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Preface

Since my lecture series on conformal Riemannian geometries at the University of
Vienna in 1991/1992, I have been interested in a better understanding of this fasci-
nating topic. This effort led quickly to a joint project with Andreas Čap (University
of Vienna) and Vladimı́r Souček (Charles University, Prague), which resulted in a
series of publications, see e.g. [CSS1, CSS2, CSS3, Slo1, Cap]. Our approach
was based on consistent usage of the Lie algebra language and the principal fiber
bundle framework. This allowed us to deal in a unified way with a whole class of
geometries, the so called almost Hermitian symmetric structures (as introduced in
[Bas]) and all their real forms. Thus we had got a sort of universal ‘calculus’ for all
these geometries and we were able to deduce new results even for the best known
example, the conformal Riemannian structures. At the same time, it was more and
more clear that the methods had to admit a generalization which should lead to a
similar calculus for a much wider class of geometries and that we should be able to
discuss all of them in a nice and unified way.
The last mentioned ideas seem to have opened a new promising area of research

and the main aim of this text is to summarize recent achievements, yet mostly
unpublished. I have tried to present a clear and consistent description of a new
general model, accompanied by a series of examples of particular geometries. I
believe that each of these examples (and many similar ones) deserves a separate
deep research and I hope these ‘research lecture notes’ will make the new area
accessible.
The general theory of parabolic geometries is developed here along the lines of

the special cases dealt with in [CSS1], however with special emphasis on various
new ideas. Some inspiration comes from classical results on Weyl geometries and
the papers [Gau] and [BaiE] have been most helpful.
The whole work has been, of course, influenced by fruitful contacts with many

mathematicians. In particular, the long term cooperation with my collaborators
in the project [CSS1–3] and many discussions with Michael Eastwood have been
extremely useful. Furthermore, the whole research wouldn’t be possible without
the institutional support by the Erwin Schrödiger Institute in Vienna, the Grant
Agency of Czech Republic, and first of all the Australian Research Council and
University of Adelaide. Most of this research was done during my recent stay in
Adelaide as ARC Senior Research Fellow in 1996/1997.

Brno, October 1997 Jan Slovák
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1. Introduction

Roughly speaking, the geometries introduced by Cartan under the name ‘es-
pace generalisé’ are curved deformations of homogeneous spaces G/P where P is a
(closed) subgroup in a Lie group G. All such possibilities for G and P give the flat
models G→ G/P of the geometries in question. The properties of G are encoded in
the (left) Maurer-Cartan form ω ∈ Ω1(G, g) and the latter form is the subject of the
deformations we have in mind. Thus instead of the principal P -bundle G → G/P
we shall deal with a general principal P -bundle G → M , equipped with a one-
form ω ∈ Ω1(G, g), subject to the following properties (ζX denotes the fundamental
vector field given by X):

Curved geometry Flat model

G →M , ω ∈ Ω1(G, g) G→ G/P , Maurer-Cartan form ω

ω(ζX) = X for all X ∈ p ω(ζX) = X for all X ∈ g

(rb)∗ω = Ad(b−1) ◦ ω ∀b ∈ P (rb)∗ω = Ad(b−1) ◦ ω ∀b ∈ G

ω|TuG : TuG → g iso ∀u ∈ G ω|TuG : TuG→ g iso ∀u ∈ G

A form ω ∈ Ω1(G, g) with the three properties listed above is called Cartan connec-
tion (of the type G/P ). Let us notice in particular the third property, which yields
the horizontal vector field ω−1(X) on G for each element X ∈ g. The first condition
then tells that the latter fields are the fundamental fields ζX for all X ∈ p. The
extent of the deformation is measured by the curvature of the Cartan connection,
the two-form κ ∈ Ω2(G, g) given by the structure equation

dω +
1

2
[ω, ω] = κ.

In particular, (G, ω) is locally isomorphic to (G, ω) if and only if κ vanishes. It
follows immediately from the definition, that κ is a horizontal form and due to
the presence of the horizontal vector fields we can view κ as a function valued in
Λ2(g/p)∗⊗g, i.e. κ ∈ C∞(G,Λ2(g/p)∗⊗g). All these old ideas go back to E. Cartan
and his concept of ‘generalized spaces’, but it is difficult to point back to a paper
by Cartan and say ‘there it is, look!’. In fact these beautiful concepts developed
during Cartan’s work on concrete examples of equivalence problems, see e.g. [Sha]
for many illuminating comments.
We shall be interested in the special class of such geometries where either P is a

parabolic subgroup in a (complex) semisimple Lie group G, or P and G represent
a real form of such a situation. Following Fefferman and Graham, we are using the
name parabolic geometries in this context, cf. [FefG]. As we shall see, this is justified
by the nice explicit links of purely geometrical questions to the representation theory
of parabolic subgroups.
More explicitly, we deal with a pair (g, p) where g is a (real) semisimple Lie

algebra of the Lie group G equipped with a finite grading g = g−ℓ ⊕ · · · ⊕ gℓ,
p = g0 ⊕ · · · ⊕ gℓ. The group P is then the Lie subgroup corresponding to the
subalgebra p. We also write g− for g−ℓ ⊕ · · · ⊕ g−1 and p+ for g1 ⊕ · · · ⊕ gℓ. Then
g− ≃ (g/p) and the Killing form yields (g−)

∗ ≃ p+. In the case of complex Lie
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CONFORMAL RIEMANNIAN STRUCTURES 3

groups P ⊂ G this just means that P is a parabolic subgroup. See the beginning
of Section6 for explicit definitions and more information on the Lie algebras.
In fact, the definition of a particular geometry on M in terms of such a ‘mys-

terious bundle’ G and the global parallelism ω seems to be quite unusual and we
should rather prefer to have a theorem establishing their (unique) existence from
some more familiar data. On the other hand, once we have a Cartan connection ω
of type G/P on the manifoldM , there is an extremely rich geometry hidden behind.
The main source for various underlying concepts and their relations lies in the grad-
ing of the Lie algebra g. In particular, we can decompose the g-valued curvature
form κ in two ways: according to values in the particular components of g (denoted
by subscripts like the components in g themselves) and by the homogeneity degrees
(denoted by superscripts). This means

κ =

ℓ
∑

i=−ℓ

κi, κ =

3ℓ
∑

k=−ℓ+2

κk

where κk(u)(X, Y ) ∈ gi+j+k for all u ∈ G, X ∈ gi, Y ∈ gj . Sometimes, we shall
also decompose κ into κ− + κ0 + κ+, according to the values. The negative part
κ− = κ−ℓ+ · · ·+κ−1 will be called the torsion part of the curvature, the component
κ0 will be called theWeyl part of the curvature. If the length of the grading is ℓ = 1
(the so called |1|-graded case), then both decompositions coincide (κi = κ

i+2).
We shall present a general model for all these geometries in Section 2 and the

application to explicit examples will be indicated in Sections 4-5. However, in
order to present some indication of what sort of concepts we are looking for, we
first conclude this introduction with a review of the best known case. Whenever
we shall not give explicit proofs of our claims and if no other source will be men-
tioned explicitly, the reader should consult the papers [CSS1, CSS2] or [Slo2] for
further information. The whole lecture notes [Slo1] are devoted to the conformal
Riemannian geometries.

Conformal Riemannian structures

Most easily, a conformal Riemannian structure on a manifold M is given by a
choice of a Riemannian metric g on M . The metric g then defines the line bundle
of metrics in S2T ∗M which are all conformal, i.e. each of them is given by e2fg for
a unique smooth function f on M . Equivalently, we can define the structure by
reducing the structure group of TM to the subgroup G0 = CO(m,R) ⊂ GL(m,R),
m = dimM . None of the conformal metrics is privileged and a choice of one of
them means a choice of a scale in each tangent space. It is well known, that this is
a geometry of finite type and that all conformal isometries are fully determined by
their 2-jets at a single point. In the flat case, the space of all (local) isomorphisms
is parameterized by g = so(m + 1, 1,R), while those keeping a given point fixed
correspond to the subalgebra p. If g is defined by the quadratic form

J =





0 0 1
0 Im 0
1 0 0
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4 1. INTRODUCTION

then the grading can be described in block matrix form as follows

g−1 =





0 0 0
X 0 0
0 −XT 0



 , g0 =





−a 0 0
0 A 0
0 0 a



 , g1 =





0 Z 0
0 0 −ZT

0 0 0



 .

The Lie group P is the Poincaré conformal group.

The complete information on the structure is well encoded in the classical first
prolongation of the defining G0-structure on M , which can be found in a way
producing the desired principal P -bundle G →M . Now, it is a (well known) theorem
that the latter bundle comes equipped with the normal Cartan connection ω, which
is normalized by the trace vanishing condition on its curvature (and vanishing of the
whole torsion part). In fact, the construction of G fixes the (g−1 ⊕ g0) component
of ω in a way minimizing the torsion of the structure. The last component is then
chosen to fit the normalization. Another class of well known objects related to
conformal Riemannian structures are the Weyl geometries which are given by a
choice of any torsion free linear connection γ on M preserving the conformal class
of metrics.

The basic idea of our approach to parabolic geometries is that everything must
be defined and expressed by means of the algebras in question. So let us try to
recover all the above mentioned objects just from the pair (so(m+ 1, 1,R), p).

First, we have to fix the Lie groups G, P . Since g− is abelian, this choice does not
influence much the general procedure (but it does effect the topological obstructions
to the existence of the corresponding structures on particular manifolds). In general,
we usually require G0 to be the adjoint group acting on g−. The geometric structure
is then defined by requiring TxM to be isomorphic to g− up to elements in G0 for
all x ∈ M . In our case, this means exactly a reduction of TM to G0.) The
standard prolongation construction provides the principal P -bundle G overM with
the Cartan connection ω, see [CSS2] for more details.

The group P is the semi-direct product of its Levi part G0 and the nilpotent Lie
group P+ = exp g1 and there is the affine space of global G0-equivariant sections
σ : G0 → G of the quotient projection G → G0 := G/P+, modeled over one-forms on
M (cf. [CSS1, Lemma 3.6]). The pullbacks of the g0-component of ω by the sections
σ are torsion free linear connections on M which preserve the conformal structure
by definition. Thus they coincide with the Weyl geometries. The Levi part G0 is
the product of its semisimple part Gs0 = O(m,R) and the one-dimensional center
Z = {exp tE}, where E is the unique element in g such that adE(X) = j.X for
all X ∈ gj , j = −1, 0, 1. The quotient bundle L := G0/G

s
0 is isomorphic to the

associated bundle G0 ×G0 {exp tE} and it is easy to show that there is a bijective
correspondence between the sections σ (i.e. the corresponding Weyl structures γσ)
and the induced connections γLσ on L. In particular, the sections of L correspond
to trivial connections and they represent the metrics in the conformal class. No-
tice also that all connections γσ share the same ‘minimal torsion’ given by the
g−1-component κ−1 of the curvature κ. This is of course vanishing for conformal
Riemannian structures.

Version of December 22, 1997



2. THE GENERAL THEORY 5

L
scales

G
Weyl geometries

G0
reductions

M

G0/Z

Any Weyl geometry γσ (thus in particular any Levi-Civita connection from the
class of metrics) defines, together with the canonical soldering form θ ∈ Ω1(G0, g−1),
the Cartan connection (θ+γσ) ∈ Ω1(G0, g−1⊕g0) and there is the unique σ-related
Cartan connection ωσ on G. The forms ω and ωσ differ only in the g1-component
and so there must be a mapping P ∈ C∞(G, g∗−1 ⊗ g1) such that ω = ω

σ − P ◦ ω−1.
An easy check shows that P is in fact a tensor in T ∗M ⊗ T ∗M , the so called Rho-
tensor which is a trace adjusted Ricci part of the curvature of γσ (cf. [CSS1, Lemma
3.10 and formula 6.3.(1)]). By definition, the g1-component κ

σ
1 of the curvature of

ωσ vanishes at all frames u ∈ σ(G0) and a straightforward computation yields the
relation between κ and κσ on σ(G0) (of course, all these results will also follow from
the general formulae in Section 2):

j (κσj − κj)(u)(X, Y ) what is κj?

−1 0 the fixed torsion of γσ

0 [X,P.Y ]− [Y,P.X ] Weyl part of curvature of γσ

1 ∇γσ

X P.Y −∇γσ

Y P.X + P.κ−1(X, Y ) Cotton-York tensor (torsion adjusted)

What we want to say is that the trace vanishing condition on κ forces the choice of
P and then the curvature κ itself is described by the right hand column. In partic-
ular, a simple computation yields the Rho-tensor well known from the conformal
Riemannian geometry.
The canonical Cartan connection can be also easily defined on vector bundles

coming from representations of whole G by means of restriction to P . Indeed,
there is the classical principal connection ω̃ on the extension G̃ = G ×P G given
by ω and therefore also the induced linear connections on all bundles coming from
G-modules. Any choice of a Weyl geometry yields a reduction of the structure
group P to G0, thus also a decomposition of the latter bundles into G0-invariant
subbundles. This recovers easily the twistor connections and their explicit formulae
by means of covariant derivatives and the tensor P. A choice of a Weyl geometry
also provides decompositions of all bundles coming from P -modules, however there
is no canonical linear connection on them.

2. The general theory

The aim of this chapter is to provide the general model and several basic results
and formulae. At the end we try to give a sort of recipe, how to understand any
particular case and we shall try to illustrate its usage in the next chapters. Most
of the material has not been published yet, so we present many full proofs here.
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6 2. THE GENERAL THEORY

Joint papers with Andreas Čap and Vladimir Souček covering these topics and some
deeper applications are in preparation.
We mainly extend and generalize the development from [CSS1], but the existence

results for the regular normal Cartan connections are taken from the recent paper
[CSch]. The latter paper provides a much more general and complete version of
Tanaka’s results on differential systems, cf. also [Tan, Yam].
Recently, also the book by R.W. Sharpe appeared, see [Sha]. Although it has

not influenced the development of the present exposition, a careful reading of that
book will definitely help a lot to understand broader context of our theory. The
book also provides links to the original ideas by E. Cartan and many other great
mathematicians. On the other hand, Sharpe’s setting is very general and, in partic-
ular, he does not touch the impact of the gradings of our Lie algebras and the rich
representation theoretic tools, which are in the center of our attention. Also only
the projective and conformal geometries among all our examples are mentioned
explicitly there.

