an isomorphism Pin®(m) ~ Pin(m,R) xz, U(1).

7.7. Tt is possible to view the Clifford algebras as matrix algebras, the concrete
identifications will require some effort. Let us write Mat,, (K) for the algebra of
(m x m)-matrices over K, i.e. End(K). Beside the real and complex numbers, we
shall also meet IK = H, the quaternions.

Proposition. There are the following identities of algebras:

Mat,, (K) ~ Mat,,(R)®r K over K

Mat,, (R) ® Mat, (R) ~ Mat,,, (R) over R
CerC~~CopC over C
C @r H ~ Mat(C) over C
H @r H ~ Mat,(R) over R.

Proof. The first identity is clear. In the second one, we define the tensor product
of the generating matrices E;; @ Ep, as the block matrix A = (Aq) with 4;; =
Fpy and Ap; = 0 for all other indices. This generates the required isomorphism.
The third one is defined on generators as follows: /=1 ® 1 — /=1 @ /=1 and
1@ =1+ /=1 & —/—1. Hence we get a @ b — (ab, ab).

The algebras Maty(IR) and Maty(C) are generated by two matrices

/0 1 4 a1 0
O'—lOaIl 7'—0_1

which form a linear bases together with the identity matrix Is and the matrix

v=oT = 0 -1
SO\ 0 )¢
These matrices satisfy o7 = —70, 02 = 72 = —v? = I».
The next 1somorphism is obtained through v/—1® 1 +— /—1l3, 1®i — —/—10,
1® j +— v on generators.

The last isomorphism is defined on the generators by 1®¢ — v®o, 1@k — v,
1Ql—ov, k@l—7rov. O
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7.8 Proposition. There are isomorphisms

Cls(2,0) @k Clin (p, ) = Climia(q+2,p)
Cla(1,1) @k Clm(p, q) = Clymta(p+1,9+1)
Cl3(0,2) @k Cln (p, q) = Climia(q,p+ 2).

The low-dimensional algebras and their even parts are

CH(LO)~ReR  CH(1,0)=R
Cl(0,1)~C (0, 1)~ R
Cly(2,0) ~ Mata(R) C(5(2,0)~ C
Cls(1,1) = Maty(R) C6(1,1)~RGR
C00,2) ~ H €5(0,2) ~ C

Proof. We shall give explicit formulas for these isomorphisms on the generators.

Let us consider the canonical basis e; in R™, f1, f2 in R? and eé» in R™+2, Let us
define the elements g1 = f1®1, g2 = fo®1, git2 = f1* f2®e; 1n the tensor products
of the Clifford algebras. We shall show that the linear map 1 defined by (e} ) = g;
satisfies in all three cases the universal property from 7.1 and so extends to an alge-
bra homomorphism. If j = 1 or j = 2, we get 1/)(e§»)Z = f;elxf;ol = Q(f;)1®1 and
for €], it holds 1/)(e§+2)2 =(fixfa@e)x(fixfa®e) = =Q(e;)Q(f1)Q(f2)(1®1).
Hence the roles of p and ¢ interchange and two positive or two negative dimen-
sions are added, or we add one positive and one negative dimension and the p and
g remain. Then ¢ extends to an algebra homomorphism and since the spaces in
question have equal dimensions and generators are transformed into generators, it
must be an isomorphism.

In the algebra Cf1(1,0), there is the generator e; with e¥ = 1. Hence C¢1(1,0) =
R @R and the even part is 1R with the isomorphism defined by 1 — (1,1), e; —
(1,—1). Similarly, e; with e} = —1 is the generator of C¢1(0,1) and so e; +— /=1
defines the isomorphism with C. The even part is then 1R.

The algebra Cf5(2,0) is generated by eq, es with e = €3 = 1, e1 xe3 = —ea % €1.
We define e; +— o, €5 — 7 and the matrices o and 7 are declared as odd elements.
Then 1 and v are even, v? = —1 and we get the required isomorphisms.

If the signature is (1,1), we associate e; to o (the positive dimension), while
€9 — v. The latter are the odd elements and so the even subalgebra is generated
by 1 and 7, hence equals to R @ R.

Finally, in the negative definite case e = e2 = —1 and we can identify ¢; and e,
with the generators ¢, j of the quaternions H. O

7.9. Proposition. For each dimension m it holds
Clmts(p+8,q) = Clmys(p+4,q+4) = Clinys(p,q+8) = Cln(p, ¢) @ Matys(R)

The Clifford algebras in dimensions less then eight are listed below for all definite
scalar products.
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m Cln (0,m) Cly(m,0) Clrn (0)

0 R R C

1 C ReR CeC

2 H Matz(R) Matz(C)

3 H D H Matz( ) Matz(C) D Matz( )
4 Matz (H) Matz (H) Mat4(C)

5 Mat4(C) Matz(H) D Matz( ) Mat4(C) D Mat4( )
6 Matg(R) Mat4(H) Matg(C)

7 Matg(R) D Matg(R) Matg( ) Matg(C) D Matg( )
8 Matm(}R) Mat16( ) Mat16( )

Proof. The whole statement follows from the two above propositions, see [Bu-
dinich, Trautman, 88] if more details are necessary. O

7.10. Proposition. Let e}, i = 1,...,m + 1, be the canonical basis on R™*+1,
ei, i = 1,...,m, be that on R™, and let ¢: R™ — C09 .\ (p,q + 1) be defined by
@(e;) = ey, 1 xe;. Then ¢ extends uniquely to the algebra isomorphism Cly, (p, q) ~
Cﬁfn_l_l(p,q +1). If we take e}, i = 0,...,m, as basis of R™*! and define ¢(e;) =
eq * e;, we obtain the isomorphism Cﬁm( q) ~ Cﬁm_l_l( +1,p). In the complex case
we have Cl,, (C) ~ CE?HH(C). Furthermore, C£2, (p, q) =~ C£5 (g, p).

Proof. Since p(e;)? = e ke e x e = —Q(ei)Q(e}), p extends uniquely by the
universal property of the Clifford algebras if Q(ej) = —1 and Q(e;) = Q(e;) or
if Q(ej) = 1 and Q(e;) = —Q(e;). This leads to homomorphisms between the
indicated algebras. Since ¢ maps the generators of Cly, (p, q) to distinct elements,
it must be injective. The dimensions of both spaces are equal and so ¢ i1s always an
isomorphism. The complex case follows from the real considerations with negative
definite scalar product.

The last isomorphism is obtained by composing the above isomorphisms but it
can be also defined directly by e; % e; — —e * e}. Indeed, the latter elements
generate the even parts and the mapping is induced from e; ® e; — —ef ® e} which

leaves invariant the ideal (x @ y +y ©  — 2Q(z,y)) C >, @**R™. The even parts
are just the quotients by this ideal and so the homomorphism which is obvious on
the tensor algebra descends to the even parts of the Clifford algebras. O

7.11. Remark. Let us notice that the propositions above yield explicit identifi-
cations of the Clifford algebras with the (sums of) matrix algebras (as promised at
the beginning of 7.7) and describe also explicitly the even parts of them. The whole
situation is described by the 64 Clifford algebras Ct,(p, ¢) with 0 < p,q < 7, the
so called spinorial chessboard. We can find the main properties of Clifford algebras
in this scheme.

It is possible to describe all real Clifford algebras by means of the so called real
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clock, [Budinich, Trautman, 88].

Ht HeH

The usage: given p and ¢ compute first the ‘hour’ g such that ¢ —p = 8a + p where
a € Z and 0 < g < 7. Then the algebras adjacent to the corresponding arrow
determine the type of Cﬁg_l_q (p,q) (the source) and Cl,1,(p,¢) (the target). The
dimension of the full algebra is 2°7¢ and we get the Clifford algebra by taking the
proper matrix algebra.

For example: p = 2 and ¢ = 1 yield ¢ = 7 and so Cl3(2, 1) = Mata(R) & Mato(R)
while C€3(2,1) = Mats(R).

Similarly Cls(3,5) = Matg(H), for in this case g = 2 and dimMatg(H) = 28,
CL3(3,5) = Matg(C).

7.12. Clifford modules. A complex vector space V with an algebra homomor-
phism «: Cl, (C) — End(V) is called a (complex) Clifford module, « is called a
representation of C¢,,(C). Similarly a real vector space with a representation of a
real Clifford algebra is called a (real) Clifford module. In fact, our aim is to un-
derstand the representations of the spin groups. However the study of the Clifford
modules is a good way:

Proposition. There are bijections between the representations of Spin(m+ 1, C),
the representations of C¢,,,(C) and the representations of ¢y, |(C). Furthermore,
the decompositions into irreducible representations coincide.

Proof. We consider the canonical negative-definite scalar product. The image of
Spin(m+1,C) C €5, (C) in the inverse of the isomorphism ¢ from 7.10 generates
the whole Clifford algebra Cfy,(C) and the latter is isomorphic to C£5, ,;(C). Since
all the relations on the generators live in the image of the spin group as well, both
the statements of the proposition are clear. [0

7.13. Spinor bundles. Given any Clifford module V,, with the representation =y
of the real Clifford algebra Cl,,(p, ¢), there is the corresponding bundle F, M — M
over each oriented pseudo-Riemannian m-dimensional manifold M with a fixed spin
structure (and the proper signature of the metric). This bundle is constructed as
the associated bundle to the principal spin bundle PM — M with respect to the
given representation 7. More generally, for each oriented pseudo-Riemannian vector
bundle E with a spin structure there is the spinor bundle CL,(E) = Pspin(E) x~ Vy
where the dimension of fibers in E is m and Pgpn(E) is a covering of the SOq(p, ¢)-
frame bundle of £ with structure group Spin(p, ¢).
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7.14. The Clifford multiplication. As we have seen in the proof of Theorem 7.4,
the twisted adjoint representation of the Clifford group acts on IR™ by the reflections
and this is equivalent to the usual action of the spin group on R™ obtained from the
identical representation of GL(m,R). Thus the tangent functor 7' can be viewed
as a very special example of a spinor bundle.

Proposition. For each Clifford module V., there is the mapping+: R @V, — V,
defined by y @ v — v(y)(v), y € R™ C Cly(p,q) which is Spin(p, ¢)-equivariant
with respect to the twisted adjoint action on R™ and the action y. An analogous
mapping arises for complex Clifford modules.

Proof. For all z € Spin(p,q), y € R™ and v € V, we have

a(z)xy*xe”" @y(x).v—y(2)y(y)y(z~ )y (x).v = y(2)y(y).v

since each element « € Spin(p, ¢) is even and so « disappears (the dot means the
application of the endomorphisms). O

This map is called the Clifford multiplication and since 1t is equivariant it extends
to natural transformations defined on spinor bundles. Furthermore, there is the
canonical natural equivalence 7" — T between the tangent and cotangent bundles
on Riemannian manifolds. Hence there is also the natural bilinear transformation
ov: IT"M @ FyM — F,M for each spinor bundle F,,M. We shall call all these
mappings Clifford multiplications.

7.15. The Dirac operators. For each spinor bundle £, M on an oriented pseudo-
Riemannian spin manifold M, there is the canonical Levi-Civita (or Riemannian)
connection on the pseudo-orthogonal frame bundle. As an o(p, ¢)-valued right-
invariant one-form, this connection lifts uniquely to the spin frame bundle on M.
Let us write V for the corresponding covariant derivative on the associated vector
bundles. Then we have the following composition

v .
D: C®°(FyM) — C=(T*M @ F,M) — C®(F,M).

This operator is called the Dirac operator.

7.16. Our next aim is to describe the so called Dirac spinors and Weyl spinors
and the Dirac operators on them. The regular representation of Cl,,(C) is its
representation on itself by left multiplication. This is a faithful representation.

Proposition. The representations of the complex Clifford algebras are always
completely reducible and each irreducible faithful representation of Cﬁgn_l_l(C) or
Cls, (C) is equivalent to a summand in the regular representation, i.e. to the iden-
tical representation of Matsn(C) on C?" . All irreducible faithful representations of
Clo, (C) are equivalent.

Proof. According to 7.7, the complex Clifford algebras are always isomorphic to
a sum of full matrix algebras over €. Assume first m = 2n so that Cf,,(C) =
Mat2n(C) and consider the regular representation of Matg=(C)) on itself. The
matrix algebra decomposes under this representation into the sum of copies of
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C?" | each of them representing the matrices with one non-zero column allowed.
All these representations are faithful (these are the identical representations of
Matsen (C) = End(@zn)). Such matrices with one (fixed) non-zero column form
minimal left ideals.

Let us consider a faithful irreducible representation ¢ of Cls, (C) on some space
S. Fix one of the above minimal ideals B and some elements v € S, # € B with
p(z)(v) # 0. We define f: B — S, f(y) = ¢(y)(v). The regular representation
factors to a representation pg: Cl2,(C) — End(B) (this is the above identical rep-
resentation) and f intertwines pg and ¢ by its definition. Since f(B) contains
non-zero elements, and since pg is irreducible as B is minimal, f must be an iso-
morphism.

By a general theorem, each finite dimensional representation of a sum of full ma-
trix algebras over an algebraically closed field is completely reducible, see [Boerner,
67, p. 68]21. Hence the proposition is proved for even dimensions. But C£), ., (C) =
Clrn (C) by 7.10. O

Let us notice that the complete reducibility of all representations of connected
components of the identity in the complex pseudo-orthogonal groups also follows
(cf. 7.12), for each representation of SO(p, ¢,C) can be viewed as a representation
of Spin(p, ¢, C). The real case is then treated similarly to the discussion from 3.13.

7.17. Proposition. The center Z of C{,,(K) is 1K & vK if m is odd, and 1K if
m is even. The center of C¢2, (K) equals to 1K & VK for even dimensions and 1K in
odd dimensions.

Proof. The proof goes similarly to the sublemma in 7.4. Consider an element
z € Cly (K) which commutes or anti-commutes with each element v € K™. We can
decompose & = 2% + 21, the even and odd part of 2, and the latter condition splits
into

xo*eiq:ei*xozo, xl*ei:Fei*xlzo, 1=1,...,m.

Now, we fix ¢; and express £° = a° + ¢; ¥ a! where @/ do not involve e;. Hence

we get a® xe; +¢; *xa' xe; Fe; x a’ Fe; + ¢; + a' from the first condition and
a’ is an even element while a' is odd. Since they do not involve e; we obtain
e; %a’ — Q(e;)al F e xa’ FQ(e;)at. If 2° commutes, this yields 2Q(e;)at = 0, i.e.
a' = 0. Since ¢ was arbitrary this means z° does not involve any e;, hence belongs
to K. If 2 anti-commutes, then we get 2¢; * a® = 0 and so z¥ = e; * a' where a'
does not involve ¢;. Since this holds for all e;, 2° must be a multiple of ej * - - - * ey
which 1s possible only if m is even.

Similarly, write ' = b' + ¢; * b° and apply the second condition. We get b' x
e; +e; kb xe; Fegx b Fe;xe; xb° = 0. Analogous considerations as above yield
b' = 0 in the commuting case, so that ! € vK and is non-zero only for odd m. If
z! anti-commutes, then 8° = 0, i.e. 2! € K, hence zero.

So we have proved: if m is even, then K is the center and vIK consists of all
anti-commuting elements, while if m is odd, then the center is K & vIK and there
are no anti-commuting elements beside zero there.

21The proof involves only rather elementary manipulations with matrices, but it is not short.



7. THE SPINORS AND THE DIRAC OPERATORS 79

Since the center of C¢2 (K) consists of all elements which commute or anti-
commute with elements from K C C¢,, (KK), the last statement of the proposition
follows. 0O

7.18. Dirac spinors and Weyl spinors. We have just proved that each of the
algebras Clo,(C) and Cf3,, |, (C) admits precisely one faithful irreducible represen-
tation on the complex space S = C2", up to equivalence. The elements of this
representation space S are called the Dirac spinors.

For example, starting with V = C%, we get the complex 2-component spinors,
often also called the Pauli spinors. If V = C*, the Dirac spinors are complex 4-
component. Let us remember, the Clifford algebras are explicitly identified with
matrix algebras in even dimensions and so the generators e; of Clan(C) act by the
usual multiplication by the corresponding matrices 7;, the so called Dirac matrices.
For the explicit expressions of the Dirac matrices in low dimensions see 7.7 and 7.8.

Assume now, the dimension is even, m = 2n, and write 7: Cfy, (C) — End(S) for
the faithful representation on the Dirac spinors. Fixing the canonical orthonormal
base e; in V = C™, the volume element v = ey * --- * e,,, satisfies v x v = *£1.
We define v/ = v if v? = 1, while v’ = /—1v in the other case, so that v'? = 1.
Hence y(v'): S — S splits S into the +1-eigen spaces Sy. Since ¢’ is in the
center of CfY, (C), the restriction vo = ¥|C¢2, (C) decomposes as o = 74+ & 7—,
v+ (y) = $(1d £ v(v"))y(y) for all y € €LY, (C). Thus, we have got two irreducible
inequivalent 2" ~1-dimensional (but not faithful) representations. The elements in
Sy and S_ are called the Weyl spinors of positive and negative helicities. They
are also called right and left Weyl spinors, or half-spinors (Chevalley) or reduced
spinors (Penrose and Rindler).

In view of 7.12, we have constructed two irreducible representations of the Lie
group Spin(2n,C), v4 on Sy and y_ on S_, but also the irreducible representation
v of Spin(2n+1,C) on S.

If we change our orientation of V', the volume element v is replaced by —v and
so the roles of the helicities are interchanged.

7.19. The odd dimensions. Let us consider the generating vector space V =
C? x C and a generator es,41 in Cloy41(C) with Q(e2n41) = 1, the scalar product
on C?" is as before (the positive definite one works well). Using v: Cls,(C) —
End(S), we can define two irreducible representations of Cla,41(C) in S by setting
vy (z) = £y(z) for all € C* C Cly,(C), and v (e2n41) = E(¥(v")) (notation
form 7.18). The analogy to v’ in dimension 2n+411is v"/ = v/ *eapy1, i.e. v/ 0" = 1.
Since v (v"") = £7(v") o y(v") = £1d, these representations cannot be faithful. But
their direct sum

v =74 &9 Clony1(C) — End(S) & End(S)

is a faithful representation in S @ 5. Of course, the representations v/, and .
are equivalent when restricted to the even part Cﬁgn_l_l and then equivalent to the
representation 7.

Let us notice that the v can be equivalently obtained from the representations
7+ in the even dimensions using the isomorphism C¢3, | ,(C) ~ Cla,11(C).
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7.20. The matrix realization. If we use explicitly the description in 7.7-7.10, we
find the important generators of the matrix algebras which realize the isomorphisms
with the Clifford algebras. However, their choice can be quite different and we can
get different (but equivalent) representations of the Clifford algebras on the spinors.
The matrices o, 7 and v are generators of Mat(C) and satisfy the same relations
as the generators ey, ea, €1 * s in Cl2(C) where we take the positive definite scalar
product.

Consider first the dimension m = 2n. Using the above matrices, we can define
generators of Matar (C)

Y1 =TR QTR -l
Yoj = —V-11@ - @70velhe -0l

with ¢ or v on the j-th place, which satisfy (%)2 = I,, and vz = —7y7y; for all
k # 4. Thus we have found a concrete realization of C¢,, (C) as a matrix algebra, i.e.
one possible explicit form of the Dirac matrices.?? If we consider the same tensor
products of matrices, but we distribute the scalar multiples v/—1 in another suitable
way, we get algebras isomorphic to Clifford algebras corresponding to a prescribed
scalar product with any signature. In particular, if there are no /—1, we get the
so called neutral Clifford algebras Cly,(n, n, C). Of course, all these choices lead to
isomorphic algebras in the complex case, but they become important if we pass to
the real algebras and spinors, see below.

Let us examine how the 27 equivalent spin representations v sit in the Clifford
algebra. Let us consider the elements y; = /—1les;_1%es;, so that the corresponding
matrices are V; = /=179 172 = b ® - @@ 7 @1, ® --- @ I, where 7 is on
the i-th place. The matrices Y; are diagonal block matrices with +1,,_;41 in the
blocks regularly changing the signs. Consider the right action of the matrix algebra
on itself. This corresponds to the right action of the Clifford algebra on itself by
multiplication. Each of the 2”7 columns in Mats» (C) is precisely the simultaneous
eigen space corresponding to uniquely prescribed sequence of signs +1 with respect
to this right action. Thus, the spin spaces sit in the Clifford algebra (complex with
positive definite scalar product) as the simultaneous +1-eigen spaces for the right
actions of the elements y;.

If the dimension is odd, m = 2n+1, we need one more generator. We can choose

Vo4l =TR - QT

which anticommutes with all the generators above and has square one.