Basic definitions and existence results

Let us recall that for any |ℓ|-graded Lie algebra g we write p = g0 ⊕ · · · ⊕ gℓ,

p+ = g1⊕· · ·⊕gℓ and further pk+ = gk⊕· · ·⊕gℓ = [p+, p
k−1
+ ]. Thus p = g0⊕p+ and

we also write g = g− ⊕ p. Let G be a Lie group with Lie algebra g, P the subgroup
corresponding to p, and G0 the Levi part of P (with Lie algebra g0), P+ ⊂ P , etc.
Let us also recall the existence of the Lie algebra cohomology differential ∂ and its
adjoint codifferential ∂∗ on the spaces Λk(g−)

∗ ⊗ g, see 6.8, 6.9.

2.1. Definition. A parabolic geometry of type G/P on a manifold M is given
by the principal fiber bundle G → M with structure group P equipped by the
Cartan connection ω ∈ Ω1(G, g). We say that the Cartan connection is normal if
its curvature κ ∈ C∞(G, g∗− ∧ g∗− ⊗ g) is co-closed, i.e. ∂∗ ◦ κ = 0. The Cartan

connection is said to be regular if all non-positive homogeneous components κj ,
j ≤ 0 vanish, and it is called torsion-free if the whole component κ− vanishes.

2.2. The induced filtrations. As already mentioned, we would like to under-
stand (and define) the parabolic geometries in terms of some objects more intrinsic
to the underlying manifold M . First of all, the quotients of G by the actions of the
closed subgroups P k+ ⊂ P are principal fiber bundles

Gk = G/P k+1+ , k = 0, . . . , ℓ.

The global parallelism ω transfers the filtration of the p-module g (with respect to
the adjoint representation) into the filtration of the tangent bundle TG = T−ℓG ⊃
· · · ⊃ T ℓG, which is P -invariant. Thus there also is the induced invariant filtration
of the tangent spaces of all Gk and also of the underlying tangent bundle TM , where
T iM = Tp(T iG), i = −ℓ, . . . ,−1. Moreover, each choice of a frame u ∈ G provides
the identification of TxM with the filtered P -module g/p ≃ g−. On the level of
the associated graded vector spaces we then obtain GrTxM ≃ (g−ℓ ⊕ · · · ⊕ g−1)
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BASIC DEFINITIONS AND EXISTENCE RESULTS 7

as graded G0-modules. This in turn provides a reduction of the structure group of
GrTM to G0.
Assume now we are given a filtration T ℓM ⊃ · · · ⊃ T−1M on TM and a re-

duction of GrTM to the structure group G0. Since the Lie bracket on g− is G0-
equivariant, the choice of the reduction of GrTM to structure group G0 transfers
the Lie bracket [ , ] on g− to an algebraic bracket { , }0 on GrTM . More explicitly,
choosing a frame u : GrTxM → g− we define for all ξx, ηx ∈ TxM the bracket by
the formula

{ξx, ηx}0 = u
−1([u(ξx), u(ηx)]).

A replacement of u by u.g = Adg−1 ◦u leads to the same value

{ξx, ηx}0 = u
−1 ◦Adg([Adg−1 u(ξx),Adg−1 u(ηx)]) = u

−1([u(ξx), u(ηx)]).

If our reduction of GrTM to G0 comes from a Cartan connection ω on G as
above, then clearly the bracket is given by

(1) {ξx, ηx}0 = π(ω
−1([ω(ξ), ω(η)])(u))

where π is the obvious projection TG → TM → GrTM and ξ, η are any vectors in
TG covering ξx, ηx.
On the other hand, for all vector fields ξ ∈ T iM , η ∈ T jM and functions f , g

on M we obtain

[fξ, gη] = fg[ξ, η] modT kM, where k = min{i, j}.

Thus the induced brackets T iM ×T jM → TM/T kM with k as above are algebraic
as well.
Assume that our filtration of TM comes from a Cartan connection ω. Vanishing

of homogeneous components of the curvature κ then imposes restrictions on the
non-integrability of the subspaces T iM . Let us formulate this claim more explicitly:

Proposition. If ω ∈ Ω1(G, g) is a Cartan connection on M and κi = 0 for all
i < 0, then the induced filtration of TM satisfies [T iM,T jM ] ⊂ T i+jM and the
Lie bracket of vector fields defines an algebraic bracket { , }Lie on the graded
vector bundle GrTM . Moreover, if κ0 vanishes too, then the latter bracket
coincides with the algebraic bracket { , }0 on GrTM .

Proof. The filtration is defined by

T iM = π(ω−1(gi ⊕ · · · ⊕ g−1)).

The defining equation for κk(u)(X, Y ), u ∈ G, X ∈ gi, Y ∈ gj is

(2) κk(u)(X, Y ) =

{

[X, Y ]− ωi+j(u)([ω
−1(X)(u), ω−1(Y )(u)]) if k = 0

−ωi+j+k(u)([ω
−1(X)(u), ω−1(Y )(u)]) if k 6= 0.
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8 2. THE GENERAL THEORY

Now, consider vector fields ξ in T iM , η in T jM and let us choose elements Xr,
Ys in g− such that ξ = π ◦

∑

r f
rω−1(Xr), η = π ◦

∑

s g
sω−1(Ys) with suitable

functions f r, gs on G. Then

[ξ, η] = π ◦
∑

r,s

f rgs[ω−1(Xr), ω
−1(Ys)] modT

i+jM.

Since all Xr ∈ gi⊕· · ·⊕g−1 and Ys ∈ gj⊕· · ·⊕g−1, equality (2) with k < 0 implies
[ξ, η] ⊂ T i+jM .
Once we know that the Lie bracket defines a mapping T iM × T jM → T i+jM ,

then the algebraic bracket { , }Lie on GrTM is clearly defined and the first claim
of the Proposition has been proved.
Finally, equality (2) with κ0(u) = 0 yields for all X ∈ gi, Y ∈ gj

ω−1([X, Y ])− ω−1(ωi+j([ω
−1(X), ω−1(Y )])) = 0.

Thus, vanishing of κ<0 implies for all ξx = π(ω
−1(X)(u)) and ηx = π(ω

−1(Y )(u))

{ξx, ηx}0 = π(ω
−1([X, Y ])(u))

= π(ω−1(ωi+j([ω
−1(X), ω−1(Y )](u))))

= π([ω−1(X), ω−1(Y )](u) mod T i+j+1G)

= [π ◦ ω−1(X), π ◦ ω−1(Y )](x) mod T i+j+1M

= {ξx, ηx}Lie. �

2.3. Definition. Let TM be equipped with a filtration satisfying [T iM,T jM ] ⊂
T i+jM for all i, j, and assume that a reduction of the structure group of GrTM
to G0 is given. We say that the structure equation holds if the two algebraic
brackets coincide, i.e { , }0 = { , }Lie.

In fact, Proposition 2.2 shows that every regular Cartan connection induces a
filtration on TM and a reduction of GrTM , such that the structure equation holds.
It is remarkable that in nearly all cases these data are also sufficient to recover such a
regular and normal Cartan connection ω, inclusive the construction of the principal
fiber bundle G. Let us make this statement more explicit. We say that two Cartan
connections ω and ω̄ on principal P -bundles G and Ḡ are isomorphic, if there is a
principal fiber bundle isomorphism ϕ : G → Ḡ such that ϕ∗ω̄ = ω.

2.4. Theorem. ([CSch]) Let M be a manifold equipped with a filtration TM =
T−ℓM ⊃ T−ℓ+1M ⊃ · · · ⊃ T−1M ⊃ {0} such that [T iM,T jM ] ⊂ T i+jM for
all i, j, and with a reduction of the associated graded vector bundle GrTM =
T−ℓM/T−ℓ+1M ⊕ · · · ⊕ T−2M/T−1M ⊕ T−1M to the structure group G0. Let
us further assume that the structure equation holds. If H1k(g−, g) vanishes for
all k > 0, then there is the unique Cartan connection ω on the unique principal
P -bundle G →M such that its curvature is ∂∗-closed, up to isomorphisms.
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BASIC DEFINITIONS AND EXISTENCE RESULTS 9

2.5. The exceptional geometries. Up to completely degenerate cases like g =
sl(2,C) with the Borel subalgebra, or semisimple algebras with simple components
in g0, there are just two series of pairs (g, p) which admit a first cohomology with
non-vanishing components of positive homogeneity:

Exceptional pairs (g, p) The obstructing cohomologies

g =
1
×

0
• · · ·

0
•

1
•

0
×

1
•

0
• · · ·

0
•

2
• ∈ H11 (g−, g)

g =
2
×

0
• · · ·

0
• <

0
•

−2
×

3
•

0
• · · ·

0
• <

0
• ∈ H11 (g−, g)

This is also shown in [CSch]. Let us notice, that in both cases the obstructions
appear in homogeneity one. A more careful discussion then shows that we can
still construct the canonical Cartan connections after making a further choice (see
[CSch] again), and explicit computations of the second cohomologies then show that
the principal bundles G defining the structures will be reductions of the second order

In fact, the Cℓ case

seems to be a usual
first order structure as

well!frame bundle to the appropriate subgroup P , see Section 5 and [Slo3].
In fact, all real forms of these complex graded algebras lead to examples of such

geometries. In particular, the first of these series involves the well known projective
would be nice to look

at them really!
geometries. Since G0 is the whole general linear group in this case, we have no
structure on the G0 level. The flat models for some of the other structures are the
Grassmannians of isotropic lines in R2n with the standard symplectic structure,
G0 is the conformal symplectic linear group and the corresponding Lie algebra is
|2|-graded (see 6.3 and Section 5 for more details).

2.6. Remark. In view of the latter Theorem, we could use the following alter-
native definition: A (regular and normal) parabolic geometry of type G/P on a
manifold M is given by a filtration

TM = T−ℓM ⊃ T−ℓ+1M ⊃ · · · ⊃ T−1M ⊃ {0}

with the property [T iM,T jM ] ⊂ T i+jM for all i, j, and a reduction of the associ-
ated graded vector bundle

GrTM = T−ℓM/T−ℓ+1M ⊕ · · · ⊕ T−2M/T−1M ⊕ T−1M

to the structure group G0, such that the structure equation holds.
We may also say that (regular and normal) parabolic geometries of type G/P

on M are given by filtrations, subject to the right dimensions and quite subtle
non-integrability conditions, which make GrTM fiber-wise isomorphic to g−.
Notice also that the structure equation gets void for all |1|-graded algebras g

while the filtrations are trivial in these cases. Then the whole definition reduces to
the usual G0-structures on the manifolds M .

2.7. Remark. Another description of the parabolic geometries follows rather
the analogy to the classical first order G-structures and their soldering forms: In-
stead of a principal fiber bundle equipped with the soldering form, we have to
define a principal G0-bundle p : G0 → M over a filtered manifold M , equipped
with the so called frame form of length one. The latter form is a sequence of G0-
equivariant (partially defined) forms (θ−ℓ, . . . , θ−1), θi ∈ Ω1((Tp)−1T iM, gi) such
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10 2. THE GENERAL THEORY

that (Tp)−1T i+1M = ker θi and each θj induces at each frame u a linear isomor-
phism T iM/T i+1M → g−i. Moreover, the frame form has to satisfy the structure
equation (the explicit meaning of which needs some further thoughts)

dθi+j + [θi, θj] = 0 mod T i+j+1M

see [CSch] for a more explicit exposition. These frame forms are exactly what
survives from a Cartan connection ω on a principal P -bundle after factoring out
the action of P+. On the other hand, given such a frame form, we can carefully
extend the principal fiber bundle and construct longer frame forms, until we reach
a Cartan connection after 2ℓ prolongation steps. Requiring suitable normalizing
conditions, we end up with the normal Cartan connection ω on M . This is the
beautiful procedure suggested and worked out in great detail in [CSch].

Generalized Weyl geometries

In the rest of the Section, we shall suppose that G is a principal P -bundle over
M equipped with a fixed Cartan connection ω, i.e. a parabolic geometry on M in
the most general sense.

2.8. Lemma. On each principal P -bundle G → M , there is the affine space
of global G0-equivariant sections σ : G0 = G/P+ → G of the quotient projection,
modeled over the vector space of all one-forms on M . The sum of a global G0-
equivariant section σ and a 1-form Υ ∈ C∞(G, p+) is given by the formula

(1) (σ +Υ)(u) = σ(u). exp(Υ(σ(u))).

Proof. Let us first show that there is at least one such section. We have to
construct a global G0-equivariant trivialization of G → G0. This can be achieved
step by step, building G0-equivariant trivializations of the principal bundles Gk =
G/P k+1+ → G/P k+ with abelian structure groups P

k
+/P

k+1
+ , k = 1, 2, . . . . Recall

that P = G0 ⋊ P+ and each b ∈ P allows the unique expression in the form
b = b0 expX1 . . . expXℓ with b0 ∈ G0, Xi ∈ gi (see e.g. [CSch, Proposition 2.17]).
In particular, all bundles Gk are also equipped by the right action of G0.
Via the exponential mapping, we can view the latter principal bundles as affine

bundles modeled over gk. So we can always choose a cocycle of local G0-equivariant
trivializations σα over a covering Uα of Gk−1 = G/P k+ with transition functions

χαβ : Gk−1 → P k+/P
k+1
+ . Now, we can form the affine sum σk of all σα by means

of a partition of unity subordinated to Uα. By the construction, σk will be G0-
equivariant as well. The composition of such σk, k = 1, . . . , ℓ provides the required
section.
It remains to show that formula (1) defines another G0-equivariant section and

that given two such sections σ, σ′, there is the uniquely defined 1-form ν such that
σ + ν = σ′. For each b ∈ G0

(σ + ν)(u.b) = σ(u).b. exp(Adb−1 .ν(σ(u)))

= σ(u).b.b−1. exp(ν(σ(u))).b = (σ + ν)(u).b
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GENERALIZED WEYL GEOMETRIES 11

and the formula σ′(u) = σ(u). exp(ν(σ(u))) defines the mapping ν on the image of
σ. The previous computation, read backwards, shows that ν is G0-equivariant on
the image of σ. But since P = G0 ⋊ P+, there is the uniquely defined mapping
G → p+ coinciding with ν on σ(G0) and satisfying ν(u.b) = Adb−1 .ν(u) for all
u ∈ G, b ∈ P . �

2.9. Definition. Let ω ∈ Ω1(G, g) be a Cartan connection defining the parabolic
geometry onM . A (generalized) Weyl geometry onM is given by aG0-equivariant
section σ of G → G0.

Let us notice that our definition of a (generalized) Weyl geometry does not use
explicitly the one form ω but remember that the Weyl geometries on conformal Rie-
mannian manifolds are linear connections. We observed in the Introduction that
these connections are in bijective correspondence with G0-equivariant sections of
appropriate principal bundles. The next Lemma describes such a class of distin-
guished linear connections in our general situation which, of course, depend on the
Cartan connection ω explicitly. Moreover, the relation between such connections
and their defining sections will be shown to be bijective as well. In this context, we
shall also use the name ‘Weyl geometry’ for each of these connections.
All quotient projections pjk : G/P

j+1
+ → G/P k+1+ , j > k are G0-equivariant too.

Thus each choice of a global G0-equivariant section σ yields reductions of all the
intermediate bundles Gk = G/P k+1+ , k = 0, . . . , ℓ to the structure group G0. In
particular, each principal connection γ on G0 defines principal connections on all
bundles Gk (their connection forms coincide with γ on the image of G0 and are
defined uniquely by the equivariance elsewhere). We shall keep the same symbol γ
for all of them.

2.10. Lemma. For each Cartan connection ω = ω− ⊕ ω0 ⊕ ω+ ∈ Ω1(G, g) and
each G0-equivariant global section σ, the pullback γ

σ := σ∗(ω0) is a principal
connection on G0.
In particular, the choice of a Weyl geometry σ defines also the principal con-

nection γσ on Gℓ−1, i.e. a linear connection on M .

Proof. The equivariance of ω, restricted toG0, ensures the required equivariance of
γσ. At the same time, Tσ.ζY (u) = ζY (σ(u)) for each Y ∈ g0 and so the fundamental
fields are recovered as well. �

2.11. The tangent bundle. Obviously, the tangent bundle TM on a manifold
with a parabolic geometry of the type G/P is associated to G via the adjoint
representation of P on g− ≃ g/p. The subgroup P ℓ+ acts trivially and the effective

structure group of TM is always P/P ℓ+. The component ω− of the canonical Cartan

connection ω survives on Gℓ−1 = G/P ℓ+ as the soldering form for TM .
Now, each choice of a generalized Weyl geometry σ on M provides further re-

duction of the structure group of TM to G0. In fact, we obtain explicit splittings
of the projections T iM → T iM/T i+1M ⊂ GrTM . Moreover, the induced linear
connections γσ always belong to the G0 structure on M and so they have to pre-
serve all G0-invariant subspaces. In particular all the subspaces corresponding to
gi are preserved.
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12 2. THE GENERAL THEORY

2.12. Similarly, each P -module V enjoys a filtration by P -submodules, which gives
rise to filtrations of the associated vector bundles V := G ×P V , cf. 6.7. Each
choice of a Weyl geometry then defines splittings of the quotient projections and
yields a decomposition of V into irreducible associated bundles corresponding to
G0-modules. Of course, the linear connection γ

σ then induces linear connections
on all these subbundles.
Each G-module can be considered as P -module by restriction and all the above

considerations apply. On the other hand, there is the extension G̃ = G ×P G
endowed with the unique principal connection form ω̃ ∈ Ω1(G̃, g) which coincides

with the Cartan connection ω on the image of G ⊂ G̃. Thus there are the induced
linear connections on all bundles coming from G-representations. Of course, we
shall be able to express them explicitly by means of any of the Weyl geometries
σ, i.e. by means of the induced connections γσ, and decompositions of the bundles
into G0-invariant subbundles. These procedures will recover analogies to twistor
bundles, and more general objects in conformal Riemannian geometries, cf. [Eas].

2.13. The invariant differential. For each Cartan connection ω ∈ Ω1(G, g),
there is the obvious operator defined by Lie derivative of functions in the directions
of the horizontal vector fields: For each P -module E we define

∇ω : C∞(G,E)→ C∞(G, g∗− ⊗ E)

∇ωs(u)(X) = Lω−1(X)s(u), for all X ∈ g−, u ∈ G

We call this operation the invariant derivative (with respect to the Cartan connec-
tion ω). We also write ∇ω

Xs for the values on a fixed vector X ∈ g−. An easy
computation yields the (generalized) Ricci identity for sections of E = G ×P E (i.e.
s ∈ C∞(G,E)P )

(∇ω
X ◦ ∇ω

Y −∇ω
Y ◦ ∇ω

X)s = ∇ω
[X,Y ]s+ λ(κp(X, Y ) ◦ s)−∇ω

κ−(X,Y )
s

Also the (generalized) Bianchi identity for the curvature κ is easily obtained:

∑

cycl

(

[κ(X, Y ), Z]− κ([X, Y ], Z)− κ(κ−(X, Y ), Z)−∇ω
Zκ(X, Y )

)

= 0

for all X , Y , Z ∈ g−1, where
∑

cycl denotes the sum over all cyclic permutations of

the arguments. (The proofs of both claims in [CSS1] still apply.) In terms of the
Lie algebra cohomology differential ∂ we may rewrite the latter formula as

−∂κ(X, Y, Z) =
∑

cycl

(

∇ω
Zκ(X, Y ) + κ(κ(X, Y ), Z)

)

.

In the very special case of affine connections (i.e. principal connections on the
linear frame bundles together with the soldering forms), we recover exactly the
classical identities.
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FORMULAE IN TERMS OF WEYL GEOMETRIES 13

Formulae in terms of Weyl geometries

In order to understand better our generalized Weyl geometries, we shall work out
formulae relating the covariant differential ∇γσ

of the induced linear connections
γσ and the invariant differential ∇ω of the canonical Cartan connection ω. We
shall also discuss the transformation of the covariant differentials under the change
of the generalized Weyl geometry, i.e. in terms of the one-forms Υ, see 2.8. The
resulting general formulae are somewhat messy, but quite simple. Since they get a
bit more handy on the whole G, we start with this case. As a straightforward con-
sequence of our formulae, we shall be able to define distinguished Weyl geometries
parameterized by closed forms. These are the analogues to metrics and Levi-Civita
connections in conformal Riemannian geometries. The next Lemma also provides
the analogy to the so called Rho tensors in conformal Riemannian geometry.

2.14. Lemma. For each Cartan connection ω = ω− ⊕ ω0 ⊕ ω+ ∈ Ω1(G, g) and
each G0-equivariant global section σ, there is the unique Cartan connection ω

σ

on G which is σ-related to σ∗(ω− ⊕ ω0). Then ω = ωσ − P ◦ ω− for a 2-tensor
P ∈ C∞(G, g∗− ⊗ p+)

P ≃ C∞(G, g∗− ⊗ g∗−)
P on M .

Proof. The Cartan connection ωσ is defined by its restriction

ωσ|Tσ(TG0)
= (ω− ⊕ ω0)|Tσ(TG0)

and by the properties required for any Cartan connection. The easy check that the
definition is consistent is left to the reader.
The Cartan connections ω and ωσ differ only in the p+-component and they both

have to recover the fundamental vector fields on G. Thus there must be a uniquely
defined smooth function P ∈ C∞(G, g∗−⊗p+), such that the horizontal vector fields
satisfy

ω−1(u)(X) = (ωσ)−1(u)(X) + ζP(u).X(u)

for all X ∈ g− and u ∈ G. Evaluation of ωσ on ξ = ω−1(u)(X) yields

ωσ(u) = ω(u)− P(u) ◦ ω−(u), for all u ∈ G.

The equivariance of ω and ωσ implies for all b ∈ P

(rb)∗(P ◦ ω−) = (r
b)∗(ω − ωσ) = Ad b−1 ◦ (ω − ωσ) = Ad b−1 ◦ (P ◦ ω−).

On the other hand,

(rb)∗(P ◦ ω−)(u)(ξ) = P(u.b)(ω−(u.b)(Tr
b.ξ)) = P(u.b)(Ad− b

−1 ◦ ω−(u)(ξ)).

Now, the choice X = Ad− b
−1 ◦ ω−(u)(ξ) yields

P(u.b) = Ad b−1 ◦ P(u) ◦Ad− b.
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14 2. THE GENERAL THEORY

The pairing p+ × g− → R defined by the Killing form then yields a mapping
(X, Y ) 7→ 〈P(u).X, Y 〉 with the required equivariance

〈P(u.b).X, Y 〉 = 〈Ad(b−1).P(u).Ad−(b)X, Y 〉 = 〈P(u).Ad−(b)X,Ad−(b)Y 〉.

Thus, we may view P as the frame form of a 2-tensor in this way. �

Following the tradition, the tensor P will be called the Rho tensor but also
deformation tensor for σ (since P describes the deformation of ωσ into ω). We shall
also write P

σ whenever the specification of the chosen (generalized) Weyl geometry
will be necessary.
Let us notice that the above proof works for all Cartan connections χ, ψ sharing

the g− and g0 components. The same computation shows that given a Cartan con-
nection χ and a 2-tensor P onM , the 1-form ψ = χ−P◦χ− obeys the equivariance
required for Cartan connections and the other two properties are clearly satisfied
as well. Thus, all Cartan connection on a fixed principal bundle G which share the
g− and g0 components are sections of an affine bundle modeled over 2-tensors on
the base manifold M .
The Rho tensors play a key role in conformal Riemannian geometry, but they

proved to be useful also in projective and almost Grassmannian geometries, cf.
[BaiE], [Eas], [Slo1], [Slo2]. Usually the authors introduced them because of their
‘nice transformation properties’ or via decompositions of the curvatures into irre-
ducible components.

2.15. Notation. Given a G0-equivariant section σ : G0 → G, we define the
mapping τσ ∈ C∞(G, p+) by

u = σ(p(u)). exp τσ(u).

We often omit the subscript σ if the dependence on σ is clear from the context.
Next we are going to compare the invariant differential ∇ω with the covariant

differential ∇γσ

for the principal connection γσ on G, cf. 2.10. Recall that for each
representation λP : P → GL(Eλ), the sections of the associated bundle G×P Eλ are
viewed as equivariant mappings s ∈ C∞(G,Eλ)

P and the covariant derivative ∇γσ

of s in the direction of a vector ξ = {u,X} ∈ TM is given by the usual derivative of
s in the direction of the horizontal lift of ξ with respect to γσ at u. This observation

justifies also our notation ∇γσ

X s(u) for the covariant derivative.
As usual, we shall write λ for the representation of p on Eλ induced by λP . Since

ω−1(X) = (ωσ)−1(X) + ζPσ .X , we have

(∇ω
X −∇γσ

X )s(u) = (∇
ωσ

X −∇γσ

X )s(u)− λ(Pσ(u).X)(s(u))

for all representations λ : p → gl(Eλ), u ∈ G, and s ∈ C∞(G,Eλ)
P . Thus the main

task will be to compare ∇ωσ

and ∇γσ

on G.
Let us notice that this comparison yields also formulae for the canonical covariant

derivatives ∇ω̃ on bundles coming from G-modules, cf. 2.12. More explicitly, the
value of the horizontal lift of a tangent vector {u,X} ∈ TM with respect to the
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principal connection ω̃ at the frame {u, [e]} ∈ G ⊂ G̃ is ω−1(X)(u)−ζX(u). Thus the
covariant differential∇ω̃

X is given by the sum of our invariant differential∇
ω
X and the

action ofX . In particular, we shall obtain the expression of the canonical convariant
derivatives by means of the Weyl geometries and the induced decompositions into
G0-submodules, as promised in 2.12.

2.16. Lemma. For each generalized Weyl geometry σ : G0 → G, any section
s ∈ C∞(G,Eλ)

P , and X ∈ g− we have

(∇ω
X −∇γσ

X )s = −λ
(

P.X +Adexp(−τ).(Adexp τ.X)p
)

◦ s

= −λ

(

P.X +
ℓ
∑

j=0

(−1)j

j! ad
j
τ .

( 2ℓ
∑

i=1

1
i! (ad

i
τ .X)p

))

◦ s.

In particular, if X ∈ g−1 we obtain

(∇ω
X −∇γσ

X )s = −λ([τ,X ]− 1
2 [τ, [τ,X ]] + · · ·+ (−1)ℓ

(ℓ+1)! ad
ℓ+1
τ .X + P.X) ◦ s.

Furthermore, if p+ acts trivially on Eλ, then

(∇ω
X −∇γσ

X )s = −λ

( ℓ
∑

i=1

1
i! (ad

i
τ .X)g0

)

◦ s for all X ∈ g−,

(∇ω
X −∇γσ

X )s(u) = λ([X, τ(u)]g0)(s(u)) for all u ∈ G, X ∈ g−1.

Proof. For technical reason, let us simplify our notation for a moment. We fix the
G0-equivariant section σ : G0 → G, we write γ for γσ and χ for ωσ, and γ−1(X)(u)
will denote the value of the horizontal vector field determined by the tangent vector
{u,X} ∈ G ×P g−.
The horizontal lifts of vectors ξ ∈ TM with respect to γ are right-invariant

vector fields on the fibers and {u,X} = {u.b,Ad− b
−1.X} ∈ TM . Thus

Trb.(γ−1(u)(X)) = γ−1(Ad− b
−1.X)(u.b).

On the other hand, the equivariance of the Cartan connections yields for all b ∈ P ,
u ∈ G, X ∈ g−

Trb.(χ−1(u)(X)) = χ−1(Ad b−1.X)(u.b).

Now, we insert b = exp τ(u) and Ad− b.X or Ad b.X instead of X , respectively, and
compute

∇γs(u)(X) = ∇γs(σ(p(u)). exp τ(u))(X)

= Trexp τ(u).γ−1(Ad−(exp τ(u)).X)(σ(p(u))).s

= TsTrexp τ(u)γ−1(X + [τ(u), X ]g−
+ · · ·+ 1

2ℓ!
(ad2ℓτ(u) .X)g−

)(σ(p(u)))

∇χs(u)(X) = TsTrexp τ(u)χ−1(X + [τ(u), X ] + · · ·+ 1
2ℓ!(ad

2ℓ
τ(u) .X))(σ(p(u)))
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16 2. THE GENERAL THEORY

and since the values of χ−1(X) and γ−1(X) coincide on the image of σ, the sub-
traction of these expressions yields

(∇χ −∇γ)s(u)(X) = Ts.Trexp τ(u).χ−1(
2ℓ
∑

i=1

1
i! (ad

i
τ(u) .X)p)(σ(p(u)))

= Ts.χ−1

(

Ad(exp(−τ(u))).
2ℓ
∑

i=1

1
i!
(adiτ(u) .X)p

)

(u)

This implies already the first claim in the Lemma since the equivariance of s implies
that the latter expression is

(∇χ −∇γ)s(X) = −λ

( 2ℓ
∑

i=1

1
i!
(adiτ .X)p −

[

τ,
2ℓ−1
∑

i=1

1
i!
(adiτ .X)p

]

+ . . .