7.21. The real spinors. The complexification of each real Clifford algebra
Clum (p, q) is isomorphic to €, (C). Hence there is always an injection Clp,(p, ¢) —
Cly (C) of algebras and so each representation of the complex Clifford algebra can

22The procedure leading to such explicit representations consists in choosing a way how to pass
from a representation of C{2,(C) on S = 2" to a representation of Clopt2(C) on S S = et
There are several well known extension procedures, let us mention the Brauer-Weyl extension, the

Cartan extension, the Dirac extension. We have used the latter one.
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be restricted to the real one. This yields representations of Céy,(p, ¢), but in com-
plex vector spaces. These restrictions are irreducible if the complex representations
are irreducible which means that there are no invariant complex subspaces in the
representation space.

If we start with a real representation of Cé,,(p, ¢), we can complexify it to obtain
a complex representation of the complexification Cly(p,¢) @ C. However, if we
have started with the complex representation, the restriction to the real algebra
may or may not admit an invariant real subspace in the representation space. Let
us indicate very briefly what can happen if we restrict the spin representations of
the Clifford algebras. Much more details can be found in [Budinich, Trautman, 88,
Section 7.2].

Let us consider the dimension m = 2n = p + ¢q. To each complex space W we
associate the complex conjugate space W which is the same as W if viewed as a
real vector space but the scalar multiplication by a € C differs from W by taking
a. If we write w for the elements of W then w are the elements in W, w — w is
the identity of the real spaces. Each linear map f: W; — W5 induces a linear map
f: Wi — Wa, f(w) = f(w). The correspondence f — f is not linear as Af — Af.
The bar mapping is compatible with the duals, i.e. W* ~ (W)* and the Hermitean
conjugate map to f is defined by f*: Wy — W,

Consider now the restriction of the spin representation y: Cly(p,¢) — EndgS
and the conjugate ¥: Cln(p,q) — EndcS. We shall write 4 = p — ¢ mod 8. Since
the center of the Clifford algebra is the field of the scalars, there is a C-linear
isomorphism C: S — S which intertwines the representations v and 7, and which
satisfies either CC = Id if g = 0 or 2, or CC = —Id if p = 4 or 6 (this needs of
course a proof). The first case is called real while the other one quaternionic. In
the real case, v = vt +~~ decomposes and v*: C¢,, (p,q) — EndgS* are two real
equivalent representations. The elements of ST are called the Majorana spinors (of
the first kind). They can be also characterized by S* = {s € S; C(5) = xs}. The
restriction of v to C% (p,q) decomposes even in the complex case into the eigen
spaces of the action of the suitable multiple of the volume element v'. The same
takes place for the complex conjugate space S and ¢'. One computes 7(v') o C' =
(=1)*e=D/2C o 4(v') and so C respects the helicity if 4 = 0 or 4, but changes the
helicity if 4 = 2 or 6. If 4 = 2, then there are C-linear isomorphisms Fy : S3 — S*
constructed by means of v' and C, but S3 N S* is zero for all combinations of
signs. If 4 = 0 or g = 6 then we can find another decomposition of the Dirac
spinors, S = SF @ S7 with SZ»i = {s € S; Cv'(5) = £s} (notice Cv'Cv' = Id if
p#=0or p=06). But these spinors, called Majorana spinors of the second kind, are
invariant under the action ;7(s) = \/—17(s) of C{, (g, p) but not under the action y
of Cly(p,q). If 4 = 6, they are equivalent to the Majorana spinors of the first kind
for the algebra C¢,,(¢,p) and we have once more the C-linear isomorphisms Fy .
The representations v+ are intertwined by the multiplication by /—1. If u = 0,
then all representations 7, y+ are real and there are non-zero intersections of S*
and Sii. Thus, the real form of S decomposes into four real 2”~'-dimensional space

Si, the so called Weyl-Majorana spinors. If ;4 = 4, there are no Majorana spinors.

7.22. Dirac operators on the Weyl spinors. Let us consider an even dimension
m = 2n and let us specialize the Clifford multiplication from 7.14 to the Clifford
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modules S1 of Weyl spinors viewed as the complex representations of the real
algebras. We get

Proposition. The Clifford multiplication «: R™ ® S — S interchanges the helic-
ities, i.e. it restricts to the mappings ¢: R™ © St — S3. The same holds for the
complex Clifford multiplication.

Proof. It suffices to check the mappings on the generators. Let us remember that
the Weyl spinors are &1-eigen spaces for the v, where v’ is either the volume v or
V—1v. For all e; € R™, s € 51 we get v'.(ej08) = ¥(V' xe;)(s) = ay(er x -+ x ey *
e)(s) = a(=1)""iy(eg x .. N ke )(s) = (1)L (=1 iy(e; x ') = —ej0(V.5)
since m is even (a is either 1 or /=1). O

Let us also write A and Ay for the (real) bundles over pseudo-Riemannian man-
ifolds corresponding to the (complex) spin representations. Since the Riemannian
covariant derivative is a natural operator, it must respect subbundles coming from
Spin(2n)-invariant submodules. Hence the Dirac operator D: A — A decomposes
as

Di: Ay — Ag

in the even dimensions. We claim that the operators D and Dy are the operators
discussed in the Example 6.22. In order to see this explicitly, we have to find the
highest weights of the basic spin representations and for that reason we need a good
description of the Lie algebra.

7.23. The Lie algebra o(m+1,C). Writem+1 =2nor m+1=2n+1 for the
dimension. Let us consider the usual positive definite scalar product, hence the Lie
algebra is generated (as a vector space) by the matrices A;; = E;; — Ej; and their
commutators are (remember [E;;, Eyi| = 65 Ey — 61 E;)

[Aij, Art] = 651 Aa + aAjp — 851 A — Sin Ajr.

The matrices A;; admit two eigen values, £1, the commutative subalgebra b gen-
erated by Ai2, Aza, ..., A2n—1,2n 1s the Cartan subalgebra. A general element in h
has the form X = m 412+ -+ + 7 Asn—1 2n. The element (mq,...,m,) € C* is
a weight of a representation ¢ if all ¢(As;_1 2;) admit a common eigen vector such
that the corresponding eigen value for H; = As;_q 25 1s V—1m;, i.e. the eigen value
for X is /=1(myim + -+ mu7).

If we choose a (weak) order in b, then the highest weights are those ones with
weight vectors under trivial action of the positive root elements, or equivalently
the maximal ones in the chosen order. The multiplication of the weights by /—1
corresponds to the isomorphism which transforms the scalar product we use now,
to the scalar product we use in 10.10-10.11. Hence the fundamental weights remain
unchanged.

Consider now Spin(m +1,C) C €5, (C) ~ Cl,,(C). We shall identify o(m +
1,C) with a subspace in C€,(C). Let us define the bracket [, ] on C€,(C) by
[2,y] = ey —y=*x, le [e,e;] = 2e; *e;, 1 # j, for the generators, and write
Qpj = €j = —jo, &;; = [e;,¢;]. Hence the %n(n + 1) elements «;; with j < k are
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linearly independent and «j; = —ayz;. An elementary computation leads to the
commutators

levij, apt] = 465k cvit + St — 81050 — bipeyjr)  for all 4, j, k, { non-zero

[ao, ar1) = 4(85p 01 — 510001) for j, k, ! non-zero

[cvo;, cvor] = aji Jik#0

We would like to have generators X;;, 0 < ¢ < j < m, which satisfy the same
commutator relations as the above generators A4;; of a(m + 1,C). First of all the
commutators have the right form in the case of indices different from zero, up to
the multiple %. Further, if ¢ = k then we need [X;;, Xzi] = —Xji1, so the ag; = ¢
must be multiplied by some pure imaginary scalar. Finally, the second and third

rows in the above commutators suggest :I:—Vz_1 for this scalar factor and we shall

use the minus sign to fit with the earlier choice of the Dirac matrices v;. Now one
checks by elementary computations that the choice of generators

Xoj_— 5 Qoj = — 5 €j
1 1
X]'k = Za]’k = 56]' * €

leads really to a Lie algebra sitting in the Clifford algebra C¢,, (C) which is isomor-
phic to o(m + 1,C). The bracket in this algebra is precisely the commutator and
so there i1s the analogy to Proposition 7.12:

Proposition. FEach representation of the Clifford algebra Ct,,C induces the rep-
resentation of the Lie algebra o(m + 1,C) given by the restriction.

Proof. The generators of C¢,, (C) are contained in o(m+ 1, C) and every represen-
tation of the Clifford algebra respects the commutators by the definition. O

In fact there is the other part of the proposition which we shall not need in
general: each representation of o(m+1, C) induces a representation of the spin group
(for the latter is simply connected) and therefore a representation of the Clifford
algebra Cf£,,(C) as well. However, the resulting representation may fail to be an
extension of the original one. We shall need this correspondence of representations
only for the spinors. This is the identical representation of the corresponding matrix
algebra and so it remains the same as a representation of the spin group.

7.24. The weights of spin representations. Let us consider first the group
Spin(2n 4+ 1,C) and its faithful irreducible representation on the spinors S = c?"
(unique up to equivalence). The weights are evaluated from the corresponding rep-
resentation of the Lie algebra o(2n+1, C). If we view Spin(2n+1, C) as a subgroup
in the matrix algebra Mats2(C) then the representation is the identical one and
so the induced representation of the Lie algebra is also the standard identical one.
First of all we have to find the expression for the elements H; € Cly,(C) from the
Cartan algebra as elements in the corresponding matrix algebra. We shall use the
explicit representation of Cl,, (C) as a matrix algebra from 7.20 (consult [Boerner,
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67, Chapter VIII] for more details here or below if necessary). Let us recall the gen-
erators yo;_1 = 7@ - - @TROERI2@- - @l and y2; = =112 - Tor®- - @I,
where 7 and v are at the j-th place and there are altogether n (2 x 2)-matrices in
the expressions.

Now, we use the above description of the Cartan algebra with the zero index
replaced by 2n + 1 (in fact the elements Xy; will not appear explicitly at all, for
they do not belong to the Cartan subalgebra). Then

1 V=1
H; = JY2-172 = T

L@ - @Lherelhe- - @l

see the identities in 7.7. Thus, the H; are diagonal matrices with the same number
of the entries % —1 and —%\/—_1 Inspecting the distribution of the signs, we see
that a common eigen vector in C2" can involve only one non-zero entry. Hence the
weights are precisely of the form (:I:%, cey :I:%) and according to our choice of the
order, the highest among them is the weight (%, ce %) This shows that the spin
representation is really the remaining representation among those corresponding
to the fundamental weights, see the last section. Thus, for the odd dimension
m = 2n + 1, all representations of Spin(m,C) are involved in tensor products of
the exterior forms of degrees less then n and the spin representation on § = C2".
Since we know that all representations of the real spin groups are obtained from
suitable complexifications, see 6.4, we can use the above result for the real case as
well (but it is not simple at all to get concrete results, cf. 7.21).

7.25. The even dimensions. Consider now Spin(2n+2,C), so we have to study
the representation of Cly,41(C). We can proceed analogously, but the Cartan
algebra contains now additionally the matrix Hy 41 which has a quite different form,

for it corresponds to the generator Xgap41 = —@eznﬂ, see 7.23. In 7.19, we
defined the two representations 7y of Cfa,11(C) on S. On the (n + 1)-st generator
they were defined through the volume element with the proper scalar multiple. If

we perform the necessary identification with a matrix in Matar (C) we get the action

of
v—1
,’L+1::I:TT®~~~®T.

This is also a diagonal matrix with the entries of the form :I:g. If we inspect
once more the distribution of the signs, we conclude that the highest weights are
precisely (%, cey %, :I:%) and they correspond to the Weyl spinors with positive and
negative helicities.

7.26. Tensor products of spin representations. We know from the represen-
tation theory that all irreducible representations of the spin groups must appear in
the tensor products of the spin representations and the exterior forms, cf. 10.11.
Let us describe the situation more explicitly in the even dimensional case, m = 2n.
We shall write A for the complexification AR™ @ C (i.e. A = C¢,,(C) as a vector
space), A, and A, for the even and odd forms, while Ay are the eigen spaces of the
action of the suitable multiple v as in the definition of the Weyl spinors. The left
multiplication by the volume element plays the role of the Hodge star operator, in
particular, the splitting of the exterior form of degree n coincides with the splitting



7. THE SPINORS AND THE DIRAC OPERATORS 85

A% discussed in the last section. Beside these homogeneous forms, the spaces Ax
are generated by linear combinations from AP ¢ A™~P.

If we let act the spin group on the Clifford algebra by right multiplication by
inverse elements, we get an equivalent representation and the decomposition into a
sum of 27 equivalent spin modules S exactly as in the decomposition in 7.16. This
is best seen on the matrix realization: The generators Y; = vy9;_1 * v2; of the even
part of the Clifford algebra are symmetric (see 7.17) and the remaining ya; * y2i4+1
equals to V=11, ® - @1, @ e ®c @ 12® ---® Iy, hence is also symmetric. If we
apply the transposition to these generators they should change the signs, but this
corresponds to the transposition of the corresponding matrix generators. Thus,
the transposition (e;, * -« * ¢;, )’ on Clp,(C) corresponds to the transposition of
the corresponding matrix accomplished with suitable sign depending on p mod 2.
The spin representations as right C£2 (C)-modules are the rows in the matrices
with the right multiplication by the matrices from the algebra. We define a linear
mapping f: S®@ S — Cly,(C) by fu®@v) = u*v', ie. we view S @ S as the tensor
product of one left and one right Spin(m, C) module. This is a linear isomorphism,
which is easily seen on the matrices (E;1Eix = Ejp, 1 < j,k < 27, and so f is
surjective, but the dimensions of A and S ® S coincide). The (twisted) adjoint
representation of Spin(m,C) on C™ C C€,(C) is precisely the usual standard
representation of SO(m,C) and its extension to the whole algebra coincides with
the standard representation of SO(m, C) on the exterior forms A. By the definition,
f intertwines the action of C¢,,(C) on S ® S and the adjoint action (warning: the
right-hand S is the right C¢,, module). We can also get information on the behavior
of subspaces:

Proposition. There are the following equivalences of representations:

A=S®S
Ay =(5:051)B (S @S-

)
AL=(S_®54)® (S-®S5-)

A :{ (S ®S4) P (S-®S_) ifniseven
‘ (S_@S54)® (St @ S-) ifnisodd
Ao:{ (S-®@S4)® (S ®S-) ifniseven
(S+ ®@54) B (S-®@5-) ifnisodd

Proof. The first equivalence has been already proved, the isomorphism is u®@v! —
u*v. By the definition, AL are the eigen spaces of the left multiplication by v/,
hence Ay = S; @S and A_ = S_ ® S. The volume element v’ satisfies v'* =
(—=1)2n(n=10/2y" — (_1)"4'. In the proof of 7.22 we derived that each generator e;
commutes with v/ with the change of its sign. Thus, the odd elements w in A are
precisely those with v/ * w * (v/)! = (=1)"0" % w * v/ = (—1)de8rec ol w (1) and

this implies the description of the odd and even forms. O

7.27. The inner products on spinors. Consider the space S of Dirac spinors
with the faithful representation y of Cfa,(C) or Cﬁgn_l_l(C) and its dual space S*
with the representation v'(a) = (y(a'))’. If restricted to the spin group, this
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is precisely the contragredient representation. Since these representations must
be equivalent, there is a linear isomorphism £: S — S* intertwining these rep-
resentations. This defines a bilinear non-degenerate form e(sy,s2) = ¢(s1)(s2)
denoted by the same symbol. If we define £'(s1)(s2) = &(s2,51) we get a map-
ping which must be proportional to € by the Schur’s lemma. Since £'t = ¢, the
multiple must be 1. This means ¢ is either symmetric or skew. We can check
which of the possibilities takes place by evaluating £(y(a)(s), s) with suitable ele-
ments a € Cly,(C) and s € S. Let us pass to the matrix realization and choose
a=T1T®:- - ®T,1e. a volume element, and s be the column vector with only the
first entry non-zero. Hence y(a)(s) = s, al = (=1)>"2?=1/2¢ = (=1)"a and we get
e(s,5) = e(v(a)s,s) = v(a)'((s))(s) = e(s,v(a")(s)) = (=1)"e(s,s). Therefore,
the inner product ¢ is symmetric if n = 0 mod 2, while ¢ 1s skew if n = 1 mod 2.

The next question is: what about an inner product on the Weyl spinors? The
Weyl spinors are *1-eigen spaces for the multiplication by the proper volume ele-
ment v/ and the same is true for the duals. We have seen (v')! = (—1)"v’. Hence
y(v') oe = (=1)"c o y(v') and the inner product ¢ restricts to the Weyl spinors if
n 1s even. We shall denote the products by ¢4 and e_.

7.28. The four-dimensional case. Let us work out more explicit formulas in the
(most interesting) case of dimension m = 2n = 4. The Dirac spinors are complex
4-component. In the above identification, the Dirac matrices are (i = /—1)

0 01 0 0 0 4 0
0 0 0 1 . 0 0 0 ¢
n=c0hl=14 4 o g r=—wolb=| 5 4 g g
01 0 0 0 —i 0 0
01 0 0 0 ¢« 0 0
1 0 0 0 . - 0 0 0
BETOO=Ng 0 0 —1)] MHETTOVEL g 0 0 —i
0 0 -1 0 0 0 72 0
The volume element 1s then
1 0 0 0
0 -1 0 0
V=TQRT= 0o 0 -1 ol vy =14
0 0 0 1

Hence the Weyl spinors Sy and S_ of positive and negative helicities are precisely

(a,0,0,b) € C* C C* and (0,a,b,0) € C> C C*. We have found that these rep-

resentations are irreducible and their highest weights are pT = %(61 + €?) and
pT = %(e1 —e?), see 10.11 and 6.22 for the notation. The tensor product S; @ S_
must involve the representation corresponding to the dominant weight p*4+p~ = ¢!

with multiplicity one. But the dimension of the tensor product C? @ C? is exactly
the dimension of C* which corresponds to the weight e!. Thus, the tensor product
of the two different half-spin representations is equivalent to the identical represen-
tation on C*. This shows how all tensor representations of SO(m,C) arise from
the fundamental ones, i.e. from the spin representations. In Proposition 7.26 we
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proved A, = (53 @ S_)P(S_ @Sy ), hence the second summand corresponds to A®.
The product Sy @ S4 contains the invariant subspace with highest weight e® + 2.
However, its dimension is only 3.?3 These are the positive exterior two-forms A?I_.
The remaining one dimensional space corresponds to the trivial representation on
the field of scalars, A°. Similarly S_ ® S_ splits to one dimensional representation
A* and the other half AZ of AZ.

In conformal geometry, one often meets elements from tensor products of several
copies of 51, S_ and their duals S*, S7, or even mixed with tensors. Similarly
as with the tensors in the previous text, we shall use the Penrose’s abstract index
notation. We have chosen the small italics superscripts (with possible further indices
like a1, by, etc.) as labels for distinct but isomorphic copies of K, while the same
labels as subscripts indicate always copies of K™* . If we want a similar notation for
spinors, we need two further kinds of labels. We choose the capital italic superscripts
(with possible further indices) for copies of Sy and the same subscripts for S7.
The same labels with primes will indicate the spaces S_ and S*. In view of the
above description of the tensor products of spinors, this becomes a very powerful
notation (in the dimension 4). TLet us add some further conventions. We have
proved A4 = ya (i.e. tensor product of S} and S_ is C*) and we shall adopt this
convention also for general expressions like ... Cj C']’» -o-=...¢ .... The skew inner
products ¢ defined in 7.27 are elements c4p, c4/p/, €28, EAIBI, antisymmetric in
the indices. These elements allow rising and lowering of indices similarly to that
induced by a metric on tensors, but since they are antisymmetric we have to fix the

usage of the indices: s4 = ¢4P s g where the dots can involve both subscripts

and superscripts. In particular, eaB =eBCc 0 = —eBCco, = —£8 4.

The tensor product ¢4 @¢e_ is a linear isomorphism C* — C** which intertwines
the standard representations and so it corresponds to the original scalar product ¢
on C. This is expressed by capca/p = gap. As seen on ¢4p = —ep?, we have to
be very careful to preserve the order of the primed and unprimed indices (including
superscripts and subscripts) separately, while the relative order of the primed and
unprimed ones i1s not important. The symmetrizations and alternations in some
entries are denoted on the indices exactly as with the tensor indices.

A special convection concerns the pseudo-Riemannian covariant derivative V.
This is an operator with one vector argument, hence we have denoted it by V, and
its value on a tensor was V, ¢, understand as one symbol. Now we can use the
covariant derivative on all spinors and write V 44/t where the dots may involve
all three types of indices. Moreover, we can rise and lower all indices; e.g. VAAIt:::.

Let us notice that this is a very effective notation. For example, T,3 = T4 g for

23There is the famous Weyl's degree formula: The dimension of an irreducible representation
corresponding to a dominant form X is

dy = 1_[(34>0<OZ7A + 6>
Nz et
Ha>0 <a7 6>
where the products go over all positive roots and § is half the sum of all positive roots.
In our case the positive roots are chosen as e! — ¢ and e! 4 €2, hence § = ¢'. The Killing
form is the Euclidean scalar product up to a scalar multiple which does not play any role in the
formula. For A = el + €2 we get immediately the dimension 3.
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every twice covariant tensor but T4 gy 4/ /) is a simple expression for its symmetric

BA which is used

trace-free part! This follows from the antisymmetry of e48 = —¢
in the trace.

In 6.22, we found two other operators beside the Dirac operators. They are
defined on the sections of the bundles AL and A_ of the Weyl spinors and their
values are in the bundles corresponding to the representations S; ® S; ® S_ and
S_® Sy ®S_. Now we are able to write down a simple formula for these operators:

(A B)

DBy =viis® DBy = v P,

They have values in the required spaces, symmetric in the unprimed or primed
indices and trace-free. The whole Sy @ C* decomposes into S_ and another space
corresponding to the weight %(361 + e1). (Tts dimension is six as easily computed
using the Weyl’s degree formula.) Similarly we get the other case. The first operator
is called the twistor operator, its solutions are called the (global) twistors.

8. Verma modules and natural operators

In this section we present the complete classification of natural linear operators
on first order natural vector bundles on locally flat conformal manifolds, which is
achieved by means of the methods from representation theory. Our inspiration is
[Baston, 90], and [Baston, Eastwood, 90], however we succeed also in the case of
singular infinitesimal characters and we present complete (and rather elementary)
proofs. In particular, we correct some claims of the latter survey paper. Some basic
notions and results from representation theory are outlined in the Appendix.

8.1. The main idea. Each locally flat conformal manifold is locally isomorphic to
the sphere, so that we shall restrict ourselves to the homogeneous bundles over the
(pseudo-) spheres without loss of generality. Let us fix two such bundles F = E)
and F' = F, corresponding to irreducible representations V), V,, for two weights A, p
of g = o(m+2,C), dominant for the Poincaré conformal subalgebra b, i.e. V3 and V,
are (real or complex) representation spaces either for the Poincaré conformal group
B or for its simply connected covering. This notation 1s different form that used in
Section 6, where the weights were dominant weights of o(m, C) and the remaining
information was involved in the conformal weight. The explanation of the present
notation 1s in 10.13 and 10.14. Let us remind that all linear representations of
orthogonal groups are completely reducible and the action of the nilpotent part
must be trivial in each irreducible representation of the Poincaré algebra. Thus,
the above restriction to the irreducible representations means in fact that we will
describe operators on all first order natural bundles.

In fact we used the general idea in the first order case in the proof of 6.10, cf.
6.13. According to the non-linear version of the Peetre theorem, each local operator
D: C®(ExM) — C*(F,M) on sections of bundles ExM and FpM over the same
base M factors through a mapping D: J®(EyM) — F,M, see [Slovék, 88] or
[KolaF, Michor, Slovdk, 93]. For a linear operator we get even the finiteness of the
order and a smooth D: JH(E M) — F,M (this is the classical Peetre theorem).
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The locally flat conformal manifolds are homogeneous enough to apply the general
theory of natural bundles and operators, see Section 2. In particular, the whole
operator 18 completely determined by the equivariant mapping Dy JEHEM) —
Fy M for an arbitrary point @ € M, with respect to the group of locally defined
conformal isomorphisms at  keeping x fixed.

Thus, in order to classify linear natural operators D: C™(E,) — C*(F,) on
locally flat conformal manifolds, we have to find all B-equivariant linear mappings
D: JYE\ — (F,)o = V,, where 0 is the coset in GG/ B containing the unit e. Dual-
izing this mapping, we get a B-equivariant mapping D*: (V,)* — (J¥E)*. Since
(V,)* is irreducible, all such mappings are uniquely determined by the highest
weight vectors in (J§FE)* with the same weight as (V,)*. Then the mapping D
is the dual mapping to the corresponding inclusion. The main technical step is a
suitable identification of (J& E)*. In Section 6 we derived the action only up to the
first order. Now, the most effective way is to deal with the direct limit of (J& E)*
which will be identified with a generalized Verma module.

More exactly, we shall solve the whole classification problem on the Lie algebra
level, i.e. we shall discuss the equivariance with respect to the action of the universal
enveloping algebra 4(g) on the duals of the jet spaces. Let us recall that this is
an equivalent formulation of the problem as shown in 6.7 and 6.8. The passing to
the Lie algebras has two big advantages. First, we can forget about the coverings
and, which is more important, the derivatives with respect to constant vector fields
enable us to work still in a single fiber but to involve the translations into the
equivariance conditions at the same time.

8.2. The ti(g)-module (J§° E)*. Asusual the sections of the homogeneous bundle
E areidentified with B-equivariant mappings GG — V) and the jets of sections form a
submanifoldin J¥(G, V). Then the action of (G is given by the composition with the
left translation by the inverse, see 2.10. Let us identify the real universal enveloping
algebra 4(g) with the Lie derivatives with respect to right invariant vector fields
on G and consider an element z ® v* € 4(g) @ (Va)*. An element X € g C Ll(g) is
identified with the Lie derivative £_ x with respect to the right invariant vector field
on (, see 6.1. This identification is extended to the actions £, for all = € U(g)*.
Then we can associate an element in (J§ F)* to each z @ v* € U(g)* @ V5 acting
on j¥s by (z @ v*)(j¥s) = (L.s(e),v*). However this identification is not one-
to-one since for « € LU(b) where b C g is the Lie algebra of B, we get the same
action of z ® v* and 1 ® z.v* where z.v" is the contragredient action. Let us write
I C (M(g)@Vy) for the left 4U(g)-submodule generated by all # @ v* — 1@ z.v* with
vt € VY, x € U(b) and define

My(VY) = (U(g) @ V)/T = U(g) Duce) V-

This is the generalized Verma module corresponding to the weight A dominant for
the parabolic subalgebra b C g, see 10.18.

We have g = b_; @& b and b_; = C™ or b_y = R™ is abelian. Hence by the
properties of the enveloping algebras

My(Vi) = 4(b_1) @ Vi = > S*(b_y) @ Vi
k=0
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with the grading induced from that of the symmetric algebra. Choosing basis 9; of
the Lie algebra b_; and completing it into a basis of g, we get the normal coordinates
on a neighborhood of ¢ € ¢ and we see immediately that M, (V') coincides with
(J§°E)* as a vector space. But the left actions of (g) coincide by the definition.
Let us write this action down explicitly. For this reason, we define for every multi
index o = i1 .. .9|q|, 11 < -+ < i)q, the linear map

Lo Jé“E — Vi, Ea(jfs) = (E_all o... O£_6’|a|5)(6)'

Since the elements in g_; commute, we can view the elements in Slal(g—l) as
linear combinations of maps £,. This is precisely the above identification. Let
us denote ¢; = L_p, € b*, = S'(b_1), so the elements ¢, can be viewed as
bo =Vl 0.0k € S'“'(b_l) and we have £, = 0 if |o| > k. Further, for every
X € g we shall denote adl,. X = (=)o, [.. [0, X]...]].

Z|a|’

Lemma. The action of elements X, € b, on £, @ v* € SF @ Vi is

X_l.(fa ® U*) = Eoz OX_1 ®U*

Xo(la @v") == > (£g 00, Xo]) ® " + Lo @ Xo.0°
f+1l=a
1<i<m
Xi(la®v™ )= Y 5@ (adly X1)w" + > (lpo(adly X1)) @ v
fy=o fty=a
lvl=1 [vl=1+1

Proof??. We compute with ¢ = jEX € b,
L(la @ v")(jEs) = —(la @ v)(LjEs) = (Lo © 0)(JE (Lx5)) = {(€a © Lxs)(e), v*)

Since € 0 Ly = Ly ol + Li_y, vy forall Y € g,1 < j <n,and [9;,b;] C bj_1, we
get

f.(fa ® v*)(jfs) = <f“ .. .fip_lﬁxfips(()), U*> + <f“ .. .fip_lf,[_a X]S(O), U*>

ip)

24The last formula also applies to the action of the isomorphism groups of other geometric
structures (like the symplectic or unimodular manifolds or simply all manifolds) on the duals of
jets of sections of natural bundles in the sense of 2.12. More explicitly, this formula with ¢ = 1
replaced by a general ¢ > 0 describes the action of the Lie algebra of all vector fields on the
sections of the natural bundles. The natural linear operators are just those commuting with the
action of these vector fields, see [KolaF, Michor, Slovak, 93, Section 34] for more details. This
formula is the main ingredient of the classification of all linear natural operators on all manifolds,
unimodular manifolds, symplectic manifolds, derived (with quite different aim) in [Rudakov, 74,
75], and the classification of all bilinear natural operators on all manifolds due to [Grozman, 80],
see also the excellent survey [Kirillov, 80], or [Kola#, Michor, Slovdk, 93, Section 34]. Of course,
the methods used for the proofs must be quite different since the groups are infinite dimensional.
The idea is to disable first all vectors with non-trivial action of the subalgebra g $ g2 ¢ ... and
then apply the finite dimensional representation theory of go on the remaining vectors, the so
called singular vectors. In fact we have described this idea explicitly in 6.13 in the conformal case.
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and the same procedure can be applied p times in order to get the Lie derivative
terms just at the left hand sides of the corresponding expressions. Each choice of
indices among ¢1, ... ,7, determines just one summand of the outcome. Hence we
obtain (the sum is taken also over repeating indices)

Ll @v™)(GEs) = > ((adly.0)Ls(e),v").
f+y=o

Further ad¢,.¢ = 0 whenever |y| > ¢ 4+ 1 and for all vector fields Y € by & by we
have

((Ly o lys)(e), vx) = =((£5)(0), Lyv™)

so that only the terms with |y| = ¢ or |y| = ¢ + 1 can survive in the sum. Since
¢ = j*Y € by acts on (the jet of constant section) v by £.v = L_yv(0), we get the
result. O

The formulas work in both real and complex domains.

8.3. Consider now an equivariant mapping D™: V" — (J¥E)*. The Verma mod-
ules My(V,)) and My(Vy') are generated by the elements 1 @ v}, 1 ® v} where v},
and v} are the highest weight vectors. Thus, the mapping D* extends uniquely
to a homomorphism D*: My(V,)) — My(VY') of the i(g)-modules. On the other
hand, each such homomorphism clearly specifies a translational invariant operator.

Hence we have proved for both real and complex homogeneous bundles

Theorem. There is a bijective correspondence between the homomorphisms of the
generalized Verma modules and the translational invariant operators on homoge-
neous bundles.

8.4. Remark. It might seem that we have successfully reduced our problem to an
algebraic task and what remains 1s only to look somewhere, find the classification
of all homomorphisms and interpret them as differential operators. This is very far
from the truth. First of all, the description of all homomorphisms is given in terms
of the action of the Weyl group and a complete classification is well known only for
the classical Verma modules, i.e. for Borel subalgebras B. In the conformal case,
we meet the more general parabolic subgroups and here the classification covering
all possible bundles has been found only recently. But say, we do not want to know
really all operators, it could suffice to be able to find complete lists of them acting
on some concrete fixed bundles. Even then the results are not very satisfactory
since we find the extreme weight vectors and we know that the operators are the
dual mappings to the identical embeddings up to a scalar factor, but we do not get
explicit formulas for the operators in this way. Nevertheless, the fact that we can be
sure that there 1s an operator between some given bundles is of great importance,
cf. the deriving of the conformal Laplace operator in Section 1.
In the rest of this section we mainly follow [Slovak, 92].

8.5. The use of the infinitesimal character. It turns out to be convenient
to prove the classification in the complex setting and at the very end to specify
the result to the real case. So we shall treat only complex groups and algebras
in the sequel. As explained in the Appendix, if two £(g) modules generated by



92 NATURAL OPERATORS ON CONFORMAL MANIFOLDS

a single highest weight vector admit a homomorphism, then they must have the
same infinitesimal character, see 10.17. Hence we have a rather strong restriction
on the possible homomorphisms between the Verma modules. The Harish-Chandra
theorem reduces the problem to the study of the affine action of the Weyl group W,
see 10.19 and 10.20. Thus, if there should exist an invariant operator D: C®°(E)) —
C*°(E,), for two weights dominant for b C g, then there must be an element w € W
such that w.p™ = A* i.e. w(p* +6)— & = A* where p* and A* are the weights of the
contragredient representations and § is the lowest form.

Definition. If A is a weight dominant for b such that A + 6 does not lie on a wall
of a Weyl chamber, then the infinitesimal character &, is said to be regular. The
infinitesimal characters of the weights A with A 4 é lying on some wall are called
stngular. The infinitesimal characters of weights A and p with the same cardinality
of the stabilizers of A 4+ 6 and p 4+ 6 in the Weyl group W are called equisingular.

In particular, all regular infinitesimal characters are equisingular.

8.6. Notation for natural bundles. In 10.12 and 10.13, we explain the general
notation for b-dominant weights by means of the Dynkin diagrams. We adopt the
following convention for natural vector bundles corresponding to such representa-
tions:

Definition. A vector bundle corresponding to an irreducible representation which
is dual to that one with highest weight A will be denoted by the Dynkin diagram
with the values of A + § on the simple coroots inscribed over the corresponding
nodes (6 is the sum of fundamental weights as usual).

This seems to be a very strange notation, but the passing to the duals reflects
the fact that we are describing the dual mappings to the operators and the shift by
6 simplifies heavily our formulas. In fact, the dual representations are distinguished
only by their opposite conformal weights (which is, of course, not the same as the
inverting of the sign over the crossed node in general). Concrete examples are listed

in 10.14 (we have only to take the duals). The expressions C'*°( —% ... <czn(i2) and

C
body dn_ . .
C®(e—s - - oﬁlzg) mean the corresponding spaces of sections of the homogeneous

vector bundles.

8.7. The patterns of natural bundles. We discuss in 10.15 that the elements
in the Weyl group which map at least some of the weights dominant for b into
weights dominant for b form the so called parabolic subgraph W of W. Let us
describe this explicitly for the orthogonal algebras.

If m = 4, we have b = o—x— and let sy, s3, s3 be the simple roots as indicated
ing=e—e—. The Weyl group consists of all permutations of four letters, the
generators s; correspond to the transposition of the é-th and (¢ + 1)-st coordinates
(in the proper ordering), see 10.10. If w € W? is different from the identity, then

its decomposition into the generators must end with s;. A further discussion yields
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the parabolic subgraph W7

\ §18283 — 51525351
5153

More generally, in the even dimensions m = 2n we can describe W' symbolically

by

1d 51 5189

5189 ...8,-18n

_—

— 8182 ...85,-1 5182 ...8,-18n8n41 ——

/

5182 ...8,-15n41

— 8152...5,-15n5n+15n—-1 5189 ...8981

where the symbols s; denote the reflections corresponding to the simple roots indi-

. . 81 8o Sn
cated in the diagram »—e -+ s, _,
Sp4l
If m = 2n + 1 we order the simple roots as indicated in x—¢ - - - e==='" and we
get
1d s1 §1...8p41 —
— 81 ...5,415n 5189 ...8981

The arrows describe the so called Bruhat order on WP, for a more detailed descrip-
tion see e.g. [Boe, Collingwood, 85] or [Borho, Jantzen, 77].

If a weight dominant for b has all coefficients over the nodes integral then its
infinitesimal character is regular if and only if there is a weight p with the same
infinitesimal character, which is dominant for the whole g. For such weights with
regular infinitesimal characters, the meaning of the above patterns is easy to ex-
plain: We take the only weight A dominant for g with the infinitesimal character
&, and we let the elements from W?® act on X + § as indicated in the diagrams. In
this way we get just all weights p 4+ 6 with p dominant for b and with the same
infinitesimal character &).

The action of the simple reflections from the Weyl group is described in 10.20.
For example, let us consider a dominant weight A for g, A = e with integers
a, b, ¢ > 0. The action of the reflection s; € W corresponding to simple root
denoted by the second node on A is

at+b —b b4e
s1.A=s51(A+8) -6 = -Io——o—i—
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Similar simple computation yields the action of all elements in the directed graph
WP from 10.15. Altogether we get the pattern

b a+b+c
*r——xX—o
—b—a \
a b c a+b b+c b+c a+b c a
—b \ —a—b—c —a—b—c
a+b+c b
—b—c

It is a straightforward computation to write down explicitly the patterns in the
higher dimensions. We shall do this in a quite formal way, i.e. the only restriction
on the coefficients over the nodes of the left most weight is that this should belong
to the closed fundamental Weyl chamber.

Let us fix first a weight H <czna_2 with all coefficients non-negative (but

not necessarily integral).

b dp a —b doy a —b—dy b dotdq a
x—e dp_g —7 X—— .- dp—o — X——e - - dp—g ——7 -
c b+dy c c
—b—d—a dp—2
Xx—=o - dyp_3
b a-l-c-l-dn_g
—b—d atdy—2 —b—d—a—c dp—2+c
— X—o—o - - dp—3 X—o—o - - dp—3 —
b ody ctdn_o b ody dn_2+a
—b—d—c G+C+dn—2
Xx—=o - dp_3
b dp—2
—b—d—d,_o—a—c c —b—2d—a—c c
— X—eo—o - - dp_stdp_g —— ... — X—e .- dp—2o
b dy a dy a

where d =dy + - -+ d,_5.

. . . . . body dp_g a
The pattern for manifolds of dimension 2n+ 1 starts with a weight x~—e - --"
with non-negative coefficients
b ody dp_y a —bditb dy_1 a —b—d at2d,_1 —b—d—a at2d,_1
X—O - =8 — X—O - =8 — . g X—e - =0 g X—e - =0
b dp_2 b dp_2
—b—d—dy,_1—ady a —b—2d—a do dp—1 a —b—2d—a a
— X—e—o - =9 — ... —> —o—=0 - =9 — X—e . =0
b dp—2+dp—1 b+dy dy  dp—1

where d=dy+ -+ d,_1.

Let us point out once more that the weights A in the patterns correspond to the
duals of the standard fibers of the bundles and the coefficients themselves are the
values of A+ 6 on the simple corrots. In view of the above discussion we know that
all natural operators must appear between two bundles in the same pattern.
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8.8. Fach position in the pattern corresponds to just one Weyl chamber and the
weights A which determine representations with regular infinitesimal character are
those with A 4+ 6 not lying on a wall of a Weyl chamber. Thus, the unique position
of every representation with regular infinitesimal character can be read off the
coefficients over the nodes. Let us call the non-negative coefficients a,b,... over
the left-most weight in the pattern the coefficients of the pattern.

If some of the coefficients of the pattern are not integral, then a lot of the listed
weights are not dominant for b. If the stabilizer of a weight A under the affine
action of the Weyl group is not trivial, then the pattern degenerates in such a way
that some of the weights are not dominant for b and the number of occurrences
of the remaining weights appearing in the pattern equals to the cardinality of the
stabilizer of each of them.

Lemma. The number of occurences of the b-dominant weights in the pattern
equals to the number of the zeros among its coefficients increased by one.

Proof. The claim follows from the explicite description of the patterns in 8.7. O

8.9. The order of the operators. The conformal weights are easily computed
by means of the coefficients in the Dynkin diagrams as described in 10.14. The

conformal weight w of the representation with the highest weight ML s s

c

1
w:b+d1—|—~~~—|—dn—z+§(a—|—6)—n

while the conformal weight of M = S

w:b+d1—|—~~~—|—dn_1—|—%a—%(271—1—1).
The conformal weights of the natural bundles corresponding to such diagrams are
obtained by taking the negative of the above formulas (this is our duality conven-
tion).

If there is a translational invariant operator D: C*((F))*) — C*°((F}) between
the complex bundles over complex pseudo-spheres, then its order i1s described eas-
ily be means of the conformal weights of A and p. Let us remind that D cor-
responds to the inclusion of the representation space V, into the Verma module
Mg(A). Since each homogeneous component in the grading of the Verma module is
a go-submodule, the image of the inclusion must be contained in one homogeneous
component. But the degree of this component is exactly the order of the operator
D. If wy 18 the conformal weight of A, then the conformal weight of all irreducible
representations in the i-th homogeneous component in Mg(A) is wy — i. Thus, the
operator D) has the order r = wy — wy where ws is the conformal weight of p. This
elementary observation will become one of the basic tools for the classification.

8.10. Translation functors. There is a general construction which allows to
translate the results on homomorphisms of Verma modules from one pattern to
another one, the so called Jantzen-Zuckerman functors, see e.g. [Zuckerman, 77].
As before, let us write V), for the finite dimensional irreducible representation with
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highest weight y dominant for b. Further, write V,; for the module contragradient
to Vy,, i.e. V7 has the lowest weight —u. Each i(g)-module decomposes completely
into submodules with different infinitesimal characters, see e.g. [Zuckerman, 77].
Let us write p) for the projections onto the modules with infinitesimal character
&y. Hence given a weight A dominant for b and a weight ¢ dominant for g, we can
define two functors

@i-pu =patu o (( )@ Vi) opa
O =pa o ()@ Vi) o pats

where the action on the morphisms is defined by the tensor product with the iden-
tity.