)

◦s

= −λ([τ,X ]p +
1
2 [τ, [τ,X ]]p − [τ, [τ,X ]p] + . . . ) ◦ s.

If X ∈ g−1, then all brackets in this formula happen to be in p and collecting

all coefficients at adiτ we obtain
∑i−1
j=0

(−1)j

(i−j)!j! . Rewriting this sum by means of

binomial coefficients, an easy computation yields the required coefficients (−1)
i+1

i!
.

The last claim is then obvious. �

2.17. Now, let us rewrite the formulae from the last lemma for fixed Weyl geome-
tries. We shall write γ̂ and γ for two choices of (generalized) Weyl geometries, Υ
for the corresponding one-form, and σ̂, σ for the G0-equivariant sections of G → G0.
In particular, σ̂(v) = σ(v).Υ(v) for all v ∈ G0. Using the obvious equality

∇γ̂
Xs−∇γ

Xs = (∇
ω
Xs−∇γ

Xs)− (∇
ω
Xs−∇γ̂

Xs)

at the frame u = σ(v) we obtain

(1)
∇γ̂
Xs(σ(v)) = ∇γ

Xs(σ(v)) + λ
(

(P̂ − P)(σ(v)).X
)(

s(σ(v))
)

+ λ
(

Ad expΥ(v).(Ad exp−Υ(v).X)p)
)(

s(σ(v))
)

Next, observe

∇γ̂
Xs(u) = ∇γ̂

Ad− b−1.X
s(u.b).

Thus we can evaluate (1) with ‘new coordinates’ X̂ = Ad− exp(−Υ(v)).X of the
same tangent vector at the frame σ̂(v). The result can be easily interpreted in
terms of the decompositions of the associated bundle Eλ = G ×P Eλ determined by
the choices of Weyl geometries σ̂, σ. This means, we interpret s as the sections
ρ := s ◦σ = ρ1+ · · ·+ρk ∈ C∞(G0, V1⊕ . . . Vk)

G0 and ρ̂ := s ◦ σ̂, and we obtain the
relation between the covariant derivatives of ρ and ρ̂ with respect to the pricipal
connections γ and γ̂ on G0:
(2)

∇γ̂

X̂
ρ̂(v) = ∇γ

Xs0(v)+λ
(

(P̂−P)(σ(v)).X+AdexpΥ(v).(Ad exp(−Υ(v)).X)p
)

(ρ(v))

Version of December 22, 1997



FORMULAE IN TERMS OF WEYL GEOMETRIES 17

In the very special case of an irreducible P -module Eλ, there is no difference
between ρ̂ and ρ and we obtain for all ρ ∈ C∞(G0,Eλ)

G0 , X ∈ g−, v ∈ G0,

(3) ∇γ̂
Xρ(v) = ∇γ

X+
Pℓ−1

i=1
1
i! (ad

i
Υ(v)

.X)g−

ρ(v)− λ
(

ℓ
∑

i=1

1
i!(ad

i
Υ(v) .X)g0

)

(ρ(v))

These formulae reduce heavily if we restrict values of X and Υ suitably with
respect to the grading. Let us also recall that the whole g− is generated by g−1 and
this is reflected on the tangent bundles too, so that the case of X ∈ g−1 is always

of a particular interest. In particular, X̂ = X in formula (2) while (3) reduces to
the extremely simple equation

(4) ∇γ̂ρ(X) = ∇γρ(X) + λ([X,Υ]) ◦ ρ.

Thus, for all |1|-graded algebras we get exactly the formulae well known from con-
formal Riemannian geometries.

Our next aim is to express also the terms P̂ − P via the one-forms Υ. This will
fill the last gap in our understanding of the formulae.

2.18. Lemma. Let G be a principal P -bundle, ω a Cartan connection on G and
let σ1, σ2 be G0-equivariant sections of G → G0, Υ the one-form satisfying σ2 =
σ1. expΥ. Further, let γ1 and γ2 be the principal connections on G0 corresponding
to σ1 and σ2. Then ω

σ2 = ωσ1 − P ◦ ω− with

P(σ2(u))(X) = Ad(exp−Υ)

(

∑

k≥0

1
(k+1)! ad

k
Υ .∇

γ2
XΥ− (Ad expΥ.X)p+

)

(u)

= ∇γ2
XΥ(u)− [Υ(u), X ]p+ − 1

2 [Υ(u),∇
γ2
XΥ(u)]−

1
2 [Υ(u), [Υ(u), X ]]p+

+ [Υ(u), [Υ(u), X ]p+] + . . .

Proof. We shall use the brief notation ωi for the induced Cartan connections ω
σi ,

i = 1, 2. By definition, we have to compute

ζP(σ2(u))(X)(σ2(u)) = (ω
−1
2 (X)− ω−1

1 (X))(σ2(u)).

The horizontal lifts of the vector {u,X} ∈ TM are given by

γ−1i (X)(u) = Tp
ℓ
0.ω

−1(X)(σi(u)) ∈ TG0.

In particular we obtain

γ−12 (X)(u) = Tp
ℓ
0.T r

expΥ(u)ω−1(Ad expΥ(u).X)(σ1(u))

= Tpℓ0ω
−1(Ad− expΥ(u).X)(σ1(u)) + Tp

ℓ
0ω

−1((Ad expΥ(u).X)g0)(σ1(u))

= γ−11 (Ad− expΥ(u).X) + ζ(Ad expΥ(u).X)g0 (u)
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18 2. THE GENERAL THEORY

Further, ω−1
i (X)(σi(u)) = Tσi(γ

−1
i (X)(u)), i = 1, 2. Thus, the equivariance of the

horizontal fields and the definition of Υ yield

(1)

ζP(σ2(u))(X)(σ2(u)) = Tσ2.γ
−1
2 (X)(u)− Tσ1.γ

−1
1 (X)(u)

= Tr.(Tσ1, T expΥ).γ
−1
2 (X)(u)

− Trexp(Υ(u)).ω−1
1 (Ad expΥ(u).X)(σ1(u))

In order to resolve the first term in (1), let us choose a curve c(t) in G0 such that
∂
∂t |0

c(t) = γ−12 (X)(u). Then

Tr.(Tσ1, T expΥ).γ
−1
2 (X)(u) =

= ∂
∂t |0
(σ1(u). expΥ(c(t))) + Tr

expΥ(u).Tσ1(γ
−1
2 (X))(u)

= TrexpΥ(u). ∂∂t |0(σ1(u). expΥ(c(t)). exp−Υ(u))+

TrexpΥ(u).Tσ1(γ
−1
1 (Ad− expΥ(u).X) + ζ(Ad expΥ(u).X)g0 )(u)

Now, the first term is of the form TrexpΥ(u)ζA(σ1(u)) where A is the right loga-
rithmic derivative δ of the function expΥ: G0 → G, evaluated on γ−12 (X). Thus

A = (Trexp−Υ(u)) ◦ (T exp) ◦ (TΥ)( ∂
∂t |0

c(t)) = (δ exp)(Υ(u)).(∇γ2
XΥ(u))

=
∑

k≥0

1
(k+1)! ad

k
Υ(u) .∇

γ2
XΥ(u)

see e.g. [KMS, p.39] for the formula for δ exp.
Next, the second term in (1) splits as

−Trexp(Υ(u)).
(

ω−1
1 (Ad− expΥ(u).X) + ζ(Ad expΥ(u).X)p

)

(σ1(u))

and we can collect easily all terms in (1). We obtain

ζP(σ2(u))(X)(σ2(u)) = Tr
expΥ(u)ζB(σ1(u))

where

B =
∑

k≥0

1
(k+1)! ad

k
Υ(u) .∇

γ2
XΥ(u)− (Ad expΥ(u).X)p+.

Finally, the equivariance of P yields the required formula

P(σ2(u))(X) = Ad(exp−Υ(u))

(

∑

k≥0

1
(k+1)!

adkΥ(u) .∇
γ2
XΥ(u)− (Ad expΥ(u).X)p+

)

.

�

Now, we can insert the formula from the last Lemma into 2.17.(1) and 2.17.(2).
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2.19. Proposition. Let γ̂ and γ be two choices of (generalized) Weyl geometries
on G →M given by sections σ̂, σ, and σ̂(v) = σ(v).Υ(v) for all v ∈ G0. Then for

each section s ∈ C∞(G,Eλ), v ∈ G0, X ∈ g−, X̂ = Ad− exp−Υ(u).X

(1)

∇γ̂

X̂
s(σ2(v)) = ∇γ

Xs(σ1(v)) + λP (expΥ(v))

(

λ
(

Ad exp−Υ(v).X)g0

−
∑

k≥0

1
(k+1)! ad

k
−Υ(v)∇

γ
XΥ(v)

)(

s(σ̂(v))
)

)

Proof. We have just to insert the expression for P̂− P into 2.17.(1). Since (in the
notation of 2.18)

ω = ωσ2 − P
σ2 ◦ ω− = ω

σ1 − P
σ1 ◦ ω−

we have to replace γ1, γ2, σ1, σ2, Υ in 2.18 by γ̂, γ, σ̂, σ, −Υ, respectively.
Finally, we can use the relation λ(Ad b.Z)(s(v)) = λP (b)(λ(Z)(s(v.b))) to extract
the common term Ad expΥ(v). This yields our formula. �

2.20. Corollaries. In the notation of 2.19 and 2.17, the formula 2.17.(2) gets

(1)

∇γ̂

X̂
ρ̂ = ∇γ

Xρ+ λP (expΥ)

(

λ
(

Adexp−Υ(v).X)g0

−
∑

k≥0

1
(k+1)!

adk−Υ∇γ
XΥ
)(

ρ̂
)

)

.

The part of this formula up to linear terms in Υ is as follows

(2) ∇γ̂

X̂
ρ̂ = ∇γ

Xρ+ λ
(

[X,Υ]g0 −∇γ
XΥ
)(

ρ
)

+ higher order terms in Υ.

Let us also notice that two G0-equivariant sections σ1, σ2 : G0 → G define the
same G0-structure if and only if their compositions with p

ℓ
ℓ−1 coincide, which in

turn means that the corresponding one-form Υ: G0 → p+ has values in gℓ only.
Also in this case, the formulae become particularly simple.

Scales and closed Weyl geometries

2.21. Definition. Let M be a manifold equipped with a parabolic geometry of
type G/P . A (generalized) Weyl geometry σ : G0 → G is called closed if the curva-
ture of the corresponding principal connection γσ on G satisfies 〈κσ(u)(X, Y ), E〉 =
0 for all u ∈ G, X, Y ∈ g−.
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In conformal Riemannian geometry, the Weyl geometry γσ is closed if and only
if it locally coincides with Levi-Civita connections. Our aim is to establish affine
bundles similar to the line bundles of conformal metrics.
Let us observe that the defining condition for closed Weyl geometries is given by

vanishing of the representation ν : p → R, ν(X) = 〈X,E〉. Similarly, we may start
with an arbitrary ν : p → R, i.e. with an arbitrary complement of E in the center
z ⊂ g0.

2.22. Distinguished line bundles. Consider a fixed representation νP : P →
GL+(R) and the corresponding Lie algebra representation ν : p → R, such that the
grading element E acts by ν(E) = 1. Clearly P/ ker ν ≃ GL+(R) = R+. The
nilpotent part P+ of P and the semisimple part G

′ ⊂ G0 are both in ker νP , and
the factor group P/ ker ν is identified with the one-parametric subgroup exp tE
generated by the grading element E.
The Lie algebra g0 of the reductive part G0 of P decomposes as the sum of

two ideals, its center z and its semisimple part g0,s = [g0, g0]. Whenever we fix a
complement z′ of the one-dimensional subspace zE = 〈E〉 in z, there is the unique
representation ν : p → R with ν(E) = 1 and z′ ⊂ ker ν, but the existence of νP to
this data is not always available. In fact a very natural ν is defined by the Killing
form, simply we define z′ = E⊥. Unfortunately, even such a natural choice does
not always leed to integrable representations. We shall meet an example in Section
5. Thus we have to leave the subtle disscusion on the proper choices of νP to the
study of the particular geometries, while working with a general νP here.
On the other hand, given a parabolic geometry on G → M of type G/P and

νP , there is the one-dimensional principal fiber bundle S = G/ ker ν. The mapping
G ∋ u 7→ (u, 1) ∈ G × R+ yields the identification S = G ×ν R+. The exponential
mapping zE → {exp tE} defines the structure of the affine bundle on S with the
trivial modeling line bundle M × zE
We call S the affine bundle of scales. If necessary, we shall write SνP

to indicate
the chosen representation νP .

2.23. Lemma. Let γσ ∈ Ω1(G, p) be the principal connection on G defined by
the choice of a G0-equivariant section σ : G0 → G. The induced connection on S
is the principal connection γσS with connection form ν ◦ γσ. Its curvature κσS is
given by the composition κσS = ν ◦ κ

σ, where κσ is the curvature of γσ.
If the one-dimensional othogonal complement to z∩ker ν in z acts non-trivially

on the whole p+, then the correspondence σ 7→ γσS between the (generalized) Weyl
geometries and the induced connections on the affine bundle of scales is bijective.

Proof. Let us recall some general features of induced connections on associated
bundles. If γ is a principal connection on G, then its vertical projection is given by
Φ = ζ ◦ γ, i.e. by the composition of the fundamental vector field mapping with γ.
The vertical projection of the connection induced on a associated bundle G ×P V
is then given by {Φ, idV }. Moreover, if V is a vector bundle and the action of P
on V is given by ρP : P → GL(V ), then the curvature of the induced connection is
defined by the composition of the corresponding representation ρ : p → gl(V ) with
the curvature form of γ (see e.g. [KMS, 11.8-11.16]).
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In our case, V is the quotient of P by the normal subgroup ker ν and the in-
duced connections γσS are again principal connections. Obviously, the above vertical
projetion {ζ ◦ γσ, idR} is now given by the composition of the fundamental vector
field mapping ζS : p/ ker ν → X (S) with the quotient of the original connection
form γ ∈ Ω1(G, p). Now, due to our assumption ν(E) = 1, we additionally identify
p/ ker ν with zE ≃ R via ν itself.
Next, let us prove the injectivity of the correspondence σ 7→ γσS . It suffices to

study the horizontal lifts γσSξ of a fixed tangent vector ξ = {u,X} ∈ TM and the key
observation is that the formulae 2.17.(1) and 2.18 yield the necessary comparison
of γσ̂ξ and γσξ in terms of Υ (see also 2.19). After factoring out the kernel of νP ,
we obtain

γσ̂Sξ([u]) = γ
σ
Sξ([u])− ζ

(

(Ad exp(−Υ(u)).X)p/ker ν
)

([u]).