These functors are defined on a large class of 4(g)-modules involving the gen-
eralized Verma modules. For technical reasons, we shall also allow A to be an
arbitrary weight with s.A dominant for b for some s € W° (then the projections pj
and pry, are well defined), but we shall always assume that A + & belongs to the
closed fundamental Weyl chamber which contains the weights corresponding to the
representations appearing in the most left position in the patterns. In particular,
this means that A 1s dominant for g if £, is regular and A is integral.

Lemma.
(1) The functor 1/)>‘+“ is left adjoint to 30§+u

(2) If the weights A and A + p are equ1s1ngular then 1/)>‘+“( p(s.(A+ p)) =
Me(s.A) and g0>\+u(Mb(5 A)) = Mey(s.(A+ p)) whenever s.X is dominant for
b.

Proof. Since V), is finite dimensional, the space of homomorphisms Hom( M (s.(A+
1) @V, My(s'.A)) is naturally isomorphic to Hom(Me(s.(A + pt)), Me(s".A) @ V).
In view of 8.5, only the summand px(My(s.(A + p)) @ V,7) can contribute to
Hom(Mp(s.(A + 1)) @ Vi, My(s".A)) and similarly only px1,(Me(s'.A) @ V,)) con-

tributes to the other homomorphisms. This shows the required natural equivalence

Hom(3 ™ (Mo (s.(A + 1)), Mo(s"-A)) = Hom(Mq(s.(A + 1)), #2344 (Mo(5"-A)))-

The other assertion is more difficult to prove. A general theorem reads that if
the weights A and A + p are equisingular, then the functors 1/)5"’)‘ and 30§+u are the
mutually inverse natural equivalences on their definition domains, see [Zuckerman,
77]. If we fix such weights A and A + p, then for each s € W' the weights s.A and
s.(A+ pt) determine representations appearing at the same position in the patterns
starting with A and g + A. The infinitesimal characters are the same ones for the
whole pattern and so the projection py is the identity on My(s.A). Further

My (V; Vir @ V)

@ SZ 9 1
@ (S'(g-1) ) = @Mb(vyj)
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The weights v; appearing in the tensor product and their multiplicities can be
determined using one of the consequences of the Weyl character formula, e.g. the
well known Brower’s formula or Klimyk’s formula. Finally, the projection px4,
selects just those v; which lead to the prescribed infinitesimal character £, .

So we see that the value of 30§+u on a generalized Verma module must be a
sum of generalized Verma modules. If we replace V), and A by V; and A + g,

we get the same result for the functor 1/)2"’“. But since 1/;1“"“ ) 30§+u is naturally
equivalent to the identity, the values can always consist of only one generalized
Verma module. But there is certainly the weight v = s.(A + p) involved among the
weights v; and this appears with multiplicity one. Thus for all s € W® we have
goi_l_u(Mb(s.A)) = My(s.(A + p)) if s.A is dominant for b.

Similarly we can analyze the functor 1/)?"’“ with g and A replaced by —p and
i+ A and we get 1/)§+“(Mb(5.(/\ + 1)) = Mp(s.A). O

As a consequence of the lemma, we can pass from one pattern to another one
by adding integral weights with regular infinitesimal character. In particular, once
we describe all operators between the representations in one pattern, we can get all
operators in many other patterns by applying the above translations.

8.11. The operators on exterior forms. All linear natural operators on Rie-
mannian manifolds which do not disappear on flat manifolds and which behave
well with respect to constant rescaling of the metric were described in 4.23. Those
which are natural on conformally flat manifolds are indicated in the following two
diagrams. In the even dimension m = 2n they are all composed from the exterior
differential d and the Hodge star operator *.

QO d Ql a. ... _4d Qn—l Qn+1 a .. . _d Q2n—1 d QZH
—_— o
d_ d
Qr ]

Dy_y=d+d=dody —dod_

Di=do(xd)™®

Do=do(xd)™ ™!

The odd-dimensional case (m = 2n + 1) coincides with the de Rham resolvent:

QO d Ql d . d Qm—l d Qm

All of them are natural on locally flat conformal manifolds and there are no other
natural linear operators there. In view of the translation procedure and the form
of our patterns, this solves the existence problem for operators which act between
bundles determined by integral weights with regular infinitesimal character. In
particular, there is at most one operator between any two such bundles up to
constant multiples.

8.12. Powers of the Laplace operator. We shall list more natural operators
on functions with conformal weights which appear in the patterns with singular
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infinitesimal character or in patterns with non-integral coefficients. The coefficients
of the Dynkin diagram correspond to a function space if and only if all of them equal
to one except the coefficient over the crossed node. Inspecting one of the patterns
with singular infinitesimal character from 8.7 which involves such an entry, we see
immediately that either the coefficients of the pattern are non-integral or some of
them are zero. We shall omitt now the general discussion on all possibilities since
we have to do this more complex in the proof of the main theorem below, but we
shall describe the existing operators. In fact the translation procedure described
above will produce all natural operators from those on exterior froms described
in 8.11, those on functions described below and the conformally invariant Dirac
operators on Weyl spinors derived in 6.22.

In the even dimension m = 2n we have for each 0 < ¢ < n — 2 the translational
invariant operator D: COO(Li <1: 1) — O R, <1: 1). This is the
so called conformally invariant (n—i— 1)ist power of the Lalplacian v;hich is defined
by the complete contraction of the suitable iteration of the covariant derivative. Its
uniqueness is clear from the considerations in the category of Riemannian manifolds
(by evaluation in the Euclidean metric we exclude the curvatures but then the only
possibility to end in functions is to take a complete contraction of iterated covariant
derivative), its invariance is a matter of a direct evaluation of the effect of the
rescaling of the metric. In particular, the choice ¢ = n — 2 yields the well known
conformally invariant Laplace operator.

In the odd dimensions m = 2n + 1 we also have only the powers of the Laplace
operators. More explicitely, for each 0 < 7 < n—2 there is the translational invariant
operator D: C*( _l;%—i e i#i) — O _2n-l>-<i%1 e ). The invariance has
to be verified by direct computation, the uniqueness follows from the Riemannian
invariance just as above.

8.13. Theorem. For every two weights p, A dominant for b, the space of the
natural linear operators D: C*(FyM) — C™(F,M) acting on smooth sections of
complex natural vector bundles over complex conformal Riemannian manifolds is
at most one dimensional. All such non-trivial operators, 1.e. those different from
constant multiples of the identities, are indicated in the patterns below. The labels
over the arrows indicate their orders.

a

Let dimM = 2n, n > 1. The pattern starting with the weight — dp—z;
where all b, dy,... dp_2, a, ¢> 0, is

c

[ ]
/’ \
b dl dn—2 d
® ®
.
[ ]
a+c

2d1++2dn_2+ate

n—2 dy b

2b4+2d1+42dn_2+a+tec
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All arrows in the diagram which join integral weights dominant for b describe a
non-zero linear natural operator on conformally flat manifolds and there are no
other ones.

If the dimension of M is 2n+1, n > 0, then the non-zero linear natural operators
act between bundles corresponding to weights with integral and half-integral coeffi-
cients. If the pattern starts with % ~C~lno_1¢(: and all the coefficients are positive
integers, then the operators are exhausted exactly by those which are indicated by
the solid arrows in the diagram

b dy dy—1 . a dy—1 dy b

[V
Qu
8
+
+
[V
Q
3

|

L
+
o

R ——

while if some of the coefficients are half-integral and the infinitesimal character is
regular, then we get exactly those operators indicated by the dashed arrows which
Jjoin weights dominant for b. If the infinitesimal character of the pattern is singular,
then there are no non-trivial operators in odd dimensions.

Exactly the same classification applies to natural linear operators acting on
smooth sections of real natural vector bundles over conformal Riemannian mani-
folds with an arbitrary signature (m’,n'), m'+n’ =2n >4 orm’+n’ = 2n+1 > 3.

Proof. The description of the general patterns and the computation of the confor-
mal weights in 8.8 and 8.9 yield the possible orders of natural operators as indicated
on the labels over the arrows in the diagrams above. Since the order must be a
non-negative integer, a careful inspection of the general patterns from 8.7 shows
that the coefficients of the patterns must be half-integral. Moreover, if these coeffi-
cients are not integral and the dimension is even, then the only possibility to find a
weight dominant for b is either to choose b half-integral or to take two half-integral
coefficients over the adjacent nodes in the left-most weight or the couple (a, ¢) or the
triple (d,,—2, a, ¢) must be half-integral, while all other coefficients must be integral.
The proof of this claim consist of an elementary discussion based on the form of
the patterns from 8.7. But now, in view of the translation principle we can choose
the half-integral coefficients to be % while the integral can be set to one. In the
case (a,c) is half-integral, the only two weights dominant for b are the two weights
just in the middle, which are different but the order should be zero. Thus there
i1s no non-zero operator available in this case. In all other cases listed above, the
operator should transform complex functions with suitable conformal weights into
complex functions with another conformal weight, but the orders should be odd.
However, if we apply the methods leading to the description of the Riemannian
invariants in Section 4, then we see that there is no such non-zero operator in the
even dimensional case. The reason is that the evaluation in the Euclidean metric
excludes all curvatures and after applying an odd number of covariant derivatives
we get into an odd tensor power of the covectors, but then there 1s no way how to
come to functions using the orthogonal invariant tensor operations. Hence there
are no non-zero linear natural operators acting between bundles with non-integral
coefficients in the even dimensions.
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In order to finish the description of the even dimensional case, we have now to
discuss case by case the infinitesimal characters by means of the translations be-
tween the equisingular ones. If the infinitesimal character of the pattern is regular,
then the assertion of the theorem follows from 8.11. We have seen in 8.8 that two
patterns have equisingular infinitesimal characters if and only if they posses the
same number of zeros among their coefficients. On the other hand, if there should
exist a weight dominant for b in the pattern, then there can appear at most one
zero, except the case a = ¢ = 0, see 8.6.

Assume first d; = 0 for some 0 < i < n — 2, or b = 0. Then there are only two
weights dominant for b. Let us choose all other coefficients equal to one. Hence the

operator should be defined on complex functions C'*° (_><l—1 e <1: 1) with values in
. 1
C( s 1 1) (we set ¢ = 0 if we have chosen b = 0). Such operators do

exist and they are unique up to scalar multiples, see 8.12.
Now, let us choose a = 0 and suppose all other coefficients equal to one. Then

we have also only two weights which are dominant for b in the pattern. The
( —nX+1 1. ...

—-n 1

corresponding operator C'° 1 1) — C®(%—e - 1 2) exists and is
unique up to constant multiples. It is just the conformally invariant 1Dirac operator.
The choice ¢ = 0 leads to the other Dirac operator on the basic spin representations.
The last choice, a = ¢ = 0 yields four identical weights and operators of order zero.
This finishes the discussion on the even dimensions.

A quite different situation appears in the odd dimensions. There we must admit
also the half-integral weights. If we combine our knowledge of the possible orders
with the requirement that the arrows which could indicate a natural operator must
join the nodes with weights dominant for b, we see that the only possibility is either
to consider b half-integral or b and d; half integral or two adjacent coefficients d;,
d;y1 half-integral or d,_; half-integral. But then either the orders indicated over
the solid arrows are not integral or the weights are not dominant for b, so they
are all excluded. Now we can discuss the individual positions of the pattern for
functions with suitable half-integral conformal weights. The whole discussion is
quite similar to the above description of the sigular patterns in even dimensions.
Let us first show this procedure on the case of the longest arrow. We consider

the weight é—i i;i, i.e. the operator should act on the complex functions
with conformal weight % The order r = 2n of the operator is now even and
the complete contraction of the r-th iterated covariant derivative is just the n-
th power of the Laplacian which is conformally invariant on flat manifolds as an
operator acting on functions with conformal weight % with values in functions with
conformal weight % + 2n. The uniqueness up to constant multiples is proved easily

in the category of Riemannian manifolds. Similarly we obtain (n — {)-th powers of

i+l —2n4i4+ 1 . ..
the Laplacians C'*°( 2. i#i) — O s i#i) in the remaining
cases listed above. The last possibility 1s d,_1 = % and 1t leads to the unique
—n4 L —n—1 . .
operator C'°( S 1-#3) — O - 1.#3) which is the conformally

invariant Dirac operator on the basic spin representation.
If the dimension is three, the whole pattern of weights starting with the func-
tions with conformal weight % survives and the middle arrow corresponds to the
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conformally invariant Dirac operator acting on spinors with conformal weight one.

If the pattern has a singular infinitesimal character, then the weights must be
integral. Indeed, with some half-integral coefficient we need the summation to
neglect it, but then we cannot get off the zeros among the coeffiecients. Similarly,
there can appear only one zero among the coefficients. If all non-zero coefficients
equal one, then independent of our choice of the zero, we should find a non-trivial
operator acting on complex functions with an odd order. This is not possible for
the reason discussed above. Thus, there are no non-trivial operators acting between
bundles with singular infinitesimal character in the even dimensions.

If we want to describe the natural operators in the real setting, then we also
have to describe the singular highest weight vectors, but in the real generalized
Verma modules, see 8.3. But if we complexify the duals to the jet spaces, then
either we obtain the same set of highest weight vectors or some of them can be
doubled. In any case no new singular highest weights appear. Since the spaces
of the natural operators are always at most one-dimensional in the complex case,
either the highest weight vector generating the whole Verma module is doubled, or
no other one can be doubled. Thus we may look for the singular highest weight
vectors in the complex 4(g)-module Mg(A). This also implies the pleasant fact that
the existence of the operators and some of their characteristics do not depend on
the signature (m',n’). O
8.14. Examples. Let us write down the complete patterns with the orders of
the operators inscribed above the arrows, which exhaust all operators in dimension

four. If some weights are not dominant for b they have to be ignored involving all
adjacent arrows.

b a+b+c

2T N

a b c b a+b b+c b+c a+b b c a
e [ 2 L 4

—
C a+b+c b a
——x—o

—b—c

a+c
a+2b+c

All coefficients are non-negative integers. All linear natural operators on locally
flat conformal manifolds are involved.

In dimension three we start with s==—s with all coefficients integral or half-
integral and non-zero. If the order is not integral we have to omit the corresponding
arrow.

b a b —b a —b—a b —b—a a
= —— X—===» _— = —— =
a+2b a+2b
a+ 2b

Using the general patterns, we can sometimes answer rather general questions.
For example, if we want to find all linear natural operators, say of order two, on
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conformal manifolds of dimension 2n such that their source and target bundles
coincide up to conformal weights, then they must correspond to the ‘long’ arrows
in our patterns and a = ¢, cf. [Branson, 89, Theorem 3.14]. Now the exact formulas
for the orders yield lists of possible sources. In particular, we find the operators
Ds 1 discovered by Branson for & < n. The operators D, , appear in the central

diamond, e.g. Dy o: C°°( - 3) — Coo(iﬁ_f—i) in the pattern which should
start with A = e—s— , cf. [Branson, 89].

8.15. Examples of the highest weights. In order to get some feeling how
concrete calculations work, let us discuss some examples in dimension four. For
this reason we fix the generators of the Lie algebra gl(4, C) as indicated by the
position in the matrix

Hi X1 z x4

Yi Hy = z3

y2 y1 Hs X»

Yva ys Yo Ha
The generators off the diagonal together with h; = H; — Hiy1, 1 = 1,2, 3, generate
the Lie algebra sl(4, C) ~ o(6,C). Then the summandsin g =n~ &b = n~ GlBn are
generated as follows: n = {(2;), [ = (X;,Y;), n= = (y;). The simple root elements
are oy = X1, as = ¥y, ag = Xo. In the concrete calculations we shall need the
commutators of the root elements:

(hi,  [ha,  [hs, [X1, [%1, [Xo,

] -2y Y 0 hy 0 0
] 0 Yo =2, 0 0 hs
I v 251w 0 ha 0
1 =y -y (R T 0
]y —Y3s  —Y3 0 =Y
| 0 —ys —ys 0 Y2

SsSE XS

Let us seek first for maximal weight vectors in M(Vy) with A = iﬁl%i ,1.e.
we shall describe invariant operators on functions. Let us recall that the maximal
weight vectors are the weight vectors for the Cartan algebra which are annihilated
by the simple root elements from b (i.e. by X7 and X3) and also by the whole n (i.e.
we have to verify the vanishing of the action of #; and the rest will follow). Hence
we can consider the elements P(y;,Y;) € 4U(g) given by ‘polynomial expressions’ in
¥i, + = 1,2,3,4, and Y;, j = 1,2, let them act on the generating highest weight
vector v € My(Vy') and look which of the values have the desired properties. The
simplest possibility is to consider y;.v. Then

X]y1®U:[X],y1]®U+y1 ®X]v:[Xjayl]®v:0a .7:1’2
sy Qu=[r, Qv+ @ v=10x1,n]v=10 hsv=0

so that y; ® v is a good candidate for a maximal weight vector. It remains to
compute

Y1 Qv 1=1
hiyi@uv=[h,n]@v+y1 @hv=[hjy,y]Qv=4 =251 Qv i=2

Y1.v 1=3
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and so y;.v generates (as a maximal weight vector) a subspace in My (VYY) isomor-

2 -1 2
phic to e——x—e. The standard fiber of the target bundle of the corresponding
operator is the dual, hence we get the bundle of 1-forms as the target of the oper-
ators.

Let us notice that the same computation yields also the operators corresponding
P+l 1 r+l p+2 —1 r42 . .
to  e—x—e — o—x—e . In particular, p = r = 1 determines a first

order operator on vector fields with values in symmetric two-forms with suitable
conformal weight and its null-space consists of conformal vector fields, ¢f. [Hitchin,
80], while p = 1, » = 0 leads to the local twistor operator defined on spinors, cf.
6.22 and 7.28.

Similar direct computations show

X1(y1ys — Y2y3) = —y1Ys + Y1¥aX1 + y1ys — Yoys X1 = (Y1¥a — y2y3) X
Xo(y1ys — Y2y3) = 1y2 + yiyaXo — vy — YaysXo = (1ya — y2y3)X>
1(y1ya — Y2ys) = Yaho + ya + ysY1 + y2Yo + (Y194 — y2ys) 21

—2(y1Ya — Y2y3) + (Y1ya — Yoys)ha  ifi =2
hi(y1ya — y2ys) = 0 ifi=13

10 1
If we choose A = e———=e  the y, entries in the third row cancel each other and

the Y;, 7 = 1,2, act trivially on the highest weight vector. Hence we obtain a second
1 -2 1
order operator with values in the bundle corresponding to the dual of e——s<—e,

i.e. the conformal Laplacian on the flat manifolds. If we replace the weight A by
1 —14g 1 . .
A= OHLQ, we get 21(y1ya — y2y3)?.(1® v) = 0 and the actions of X;, i = 1,2,

and h;, j = 1,3, remain trivial. The action of hs yields that the resulting operator
1 —1-¢ 1
has the values in the bundles corresponding to e’ o These operators are

called the powers of the Laplace operator, in particular, the case with ¢ = 2 can be
viewed as the square of the Laplace operator (0% acting on functions (with weight
zero) with values in the functions with weight four, i.e. the longest arrow in the
diagram in 8.13.

The root elements Y7, Y2 can also appear in the polynomials but they do not

increase the order. For example, (—yz+y1Y2)(—2ys+y1Y2)(—3ys+y1Y2) determines
2 -1 4 5 —4 1 ,
a third order operator e—x—e — o—x—se, ’\?ABC) — va,vg,vg,AD,)ABc,

see [Baston, 90].

8.16. The Bernstein-Gelfand-Gelfand resolution. The original study of ho-
momorphisms between Verma modules was made for a Borel subalgebra b C g,
i.e. in the case of classical Verma modules. A complete classification of them was
derived by [Verma, 68] and [Bernstein, Gelfand, Gelfand, 71]. The result (trans-
lated into the language of differential operators) states: Let B C G be a connected
and simply connected subgroup in a connected and simply connected semisimple
complex Lie group G with a Borel subalgebra b C g. If A is a dominant weight
for g, then there is a translational invariant operator D: C®(Ey ») — C™(Eyr2)
acting on homogeneous bundles on G/B if and only if w < w' in the Weyl group
W of g, see 10.15 for the notation.
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In our conformal case, the Poincaré conformal subgroup B is far from being
a Borel subgroup By C SO(m + 2,C), but some of the homomorphisms can be
derived from the Borel case using the natural fibration 7: G/ By — G/ B where By
is chosen to be contained in B. Let us give a rough idea.

By the means of the latter fibration, we can lift bundles and their sections and we
can apply the result for the Borel case, however it might happen that the operator
acting on the sections of homogeneous bundles on G/ By vanishes on the pullbacks of
the original sections and so the invariant operator obtained in this way happens to
be the zero one. The operators obtained from the Borel case via this construction
are called the standard operators. But if this construction fails, there can still

exist non-trivial invariant operators. Such operators are called non-standard. The
10 1 1 -2 1
Laplace operator e—x—e — e—x—e is an example pointed out in [Baston,

90] bringing also slightly more details on the latter construction.

In our conformal case, the operators denoted by the straight arrows are the
standard operators, the other ones are non-standard. Without the non-standard
operators, this pattern is known as the Bernstein-Gelfand-Gelfand resolution which
generalizes the de Rham resolution.?® The operators corresponding to the longest
arrow in our patterns are called the long operators (they correspond to the longest
element in the Weyl group). Only the long operators in these patterns might fail
to admit curved analogues, cf. Section 9.

It is a difficult problem (and probably unsolved in full generality) to specify
all homomorphisms of the generalized Verma modules in the general parabolic
case. However, the problem was solved for many cases with regular infinitesimal
characters se e.g. [Boe, Collingwood, 85a,b].

9. The conformal connection and
operators on curved manifolds

In the last section of this text we want to comment on natural operators on
the whole category of conformal manifolds. We shall only indicate some of the
known results, we provide the reader with further references and we sketch some
directions of possible development in the near future. We shall not mention all of
the known constructions of invariant operators on curved conformal manifolds, a
detailed survey with many references can be found in [Baston, Eastwood, 90].

We discussed in Section 4 how all Riemannian invariants are constructed by
means of the Levi-Civita connection. In the conformal case, we can use first the
Riemannian invariance, then to build general formulas in terms of the covariant
derivatives, and then to discuss which of them give rise to a conformally invariant
operator, i.e. to a natural operator on the category of conformal manifolds. This is
the approach used by many authors, see e.g. [Branson, 85], [Orsted, 81], [Wiinsch,

250n general manifolds, the de Rham sequence is used to resolve the sheaf of constant functions.
On homogeneous manifolds we can resolve this constant sheaf in a more efficient way. The point
is, on a homogeneous manifolds M we have a natural choice of a distribution D in the tangent
bundle T such that [D, D] = T and so it suffices to use the vector fields tangent to D in order to
recognize the constants. More details of this point of view are found in [Baston, Eastwood, 89].
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86]. They developed sophisticated infinitesimal methods for checking the invariance
of such operators.

Another possibility is to use a canonical connection which does exist on the
conformal manifolds, the so called Cartan connection. This can be viewed as a
general connection on a suitable fiber bundle (i.e. not right-invariant) with very
special properties. This is the approach we would like to indicate in more details.
We have to begin with the description of the Cartan connections. But first we
need to find the bundles where it lives, the first prolongations of the conformal
structures. This will also complete our development from Section 5.

9.1. For every closed Lie subgroup B C G7,, the B-structures on m-dimensional
manifolds were defined in 2.11. In Section 5, we identified the conformal structures
on the pseudo-spheres with such a structure of order two, while the conformal struc-
tures were defined as first order structures in general, see 5.1. We have promised
to clarify how are these two kinds of structures related.

Roughly speaking, the second order conformal structure is the first prolongation
of the first order one. In order to make this idea more precise, we need to discuss
a little the prolongations of the first order structures. Usually, the latter means
a tower of B¥)-structures F*) on F*~1) such that F*) ¢ PYF*=1) is a first
order structure and the morphisms f: M — M of these structures coincide (f is
a morphism of F( if PL(PLA)(FM)) ¢ F()). Such prolongations always exist
but they are not canonically defined. For a detailed exposition of this theory see
e.g. [Kobayashi, 72, Chapter I]. However, our aim is to get the prolongation as a
reduction of the higher order frame bundle which 1s not so easy in general. The
reader who likes to believe that the two definitions of conformal structures coincide
(or prefers to define the conformal structures as second order ones) can skip the
next text up to 9.4.

First we have to describe the prolongation B” C G7F! of the Lie group B C
G, = GL(m,R). The group By C DiffM of the diffeomorphisms f satisfying
PLf(FM) C FM, cf. 2.12, determines the Lie subalgebra of the so called infini-
tesimal automorphisms of the B-structure in the algebra of all vector fields, which
consists of the vector fields X with flows Flf in By for small parameters . A
B-structure is called flat if FM ~ M x B, the trivial bundle. Let us consider
a flat B-structure and a fixed point « € M. Then we have a subgroup By C B
of automorphisms fixing the point & and the Lie algebra b of infinite jets of the
infinitesimal automorphisms at « (a subalgebra in the Lie algebra of the so called
formal vector fields). As a Lie subalgebra of the infinite jets of all vector fields at
z, the latter carries a canonical grading b = b_; & by @ by § .... In particular
bo C gl(m,R) is the Lie algebra of B. The jets j5 ' f of the automorphisms By
keeping the fixed point 0 € R™ form the Lie groups B” C G7}f!. Their Lie algebras
are the algebras bg @ by ® by & --- @ b, with grading. The simplest way how to
describe the Lie groups B” is to study these Lie algebras, since the nonlinear parts
of the polynomial expressions for the jets of morphisms in B can be identified with
the polynomial expressions for the elements in the subalgebra by & bs & - - .

Without loss of generality, we may assume M = R™ with the standard coor-
dinates and x = 0, the origin. Then the elements in homogeneous components
b, of b have distinguished polynomial representatives X,(z) = Za,z’ asr22-(x).

T ozL
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The condition on a vector field X to belong to b is P'(FL*)(FR™) C FR™ for
all small ¢, which means in local coordinates %(Fltx)i € byg. If we differen-

tiate with respect to t we get the condition on the coefficients a3 in the form
aixﬂ'(Za a;xﬁ) € by C gl(m, R). But this condition is equivalent to the requirement
that the matrices (a;:jlqu) are elements in by for all fixed indices 11’ .. .,Zq. Since
the coefficients @, are symmetric in the subscripts, we have obtained an identifica-
tion of b, with a subset in St (R™*) @ R™ of symmetric (¢ + 1)-linear mappings
s satisfying s( ,v1,...,v4) € bg C R”* @ R™ for all fixed elements vq,...,v,. The
linear subspaces b, are called the ¢-th prolongation of the Lie algebra by. If b, = 0,
then b, = 0 for all » > ¢, by the definition. The smallest ¢ with b, = 0 is called the
order of the Lie algebra by. If by # 0 for all ¢, then by is said to be of infinite type.

9.2. Examples. In order to illustrate the above procedure, let us discuss the Lie
algebras o(m’, n,R) and co(m’, n,R), m' +n = m, just now. Let us assume X € by
is a polynomial field in the first case. Then its coefficients al, can be viewed as
elements a;;; by means of the isomorphism provided by the pseudo-metric. But
then we have the anti-symmetry a;;; = —a;;, for all signatures. Since a;; = air;,
we get

Qijk = —Q5ik = —05k; = OFji = Qkij — —0ikj — —Wijk

and so a;j5 = 0. Thus, the Lie algebra o(m/, n,R) is of order one.

By the definition of the algebra co(m’,n,R), the kernel of the homomorphism
co(m’;n,R) — R, A — TrA, is just the Lie algebra o(m’,n,R). Since o(m/,n,R)
has order one, the linear mapping b; — R™* X = (a;:kxjxk%) — %aﬁk € R™* s
injective (the kernel lies in the first prolongation of o(m’, n,R) and so is zero). On
the other hand, each element ¢; € R™” defines an element —qbgbiéjk—l—qbgz 6]2: —|—qbg;?6,iC
which belongs to by, cf. 5.10. Thus the latter formula defines the identification
by = R™*. Let us consider X € by with coefficients a;:kl. For each [ fixed we must

get an element from by. Hence after lowering all superscripts, we can write
aijrl = — 165k + qr10i; + 516z -

Since the coefficients are symmetric in j, k, [, the trace satisfies appr; = mqe =
appix = My Further we have apppr = apriy = —qpe0r1 + @iz + qr1 and so —qppdkl =
(m — 2)gkl. The trace of this expression yields (m — 2)q; = —mgp; and therefore
qsp = 0. Then the last but one equality implies ¢;; = 0 if m > 3. In this way, we
have proved that co(m’, n,R) is of order two in dimensions greater then two. (In
dimension two, there is the isomorphism co(2,R) ~ gl(1, C), hence it is an algebra
of infinite type.)

A general theorem due to R. Palais claims that if the Lie algebra of all infinites-
imal automorphisms of a B-structure on M is finite dimensional, then the group
B C DiffM is a finite dimensional Lie group and the infinitesimal automorphisms
form its Lie algebra. In particular, this happens for each B-structure with the Lie
algebra by of B of finite order, see [Kobayashi, 72, Chapter I] for the proofs.

9.3. The first order prolongation. There is the so called canonical form 6 €
QYPIM,R™) (called also soldering form) defined by 0(X) = o7 1 (T#(X)) € R™
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where X € T,,(P*M), m: P'M — M is the bundle projection and u = jl¢. Equiv-
alently, 0(X) = jip tomocif X = jle.

The B-structure F'M is a subbundle in 7: P!M — M, hence JY(FM) C
JY(PTM). If we choose a horizontal subspace H C T, PLM, then 6|H is an iso-
morphism. Now, each y = jls € J1(F M) determines a horizontal subspace H, €
Ts(z)(F'M) and an isomorphism R @ by — Ty (F' M) given by (X,Y) — (v + X'
where 6(X') = X, X' € H, and (y is the fundamental field corresponding to Y.
Hence we can view the one-jets of the sections as elements in P'(FM). The actions
of the isomorphisms f: M — M on J'(F M) depend on the second derivatives and
we shall try to find a subbundle in J!(F M) carrying the structure of the principal
fiber bundle with the structure group B, which is preserved by the action of second
jets of the automorphisms of the B-structure. This can be constructed by means of
the differential df restricted to the tangent spaces to sections. Let us start with the
notion of the torsion. The torsion t of the B-structure F'M is the smooth function
t on JY(FM) with values in Hom(A?R™ R™)) defined by

tHy)(0(X1) A O(X2)) = dO(X1, Xs), y=jys, X1,X2 € Hy C Ty (FM).

The torsion ¢ is equivariant with respect to the action of the vector group R™* &
by with respect to the following actions. The transitive action on the bundle
JYFM) — FM is defined by means of the above identification R™ & by ~
To(x)(FM) determined by jls, while the action on Hom(A?R™ R™) is given by
A(w) = w+ 9A, where A € Hom(R™, by) and d: Hom(R™, bg) — Hom(A2R™ bg),
(0f)(v1,v2) = —f(va)v1 + f(v1)va, is the Spencer operator. Hence we can factorize
t by these action of R™* @ by and we get a mapping

c: FM — Hom(A"R™ R™)/(R™ & by)

which is called the structure function of B.

The space R™ is identified with the (abelian) subalgebra of constant vector fields
b_1 and so each value of  can be viewed as a cochain in Co’z(b_l; boi1Pbgd )
in the Spencer bigraded complex. All cochains in C'®¢ are closed (since b_y = 0)
and we factorize precisely by the image of the differential 9, cf. 10.21. Hence the
values of ¢ are in the Spencer bigraded cohomology space H%?(b_1;6_; ®bo D --).

If the structure function is zero, then there is a canonical way of the prolongation
of the B-structure: The first jet prolongation J*(F M) is embedded into the bundle
of second semi-holonomic frames P?M and the vanishing of ¢ is a necessary and
sufficient condition for the existence of a holonomic subbundle F*M = i(J*(FM)N
P2?M). The latter is then the first prolongation with all required properties, see
[Kolaf, 85] for details. Let us remark that the structure function is defined in
the latter paper by a nice geometrical construction using the difference tensor on
semiholonomic second frame bundle.

In the conformal case, we compute in 10.21 that H%?(b_1;g) = 0 and so the
structure function must be always zero. Thus there is the canonical second order
structure F'M C P?M on conformal manifolds which is the first prolongation of
the conformal structure FM C P'M .26

261f the structure function is not zero, the torsion still helps to get the usual (but not canonical)
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9.4. Another construction of the prolongations is based on the torsion free connec-
tions on F'M. We shall need several technical tools.

The second frame bundle, is equipped with a generalization of the soldering
form, a form 02 € QY (P2M,R™ @ gl,) defined as follows®”. Each element u €
P2M, u = j2p, determines a linear isomorphism @: R™ ¢ g, — Tﬂf(u)PlM (in
fact Ty(Plp): T(o,e)(R™ x GL,) — TP'M). Now if X € T, P’M then 6*)(X) =
a~ Y (T73(X)), ie. 0(X) = ji(P'¢~ o m?oc) if X = jle. This canonical form
decomposes as 02) — 9_| & 6y where 0_; is the pullback of the soldering form 6
on PYM, 0_y = (7x3)*0, while 0y is g -valued. The values of 0(2) can be viewed as
elements in the Lie subalgebra of constant and linear vector fields in the Lie algebra
of formal vector fields.

Lemma. (1) For each X € g2,, 009((x) = Tr}(X) € g}, = gl(m).
(2) Foreach g € G2, (rg)*ﬁ(z) = Ad(g=1)0®.
(3) There is the structure equation dfi_; + [6y,6_1] = 0.

Proof. The first two statements follow easily from the definition of §(2). Let us
prove the last one. We shall use the canonical local coordinates u?, u;:, u;k on
P?R™ = R™ x GL(m,R) x R™ @ S?R™*. The coordinate expression of (3) is
dot = —9}; A G% where 0_1 = 0" ® ¢;, Oy = 92 ® e¥ are the expressions with
respect to usual bases ¢; € b_; = R™, ¢ef € gl(m,R) so that [ef ¢;] = 6]’»“62'. The
definition of #(?) provides us with the coordinate expression for the differentials of

the coordinate functions u', uj on P'M

du' = u; &’

i _ .1 ph 7 h

Applying the differential to the first equality we get
0= duj A +ufdt = ubdd) + uj, 08 A0+ uj; 0" NG

where the last term is zero, for Ulﬁj is symmetric in the subscripts. If we multiply

by the inverse matrix function v¥ to u; on the left, we obtain d@* = —9]]»“ A0 as
required. O

9.5. A section of the bundle 77: P?M — P'M is called admissible if s(u.g) =
s(u).g for all w € PM and g € G}, C G2,. The admissible sections are precisely
sections of P?M/GL — M.

Lemma. There is a bijective correspondence between local torsion-free connections
I' on P'M and local admissible sections st given by I = st0.

Proof. Given any local admissible section s: P*AM — P?M, the Lie algebra valued
one form I' = s*8; is a local principal connection. One verifies easily in local

prolongations as mentioned at the very beginning. Every choice of a complementary subspace C' €
Hom(A2R™,R™) to the subspace d(Hom(R™, g)) determines the subspace t~1(C) C JY(FM).
The bundle t~1(C) — FM has the proper structure group (corresponding to the Lie subalgebra
b1 C bo P by).

27In general, a similar definition yields a form o(k) e 1 (PkM,Rm &) gfn) where g¥, is the Lie
algebra of G%,
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coordinates that I' is without torsion. On the other hand, the coordinate expression
shows that each locally defined principal connection without torsion defines a local
section M — P2?M/GL,, see [Kobayashi, 72, Proposition 7.1] for more details if
necessary. [l

The value sp(u) depends only on the restriction of I' to T, P*M. Hence if we
consider a connection I' of a B-structure FFM C P'M, then the admissible section
sp defines the B-principal subbundle sp(FM) C P?M. Now, we can take the orbit
Bl(sp(FM)) C P?M which is a Bl-principal subbundle. Hence the problem which
remains is how to determine whether two different torsion-free connections give rise
to the same second order B'-structure. Such connections are called equivalent and
the set of all equivalence classes of connections belonging to certain B-structures is
parameterized by sections of the associated bundles of the B-principal bundle F'M
with respect to the representation of B on H1(b_1;g), cf. [Ochiai, 70] or [Baston,
90]. This applies in particular to the conformal case, where the first prolongation
B! of the structure is just the Poincaré conformal group and we compute in 10.21
that the above mentioned cohomology is zero. In other words, all torsion-free
connections on conformal manifolds are equivalent, see also [Kobayashi, 72] for a
more elementary direct treatment. Thus the local prolongations do not depend on
our choice of the connections and hence they can be glued into a unique reduction of
the second frame bundle P?M to the Poincaré conformal group. In particular, we
can use the Levi-Civita connection with respect to any pseudo-Riemannian metric
from the conformal class.

9.6. The Cartan connections. We have established the existence of a canon-
ical subbundle in the second order frame bundle on each conformal manifold, let
us denote this principal bundle PM. We are interested in some analogy to the
Levi-Civita connection for conformal manifolds. We shall see, that there exists a
canonical Cartan connection which is unfortunately not a connection but more an
analogy of the Maurer-Cartan form on Lie groups.

Definition. Let GG be a Lie group with a closed subgroup B and let dimG/B = m.
A Cartan connection w on a principal bundle P with m-dimensional base manifold
and structure group B is a g-valued one-form on P (g is the Lie algebra of ) with
the properties

(1) wx)=Xforall X €b
(2) (rg)'w = Ad(g~')w for each g € B
(3) w(Y) # 0 for each non-zero Y € TP

As already mentioned, the Maurer-Cartan form on G is the simplest example of
a Cartan connection on the principal bundle G — G/B. The Cartan connection w
on P can be viewed as a principal connection on the principal bundle P x g G with
structure group G.

Similarly to the usual principal connections, we can write down the structure
equation

1
dw = —§[w,w] +Q

where 2 1s some g-valued 2-form. This 2-form is called the curvature form of the
Cartan connection w.
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9.7. Our next aim is to find canonical Cartan connections on the canonical subbun-
dles PM in P?M on conformal manifolds. We shall follow the elementary treatment
from [Kobayashi, 72] using local coordinates but we shall review the whole story in
the language of the Spencer cohomologies later on.

A Cartan connection w and its curvature €2 on the canonical bundle PM can
be always decomposed as w = w_1 P wy D wy and 2 = Q_1 P Qo P 1. But this
decomposition is only bg-invariant and not (by & by )-invariant.

Lemma. (1) the restriction w_; to each fiber of PM vanishes
(2) the restriction of the b-component, i.e. wg @ w1, to each fiber is the Maurer-
Cartan form of b
(3) the curvature is a horizontal 2-form, i.e. Q(X,Y) = 0 if X is vertical
(4) ifw_y = w @ ey + -+ w™ @ ey, for some fixed base of b_y, then the

lKQwZ— A wl where K;j are g-

curvature admits an expression @ = Zi]’ 5
id

valued functions.

Proof. The assertions (1) and (2) follow directly form the definition of the Cartan
connections. Then the structure equation, restricted to any fiber, yields (3). Since
each Cartan connection w defines an absolute parallelism on PM, the components
w?, w;:, w; of w_1 ® wo & wy with respect to basis of the components of the Lie
algebra generate the whole algebra of the exterior forms A(M). But then obviously
(1)-(3) imply (4). O

9.8. Admissible Cartan connections. The restriction of the canonical form
9551) € QYP?M,R™ & gl ) on an m-dimensional conformal manifold M to the
principal subbundle P C P?M with structure group B is an (R™ & bg)-valued form,
we shall denote it by 8p € QL (PM,R™ & bg). This decomposes as 0p = 0_1 & g
where 6_; € QY(P,b_1) and 6y € Q' (P, by). We have

Oo((xorx,) = Xo for each Xo+ X3 € by D by
()" (6-1 ® 60) = Ad(g™1)(0-1 & bo)
0_1(Y) =0 if and only if ¥ is vertical

df_1 + [0p,60_1]=0

and so there can exist Cartan connections w = 6_1 @ 0y & wy on P where w is
subject of a free choice. Such Cartan connections are called admissible.

The Maurer-Cartan equations of O(m 4 1,1,IR) can be easily read off 5.9 if we
decompose the bracket

[w,w] = [w_1,wo] + ([w-1,w1] + [wo, wo]) + [w1, wa].

The structure equation for a Cartan connection w consists then of the same terms
together with the curvature components:

(5) do' = —wi AW+ O
(6) dw;::—wé/\wf—wi/\wj—wi/\wj—l—éjwk/\wk—l—();
(7) d(.d]' = —Wwg /\(.d]l»C + Q]’.
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If w is admissible, then Q' = 0 by the definition and (5). Now, applying the exterior
differential d to (5) we get

Ozd(w;:/\wj):dw;/\wj—w;:/\dwj.

If we substitute from (5) and (6) we obtain the Bianchi identity Q; Awl =0. In

: i _ lpei ok U thi
the expression €25 = 7K}, w" Aw' this means

Kjy + Kiy + Kfj = 0.

9.9. Theorem. Let P be a principal bundle over an m-dimensional manifold
M, m > 3, with structure group B, the Poincaré conformal group. If w_; €
QYP,b_1) and wg € QY(P,bg) are two 1-forms satisfying the equalities 9.8.(1)-
(3) and the structure equation 9.8.(4), then there is a unique Cartan connection
w=w_1 Pwy P wy, such that the curvature Q@ = Q_1 ® Qp B Qy satisfies 2_1 =0
and Qg is in the trace-free part of the space of by-valued 2-forms. In the standard
basis of the components of the Lie algebra, the latter means Q = (0, Qj», Q;) with

i Loi o ka -
Q]—;zzihiﬂw—/\w—, le;lzo.