Thus we have to show that for each fixed Υ(u), there always is some X ∈ g− with
ν(Ad exp(−Υ(u)).X) 6= 0. Assume that gi ⊂ p+ is the first component with non-
zero values of Υ(u) and take X ∈ g−i. Then the only interesting contribution is
ν([X,Υ(u)]). Let us assume that dim z = k ≤ ℓ and choose an orthogonal basis
E1, . . . , Ek−1 of g′ = g ∩ ker ν with respect to the Killing form. Completing the

orthogonal basis of z by Ẽ = E +ϕ(E1, . . . , Ek) with a suitable linear combination
ϕ(E1, . . . , Ek), the action ν([X,Υ(u)]) ∈ R equals

1
‖Ẽ‖2

〈[X,Υ(u)], Ẽ〉 = 1
‖Ẽ‖2

〈Υ(u), [Ẽ, X ]〉.

Now, g− splits into irreducible components with respect to the adjoint action of g0
and each element in z acts by a scalar on each of those components. According to
our assumption, the action of Ẽ is non-zero everywhere. Thus all X ∈ g−i, except
the hyperplane Υ(u)(X) = 0, provide the required element.
Finally, let us observe that the connection forms on S have values in the one-

dimensional Lie algebra R. So they form an affine space modeled over one-forms
on M . The same is true for the Weyl geometries σ. Thus the rest of our claims
follows pointwise by dimension reasons. �

2.24. Under the technical assumption on the orthogonal complement to ker ν, the
previous Lemma yields the promised generalization of the class of Levi-Civita con-
nections in conformal geometries. Since the fibers of S are diffeomorpic to R, this
principal fiber bundle always admits global sections. Each section of S defines a
trivial connection on S, thus also a distinguished (generalized) Weyl geometry on
G →M . Obviously, νP comes from a representation of G0, extended trivially to P
and so S can be also viewed as the quotient of G0/ ker ν. In particular, sections of
S are in bijective correspondence with reductions of G0 to ker νP ∩G0. The latter
reduction can be identified with G0/{exp tE}.

{smooth sections of L} {trivial connections on L}

{

distinguished class of reduc-
tions of G0 to G0 ∩ ker νP

} {

distinguished subclass of
connections γσ on G0

}
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2.25. Definition. Let M be a manifold equipped with a parabolic geometry
of type G/P . An admissible bundle of scales is the affine bundle SνP

such that
the corresponding Lie algebra representation ν : p → gl(R) has a kernel whose
orthogonal complement in the center z acts non-trivially on the whole p+. Let
S be such a bundle. A scale on M is a section of S → M . Weyl geometries γσ

whose curvatures κσ satisfy ν ◦ κσ = 0 are called closed with respect to ν. Weyl
geometries determined by scales are called exact (we shall often call them also
scales).

2.26. Remarks. As already mentioned, the problems with the existence of all
these objects are hidden in the existence of the representation νP itself. We shall
see on examples that only some of the reasonable representations of the Lie algebra
do integrate to the group level, but even then a particular choice of G may be
necessary. This will of course put additional requirements on the geometries in
question and the scales might then exist only locally. On the other hand, the
definition of the closed Weyl geometries with respect to ν does depend on the Lie
algebra representation ν only and could be used independently of the existence
problems with the scales.
The whole situation is nicely visible on the following diagram. Recall that all

compositions of a section σ with the quotient projections are also G0-equivariant
and we obtain principal connections γσ on all levels in the diagram. The last but
one level G/P ℓ+ is of particular interest because its structure group P/P

ℓ
+ is the

effective transformation group of g−.

S = G0/ ker νP scales

G G/P ℓ+ . . . G0 = G/P+ reductions
M

σ
‘Weyl geometries’

G0/{exp tE}

Let us come back to the natural candidate for ν, the representation given by the
Killing form and recall that the evaluation of the one-form Υ on X is also given by
the Killing form. Chosing two Weyl geometries σ2, σ1, with σ2(u) = σ1(u).Υ(u),
the equivariance of the Killing form implies for all X ∈ gj

ν ◦ (γσ2 − γσ1)(ξu) =
1

〈E,E〉
〈Adexp−Υ(u) .X, E〉 = 1

〈E,E〉
〈X,AdexpΥ(u) .E〉

= 1
〈E,E〉 〈X,E + [Υ(u), E] +

1
2 [Υ(u), [Υ(u), E]] + . . . 〉

= −1
〈E,E〉

〈X,
∑ℓ
i=1 iΥi(u) + higher order terms in Υ’s〉

= 1
〈E,E〉 jΥ(u)(X) + higher order terms in Υ’s.

Consequently, the variation of the connection forms on S is linked to the one forms
Υ in this way. In particular, they coincide for all |1|-graded Lie algebras g.
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If we choose two scales, i.e. two global sections ŝ, s of S and ŝ = f.s for a positive
smooth function f , then

∇γ̂S
ξ s = ∇γ̂S

ξ f−1ŝ = −f−1df(ξ).s

Thus the one-form corresponding to f is always the closed form −f−1df .

Curvatures and torsions

In order to complete the discussion of the basic objects along the lines of the
conformal geometries, we should understand better the curvatures and torsions of
the Weyl geometries. First step towards this task is the next Proposition.
Let us recall that given the Weyl geometry σ : G0 → G, the induced Cartan

connection ωσ is σ-related to the principal connection γσ on G0. Thus the torsion
and curvature of γσ are σ-related to the g−⊕g0 component of the curvature κ

σ of ωσ

as well. The next Proposition describes the difference between κσ and the canonical
curvature κ on G. This is only one of the sources of the variation of torsions and
curvatures of the Weyl geometries, in general. The other contribution comes then
from the evaluations in different frames in G. The results admit a nice presentation
in terms of the Lie algebra differential ∂. In particular, the values P(u) can be
viewed as cochains P(u) ∈ g∗− ⊗ p+ ⊂ C1(g−, g) and then ∂P ∈ C∞(G, C2(g−, g)),

∂P(u)(X, Y ) = [X,P(u).Y ]− [Y,P(u), X ]− P(u).[X, Y ].

2.27. Proposition. Let κσ be the curvature of ωσ, let P be the corresponding
deformation tensor. Then for all u ∈ σ(G0)

(κσ − κ)(u)(X, Y ) = ∂P(u)(X, Y ) +∇XP(u).Y −∇Y P(u).X

− [P(u).X,P(u).Y ] + P(u) ◦ κσ−(u)(X, Y )

Proof. We shall prove the Proposition for arbitrary two Cartan connections ψ
and χ which differ only in the p+-components. Let us write κ

ψ and κχ for their
curvatures.
By definition

(κχ − κψ)(X, Y ) = ψ([ψ−1(X), ψ−1(Y )])− [X, Y ]− χ([χ−1(X), χ−1(Y )]) + [X, Y ]

= (χ− P ◦ χ−)([χ
−1(X), χ−1(Y )] + [ζP.X , χ

−1(Y )]+

[χ−1(X), ζP.Y ] + [ζP.X , ζP.Y ])− χ([χ−1(X), χ−1(Y )])

In order to resolve the individual terms, we are going to evaluate the structure
equation on appropriate data.

dχ(χ−1(P.X), χ−1(Y )) = −[P.X, Y ] + 0

= Lχ−1(Y )χ(χ
−1(P.X))− χ([χ−1(P.X), χ−1(Y )])

dχ(χ−1(P.X), χ−1(P.Y )) = −[P.X,P.Y ] + 0

= Lχ−1(P.X)χ(χ
−1(P.Y ))− Lχ−1(P.Y )χ(χ

−1(P.X))− χ([χ−1(P.X), χ−1(P.Y )])
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Further, for any Z ∈ p we have

Lχ−1(Z)(P.Y ) =
∂

∂t |0

(

Ad(exp−tZ)(P.(Ad(exp tZ).Y ))
)

= P.[Z, Y ]− [Z,P.Y ]

and so the second equality above yields

χ([χ−1(P.X), χ−1(P.Y )]) = P.[P.X, Y ]− P.[P.Y,X ]− [P.X,P.Y ]

Finally, we can collect (and cancel) all terms

(κχ − κψ)(X, Y ) =



















P ◦ κχ−(X, Y )− P.[X, Y ]+

[P.X, Y ]− P.[P.X, Y ]−∇χ
Y P.X−

[P.Y,X ] + P.[P.Y,X ] +∇χ
XP.Y+

P.[P.X, Y ]− P.[P.Y,X ]− [P.X,P.Y ]

= ∂P(X, Y ) + (∇χ
XP.Y −∇χ

Y P.X)

− [P.X,P.Y ] + P ◦ κχ−(u)(X, Y ) �

Let us collect some corollaries for the curvatures and torsions of the Weyl ge-
ometries which are σ-related to the curvature κσ.

2.28. Observations.

(1) We meet exactly the same behavior as in the conformal Riemannian ge-
ometries for all |1|-graded algebras g.

(2) Only the Lie algebra cohomology differential of P
σ can be involved in

the g− component (i.e. in the torsion part) and in the g0 component (the
Weyl curvature).

(3) We have rather to decompose κσ by the homogeneities than by com-
ponents in g. The non-vanishing component κi of the lowest degree is
constant on the fibers of G.

(4) Clearly, ∂P (u)(gi ∧ gj) ⊂ gmin{i,j}+1 ⊕ · · · ⊕ gℓ and so all torsion compo-
nents gi ∧ gj → g≤min{i,j} of κ

σ are equal to those of κ. In particular, all

κi with i ≤ 1 are always shared by all κσ.
(5) The homogeneous components of κσ of degrees k ≥ 2 depend explicitly
on P

σ

The next theorem, together with the Kostant’s version of the Bott-Borel-Weil
theorem, yields a very efficient tool for discussions on local invariants of normal
parabolic geometries. The proof can be found in [CSch]. See also 6.8-6.10 for basic
exposition of the Lie algebra cohomology H∗

∗ (g−, g), its Hodge structure, and the
BBW-theorem.

2.29. Theorem. The curvature κ of a normal Cartan connection vanishes if
and only if its harmonic part does. Moreover, if all homogeneous components of
κ of degrees less than j vanish identically and there is no cohomology H2j (g−, g),
then also the curvature component of degree j vanishes.
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2.30. Consequences. The latter theorem shows that it is again the Lie algebra
cohomology (this time H2(g−, g)) which causes vanishing of many parts of κ. In
fact the behavior of regular and normal parabolic geometries is always similar to
conformal Riemannian geometries. There, in dimensions m > 3, κ+ is essentially
the Cotton-York tensor, which is non-zero in general but vanishes automatically
whenever the Weyl curvature does. On three-dimensional manifolds, κ1 is the first
non-vanishing part of the curvature, thus it is constant along the fibers of G and
yields an invariant, the Cotton-York tensor.
As an immediate corollary we see that the first possibly non-vanishing homo-

geneity in the curvature κ of a normal parabolic geometry is that one corresponding
to the first non-vanishing cohomology. If the geometry is regular, this must be of
positive homogeneous degree. Unfortunately, even for regular and normal geome-
tries only the homogeneous component of degree one is shared by all torsions of the
Weyl geometries, since the values of the deformation tensors P

σ enter otherwise,
together with the effect of the evaluation in different frames. Thus even if there
is no cohomology in the torsion part, this could only imply that some parts of the
torsions of the Weyl geometries will vanish in general (analogously to the behavior
of the curvature in the conformal Riemannian case).

2.31. Remark. Proposition 2.27 also helps a bit to understand the curvatures
of the connections on the affine bundles of scales SνP

in terms of the deformation
tensors of the corresponding Weyl geometries. In fact, we have to study ν ◦ κσ,
evaluated at σ(v), v ∈ G0.
For the sake of simplicity, let us deal directly with the zE component of the cur-

vature κσ for closed Weyl geometries. This will also give the required information
of the curvature κσS with ν defined by means of the Killing form, whenever this

bundle exists. Only the following part of 〈E,E〉.ν(κω − κω
σ

) survives (notice also

〈E,E〉 = 2
∑ℓ
i=1 i

2 dim gj)

〈[X,P.Y ]− [Y,P.X ], E〉 = jP(X, Y )− iP(Y,X), X ∈ g−i, Y ∈ g−j

which is a sort of weighted antisymmetrization of P, viewed as a 2-tensor. This
gives us two conclusions:

• For all closed Weyl geometries σ, the zE component of the curvature κ of
the defining Cartan connection ω equals to the weighted antisymmetric part
of Pσ on the image σ(G0)

• In the presence of the affine bundle of scales SνP
, the curvatures of the

induced connections γσS on S are given by the differences of the component
κzE
of the canonical curvature κ and the weighted antisymmetrizations of

the Rho tensors P
σ.

Analogies to conformal circles

The conformal circles and their various generalizations have been studied in-
tensively, see e.g. [BaiE], [Eas], [CheM]. We present an extremely simple approach
to such distinguished curves for all parabolic geometries. In fact, we simply ex-
tend the classical results on affine connections, which say that a curve is a (non-
parameterized) geodesic line if and only if its development is a line.
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2.32. Cartan’s circles. Let M be a manifold with a parabolic geometry of the
type G/P , i.e. we are given p : G → M , ω ∈ Ω1(G, g). We can define a family of
distinguished curves on M as follows: For each X ∈ g− there is the horizontal
vector field ω−1(X) on G and every frame u ∈ G determines the unique flow line

(integral curve) Fl
ω−1(X)
t (u). We call the curves

R ∋ t 7→ αu,X(t) = p(Fl
ω−1(X)
t (u)) ∈M

the horizontal flows (also Cartan’s circles or simply generalized circles, cf. [Sha,
p. 210]).
The tangent bundle TM is identified with G ×Ad (g/p), where g/p is viewed as

g−. This identification may be realized by {u,X} 7→ Tp(ω−1(X)(u)). Thus, for
each fixed tangent vector ξ = {u,X} ∈ Tp(u)M , the horizontal flow α

u,X is tangent

to ξ. Of course, the curve αu,X depends heavily on the choice of both u and X .
We shall see, that there may be many horizontal flows tangent to the same vector,
but there could be also only one (up to reparametrization). In certain sense, this
behavior is similar to that of a family of circles tangent to a given vector in the
plane.

2.33. Developments of curves. First we embed the manifoldM into the canon-
ical bundle FM = G ×P (G/P ) ≃ G̃ ×G (G/P ) ≃ G̃/P

M ∋ p(u) 7→ {u, o} ∈ G ×P (G/P )

where u ∈ G, o = [e] ∈ G/P . (Of course, the value is independent of the choice

of u.) Since G̃ carries the canonical principal connection ω̃, there is the induced
connection on FM . This is a general connection on the associated bundle FM .
We shall write Ptω̃(c, t, y) for its parallel transport of the point y along the curve
c(s) at the time s = t. Let us notice that the fibers of FM are diffeomorphic to
the homogeneous space G/P , but there is no distinguished diffeomorfism available.
On the other hand, the existence of the global section M → FM provides some
analogy to the tangent bundle onM . More explicitly, it is not difficult to prove that
the restrition of the vertical bundle V FM to M ⊂ FM is canonically isomorphic
to the tangent bundle TM = G ×P g−

TxM ∋ {u,X} 7→ {0u, X} ∈ VxFM ⊂ TG ×P T (G/P ).

The (local) development of a curve α(t) ⊂ M ⊂ FM at its point x = α(0) is
the curve β : R → FxM defined for all t close to zero by the condition

Ptω̃t (α, t, β(t)) = α(t).

2.34. Lemma. The development of each horizontal flow αu,X in the point
x = p(u) ∈M is the curve βu,X (t) = {u, [exp tX ]}.
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Proof. We claim that the parallel transport of u ∈ G ⊂ G̃, along αu,X , is

(1) Ptω̃(αu,X , t, u) = Fl
ω−1(X)
t (u). exp(−tX)

and the Lemma then follows easily: We have just to write down the parallel trans-
port of {u, [exp tX ]} along our curve αu,X

{u, [exp tX ]} 7→ {Fl
ω−1(X)
t (u). exp(−tX), [exp tX ]} = {Fl

ω−1(X)
t (u), [e]}

which is exactly the required formula.
So we are left with the proof of formula (1). The parallel transport is defined

uniquely by the conditions

(a) p̃(Ptω̃(αu,X , t, u)) = αu,X(t)

(b) Ptω̃(αu,X , 0, u) = u
(c) ω̃( ∂

∂t |t=0
Ptω̃(αu,X , t+ s, u)) = 0

which are required whenever all expressions exist. Clearly, the right hand side of
(1) satisfies (a) and (b) and we have to compute the derivative in (c).

∂
∂t |t=0

(

Fl
ω−1(X)
s+t (u). exp−(s+ t)X

)

=

= ∂
∂t |t=0

(

Flω
−1(X)

s (u). exp−(s+ t)X
)

+ Trexp(−sX).ω−1(X)(Flω
−1(X)

s (u))

= −ζX(Fl
ω−1(X)
s (u). exp(−sX)) + Trexp(−sX).ω−1(X)(Flω

−1(X)
s (u))

= Trexp(−sX).

(

−ζAdexp(−sX).X (Fl
ω−1(X)
s (u)) + ω−1(X)(Flω

−1(X)
s (u))

)

By definition, the horizontal vector in TuG̃ over ξ = {u,X} ∈ TxM , with respect
to ω̃, is ω−1(X)(u)− ζX(u). Thus, using the right-invariance of ω̃, we obtain

ω̃(Flω
−1(X)

s (u))

(

Trexp(−sX).

(

−ζX(Fl
ω−1(X)
s (u)) + ω−1(X)(Flω

−1(X)
s (u))

))

=

= Adexp(sX) ◦ ω̃(ω−1(X)− ζX)(Fl
ω−1(X)
s (u)) = 0

and (c) holds as well. �

2.35. In the rest of this subsection we shall study the links between the horizon-
tal flows and the Weyl geometries, but let us first touch the question ‘how many
different horizontal flows leaving a fixed point in a given direction are there?’.
By the previous Lemma, there is a bijective correspondence between local hor-

izontal flows leaving x ∈ M and distinct distinguished curves βu,X . At the same
time, it suffices to discuss the curves t 7→ [exp tX ] ∈ G/P .
If the tangent space TM is irreducible (i.e. g is |1|-graded), then for each tangent

vector ξ = {u,X}, all curves βu. expZ,X = βu,Ad(expZ)X , Z ∈ g1 are tangent to ξ.
On the other hand, the Baker-Campbell-Hausdorff formula yields

expAd(expZ) tX = exp(tX + t[Z,X ] +
1
2 t[Z, [Z,X ]])

= exp tX. exp(−tX). exp(tX + . . . )

= exp tX. exp t2( 12 [X, [X,Z]] + terms in p or higher order in t)

= exp(tX + 12 t
2[X, [X,Z]]). exp(o(t2)) modP
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Thus, if [X, [X,Z]] is not zero, then already the second derivative of the curve βu,X

at the origin changes. For general gradings, the behavior is much more subtle.

2.36. Lemma. For each X ∈ g−, u ∈ G, there locally exists a G0-equivariant

section σ : G0 → G, such that Fl
ω−1(X)
t (u) ∈ σ(G0) for all t. For each such σ,

the deformation tensor P
σ vanishes on the tangent vectors to the horizontal flow

αu,X .

Proof. Let us write c(t) = pℓ0(Fl
ω−1(X)
t (u)). The requirement on σ then reads

σ(c(t)) = Fl
ω−1(X)
t (u). We can start with some equivariant section σ0 and look

for a one-form Υ which will give us the right σ. It suffices to define the values of
Υ(c(t)) by

Fl
ω−1(X)
t (u) = σ0(c(t)). expΥ(c(t)).

Such a one form Υ locally always exists because the mapping t 7→ c(t) is locally
injective.

In the 1-graded we
can start with a scale

and choose Υ closed,
so that the Lemma

works with a scale

as well. Look at the
more general case!

Let us write ut := Fl
ω−1(X)
t (u), i.e. Tp(ω−1(X)(ut)) = {ut, X} ∈ TM is tangent

to αu,X(t) at t. Now, given a σ as above, we know ω−1(X)(ut) = (ω
σ)−1(X)(ut)+

ζPσ.X(ut). But since ω
−1(X)(ut) ∈ Tσ(G0), we have ω

σ(ω−1(X)(ut)) = X as well.
Thus P

σ(ut).X = 0 for all t for which the horizontal flow is defined. �

2.37. Corollary. A curve α : R → M is a (non-parameterized) horizontal flow
on some neighborhood of the origin if and only if there is a generalized Weyl
geometry σ : G0 → G, such that α is a geodesic for γσ and at the same time the
deformation tensor P

σ vanishes along the curve α on this neighborhood.

Proof. Follows directly from Lemma 2.36 and the fact that auto-parallel fields
with respect to ω and γσ coincide if P vanishes. �

2.38. Normal coordinates. Let us define ‘canonical coordinates’ ϕu : g− → M
given by a choice of the frame u, at least locally around the origin in g−. For each

u ∈ G, there is a neighborhood U of 0 ∈ g− such that the flows Fl
ω−1(X)
t (u) exist

for all X ∈ U and t ≤ 1. We define

ϕ̄u : g− ⊃ U → G, ϕ̄u(X) = Fl
ω−1(X)
1 (u)

ϕu : g− ⊃ U →M, ϕu(X) = p(ϕ̄u(X)).

By the definition of the Cartan connections, the mapping ω × π : TG → g ×G is a
global diffeomorphism and so ϕu is a locally defined diffeomorphism. The projection
pℓ0 : G → G0 also determines the local G0-equivariant section σu : G0 → G satisfying

σu ◦ p
ℓ
0 ◦ ϕ̄ = ϕ̄.

We shall see in a moment that these special coordinates ϕu and the generalized
Weyl geometries σu have particularly nice properties. Let us also observe that the
choice of the frame u defines also a local trivialization of G →M .
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In fact, the situation is quite analogous to the Riemannian geometries and their
normal coordinates, only the discussion on the transformations under the change
of the frame u is quite subtle in general. More explicitly, for each b ∈ P , X ∈ g−

(Fl
ω−1(Ad b.X)
1 (u)).b = Fl

ω−1(X)
1 (u.b)

which implies

ϕu.b(X) = p(Fl
ω−1(Ad b.X)
1 (u)).

If b ∈ G0, then Ad b.X ∈ g− again, and we can recognize the transformation rules
for normal coordinates known from Riemannian geometry. Once b = expZ ∈ P+
we have to distill the part in X + [X,Z] + . . . contributing to the horizontal flows.

2.39. Theorem. Let ω ∈ Ω1(G, g) be a Cartan connection on p : G → M . The
normal coordinates ϕu determined by the frame u ∈ G, the corresponding general-
ized Weyl geometry σu, and its Rho tensor P

σu have the following properties

(1) the symmetrization of the iterated invariant differential

G
(∇ω)kPσu

⊗k+1g∗− ⊗ p+
Sym

⊙k+1g∗− ⊗ p+

vanishes at u, for all orders k ≥ 0. In particular, Pσu(u) ∈ g∗−⊗p+ vanishes.
(2) all geodesics of γσ going through p(u) are generalized circles on a neighbor-
hood of p(u)

(3) the curvature Rσu of the principal connection γσ at pℓ0(u) ∈ G0 coincides
with the g0-component of the curvature κ of ω at u.

Proof. Let us write briefly P instead of P
σ. Its value at u vanishes according to

Lemma 2.36.
Next, we shall look at the first derivative of P. We have

∇ω
ZP(u)(X) = ∂

∂t |0
P(Fl

ω−1(Z)
t (u))(X) = ∂

∂t |0
P(Fl

ω−1(tZ)
1 (u))(X).

Thus, Lemma 2.36 implies ∇ω
ZP(u)(Z) = 0 ∈ p+, for all Z ∈ g−. Consequently the

mapping (X,Z) 7→ ∇ω
ZP(u)(X) is antisymmetric.

Surprisingly enough, the same elementary argument works in general. Let us
consider the (k + 1)-linear mapping α

⊗kg− × g− ∋ (Y1, . . . , Yk, X) 7→ ∇ω
Yk
. . .∇ω

Y1P(u)(X) ∈ p+.

By definition,

α(Y1, . . . , Yk, X) =
∂
∂tk |0

(

. . . ∂
∂t1 |0

(

P ◦ Fl
ω−1(t1Y1)
1 ◦ . . . ◦ Fl

ω−1(tkYk)
1 (u)(X)

)

. . .
)

.

Thus, α(X,X, . . . , X) = ∂
∂tk |0

. . . ∂
∂t1 |0
(P ◦ Fl

ω−1(X)
t1+···+tk

)(u)(X) vanishes for all X ∈

g−. The complete symmetrization of α equals to the polarization of the mapping
X 7→ α(X, . . . , X) and so it vanishes as well.
The other two claims are now obvious from the construction: The Rho tensor

P
σ vanishes along all geodesics of γσ and so the conditions from Corollary 2.37
are satisfied. The difference of the curvature of γσ and the pullback of the g0-
component of κ via σ is given by the g0-component of ∂P, i.e. the mapping (X, Y ) 7→
[X,P.Y ]− [Y,P.X ], see 2.27. Since P vanishes at u, the third claim is obvious. �

Version of December 22, 1997



30 2. THE GENERAL THEORY

Correspondence spaces

Our general approach to parabolic geometries offers a straightforward general-
ization of the extremely useful twistor correspondences. We have just to mimic the
treatment of the flat models in [BasE].
Let M be a manifold endowed with a parabolic structure of type G/P . Thus,

we have the canonical bundle G → M , endowed with the Cartan connection ω.
Now, let us choose a parabolic subgroup Q ⊂ P ⊂ G, so that we have the manifold
Q = G/Q and the principal Q-bundle G → Q.

2.40. Lemma. For each parabolic subgroup Q ⊂ P ⊂ G, the Cartan connection
ω ∈ Ω1(G, g) is also a Cartan connection for the bundle G → Q. Moreover, if ω
is a normal Cartan connection on M , then it is also normal on Q.

Proof. Since Q ⊂ P , ω is still a Cartan connection on the principal Q-bundle
G → Q, cf. the definition. The formula for the codifferential reads (cf. 6.9)

∂∗κ(u)(X) =
∑

α

[ηα, κ(X, ξα)]−
1
2

∑

α

κ([ηα, X ]g−
, ξα)

where ξα, η
α are dual basis of g− and p+. We can choose the basis for p+ in a way

which admits its extension to basis of q+ and the additional elements η
α′

will all be
in the reductive part of p. Thus, if we apply the formula for ∂∗ in the case of the
parabolic Q, all the additional terms in the sums will be killed by the horizontality
of the curvature κ. Therefore the Cartan connection ω remains normal also on
G → Q. �

We say that ω defines the induced parabolic structure on Q.

2.41. Observations.

(1) The induced parabolic geometry on Q is flat if and only if the original
parabolic geometry on M is flat on Q.

(2) The parabolic geometry induced by a torsion-free one onM is not torsion-
free in general.

(3) Whenever there is some cohomology of the pair (g, q) with non-positive
homogeneity, the parabolic structure induced on Q by a regular Cartan
connection ω on G →M need not be regular any more.

Proof. The first observation is obvious since the Cartan connection ω ∈ Ω1(G, g)
is the same one for both geometries and so the curvature is given by the same
structure equation. The length of the grading of g given by q is strictly bigger
than that of (g, p). In particular, the homogeneities of elements in g− decrease in
general. On the other hand, the curvature κ is the same one on Q but with different
splitting into homogeneous components. The available degrees of homogeneity can
only decrease though. This explains the remaining claims. We shall meet explicit
examples later. �
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2.42. Remarks. In fact, due to the construction, the induced parabolic geometries
on the correspondence space Q are somewhat special. Indeed, some parts of the
curvature on G → Q have to vanish automatically (more or less these must be those
enabling the ‘integration of the fibers’ in G/Q over individual points in M).
In terms of the Dynkin diagrams with some crossed nodes (describing P ⊂ G),

we obtain the correspondence spaces Q for each choice of a set of further nodes to be
crossed. Of course, in order to complete the analogy to the twistor correspondences,
we should be able to reverse this construction as well. This means, we should like
to start with a parabolic geometry on Q, to remove some crosses (i.e. to choose
P ′ ⊃ Q) and to seek for a manifold M ′ equipped with the compatible geometry
of type G/P ′. This would clearly require certain integrability conditions on the
curvature of ω. Together with the automatic partial flatness of the correspondence
space Q, the latter conditions will probably force vanishing of the whole curvature
κ of ω in many cases. A careful study of this problem has to be done yet.