Proof. Let us first prove the uniqueness. Consider two admissible Cartan connec-
tions w, @ with the properties required in the theorem. Then the b_;-component
and bg-component of the difference w — w are zero by the definition and

- _ ok
Oj —wj =Y Apw
k

for suitable functions A;; on the principal bundle P. Now, direct computation

using 9.8.(5)—(7) yields the expression for the difference of the curvatures Q;— - Q;— =

% Zﬂ([{z_ﬂ - K]Ziﬂ)wﬁ A wt with

Ky = Ky = =81 Aje + 65 Aj + 67 Ap — 6 A

S (REy = Ky = (m = 2) Ay + 83 ) Ay
Y (K —Kjy) =2m—1))_ Ag

and so A;; = 0 for all subscripts.
Next we notice that there is a Cartan connection satisfying all requirements if
there i1s at least one Cartan connection with the given components w_; and wy.
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The point is, we write & — w as above and we find functions A;; such that & will
obey all the required properties. One verifies easily that the right choice is

1 1 i i
A=y <2<m— 1>‘S]—'E;AM_;[M)'

KELA

In order to complete the proof, we have to construct an arbitrary Cartan con-
nection w with given components w_; and wy. Since local Cartan connections on
M can be glued together using the partition of unity on the manifold M, it suffices
to construct the connections locally. (Another argument is, each such local Cartan
connection gives rise to a local connection with the required properties, but the
latter is unique and so we must get a globally well defined object.) If we choose a
section ¢ of P, we can define w; = 0 on the tangent spaces to the section and since
the values of w; are given also on the vertical tangent spaces by the definition and
w; must be right invariant with respect to action of the Poincaré group B, w; is well
defined by this choice. Explicitly, each vector Y € T, P, u = o(x).¢, decomposes
uniquely as Y = (#9)..(X1) + (x,(uw) with X; € To(T, M) and X3 € by @ b;. Then
by the definition

w(Y) = Ad(g™)(@(X1) + X2 O

and this formula defines the values of w;.

9.10. Remark. The local construction from the end of the above proof can be
modified to produce a globally defined admissible Cartan connection by means of
a torsion-free connection on the ‘linear’ frame bundle PM/B;.

Let us consider such a connection I' and the corresponding admissible section
st from 9.5. Now, we set w; = 0 on the image of sr, and we decompose each
Y € TuP, v = sp(x).g with ¢ € By, uniquely as Y = (9).(X1) + (x,(u) with
X1 € To(T,(PM/B;) and X5 € by. Then w(Y) = Ad(g71)(w(X1)) + X2 defines

w;. One checks easily that this is an admissible Cartan connection.

9.11. The conformal connection. For each conformal manifold M, we can
apply the above theorem to the canonical principal subbundle PM C P2M with
structure group B and the restriction 6p of the canonical two-form 6(2) on P2M
to PM. Thus, there is the uniquely defined Cartan connection wpys on PM such
that wyr = 0_1 ® 00 @ (war)1 and Qyr = 0D (Qar)o © (Qar)1 with values of (Qar)o
in the trace-free part of A2T* P @ by. This connection is called the normal Cartan
connection on M or the conformal connection on M. Usually, we shall omit the
subscript M in the sequel.

As mentioned in 9.6, the Cartan connections can be viewed as the usual con-
nections on the extended principal fiber bundle P xg G with structure group G
and so we get the induced connections on each associated bundle. In particular,
we can consider the standard fiber G/B, the sphere. The associated bundle can
be viewed as the ‘pointwise compactified tangent space’ over the base manifold M.
The connection on this space is also called the conformal connection on M in the
literature.

9.12. The cohomological interpretation. We present briefly an alternative
description of the conformal connection and its curvature. We follow [Ochiai, 70]
and [Baston, 90].
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Let us consider an arbitrary admissible Cartan connection w = 6_1 @ 0y ® wy
on the canonical bundle PM over a conformal manifold M and let us write briefly
g=D0b_1®bgd by =o(m+2). Further we shall use the notation w=1(X) for the
vector field on P corresponding to an element X € g. In particular, we can rewrite
the structure equation dw = $[w,w] + Q as

(1) Q™ (X),w T (Y)) = [X, V] = w(fw™ (X), 0™ (Y)])

for all X, Y € g (the values of w on our particular fields are constant and so the
‘Lie derivative part’ of the differential disappear).
For each u € P we define the cochain W(u) € C1?(b_1;g) by

(2) W) (X,Y) = Qw1 (X),w  (YV)), X,YeEb_.

The differential 9W is evaluated on three elements from b_;, and the formula from

10.21 yields
(3) IW(X,Y,Z)=10-1,%](X,Y,2)

so that the Bianchi identity implies W = 0. Hence W determines a cohomology
class in HY2(b_1, g).

In the first part in the proof of Theorem 9.8 we proved in fact that this class is
independent of our choice of wy. The assumption on the values of 2o in Theorem
9.8 mean that we have to adjust w; in such a way that W is the unique harmonic
representative of the class. Let us give some more details.

Given any pair w, @ of admissible Cartan connections, there is the C?1(b_1; g)-
valued function f on P defined by

o HX) —wTHX) =0T (X)), X eEb_y.

Since € is a horizontal form, we get

(4) (W = W)(X,Y) = (Q = Qo)™ (X), 0 (V)
=[0-1, 01 — wi](w ™ (X),w™ (V)
= af(XaY)

(only the by-valued entry in the structure equation can contribute to the last but
one term). This shows that the cohomology class of W is uniquely defined.

We can always construct an admissible Cartan connection w on PM from local
sections, see the proof of 9.8, or equivalently from the Levi-Civita connection of one
of the metrics from the conformal class by means of the construction from 9.4. In
order to get the right one, we have to find the proper C*'(b_1; g)-valued function
f. This is obtained as the solution of the equation

(5) Of = oW

where O is the Laplace operator on the cochains and §* is the codifferential, see
10.22 for the notation and definitions. Indeed, then we can define

0THX) = wTHX) + T (X))
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for all X € b_; and so

W=0af+W,
see (4). Now, *W = 0*0f + W =0Of + "W = 0 and so OW = 0.
Since we know from 10.21 that H**(b_1;g) = 0 in the conformal case, this

solution f i1s unique and we have recovered the uniqueness and existence of the
normal conformal connection.

9.13. The conformal curvature. In the coordinate like description, the compo-
nents of the curvature of the normal Cartan connection are Q;— = %Z [(]%MWE Awl

and Q; = > Kjp. In the proof of 9.8 we deduced the Bianchi_identity for Q; An
analogous computation leads to the equalities

Zwi/\QiIO, wi/\Q];—w];/\QZIO.

A further computation with traces verifies also that £2; vanishes whenever €2 does,
provided the dimension is at least four. Hence €2 is the proper obstruction against
the integrability of the conformal structures.

Let us represent the bg-component 2y of the curvature as a section of a suitable
bundle. As mentioned in 10.21, the cohomology spaces H*(b_1, g) carry a canonical
bo-module structure. Hence the cohomology class of the function W on the canoni-
cal bundle PM could represent a section of the associated bundle corresponding to
the bg-module H1?(b_1,g) (viewed as (bg 4 b1) -module via the trivial extension,
if it satisfies the proper equivariance condition. Indeed, then we view W as an
equivariant smooth mapping with values in the standard fiber, i.e. as a section.
But the latter equivariance follows from the fact that g is right invariant modulo
b;.

In 10.21 we compute the highest weights of the representations of by occurring
in H2(b_1;g) in the conformal case. One finds, that in dimensions greater then
four we get the irreducible conformally invariant part of the Riemann curvature
tensor, the so called Weyl curvature tensor, while in dimension four the latter still
splits into two irreducible components.

An interesting fenomenon appears in dimension three, where H12(b_1;g) = 0
and so the Weyl curvature does not exist and has to be replaced by a third order
invariant tensor. See [Baston, 90] for more comments.

Now, let us come back to the natural operators on conformal manifolds.

9.14. Let us first recall the meaning of ‘conformally invariant’. In the sense of the
general definition of Section 2, the natural operators are systems of operators de-
fined on sections of bundles with distinguished actions of the conformal morphisms
and intertwining these actions, one for each conformal manifold. If we deal with
spinor bundles, we have to consider the coverings of the morphisms to the spin
structures, see 2.14. It has no meaning to restrict this definition to individual man-
ifolds, since in general there may be no conformal morphisms beside the identity,
or only very few of them, and in such a case all operators would be ‘invariant’.
However exactly those constructions on individual manifolds which make no use
of some special choices extend into natural operators on all conformal manifolds.
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All our operators are local and so we do not take care of the spin structures which
always exist locally. The effect is that the operators we obtain might not exist on
some manifolds simply because of the lack of the definition domains.

9.15. The ‘curved’ translation principle. The translation procedure which
was heavily used in Section 8 in the conformally flat case, was worked out in [Baston,
90] by means of the normal Cartan connection for general conformal manifolds of
all dimensions greater then two.

The inverse of the Cartan connection w on the canonical bundle PM — M on a
conformal manifold M is an injective linear mapping

wlig— C®(TPM)

where G = SO(m + 2,C) and g is its Lie algebra. The right invariance of w with
respect to the action of the conformal Poincaré group B has the infinitesimal form

WX Y] =TI (X),wTH(Y),  Xeb Yeg

Let us now fix two weights A and p dominant for b and write as usual Vi, V,
for the corresponding representation spaces. They define the associated bundles
ExM = PM x5 Vy and E, = PM %, V, on all conformal (spin) manifolds (in the
‘spin case’ PM means the lift to the double covering of the canonical bundle, see
2.14).

In order to find an invariant linear operator Dyr: C®(E M) — C™(E,M),
we have to describe the dual mapping to its action on the infinite jets of sections
of the bundles. If we fix a point u € PM, the latter should be an invariantly
defined mapping {u} x, V' — (J3°(PM, V3)B)*. Now we can employ the Cartan
connection. The domain of this map is a 1(b)-module generated by a highest weight
vector but the codomain is , with the help of w, too.

Let us write A(g) for the quotient T(g)/{(X@Y - Y @X—[X,Y]; X € b,Y € g) of
the tensor algebra over g by the indicated ideal. 24(g) is a LI(b)-bimodule and LI(g) is
a quotient of 2A(g). As a vector space A(g) ~ T'(n_) ® (b) and the left b-modules
2A(g) @ue) Vy cover the generalized Verma modules My(Vy). In particular, the
maximal weight vectors are defined in 2(g) ®y(p) V3" and they must cover maximal
weight vectors in My (V)).

Now the point is, the normal Cartan connection identifies the dual of the jet space
(Je(PM,Vy)B)* with a quotient of 21(g) @y(e) VY, exactly as in the identification
in 8.2. Indeed, in Section 8 we made use of the special case of the normal Cartan
connection, the Maurer-Cartan form on g in the identification of the right invariant
vector fields on G with 4(g) and this was the crucial point of the identification
of the dual jet spaces. Now we can do the same, but we are allowed only to use
commutators of the form [X,Y] with X € g, Y € b.

If we find a maximal weight vector with weight p in (g) @yce) VY, then we
obtain a uniquely defined mapping {u} x, V" — (J°(PM, Vy)P)* and since we
deal with jets of right-invariant mappings, the latter cannot depend on our choice
of w in the fiber. Once such maximal weight vector exists in one fiber, we get it
in all other ones as well and we obtain an invariant operator in this way. Each
such maximal weight vector covers a maximal weight vector in M(V) and so the
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corresponding operator can be viewed as an extension of the invariant operator
on the locally flat conformal manifolds. Hence, in our algebraic reformulation, the
question whether the invariant operators on flat manifolds admit curved analogues
reads: do the mazimal weight vectors in My(V)) lift to mazimal weight vectors in
A(g) @uce) Vi ? A partial answer is given in [Baston, 90]:

9.16. Lemma. Let A be an integral dominant weight for g = e—e - .. ’—<:,

let b = x—e - ’—<: and let w, w' € WP If D: My(V5 ) — Mu(V}))

is a homomorphism of Verma modules, then the image of My (V. ,) is generated
by a maximal weight vector v which can be lifted to a maximal weight vector in
A(g) @u(e) Vi, unless w = id and |w'| = 2n, the full dimension.

In the formulation of the Lemma, we use terminology and notation introduced
in the Appendix. In particular, W means the parabolic subgraph, |w’| the length
of its element. In order to prove the lemma one has to find an expression for the
maximal weight vector v as a sum of terms of the form P ® v' with P € T'(n_) and
v’ € V), such that its maximality can be proved only by means of commutators
of the form [X,Y], X € b, Y € g. The complete proof is available in [Baston, 90]
and is based heavily on the translation principle.

The latter author claims also that an analogous lemma holds in odd dimensions.
As a consequence, we get immediately the following general result on the existence
of natural operators.

9.17. Theorem. All natural operators between natural vector bundles with reg-
ular infinitesimal characters on flat conformal m-dimensional manifolds, m = 2n
even, extend to bundles on curved m-dimensional conformal manifolds except the
long operators, i.e. those corresponding to the longest arrow in the diagram from
8.13.

In odd dimensions, all natural operators on locally flat conformal manifolds
extend to a natural operator on the whole category.

Though the proof of Lemma 9.16 consists in certain inductive construction, it
provides us with no direct method for writing down the formulas for the operators,
cf. the situation in the flat case, Remark 8.4. Nevertheless, there is a general
reason for which all these formulas are expression in the Levi-Civita connection
with highest order term coinciding with the flat case, accomplished with certain
lower order correction terms. The correction terms are expressed only through the
Ricci curvature of the Levi-Civita connections and their formal expressions do not
depend on the choice of the metric in the conformal class.

9.18. Remark. The problem which of the so called long operators admit curved
analogues seems to be still unsolved, in general. There is the theorem due to
[Graham, 90] which shows that the cube of the Laplace operator in dimension
four has no curved analogue. (The proof consists of twenty nine pages of careful
elimination of all possible correction terms!) On the other hand, the operator
A" Q% — QP on 2n-dimensional manifolds is a long operator which admits a
curved analogue. There i1s a conjecture that this is the only long operator which
does, see [Baston, Eastwood, 90].
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Another unsolved problem is to clarify how far is the extension unique. For
example, we can add multiples of ¢, — By%p, to the invariant operator O4[1] —
O4[-3], where Bg® is the so called Bach tensor.

9.19. Explicit formulas. If we choose a metric from the conformal class, we get
the admissible Cartan connection @ constructed from the Levi-Civita connection,
see 9.10. Let w be the normal Cartan connection. For each element X € n_ we
define the vector fields X = w~!(X) and X* = w™!(X). The two admissible Cartan
connections define the C»1(b_y; g)-valued f on the canonical bundle P M such that
X* = X+w L (f(X)), see 9.12. A homomorphism of Verma modules ¢ My(V)) —
My(VY¥) is determined by the proper maximal weight vector in the target which
must be of the form ), Pi(Xj)m where the elements k; form a weight basis of
VY, the X;’s form a root space basis of n_ and P are homogeneous polynomials.
These polynomials must be chosen according to Lemma9.16 and in order to obtain a
differential operator, each occurrence of X; must be replaced by the vector field X7.
Thus, in order to get differential operators in terms of the Levi-Civita connection
we have to substitute X7 in terms of X, w and f. Then the monomials in X
will induce the differential operator obtained from projecting Vg, - - -V, s into its
irreducible factor corresponding to the target bundle of the operator in question
and the terms w™!(f(X;)) will build certain correction terms. A more careful study
of the two Cartan connections involved enables to express f as f = —O~19*r(T)
where T is the Levi-Civita connection and 9*r(T") is the Ricci curvature of T, if
viewed as a section of the appropriate induced bundle.

The algorithm which leads to the explicit correction terms goes quite quick out of
hand with increasing order. In [Baston, 90], the correction terms were computed in
general for second order operators (with some particular examples of higher order
operators involved). We add only two general remarks concerning this algorithm:
If {Y;} is a basis of the negative root spaces in go, then in an expansion in terms
of X; of an expression of the form X; X7 ... X7 (Y},Y},...Y}, v)

(1) the first element X/ gives rise to no correction terms

(2) for each occurrence of a curvature correction term in the expansion, there
are two fewer occurrences of X;’s in the result then X;’s in the original
expression

The point (1) recovers the result form Section 6 where we proved that the first
order invariant operators always extend to the whole category without changing
the formal expression. From (2) it follows immediately, that the highest order
correction terms are of order at least two less than that of the leading term.

9.20. Some other methods. The Gover’s idea how to find explicit formulas
of some invariant operators is to apply the standard technique of the twistor the-
ory, the double fibration 4 L g v M where G is the bundle of null
directions on a sufficiently small region M of a conformal manifold, A, the am-
bitwistor space, i1s the space of null geodesics of M and p, v are the obvious
projections. In the flat four-dimensional case, we have the homogeneous space
M = SL(4,C)/( «—x—s), the space of full flags in C* G = SL(4,C)/( x—=—)
and A = SL(4,C)/( x—e—x). The twistor theory studies in detail the relations
between the homogeneous bundles on G and M, in particular, it is well known how
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to induce operators acting on bundles over M from the operators acting on bundle
over G. It turns out that all operators on bundles over G which involve only differ-
entiation in the directions of fibers of u descend to non-trivial operators on bundles
on M. Such operators are called horizontal operators. [Gover, 89] proves that all
horizontal operators on the homogeneous space G in the flat case have curved ana-
logues and he also gives explicit method how to find the formulas for the correction
terms. Comparing these results with the discussion from Section 8 one finds that
what we get in this way are precisely the standard operators and nothing else. For
explicit formulas and details see [Gover, 89], a geometric description of this method
in terms of the canonical projective structures on curves in conformal manifolds is
given in [Baston, Eastwood, 90].

Let us further mention the methods related to Lie algebra cohomology and the
Fefferman-Graham method, cf. [Feffeman, Graham, 85] and [Baston, Eastwood, 90].
A lot of the methods which were elaborated for the classification of the conformal
invariants are efficient also for some other, higher order geometries. The so called
almost Hermitian symmetric structures are treated in [Baston, preprint, 90].

9.21. Possible development. We shall mention only a few of areas where the
interested reader could find a lot of possibilities for his own activity.

First, the representation theory provides the necessary background for similar
classifications in different geometric categories with finite dimensional spaces of
morphisms. A lot of activity is visible in the literature in this direction. It seems,
that even the specialists in the representation theory could profit from the geometric
reformulations of their problems.

Second, the construction of the operators on the curved manifolds should be
expressed in more geometric terms and some analogy to the general theory for Rie-
mannian invariants could be achieved. The general theory of connections could be
a good tool for that. One of the crucial questions reads: Are all natural opera-
tors built of the above mentioned extensions of those living on the conformally flat
manifolds and the Weyl conformal curvature?

Further, the infinitesimal naturality could be weakened by dropping the locality
assumption. Are all such operators obtained by integration of local ones? In the
category of all manifolds and mappings the answer to an analogous question is, yes,
cf. [Cap, Slovik, to appear].

Next, any effective algorithm for concrete formulas for the operators would be
highly appreciated, even in the conformally flat case (in fact we need the curvature
correction terms even in the conformally flat case and may be that the contents of
the above extension construction is that the same formulas apply).

10. Appendix

This is a rather sketched overview of some basic facts concerning representations
of Lie algebras and Lie groups used in the main text. The main sources are: [Samel-
son, 89], [Knapp, 86], [Zhelobenko, 70], [Naymark, 76], [Baston, 90], [Lepowsky, 77],
[Zuckerman, 77].

10.1. A representation w of a (real or complex) Lie group G on a finite dimensional
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(real or complex) vector space V is a Lie group homomorphism 7: GG — GL(V).
Analogously, a representation of a Lie algebra g on V is a Lie algebra homomorphism
g — gl(V). For every representation 7: G — GL(V) of a Lie group, the tangent
map at the identity 7w : g — gl(V) is a representation of its Lie algebra. Given two
representations 71 on Vi and 73 on Vs of a Lie group G, a linear map f: Vi — Vs
is called a G-module homomorphism if f(71(a)(2)) = w2(a)(f(x)) for all a € G and
all z € V. Analogously we define the g-module homomorphisms. We say that the
representations wy and w2 are equivalent, if there is a G-module isomorphism (or
g-module isomorphism) f: V3 — V5.

A linear subspace W C V in the representation space V is called invariant if
7(a)(W) C W for all @ € G (or a € g) and 7 is called irreducible if there is no
proper invariant subspace W C V. A representation 7 is said to be completely
reducible if V' decomposes into a direct sum of irreducible invariant subspaces. A
decomposition of a completely reducible representation is unique up to the ordering
and equivalences.

A representation m of a connected Lie group G is irreducible, or completely re-
ducible if and only if the induced representation T'w of its Lie algebra g is irreducible,
or completely reducible, respectively.