How to deal with examples?

Let us formulate a sequence of steps which should lead quickly to a better un-
derstanding of the basics of any particular parabolic geometry. We shall work out
several explicit examples in Sections 4-5.

2.43. Recipe.

(1) Find the filtration of the p-module g with respect to the adjoint action of
P and understand the individual g0-submodules; find a suitable base of
the center of g0 including the grading element E and compute the actions
of these base elements on g0-modules; understand the geometries in terms
of this filtration.

(2) Find all g0-submodules in H
2(g−, g) and relate them to submodules in

g∗− ⊗ g∗− ⊗ g; understand the local invariants of the goemetries.
(3) Find a reasonable bundle of scales S (at least locally) and describe ex-
plicitly its relation to the G0-structures on TM and (generalized) Weyl
geometries induced by scales.

(4) Understand explicitly the generalized Weyl geometries, their torsions and
curvatures, the twistor connections, horizontal flows, etc.

Of course, only the first two steps are completely algorithmic. The decomposi-
tion of the filtrations is a standard task in finite dimensional representation theory
(starting with the highest root of g we find all the submodules, one after the other;
the actions of central elements are easily readable from the Dynkin diagram and
the inverse to the Cartan matrix, see Section 6 for more details). The second step
requires to use Konstant’s BBW theorem and to find explicit information about
the generators of the cohomologies.
The third step will always need some insight in the special geometry in ques-

tion. The aim is in fact to identify the bundle S with some line bundle intrinsic
to the particular geometric situation. The archetypical example is the conformal
Riemannian geometry: we understand S as a square root of the line bundle of the
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distinguished conformal metrics.
The rest should be a separate interesting research project for many choices of G

and P .

3. Invariant Operators

Each action λ of the Lie group P on a manifold S yields natural bundles E(λ) =
G×P S over all manifoldsM with parabolic geometries of type G/P . In particular,
if λ is a linear representation of P on a vector space E then E(λ) is a natural vector
bundle. Differential operators between such bundles E(λ), E(µ) are most suitably
described by mappings on the jet prolongations JkE(λ).
Roughly speaking, the invariant operators are those differential operators which

are defined for all bundles E(λ), E(µ) with certain fixed λ and µ, in a sort of universal
way, independent of any further choices. On the subcategory of locally flat geome-
tries of type G/P , we can employ the standard definition of natural operators, i.e.
we consider the differential operators commuting with the action of morphisms (see
[KMS] for a general theory for such questions). Since there are many representa-
tions of P but very few morphisms in general, this definition does not extend easily
to the whole category. We will not discuss the possibilities for axiomatic definitions
of invariant operators now. Rather we shall present some procedures producing
families of operators, which clearly are invariant in any reasonable sense.
We shall begin with a detailed discussion on the algebraic structure of jets of

sections of natural bundles on manifolds with parabolic geometries. In view of our
general aims, we shall restrict ourselves to linear representations λ of P on E. The
symbol Eλ will always denote the resulting P -module (and also the p-module), we
shall also use the same λ for the Lie algebra homomorphism p → gl(Eλ). In fact
the whole P is always the semi-direct product of its reductive Levi part G0 and
exp p+, so that may work with (G0, p)-modules.

Algebraic structure of jets

3.1. First order jets. In the special case of the homogeneous vector bundle
E(λ) = G ×P Eλ over the homogeneous space G → G/P , the jet prolongations
JkE(λ) inherit the action of G. If we view sections in C∞E(λ) as P -equivariant
functions s ∈ C∞(G,Eλ)

P , then the 1-jets of sections at the distinguished point
o ∈ G/P are identified with 1-jets of these equivariant functions at the unit e ∈ G
and the action is given by g.(j1es) = j1e (s ◦ ℓg−1) for all g ∈ G. Indeed, for each
section s and any local section u of G we have

g.j1o(x 7→ {u(x), s(u(x))}) = j1o (x 7→ {ℓg ◦ ℓg−1 ◦ u(x), s(ℓg−1 ◦ u(x))})

= j10(x 7→ {u(x), s ◦ ℓg−1(u(x))}).

Thus the induced action of Z ∈ p on the section s is given by differentiation in the
direction of the right invariant vector field ζRZ on G, Z.j

1
es = −j1e ζ

R
Z .s.

We shall write the jets as j1es = (v, ϕ) ∈ Eλ ⊕ (g∗− ⊗ Eλ), where we identify
TeG ≃ g− ⊕ p via ω, i.e. v = s(e) and ϕ(X) = ω−1(X).s(e). Now we can express
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the action of Z ∈ p in these terms (we use the commuting of the left invariant fields
and the right invariant fields and the fact that their values at e coincide)

(1)

(v, ϕ) 7→ −j1e ζ
R
Z .s =

(

−ζRZ .s(e), (X 7→ −ω−1(X).(ζRZ .s)(e))
)

=
(

−ω−1(Z).s(e), (X 7→ −ω−1(Z).(ω−1(X).s)(e))
)

=
(

λ(Z)(v), (X 7→ −ω−1(X).(ω−1(Z).s)(e)− [ω−1(Z), ω−1(X)].s(e))
)

=
(

λ(Z)(v), (X 7→ λ(Z) ◦ ϕ(X)− ϕ ◦ ad−(Z)(X) + λ(adp(Z)(X)(v)))
)

=
(

λ(Z)(v), λ(Z) ◦ ϕ− ϕ ◦ ad−(Z) + λ(adp(Z)( ))(v)
)

.

So we define the p-module J1Eλ as Eλ ⊕ (g∗− ⊗ Eλ) with the p-action given by
(1). We call this module the first jet prolongation of Eλ. Obviously, for each p-
module homomorphism α : Eλ → Eµ the mapping J

1α : (v, ϕ) 7→ (α(v), α ◦ ϕ) is
a well defined p-module homomorphism J1Eλ → J1Eµ. Thus J

1 is a functor on
p-modules. We shall also write J1λ for the corresponding representation.
Next, consider an arbitrary principal P -bundle G with Cartan connection ω. The

P -module Eλ gives rise to the associated bundle E(λ) and its first jet prolongation
J1E(λ).

3.2. Proposition. The invariant differentiation ∇ω defines the mapping

ι : C∞(G,Eλ)
P → C∞(G, J1Eλ)

P , ι(s)(u) = (s(u), (X 7→ ∇ωs(u)(X)))

which yields a diffeomorphism J1E(λ) ≃ G ×P J1Eλ. For each fiber bundle
morphism f : E(λ) → E(µ) given by a P -module homomorphism α : Eλ → Eµ,
the first jet prolongation J1f corresponds to the P -module homomorphism J1α.

Proof1. Let us recall that ∇ωs(u)(X) = ω−1(X)(u).s. Thus the mapping ι : s 7→
(s,∇ωs) is well defined and depends on first jets only, but we have to check its
equivariance. This means exactly the commuting with the derivatives in the di-
rections of fundamental vector fields ω−1(Z), Z ∈ p. So we aim at −ζZι(s)(u) =
J1λ(Z) ◦ ι(s)(u). To see this, we just have to copy the computation 3.1.(1) and to
remember that the curvature of any Cartan connection is horizontal:

−ζZ .ι(s)(u) =
(

−ω−1(Z).s(u), (X 7→ −ω−1(Z).(ω−1(X).s)(u))
)

=
(

λ(Z)(s(u)), (X 7→ −ω−1(X).(ω−1(Z).s)(u)− ω−1([Z,X ]).s(u))
)

=
(

λ(Z)(s(u)), (X 7→ λ(Z) ◦ ∇ωs(u)(X)−∇ωs(u) ◦ ad−(Z)(X)

+ λ(adp(Z)(X))(s(u)))
)

Clearly, we have constructed a diffeomorphism J1E(λ)→ E ×P J
1Eλ.

Finally, consider a homomorphism α : Eλ → Eµ. The corresponding homomor-
phism f : E(λ)→ E(µ) is defined by {u, v} 7→ {u, α(v)}, and so the induced action
on sections is (x 7→ {u(x), s(u(x))}) 7→ (x 7→ {u(x), α ◦ s(u(x))}). Taking 1-jet of
this expression we obtain just the homomorphism J1α. �

1Similar arguments appeared first implicitly in [CSS1] and in a very special case in the Master

Thesis by Martin Panák
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3.3. Semi-holonomic jets. Since we have posed no restrictions on the represen-
tation λ above, we can iterate the functors J1 on the associated vector bundles
as well as on the P -modules. Proposition 3.2 then implies that the kth itera-
tion J1 . . . J1E(λ) is an associated bundle to G with the corresponding P -module
J1 . . . J1Eλ.
Let us look more carefully at J1J1Eλ and J

1J1E(λ). There are two obvious
p-module homomorphisms J1J1Eλ → J1Eλ, the first one given by the projection
pλ : (v, ϕ) 7→ v defined on each first jet prolongation and the other obtained by the
action of J1 on pλ. Thus there is a submodule J̄

2Eλ in J
1J1Eλ on which these two

projections coincide. As a vector space, this is

J̄2Eλ = Eλ ⊕ (g
∗
− ⊗ Eλ)⊕ (g

∗
− ⊗ g∗− ⊗ Eλ).

The two p-module homomorphisms J1pλ, pJ1λ give rise to fiber bundle morphisms
J1J1E(λ) → J1E(λ) which are just the two standard projections on second non-
holonomic jet prolongations. So we conclude that the second semi-holonomic pro-
longation J̄2E(λ) is naturally equivalent to G ×P J̄

2Eλ.
Iterating this procedure, we obtain the kth semi-holonomic jet prolongations and

J1(J̄kEλ) equipped with two natural projections onto J̄
kEλ, which correspond to

the usual projections on the first jet prolongation of semi-holonomic jets. Their
equalizer is then the submodule J̄k+1Eλ. As a vector space (and G0-module),

J̄kEλ =

k
⊕

i=0

(⊗ig∗− ⊗ Eλ).

3.4. Proposition. For each integer k, the kth semi-holonomic jet prolonga-
tion J̄kE(λ) carries the natural structure of associated fiber bundle G ×P J̄

kEλ.
Moreover, the invariant differential defines the natural embedding

JkE(λ) ∋ jkus 7→ {u, (s(u),∇ωs(u), . . . , (∇ω)ks(u))} ∈ J̄kEλ ≃ G ×P J̄
kEλ.

Proof. The first part of the statement has been already shown. What remains is
to discuss the equivariance properties of the invariant differentials. However also
this follows from the first order case easily by induction, using only the definition
of the semi-holonomic prolongations. �

3.5. Remarks. A few observations and comments are in place.
It is just the existence of the natural associated bundle structure on J̄kE(λ) (i.e.

depending on ω only) which gives rise to the differential operator DΦ : C
∞E(λ)→

C∞E(µ) for each P -module homomorphism Φ: J̄kEλ → Eµ. In view of the exis-
tence of the canonical Cartan connections on the parabolic geometries, this means
that each such P -module homomorphism defines an invariantly defined operator
on manifolds with the appropriate geometric structures. On the other hand, not
all invariant operators arise in this way, as well known e.g. from the conformal
Riemannian geometry, see e.g. [CSS1, Eas, EasS, Slo1,Slo2].
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The existence of the canonical embedding provided by the iterated differen-
tial suggests a straightforward method for explicit constructions of such operators.
Given a P -module homomorphism Φ: J̄kEλ → Eµ we compose this with the it-
erated differentials to obtain quite explicit analytic expressions for the operators.
On the other hand, we can also start with an arbitrary G0-module homomorphism
Φ, compose it with the differentials and discuss the equivariance of the resulting
expression. Its expansion in terms of the underlying generalized Weyl geometries
yields an algorithmic method for finding operators, see e.g. [CSS1, Slo2].

While the semi-holonomic prolongations J̄kE(λ) are constructed by a purely
algebraic construction, the embedding of JkE(λ) depends of course heavily on the
curvature of the Cartan connection. This makes the discussion on the algebraic
conditions for the existence of invariant operators which are not coming from P -
module homomorphisms much more difficult.

3.6. Weighted orders. The general Ricci identity for invariant differentials (see
2.13) shows that the iterated invariant differentials of a section are in certain extent
determined by their evaluation on the elements X ∈ g−1. What we need is the
additional condition κi(X, Y ) = 0 for all X, Y ∈ g−1 and i < −1. This is always
true if κi = 0 for all i ≤ 0, which is a consequence of the structure equation on G,
see 2.2. Thus, for regular parabolic geometries, the evaluation of the ℓth iterated
differential (∇ω)ℓs on g−1 in order to know the first differential on the whole g−
(here ℓ is the length of the grading of g as usual).

The latter observation suggests to refine the notion of the order of an operator:

For each X ∈ g−k, 1 ≤ k ≤ ℓ, we say that the operator ∇ω
X , has the weighted

order k. The total order of an operator DΦ for a P -module homomorphism Φ is
then defined as usual.

Restricted jets

3.7. Our next goal is to define an algebraic object corresponding to partially de-
fined jets, i.e. describing derivatives in some directions only. First we rewrite slightly
the p-action on Eλ ⊕ (g∗− ⊗ Eλ). Since the Killing form provides the dual pairing
g∗− ≃ p+ we have for all Y ⊗ v ∈ g∗− ⊗ Eλ, X ∈ g−, Z ∈ p

(Y ⊗ v) ◦ ad−(Z)(X) = 〈ad−(Z)(X), Y 〉v

= 〈[Z,X ], Y 〉v (since p+ is orthogonal to p)

= −〈X, [Z, Y ]〉v (the invariance of the Killing form)

= −([Z, Y ]⊗ v)(X).