10.2. The commutator of two elements aj, as of a Lie group G is the element
alazaflaz_l in G. The closed subgroup K(S1,S2) generated by all commutators
of elements sy € S; C G, s3 € S3 C G is called the commutator of subsets S
and Sz. In particular, G’ := K(G, ) is called the derived group of the Lie group
G. We get two sequences of closed subgroups G and G(n), n € N, defined by
G = G = Gy, G = (G=VY, Gy = K(G,Gp_1y). A Lie group G is called
solvable if G(") = {e} for some n € N, G is called nilpotent if Gn) = {e} for some
n € N. Since always G(,) D G™) | every nilpotent Lie group is solvable.

The Lie bracket determines in each Lie algebra g two analogous sequences of
Lie subalgebras: g = g(” = g, g™ = [¢"~Y, 6"~ Y], gy = [8,8(n-1)]. The
sequence g(,) 1s called the descending central sequence of g. A Lie algebra g is
called solvable, or nilpotent if gt = 0, or g(n) = 0 for some n € N, respectively.
Every nilpotent Lie algebra is solvable. If b is an ideal in g(®) such that the factor
g(”)/b is commutative, then b D g("*t1). Consequently, a Lie algebra g is solvable
if and only if there is a sequence of subalgebras g = by D by D -+ D by = 0 where
brt1 C by is an ideal, 0 < k < [, and all factors by /br11 are commutative.

A connected Lie group is solvable or nilpotent if and only if its Lie algebra is
solvable or nilpotent, respectively.

Each Lie algebra g contains a unique maximal solvable ideal, the so called radical
v of g. Similarly, there is a unique maximal nilpotent ideal, we call it the nilradical
n. A Lie algebra g is called semsimple, if its radical is zero and its dimension is
positive, g is called simple if it contains no non-trivial ideals.

The quotient g/t is always semisimple or trivial and we get the exact sequence

0—t—g—g/t —0.

The Levi-Malcev theorem states this sequence splits, i.e. each Lie algebra is a direct
sum g = t @ s with v solvable and s semisimple or trivial.
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The Engel’s theorem claims: A Lie subalgebra g C gl(m, C) consisting entirely
of nilpotent operators is a nilpotent Lie algebra.

A Lie algebra with a completely reducible adjoint representation is called re-
ductive. If g is reductive, then its radical v coincides with the center 3. The Lewv:
decomposition g = [ n is a decomposition with [ reductive while n nilpotent.

10.3. The Killing form « on the Lie algebra g is the symmetric bilinear form defined
by £(X,Y) = Tr(adX o adY’), the trace of the composition of the adjoint actions.
A Lie algebra is semisimple if and only if its Killing form is non-degenerate and
its dimension 1s positive. A Lie algebra is solvable if and only if its Killing form
vanishes identically on the derived algebra ¢’.

10.4. Cartan subalgebra. A nilpotent Lie subalgebra h C g which is equal to
its own normalizer is called a Cartan subalgebra. If g is complex and semisimple
this is equivalent to h maximal abelian with adH diagonizable for all H € h. If
g = gl(m, C) we take the subalgebra of all diagonal matrices for h. The dimension
[ of i does not depend on the choice and we call it the rank of g.

10.5. Roots and weights. Consider a representation p of a Lie algebra g in a
vector space V. An element A € g* is called a weight if there is a non zero vector
v € V such that p(x)v = A(x)v for all # € g. Then v is called the weight vector
(corresponding to A). Every representation of a nilpotent algebra decomposes as a
sum of its weight spaces Vy of weight vectors corresponding to the weights A.

If h C g is a Cartan subalgebra, then the weights « of the adjoint representation
of b in g are called roots of the algebra g with respect to h. The corresponding
weight vectors X, are called the root elements (with respect to h), the weight
spaces are called the root spaces. Since f i1s nilpotent, the whole algebra g splits as
a sumn of the root spaces ¢ = > ga-

In the sequel we shall assume g is complex and semisimple. Let us consider
a representation p of g. Then there are the weight vectors corresponding to the
restriction of p to the Cartan subalgebra. Let us write V), for the subspace consisting
of the zero vector and all weight vectors corresponding to a weight A € h*. Since
the Cartan subalgebra is nilpotent (even abelian), the whole representation space
V' is spanned by the weight vectors v € Vi. So V = 3", V) and there is only a
finite number of V) non-zero. The set of weight vectors is always invariant under
the action of the root elements in g, i.e. Xo.Vy C Vijgq. In particular, this applies
to the splitting of a complex semisimple Lie algebra g into root spaces g, so that
[da; 98] C Gavtp-

A maximal solvable subalgebra b in a Lie algebra g is called a Borel subalgebra.
Each Borel subalgebra contains a maximal commutative subalgebra b C g with the
property that all operators ad X, X € h, are diagonal in g, 1.e. a Cartan subalgebra.
The roots with root elements belonging to the chosen Borel subalgebra are called
positive roots. Those positive roots which are not linear combinations of two differ-
ent positive roots with positive coefficients are called simple roots (or fundamental
roots). Choosing an order on the simple roots, we get a weak order (sometimes
called lexicographic) on the set of all roots of g. The set of all roots is denoted
by A, the space of positive roots by AT C A. The set of all simple roots will be
denoted by A¥. We always have —A = A and [ga, §_o] C b.
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The real vector subspace in h* generated by the roots is called the real part
hi of b*. For semisimple algebras, the Killing form is non-degenerate and also its
restriction to h i1s non-degenerate. Thus we get the induced isomorphism h ~ h*.
Using the induced isomorphism with the dual we obtain the real part hy C . The
restriction of the Killing form to the real part hy is positive definite and so we find
for each A € b a unique element Ay € hg such that (hy, X} = A(X) for all X € h. If
X €gy,Yegoyand (X,Y) =1 then [X,Y] = hy. The elements H) = ﬁhk
are called the coroots. The reason for this definition of H, will be clear in 10.9.

The simple roots form a basis of h* and so each other root is a real linear
combination Y a;¢; of the simple ones and, moreover, a root is positive if and only
if all coefficients a; are non-negative. For all roots, the coefficients aq, ... , a;, where
is the rank of g, are integral. In particular, all weights of a representation belong
to the real part h5. A weight X of a representation p is called the highest weight if
there is no positive root o such that A 4+ « is a weight of p.2®

Let us denote ny the derived algebra [by, by] of the chosen Borel subalgebra (the
subalgebra of upper triangular matrices with zeros on the diagonal in the gl(m, C)
case). A vector v in a g-module V is the highest weight vector (with respect to by )
if it 1s a weight vector with highest weight. This happens if and only if there is a
weight A € h* such that z.v —A(x)v =0 for all # € hand z.v =0 for all € ny, i.e.
v is a weight vector with the trivial action of [bF, bT]. (The latter condition shows
that A is the highest weight of the representation as defined above).

The highest weight vectors always exist for complex finite dimensional represen-
tations of complex semisimple algebras (and some more general ones) and they are
uniquely determined for the irreducible ones. The procedure of complexification
allows to use this for the real case as well.

10.6. Examples. In order to have some simple examples, let us take g = gl(m, C).
The irreducible representations coincide in fact with irreducible representations of
sl(m, C), see 3.13. We start with the highest weight of the identical representation

on R™ corresponding to the tangent bundle 7. The action of a = (af), af = 6]’»“6;

for some j < ¢, (corresponding to the action of X = xiaix]— given by the negative of

the Lie derivative) on a highest weight vector v must be zero, so that only its first
coordinate can be nonzero. Hence the weight is e! € R™*,

For the irreducible modules APR™* we can express the action of X = xiaix]— on
(constant) form w through the Lie derivative £_xw. Since £Lxdz' = 6]1» dx' we get
that if X.w =0 for all j < i then w is a constant multiple of da™"P+tL A ... A dz™.
Further, the action of £_.i/5,: on dx’* A - A dx'r is minus identity if ¢ appears
among the indices i; and zero if not. Hence the highest weight is —e™ =P+l —...—¢m,
Similarly we compute the highest weight of the dual APR™ e! 4 ... + ¢F and the
highest weight vector of SPIRR™* which is the symmetric tensor product of p copies

of dz™ and the weight is —pe™.

10.7. Abstract root systems. The roots of a semisimple complex algebra form
a geometric object with a very strong and nice geometric properties. Let us forget

283ometimes, the highest weights are also called ‘extreme’ but we use this term for all weights
in the orbit of the highest weight under the Weyl group, see below.
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for a moment about the Lie algebras endowed with the Killing form and let us focus
on the roots themselves.

An (abstract) root system in a vector space V with respect to a definite bilinear
form {, )} is a finite non-empty subset R C V' \ {0} which satisfies

(,
(1) For all o, B € R, agq := 2<£’5) is an integer.
or all o, 5 € R, the vector f — agy.a belongs to R.
2) For all o, § € R, th B — agq.o belong R
(3) If « € R and a.« are both in R, then a = +1.

Sometimes, this is also called reduced root system while the unreduced root systems
are defined by dropping condition (3).
We can express the conditions (1) and (2) more geometrically: Let us denote

Su(A) = A — %%lu, i.e. Sy is the reflection in V' with respect to the hyperplane

orthogonal to p. The first two conditions are equivalent to

(1) For all «, 8 € R, the difference So(5) — 3 is an integral multiple of «.
(2’) The set of all roots is invariant under the action of all Sy, & € R.

The group of 1sometries of V' which preserves the root system R is generated by
the refelections S, and is called the Weyl group of the (abstract) root system R.

10.8. Weyl group. Let us come back to complex semisimple Lie algebras. The
reflections S, corresponding to the root system of the Lie algebra g generate the
Weyl group W of g. This is a group of isometries in hj;. The set A of roots is invari-
ant under the action of the Weyl group. The hyperplane orthogonal to « in hf is
called the singular plane of « (of height zero), we shall denote it by («, 0). Clearly
(o, 0) = (=, 0). The Weyl reflection S, is identity on («,0) and interchanges the
two half-spaces determined by («,0). We denote by D' = U ea+(«,0). The com-
plement b\ D’ is an open subset. Its connected components are bounded by parts
of some singular planes («, 0), the so called walls. These connected components are
called the Weyl chambers of A. The Weyl group W permutes the Weyl chambers
and if an element from 1 leaves one chamber fixed (as a set), then it is the identity.
Moreover, for each o € A, the orbit W.a meets each Weyl chamber in exactly one
point.

The union of the singular planes defines the (infinitesimal) Cartan-Stiefel dia-
gram D',

10.9. Dominant weights. Consider a Borel subalgebra b in a semisimple Lie
algebra g with Cartan subalgebra h, and choose an order on the simple roots.
The set of all simple roots 1s called the fundamental system. Recall that every
positive root is a linear combination of the simple roots with non-negative integral
coefficients and the fundamental system is linearly independent. Hence the number
of simple roots equals the rank of the algebra. The coroots corresponding to the
simple roots are called the fundamental coroots.

Let «; form the fundamental system of roots and write H; for the fundamental
coroots. Then the set {A € A;{a;,A) > 0, 1 < ¢ <[} forms a Weyl chamber, the
so called fundamental Weyl chamber. We consider the Weyl group as an abstract
group acting on hj. By the duality, the Weyl group acts also on hy with the
contragredient representation. Then the coroots form a congruent root system
with the fundamental coroots as the simple roots. The fundamental Weyl chamber
consists just of all H € by with «; () positive.
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The lattice of all elements A in hf with A(H) integral for all coroots Hy, o € A,
is called the lattice of integral forms. The dual basis A; to the simple coroots H;
is formed by the fundamental weights (or fundamental forms) of g. The integral
weights A which satisfy A(H;) > 0, i.e. A(H,) > 0 for all o € A*, are called
dominant. The set of all dominant weights is an Abelian semigroup generated by
the fundamental weights. Each highest weight of a representation of a complex
semisimple Lie algebra is dominant and each dominant weight is a highest weight
of some irreducible representation. Since the tensor product of two irreducible
representations always contains an irreducible representation with highest weight
equal to the sum of the two highest weights, the so called Cartan product of the two
representations, all irreducible representations are generated by those corresponding
to the dominant weights (more explicitly, they live in their tensor products).

The sum of all fundamental weights 6 = Ay 4 - - - + A; is called the lowest weight
(or lowest dominant form). Tt holds § — Sé is the sum of those positive roots that
become negative under S~', S € W, and § is half the sum of all positive roots.

As already mentioned, a representation space V of a complex semisimple Lie
algebra splits into subspaces generated by the weight vectors. The weights are
always integral forms and the set of all weights of a representation ¢ is invariant
under the action of the Weyl group. In fact, together with A, all the forms A, A —
sgn(A(Hg))er, A—2sgn(A(Hy ), ..., A= A(Hy ) are weights of ¢. The multiplicities
of the weights of ¢ are invariant with respect to the action of the Weyl group, i.e.
my = mgx, S € W.

For each finite dimensional representation, there is precisely one orbit W(A)
under the Weyl group containing the highest weight. The elements p from this
orbit are called the extremal weights of the representation, they are independent
of the choice of the positive roots and they can be characterized by {p, p)} > (i, pt)
for all weights p of the representation (the equality takes place if and only if p
is extremal). On the other hand, for each integral weight A there is precisely one
dominant weight in its orbit. Hence each integral weight is an extremal weight of
a uniquely defined finite dimensional representation.

10.10. Orthogonal algebras. The properties of the orthogonal algebras differ
essentially for even and odd dimensions. Moreover the dimensions m = 3, m = 4
and m = 6 are exceptional, for the corresponding algebras are isomorphic to sl(2, C),

5l(2,C) @ s1(2,C) and SL(4,C) (the bar means the complex conjugation).

(1) m = 21l 4+ 1. We take the quadratic form defining the orthogonal group in the
form l‘TJl‘ = l‘g + 2(1‘1l‘2 + x3x4 4+ -+ l‘zl_ll‘zl), 1.e. J = Eoo + E12 + E21 +
<-4 Fo_1,21 + Eo1921-1. The symbol E;; means a matrix with just one non-zero
element placed in the ¢-th row and j-th column, e; are the elements from the
standard basis from R™ or C", ¢’ the dual basis in the dual space. The abelian
subalgebra h = ' of diagonal matrices with (0,ay, —ay,...,a1,...,a;, —a;) is the
Cartan subalgebra and the real subspace of diagonal matrices of the same form in
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h is the real subalgebra hy.2? The roots and root elements are

el V2(E2 10— Eo2) 1<i<li
—e! V2(Eg 9i-1 — Eai o) 1<i<li

- Eoi 19521 — Eaj 9 i £

e +él Eaj_1,2i — Eoi—195 i<j
—el— e Eainj 1 — Eaj i1 i<y

We choose ¢! and e’ + ¢/ with i < j for the positive roots. The simple roots

(fundamental system) are {e! — e% e? — 3 ... /7! — ¢! '}, The fundamental
coroots are Hy = ey —eq, ..., Hi_1 = e;_1 — ¢;, H; = 2¢;. The fundamental Weyl
chamber is defined by a; > a2 > --- > a; > 0 and the maximal root is et + e2.

The Killing form is the Euclidean Y"(e%)?, up to a factor. The Weyl group contains
the exchange of any two axes (reflexion with respect to e! — ¢/) and the changes of
signs of any axis (corresponds to e'), i.e. W is the group of all permutations and
changing of signs on ! variables.

(ii) m = 2{. We consider the quadratic form % Jz = 2(z 20 + - - + zo1_12%), i.e.
J= FEi2+ Eo1 + ..., the Cartan algebra h consists of diagonal matrices given by

(a1, —ay,...,a;,—a;). The roots and root elements are
el — ¢ Eoi 19521 — Eaj 9 P F ]
e’ +¢€ Eoi_1,95 — Eaj_1 3 1<y
—e' = ¢ Eoioj_1— Eoj2i_1 1< j

The order in hf is defined by (I — 1,{ — 2,...,0) and the positive roots are the

¢! —el and e + ¢/, i < j. The simple roots are e! —e?, ... /=1 —el /=1 4 ¢! the
corresponding coroots are Hy = e; —ey, ..., Hj_1 = e;_1 —e;, Hh=e;_1 +€;. The
fundamental Weyl chamber is a; > a2 > -+ > a;—1 > |a;|. The maximal root is

et + e2. The Killing form is the Euclidean "(e*)?, up to a factor. The Weyl group
contains the exchange of any two axes and the exchange of an arbitrary pair of axes
coupled with the change of their signs. Thus W is the group of all permutations
and even number of sign changes in [ variables.

(iii) The algebras sl(! + 1,C). Here the situation is most simple. The Cartan
algebra is the subalgebra of diagonal matrices with trace zero, the roots are a;; =
e’ —el, i # j, the Ey;, i # j are the corresponding root elements. The positive roots

are ay; with 7 < j and the simple roots are w9, o3, ..., @141 (the corresponding
coroots are e; — €a,...,€; — €;41). The fundamental Weyl chamber consists of
elements with a3 > --- > a;41 and the maximal root is el — !+l The Killing form

is also the Euclidean form up to a factor. The Weyl group W is the group of all
permutations in [ 4+ 1 variables.

220f course, the usual quadratic form must lead to the same relations, however let us notice
that then the real Cartan subalgebra does not consist of diagonal matrices, and involves purely
imaginary entries.
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10.11. Representations of the complex orthogonal groups. All the groups
except SO(4,C) are simple. An irreducible representation of a direct sum of two
semisimple Lie algebras is a tensor product of irreducible representations of the
summands.

The sum A+ p of highest weights of two irreducible representations of a semisim-
ple Lie algebra is the highest weight in the tensor product of the two representations
and occurs with multiplicity one. The irreducible representation with the highest
weight A+ p is called the Cartan product of the original two representations. In this
way, the irreducible representations form a semigroup which is isomorphic to the
set of dominant weights. The dominant weights are (freely) generated by the fun-
damental weights. Let us list briefly these fundamental representations and some
more information for the three types of algebras discussed in 10.10.

(i) o(m), m = 20+ 1. The fundamental weights are A; = e, Ay = el + €2, ...
M-t =l 4ol = %(61 + -+ ¢€'). The corresponding representations
to the first [ — 1 weights are the (complex) exterior forms of degrees 1,...,{ — 1,
the remaining representation is called the spin representation, we shall discuss it in
the next section. (Notice, the Hodge star identifies some of the remaining exterior
forms, but still there is the degree [ missing and so this must be expressed using

the two-valued spin representation.)

The set of dominant weights consists of all forms A = le a;eb with aq > @y >
-+« > ay > 0 and either all «; are integral or all «; half-integral. The numbers
(a1, ...aq) are called the signature of the irreducible representation A. The signa-
ture of the exterior forms of degree k is (1,...,1,0,...,0) with k ones, k <.

ii) o(m), m = 2l. The fundamental weights are \; = el + .- 4+ &', 1 < ¢ <
(ii) o(m), g ;1<

[ —2 and \_; = %(61 +oodeTt ey N = %(61 + o4 elmt 4 ey, The
corresponding representations to the first { — 2 weights are as before the (complex)
exterior forms of degrees 1,...,1 — 2, the remaining representations are called the
half-spin representation, see the next section. The set of dominant weights consists
of all forms A = le et with aq > @y > -+ > |ay| and either all «; are integral or

all a; half-integral.

(iii) sI({ + 1). The fundamental weights are A; = et + .-+ ¢, i = 1,...,/, the
corresponding representations are the exterior forms (the representation on the
highest degree forms is trivial). The dominant forms are A = le azel with o >
ag > - > ap > 0 integral.

All these facts are more or less easily obtained from the above description of
the structure of the algebras in question (the Killing form is proportional to the
Fuclidean metric, so that it is easy to find the coroots and their dual basis). Let
us also notice, that we can use the above description of both the structure and
representations also in the extreme dimensions, see e.g. [Jacobson, 62], if we omit
the objects which do not make sense. So for example, all representations must be
generated by the two spin representations for dimension four. This is the basic
ingredient of the ‘two-spin’ formalism which we shall mention later on.

It is important to know all weights involved in a given representation. This is
easy for the forms: the weights of A., © < [, are simply e/t 4+ .-+ ¢ir, 1 < i) <
<o < 1, <14 1. These must be all involved as they form the orbit under the Weyl
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group. On the other hand their number equals the dimension.

10.12. Parabolic subalgebras. Let us fix a Borel subalgebra b C g in a complex
reductive Lie algebra. Fach subalgebra p containing b, i.e. b C p C g 1s called
a parabolic subalgebra. There is only a finite number of parabolic subalgebras
containing a fixed Borel algebra. All parabolic subalgebras (up to conjugation) are
constructed by a simple procedure:

Let us write n* for the subalgebras generated by the positive or negative root
elements respectively, i.e. nT = [b, b]. The whole algebra is a sum

g=h& (Bacage) =hdntE&n” =n" @b

Let us fix a set X C AS’ of simple roots and write Ay, for its span in the set of all
roots. Now we define the subalgebras

[= h®(®aEAzga)a n:®a6A+\Aggaa p: [@n

By the definition, p contains the whole Borel algebra b and the algebra g splits as a
vector space direct sum of Lie subalgebras g = n~ @p. The subalgebra [is reductive,
n is nilpotent. Hence [ is the reductive Levi factor of the parabolic subalgebra p.
The semisimple factor is [[, [ = ®pecan8e and [ = hs B (Dacay §o) Where by is the
linear subspace in f corresponding to X C h*.

The parabolic subalgebras in semisimple complex algebras can be effectively
denoted by means of the Dynkin diagrams if we replace the nodes corresponding to
the simple roots which are not in X by a cross. In the main text we need the algebras

SO(m + 2,C) with m > 3. The Dynkin diagrams are (SO(6,C) ~ SL(4,C))

g:o—o~~~0—< ifm=2n

g= o—o - e==» fm=2n+1

g= e—eo— Hfm=4=2n

where all diagrams have n 4+ 1 nodes. The explicit description of the Poincaré con-
formal subalgebra b C o(m + 2, C), see 5.9, shows that b is a parabolic subalgebra,
for the maximal solvable subalgebra in b must be maximal in the whole o(m+2, C)
as well. Looking at the list of roots and root elements in 10.10, one can see that
this parabolic subalgebra contains all root spaces corresponding to the negatives of
the simple roots, except the first one. Hence

b= x—e - o—« if m=2n

b= x—e - =0 Hfm=2n+1

b= e—x—o m=4=2n.
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10.13. Representations of parabolic subalgebras. In general, the represen-
tations of the parabolic subalgebras of semisimple algebras need not be completely
reducible. But we shall still restrict ourselves to the irreducible ones. Let us fix
a parabolic algebra p C g and its Levi decomposition p = [ & n corresponding to
a subset X C AS’ as above. If V is a finite dimensional irreducible representation
space of p, then n acts by nilpotent endomorphisms by the Engel’s theorem, and so
n acts trivially. The reductive part [ decomposes into the semisimple factor s = [[, []
and the center 3. We can always arrange h = (hNs) @ 3. An irreducible representa-
tion of p is determined by a dominant weight for s and an element from 3* and so
the representation is specified by a weight A for g such that A(H,) is a non-negative
integer for all & € X. Such a weight is called deminant for p. We shall denote by
Vi the irreducible p module with highest weight A. More precisely, A decomposes
into a dominant weight Ay for 5 and an element from 3*, in the conformal case 3 is
one-dimensional and the negative of the latter element in 3* is just the conformal
weight, cf. 6.3. We shall describe how to get the proper coefficients in the examples
below.

Notation. We shall express the representation determined by a dominant weight
A for p by inscribing the values (A + 8)(H,) on the fundamental coroots over the
corresponding nodes.

10.14. Examples. Let us specify some important bundles in the conformal case.
So we consider g = o(m + 2, C) and the Poincaré conformal (parabolic) subalgebra
b C g. Using the lists from 10.10 we can compute the values A(H,) for each highest
weight A. More explicitly, the first and the second coroots are e; — es and ey — eg3,
the last one e;_1 + €, in all dimensions m > 4. The conformal weight, as defined
in 6.3 is determined by the coefficient a; at e' in the expression of A as a sum of
simple roots, see the explicit decomposition of o(m+2,C) in 5.9 and notice the —a
entry in the first row corresponding to the multiple all,, in the center. In order to
get the coefficient over the omitted node, we have first to find the coefficient at ¢!
in the combination of the fundamental weights indicated over the other nodes, to
subtract this coefficient from the intended conformal weight and to place the result
over the crossed node. The rest of the coefficients corresponds to the highest weight
of the underlying representation of o(m, C).

For example, we can write down the basic spin representations, the tangent space
€™, the cotangent space C* and the conformal scalar densities L“:

o 101 1 12
= X—e—0 --- e

. 12 1 11
" = x—eo—o - e=»

in odd dimension.
C" = x—eo—e ---

LY = x—o—o -
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in even dimension

I —w41 1 1 1 11
= x—eo—o - o—4«
1

" 2 1 1
S+:0+0
" 1 1 2
ST = e—x—e
" 2 1 2
C" = e—x—o
2 -1 2
C'= oe—x—o
1 —w+1 1

LY =

Let us remember that the coefficients over the nodes are precisely the coefficients
at the fundamental dominant forms in the expression of the weight, but these are
the (possibly not dominant) weights of the whole algebra g. We know only that
they are dominant for p. The usual ‘raising and lowering of indices’ effects the
conformal weight only. With the spin representations, we increase the coefficient
over the crossed node by one for each lowering of one subscript. In general, a spinor

field s(AT-Ap(A1Ar) wigh p symmetric primed superscripts and p unprimed ones
. . . . . +1 ¢+1 r+1
with conformal weight ¢ is a section of the bundle corresponding to S A

(the weight is £(p+ r) + ¢ if all indices are down).?® The same diagrams are used
also for the bundles corresponding to the dual (i.e. contragredient) representations.
This strange notational convention is reasonable for the description of the operators
since the corresponding morphism appear between modules corresponding to the
dual representations.

Sometimes the notation (’)(All“'AIP)(Al“'AT)[q] for the sheaf of all sections of the
latter bundle is also used for the bundle. Lowering of all indices effects the weight,

so that the same diagram can denote O(A’l...A’p)(Al...Ar)[P + ¢ + r]. For example
/ 2 -1 2
the tangent bundle TM ~ 044 ~ e——o while Q' ~ @44/. Some further

30The convention for the usage of primed and unprimed indices varies by different authors, we
use that one from [Baston 90].
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important bundles on four-dimensional manifolds are expressed below

0 = O(A/B/)[—l] SP) O(AB)[_l] = e—x—e

Q% = Oun[-2] R

4 1 -3 1

QF = 0[-4] = e—x—e
2 3 -3 3 1 -1 1
ST :O(AB)(A/B/)@O[—Q] — e—x—o@ o—x—e

10.15. The directed graph structure on the Weyl group. The number of
positive roots in A which are transformed to negative ones by an element S € W
is called the length of S, we write |S|. Equivalently, the length of S is the minimal
number of the reflections corresponding to simple roots the composition of which
gives S. We define the sign of S as sgnS = (—1)I°1.

We connect two elements w, w’ in the Weyl group W of some complex semisimple
algebra g by an arrow, w — o', if w' = Sy(w) for some root & € A of g and
|w'| = |w] 4 1. This directed graph structure defines a partial order on W, w < v/
if there is a directed path from w to w’ or w = w’.3! The whole Weyl group
is generated by the reflections corresponding to the simple roots. If a parabolic
subalgebra p C g corresponding to ¥ C Af is fixed, then there is the parabolic
subgroup W, C W generated by the simple reflections S,, a € X. We define
Wr = {w € W; |Saw| = |w] 4+ 1forall « € ¥}. Equivalently, W* consists of
elements w € W with the property that if w™'a € —At and o € At then o
belongs to the span of Al \ ¥. Thus, W* consist just of elements from W whose
reflections send weights dominant for g into weights dominant for p.

It is possible to prove that each w € W admits a unique decomposition as
w = whw,, with w? € WP, w, € Wy, and |w| = |wP| + |wy].

By the definition, there is the subgraph structure on W* and one can prove that
for each w’ € WP different from the identity, there is some w € W* with w — w'.
These subgraphs are described explicitly for the conformal Poincaré subalgebras

bCg=o(m+20C)in8.7.

10.16. The enveloping algebra. For every finite dimensional Lie algebra g over
K =Ror K = C, its universal enveloping algebra 4(g) is defined as the quotient
T(g)/I of the (real or complex) tensor algebra generated by the elements of g with
respect to the two-sided ideal I in T'(g) generated by all x @ y —y @ « — [x, y] for «,
y € g. There is the induced increasing filtration 44*(g) from that on T'(g) and the
inclusion ¢: g — t(g). We have i([z,y]) = i(2)i(y) — i(y)i(x) for all z, y € g and
iU(g) has the following universal property:

For each associative algebra A over K with identity and each linear mapping

p: g — A satistying ¢([z,y]) = p(2)e(y) — ¢(y)p(z) for all z, y € g, there is a
unique algebra homomorphism @: il(g) — A such that goi = ¢ and @(1) = 1.

31This graph structure is defined in the same way on much more general groups, the so called
Coxeter groups, which are generated by a (finite) set of idempotents S, like the Weyl groups.
The strong partial order defined above is called the Bruhat order. The parabolic subgroups
and subgraphs are also defined in the same way using the subsets of the generators. A detailed
treatment can be found in [Hiller, 82].
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According to the Birkhoff-Witt theorem, the canonical inclusion 7 extends to
vector space isomorphisms ZIS S*(g) = U*(g). These isomorphisms build an algebra
isomorphism S(g) = >, S*(g) = U(g) if and only if g is abelian.

As a consequence of the Birkhoff-Witt theorem we get some canonical identifi-
cations. Given a vector space basis z; of g, the vector space U*(g) is generated by
the expressions x;, ... 24, 011 <ia < - <4, {<k. If g=0aébis a direct sum of
vector spaces, then H(g) = U(a)U(b) = U(a) ® U(b) where U(a) means the linear
span of the elements #, ...#; with z; € a and similarly for U(b).

The real universal enveloping algebra $i(g) of a Lie algebra of a connected Lie
group G is isomorphic to the algebra of left invariant vector fields (or right invariant
vector fields) on G, i.e. to the algebra of left-invariant (or right-invariant) differential
operators on the smooth functions on G'.

The adjoint representation ad,: g — g, # € g extends into a derivation on £l(g).
If g is semisimple, then this representation is completely reducible. The subset
3(g) C U(g) of elements y with ad;(y) = 0 for all # € g is called the center of 1i(g).
This 1s equivalent to the usual requirement that y commutes with all elements in

U(g).

10.17. U(g)-modules. Given a representation of a complex Lie algebra g, i.e. an
algebra homomorphism ¢ : g — EndV for some complex vector space V, there is the
uniquely defined algebra homomorphism @: $i(g) — EndV. If the representation
is irreducible, then the actions of the elements from the center 3(g) C L(g) of
the complex algebra must be multiplications by scalars. This can be viewed as an
algebra homomorphism ¢: 3(g) — C, the so called infinitesimal character of the
representation .

Suppose now, we have two irreducible representation Vy, V, corresponding to
two dominant weights A and p for a semisimple complex Lie algebra g and an
intertwining linear mapping D: Vy — V), i.e. a H(g)-module homomorphism. Let
us write &, and &, for the infinitesimal characters of Vy and V,. For every v € Vj,
z € 3(g) we have zD(v) = D(zv) = D(éx(2)v) = €x(2)D(v) and so either & =&,
or D = 0. The same conclusion is true if both representations are generated by a
single highest weight vector.

10.18. Verma modules. Let us consider first an arbitrary complex Lie algebra
g and its subalgebra p. Given a representation of p in a finite dimensional vector
space V| we define the induced representation

Ind(g, V) = U(g) @up) V-

The representation space V' is canonically embedded into the induced representation
Ind(g, V) via V= 1@c V ~ Up) @y V-

In particular, if g is semisimple, p is a Borel subalgebra and if we consider the one-
dimensional characters A of the Borel subalgebra p, then the induced representations
are called the Verma modules and denoted by My (sometimes a shift in the weight
is used in the notation for symmetry reasons: A —é instead of A, é being the lowest
form). They always have the highest weight vector 1 ® 1 which generates the whole
i(g)-module My. The theory of Verma modules is well developed, in particular
there is a complete classification of their homomorphisms.
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In general, 1t is difficult to work with the induced representations since the
structure of 4(g) is complicated. However, if g is semisimple and p parabolic, the
whole situation is much more similar to the theory of Verma modules. Let us recall
g = pEn as a vector space direct sum of Lie subalgebras. Thus, given a finite
dimensional representation of p in V, we have U(g) @y V ~ Un™) @c V (as
vector spaces) by virtue of the Birkhoff-Witt theorem. We shall denote this 4I(g)-
module M,(V) and call it the generalized Verma module. If the representation
is irreducible and corresponds to a dominant form A for p, then the 4(g)-module
M, (V) is generated by the highest weight vector 1®@v where v is the highest weight
vector in V.

In particular, if the subalgebra n™ is abelian, then 4(n~) = S(n™), the symmetric
algebra and the latter is equal to the algebra S((n™)*) of polynomials on n=. In
the conformal case we deal with the Poincaré conformal parabolic subalgebra b C
o(m+2,C) and n= = C™, the ‘subalgebra of translations” which is abelian, cf. 5.9.

10.19. Homomorphisms of Verma modules. Consider dominant weights A
and p for complex parabolic p C g and a homomorphism D: M, (Vi) — My(V,)
of U(g)-modules. The whole modules are generated by the highest weight vectors
1®wvy and 1 @ v,. Each element z € 3(g) from the center must preserve the highest
weight vectors and acts by scalar multiplication by £ (z) and £,(#), the infinitesimal
characters of the representations. Hence a non-zero morphism can exist only if the
infinitesimal characters coincide, cf. 10.17. A classical theorem by Harish-Chandra
states that £y = £, if and only if A 4+ 6 and p + ¢ are conjugate under the action
of the Weyl group W of g, here § is the lowest form (half the sum of all positive
roots). The affine action of W on the weights A is defined for each w € W by
w.A = w(A 4+ 8) — é. Thus, the above mentioned condition states: If there is a
non-zero U(g)-module homomorphism M,(Vy) — M,(V,) then there is some w in
the Weyl group of g such that w.A = p.

If A is dominant for g, then all weights p dominant for p with the same infinites-
imal character &, = £, are given by {w.A; we WP}

10.20. Action of the Weyl group on weights. Let us recall that a weight
is denoted by inscribing its values on fundamental coroots over the corresponding
nodes in the Dynkin diagram increased by 1. The action of the simple reflections
on the weights can be described as follows, cf. [Baston, 90]. For each root o € A,
the reflection S, acts on the weight A by Sa(A) = A — (A, Ho)a where H, is the
coroot corresponding to «. Hence the coefficients over the nodes are given by
(Sa(A), HiY+1 = (A H;) — (A, Hy){ex, Hy) + 1 where H; are the simple coroots. If «
is a simple root, then {«, H;) is the Cartan integer which is obtainable directly form
the Dynkin diagram. This yields the procedure for getting the new coefficients over
the nodes after the affine action of a simple reflection:

Let a be the coefficient of the i-th node corresponding to A. In order to get the
coefficients over the nodes corresponding to Sy, (A +6), add a to the adjacent coef-
ficients, with multiplicity if there is a multiple edge directed towards the adjacent
node, and replace a by —a.

For example, if A is a._ﬁ_ﬁ and we act by the middle simple reflection, we get

. at+b —b b+e L. a b .
the weight e—e—e . Similarly e==e transforms under the action of the first
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. . . —a 2a+b . . . . atb —b
simple reflection into e==e | while the second simple reflection yields e==e .

10.21. The Lie algebra cohomologies. Consider an arbitrary Lie algebra g
and a g-module A. The degree ¢ cochains with coefficients in A are defined as the
space C'9(g; A) of all (continuous) skew-symmetric ¢-linear A-valued forms on g.
By the definition, C'%(g, A) = Hom(A4(g); A) carries a natural g-module structure.
We define the differential 9: C(g; A) — CF1(g; A) by the formula

(1)

Oc(X1, ., Xgp1) = > (=D 7le([X,, X, Xy, 0 X )
1<s<t<g+1
+ > (CD) XXy, X )
1<s<g+1

One verifies easily 9 = 0 and we obtain a complex by setting C'%(g; A) = 0 and
9(C(g; A)) = 0if ¢ < 0. This complex is denoted by C*(g; A) and the correspond-
ing cohomologies are denoted by H(g; A) and called the cohomologies of g with
coefficients in A.

We need this general definition in a special case. Let us consider an algebra with
gradingg = g_1Bgo®g1P. ... Then g_; is an abelian Lie subalgebra and gg is a Lie
subalgebra acting on all homogeneous components g, turning them into gg-modules.
The whole g is a g_;-module via the adjoint action. The Lie algebra cohomology
H*(g—1;9) is called the Spencer cohomology. The grading of g induces a natu-
ral grading on the cochains, C*(g_1;g) = Zp,q CPi(g_1;9) where CP¥(g_1;9) C
C'9(g_1;g) is the subset of g,_;-valued forms. Since the Lie algebra g_; is abelian,
only the second term remains in (1) and we get a differential 9C*4(g_1;9) —
Cr=hatl(g_y:g). The Spencer bigraded cohomology HP%(g_1;g) is the cohomology
of this complex, H?4(g_1;g) := = (0)NCP4(g_1,g)/d(C*T1471(g_1; g)). The ac-
tion of gg on the homogeneous components induces an action on the cochains which
intertwines the differential and so there is a distinguished gg-module structure on
H**(g-1;8).

In the main text, we need the conformal case where g = b_; ® by @ b; =

o(m+2,C), by is the reductive part of the parabolic subalgebra b = by & b;. All
irreducible representations of by = co(m, C) in H*(b_1; g) can be established by the
Kostant’s theory (developed for general parabolic subalgebras in complex reductive
algebras), see [Vogan, 81, p. 123]: If A is a finite dimensional b-module of highest
weight A, then the irreducible finite dimensional representations of gg with highest
weight p occur in H*(b_1; A) if and only if there is a w € W°® C W such that
u=wA=w(A+ 6)— &6 and in that case it occurs in degree |w| with multiplicity
one, (see 10.15 and 10.19 for the notation).

In our situation, A is the maximal root (e + €%, see 10.10) and the affine action
of W* is described in 10.20. In particular, if we want to compute H*'(b_1;g), we
have to evaluate the affine action of s1 if m > 4 (this is the only elements of length
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one in W° see 10.15 and 8.7)

2 1 2 3 -1 3
51( r——xX—o
(H—o~ <: :H—o~ <:
(Hu@z‘o:Hu.ﬁz‘o

Since H%1(b_1;9) = b_1 @ (b_1)*/bg by the definition, this cohomology must be
non-zero. Since there is only one irreducible representation available, the other two
first order cohomologies must be zero. Hence HL(b_15g9) = H?>1(b_1;g) = 0, see
also [Baston, 90] or [Ochiai, 70].

Similarly, we can compute the second cohomologies. In dimensions m > 4 we
have to compute (s1s2).4, in dimension m = 4, the second cohomologies have two
summands, (s1s2).A and (s153).A. We get the representations

-3 1 3 181
X—e—o - - m=32n >4
1
-3 1 3 1 1
X—e—o - e==» m=2n+1>5
-3 1 5
——= m=2>5
5 -3 1 1 -3 5
%o o—x—e m=4

The conformal weights show that all these representations must occur in the coho-
mology space HL?(b_1;g) and so H*?(b_1;g) = H>%(b_1;9) = 0.

The cohomologies of the complexified algebras g€ are the complexifications of
the real cohomologies. Hence the vanishing of the above cohomology spaces in the
complex case implies the vanishing of the same ones for the real conformal case as
well.

10.22. The Hodge theory. Given a general Lie algebra g and a g-module, the
chains Cy(g; A) are defined as the space 4 ® A?g and the dlﬂerentlal 18 deﬁned by
(e (XaiA---AXy)) = Zl§s<t§q( D la@ ([Xs, Xe ) AXG A5 T AX )+
Zl<s<t<q(—1)sXs.a @ (X A5 A X,). Since 9% = 0 we obtain the homology
H,(g; A). If both the algebra g and the g-module A are finite dimensional, then
Hi(g; A*) = (Hy(g; A))*. Let us assume that g and A are moreover graded and
that there is a distinguished Hermitian metric in each homogeneous component g,.
Then we can identify the cochains with their duals, i.e. C%(g; A) ~ Cy(g; A) and
the differential on the chains gives rise to 0* : C'(g; A) — C?*1(g, A). The operator
O=0"0+90": C%(g; A) — C(g; A) is called the Laplace operator. The cochains
with O(¢) = 0 are called harmonie.

In the conformal case we can express the adjoint differential using arbitrary basis
z; of b_y and the dual bases y; of by (b is dual to b_; with the contragredient
representation of by, see 5.9)

Ms

a*c(Xla"'an—l): [y]a ($jaX1a"'an—1)]

1

J
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which is a linear mapping C?%(b_y;g) — CPT1%71(b_y;g). In each cohomology
class of HP%(b_1;g) there is a unique harmonic representative f € CP4(b_y;g).
The Laplace operator acts by scalar multiplication on irreducible representations of
by occurring in H**(b_1;g). More explicitly, if the irreducible representation has
the highest weight p then O acts by

%((A—I—é,A—I—é)—(u—l—é,u—i—é))

where A is the maximal root of g and ¢ is the lowest form.
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twistor operator, 88

U
universal enveloping algebra (g), 129

v

Verma modules, 130

volume element in C4, (K), 70

W
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