For a fixed dual linear basis ξα ∈ g−, η
α ∈ p+ we can also rewrite the term

λ(adp(Z)(X))(v) =
∑

α

ηα ⊗ [Z, ξα]p.v
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Thus the 1-jet action on J1Eλ = Eλ ⊕ (p+ ⊗ Eλ) is (the dots indicate the p-action
given by λ)

(1) J1λ(Z)(v0, Y1 ⊗ v1) = (Z.v0, Y1 ⊗ Z.v1 + [Z, Y1]⊗ v1 +
∑

α

ηα ⊗ [Z, ξα]p.v0).

There is the p-invariant vector subspace {0}⊕ (p2+⊗Eλ) ⊂ J1Eλ and we define the
p-module

J1REλ = J
1Eλ/({0} ⊕ (p

2
+ ⊗ Eλ)) ≃ Eλ ⊕ ((p+/p

2
+)⊗ Eλ) ≃ Eλ ⊕ (g

∗
−1 ⊗ Eλ).

The formula for the p-action J1Rλ reads

(2) J1Rλ(Z)(v0, Y1⊗ v1) = (Z.v0, Y1⊗Z.v1+[Z, Y1]g1 ⊗ v1+
∑

α′

ηα
′

⊗ [Z, ξα′ ]p.v0)

where ηα
′

and ξα′ are dual bases of g±1. The latter formula gets much simpler if
λ is a G0-representation extended trivially to the whole p. Then for each W ∈ g0,
Z ∈ g1

J1Rλ(W )(v0, Y1 ⊗ v1) = (W.v0, Y1 ⊗W.v1 + [W,Y1]⊗ v1)(3)

J1Rλ(Z)(v0, Y1 ⊗ v1) = (0,
∑

α′

ηα
′

⊗ [Z, ξα′].v0)(4)

while the action of p2+ is trivial. Exactly as with the functor J
1, the action of J1R

on (G0, p)-module homomorphisms is given by the composition.

The associated fiber bundle J1RE(λ) := G ×P J1REλ will be called the re-
stricted first jet prolongation. The invariant differential provides a natural map-
ping J1E(λ)→ J1RE(λ).

The inductive construction of the semi-holonomic jet prolongations of (G0, p)-
modules can be now repeated with the functor J1R. The resulting p-modules are the
equalizers of the two natural projections J1R(J̄

k
REλ) → J̄kREλ and, as g0-modules,

they are equal to

J̄kREλ =
k
⊕

i=0

(⊗ig1 ⊗ Eλ).

We shall write J̄kRE(λ) for the associated fiber bundles corresponding to the modules
J̄kREλ. The resulting modules and bundles are called the restricted semi-holonomic
prolongations of E(λ) and Eλ, respectively.

As before, the iterated invariant differential yields a natural mapping JkE(λ)→
J̄kRE(λ), so that each P -module homomorphism Φ: J̄kREλ → Eµ defines the differ-
ential operator DΦ : C

∞(E(λ))→ C∞(E(µ)).
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Jet-module homomorphisms

3.8. The algebraic structure of jet-modules. We shall deal with the restricted
jets together with the usual ones. The idea is very simple, we have just to iterate
the action on one-jets.

Let us start with the second order case. Each element (v0, Y1⊗v1,W1⊗W2⊗v2) ∈
J̄2Eλ is understood as

((v0, Y1 ⊗ v1), Y1 ⊗ (v1, 0)) + ((0, 0),W1 ⊗ (0,W2 ⊗ v2)) ∈ J1J1Eλ

and for all Z ∈ p we have

(1) J̄2λ(Z)(v0, Y1 ⊗ v1,W1 ⊗W2 ⊗ v2) =

= J̄2λ(Z)
(

((v0, Y1 ⊗ v1), Y1 ⊗ (v1, 0)) + ((0, 0),W1 ⊗ (0,W2 ⊗ v2))
)

=

=

(

Z.v0, Z.(Y1 ⊗ v1) +
∑

α

ηα ⊗ [Z, ξα]p.v0,

Z.(W1 ⊗W2 ⊗ v2) +
∑

α

(

ηα ⊗ [Z, ξα]p.(Y1 ⊗ v1) + Y1 ⊗ ηα ⊗ [Z, ξα]p.v1
)

+

∑

α,β

ηβ ⊗ ηα ⊗ [[Z, ξβ]p, ξα]p.v0

)

The action on the restricted jets is read off these lines easily. Simply Y1,W1,W2
have to be in g1 ≃ p+/p

2
+. For Z ∈ g0 we obtain the tensorial product of the

obvious actions,

J̄2Rλ(Z)(v0, Y1 ⊗ v1,W1 ⊗W2 ⊗ v2) = (Z.v0, Z.(Y1 ⊗ v1), Z.(W1 ⊗W2 ⊗ v2))

while for Z ∈ p+ essentially all summands survive. The formula, however, simplifies
heavily if the action of p+ on Eλ is trivial. Then Z1 ∈ g1 and Z2 ∈ g2 yield

J̄2Rλ(Z1)(v0, Y1 ⊗ v1,W1 ⊗W2 ⊗ v2) = (0,
∑

α′

ηα
′

⊗ [Z1, ξα′].v0),

∑

α′

(ηα
′

⊗ [Z1, ξα′ ].(Y1 ⊗ v1) + Y1 ⊗ ηα
′

⊗ [Z1, ξα′].v1))(2)

J̄2Rλ(Z2)(v0, Y1 ⊗ v1,W1 ⊗W2 ⊗ v2) =

(0, 0,
∑

α′,β′

ηβ
′

⊗ ηα
′

⊗ [[Z2, ξβ′], ξα′].v0)(3)

while all Z ∈ p3+ act trivially.

The above computations can be easily generalized:
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3.9. Proposition. Let Y1 ⊗ · · · ⊗ Yr ⊗ v ∈ ⊗rp+ ⊗ Eλ, (0, . . . , Y1 ⊗ · · · ⊗ Yr ⊗
v, 0, . . . , 0) ∈ J̄k+rEλ and Z ∈ p. Then

J̄k+rλ(Z)(0, . . . , Y1 ⊗ · · · ⊗ Yr ⊗ v, 0, . . . , 0) = (0, . . . , 0, ϕr, ϕr+1, . . . , ϕr+k)

where

ϕr+s =
∑

α1,...,αs

0≤i1≤···≤is≤r

Y1 ⊗ · · · ⊗ Yi1 ⊗ ηα1 ⊗ Yi1+1 ⊗ · · · ⊗ Yi2 ⊗ ηα2 ⊗ . . .

⊗ Yis ⊗ ηαs ⊗ [. . . [Z, ξα1]p, . . . , ξαs
]p.(Yis+1 ⊗ · · · ⊗ Yr ⊗ v).

In particular, if s = 0 we obtain the standard tensor product of the representa-
tions, i.e. ϕr = Z.(Y1 ⊗ · · · ⊗ Yr ⊗ v).

The action on the restricted jets J̄k+rR Eλ is obtained by restriction of this

formula to the dual basis ξα′ , ηα
′

of g±1 and the actions of the iterated brackets
on g1 ≃ p+/p

2
+.

The obvious projection π : J̄k+rEλ → J̄k+rR Eλ is a P -module homomorphism.

Proof. We have already seen that the formula holds for 0 ≤ r + k ≤ 2. So let us
assume, it holds also for all k′ + r′ < k + r. The semi-holonomic (k + r)-jet is a
1-jet of an (k+ r− 1)-jet and what we have to do is to apply the standard first jet
prolongation of the representation J̄k+r−1λ. Thus we consider

(

(0, . . . , Y1⊗· · ·⊗Yr⊗v, 0, . . . ), Y1⊗(0, . . . , Y2⊗· · ·⊗Yr⊗v, 0, . . . )
)

∈ J1J̄k+r−1Eλ

and compute how J1(J̄k+r−1λ)(Z) acts. By the induction hypothesis, we obtain

(

(

0, . . . , Z.(Y1 ⊗ · · · ⊗ Yr ⊗ v), . . . ,
∑

0≤i1≤···≤is≤r
α1,...,αs

(

Y1 ⊗ · · · ⊗ Yi1 ⊗ ηα1 ⊗ . . .

⊗ Yis ⊗ ηαs ⊗ [. . . [Z, ξα1]p, . . . , ξαs
]p.(Yis+1 ⊗ · · · ⊗ Yr ⊗ v)

)

, . . .
)

,

Z.Y1 ⊗
(

0, . . .
)

+ Y1 ⊗
(

0, . . . , Z.(Y2 ⊗ . . . Yr ⊗ v), . . . ,
∑

α1,...,αs

1≤i1≤···≤is≤r

Y2 ⊗ . . . Yi1⊗

ηα1 ⊗ · · · ⊗ Yis ⊗ ηαs ⊗ [. . . [Z, ξα1]p, . . . , ξαs
]p.(Yis+1 ⊗ · · · ⊗ Yr ⊗ v), . . .

)

+

ηα1 ⊗
(

0, . . . , [Z, ξα1]p.(Y1 ⊗ . . . Yr ⊗ v), . . . ,
∑

α2,...,αs

0≤i2≤···≤is≤r

Y1 ⊗ · · · ⊗ Yi2⊗

ηα2 ⊗ · · · ⊗ Yis ⊗ ηαs ⊗ [. . . [Z, ξα1]p, . . . , ξαs
]p.(Yis+1 ⊗ · · · ⊗ Yr ⊗ v), . . .

)

)

All components up to the order k+ r− 1 clearly yield the required formula (in fact
this was the induction hypothesis) which appears once in the ‘value part’ of the
1-jet, and once more in the ‘derivative part’. The (k + r)th component appears
already only in the derivative part and consists of two summands, where the first
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one exhausts all possibilities with Y1 in the beginning of the term, while the other
summand produces all the remaining possibilities, i.e. those beginning with ηα1 .
Thus their sum yields exactly the required formula. �

As a corollary of the latter Proposition, we obtain a useful criterion for homo-
morphisms of the restricted jets:

3.10. Proposition. Let Eλ, Eµ be irreducible P -modules and let Φ be a G0-
module homomorphism J̄kREλ ⊃ ⊗kg1⊗Eλ → Eµ. Then Φ extends trivially to a
P -module homomorphism if and only if

Φ

(

∑

0≤i≤k−1

Y1 ⊗ · · · ⊗ Yi ⊗ ηα
′

⊗ [Z, ξα′].(Yi+1 ⊗ · · · ⊗ Yk−1 ⊗ v)

)

= 0

for all Z ∈ g1, Y1, . . . , Yk−1 ∈ g1, v ∈ Eλ. Moreover, each P -module homomor-
phism Φ: J̄kREλ → Eµ is obtained in this way.

Proof. We know that p+ acts trivially on Eλ. For all Z ∈ gk and (Y1⊗· · ·⊗Yr⊗v) ∈
⊗rg1 ⊗ Eλ ⊂ J̄r+sR Eλ, s ≥ k we obtain

J̄r+sR λ(Z)(Y1 ⊗ · · · ⊗ Yr ⊗ v) =
∑

0≤i1≤···≤ik≤r
α′

1,...,α
′

k

Y1 ⊗ · · · ⊗ Yi1 ⊗ ηα
′

1 ⊗ Yi1+1 ⊗ . . .

⊗ Yi2 ⊗ ηα
′

2 ⊗ · · · ⊗ Yik ⊗ ηα
′

k ⊗ [. . . [Z, ξα′

1
]p, . . . , ξα′

k
]p.(Yik+1 ⊗ · · · ⊗ Yr ⊗ v)

In particular, if Z ∈ g1, then the formula is:

J̄r+sR (Z)(Y1⊗· · ·⊗Yr⊗ v) =
∑

0≤i≤r

Y1⊗· · ·⊗Yi⊗ η
α′

⊗ [Z, ξα′].(Yi+1⊗· · ·⊗Yr⊗ v)

By the hypothesis, Eλ, Eµ are irreducible, so in particular p+ acts trivially. Then
the grading element in g0 acts differently on each G0-module component ⊗

rg1⊗Eλ
in J̄kREλ and so each P -module homomorphism Φ: J̄

k
REλ → Eµ must be a G0-

module homomorphism ⊗rg1⊗Eλ → Eµ trivially extended to the whole J̄
k
REλ, for

some 0 ≤ r ≤ k. Without any loss of generality, we may always assume r = k and
then the necessary and sufficient condition on a given g0-module homomorphism Φ
to be a p-module homomorphism is its vanishing on the image of the action of p+.
Moreover, since the whole p+ is generated by g1, the image of the action intersected
with the top component ⊗kg1 ⊗ Eλ coincides with the image of the last but one
component under the action of g1. �

3.11. Remarks. The latter criterion provides a powerful tool for discussion on
natural differential operators. Each such Φ, composed with the projection π :
J̄kEλ → J̄kREλ yields a P -module homomorphism on the semiholonomic jets, and
thus a differential operator DΦ◦π .
The explicit realization of this operator through the embedding JkE(λ)→ J̄kE(λ)

via the iterated differential with respect to the canonical Cartan connection ω sug-
gests that we could consider the standard jets in JkE(λ) as associated bundles
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corresponding to a sort of quotient of the semi-holonomic jet modules, where the
defining relations are given by the values of the curvature and its invariant deriva-
tives (cf. the Ricci identity in 2.13). Of course, the resulting modules happen to be
non-isomorphic at different points, in general. In particular, on the homogeneous
spaces we recover the tautological embedding of the standard jet modules into the
semi-holonomic ones provided by ω. This point of view definitely deserves further
investigation and might possibly help in the study of operators which do not come
from our algebraic jet module homomorphisms. (The symmetries of the curva-
ture and its derivatives imply certain restrictions on the structure of the resulting
quotients.)
There is also the interesting question, how far are the general P -module homo-

morphisms Φ: J̄kEλ → Eµ determined by their restrictions Φ0 = Φ|J̄k
R

Eλ
to the

image of the embedding of the G0-module of the restricted jets. Obviously, Φ0 is a
G0-module homomorphism and there is a good evidence that Φ is fully determined
by Φ0. However, Φ does not vanish on the G0-module complement of the restricted
jets, in general. Thus the problem: What are the conditions on a G0-module ho-
momorphism Φ0 to extend to a P -homomorphism Φ, definitely deserves further
investigation. Proposition 3.9 gives a sufficient condition only.

3.12. First order operators. Let us discuss some simple applications of Propo-
sitions 3.10, 3.11. First we shall deal with first order operators. Each irreducible
representation λ of g0 is determined by the scalar action w of the grading element
E and the restriction λ′ of λ to the orthogonal complement E⊥ = g′0. The scalar w
defines a generalization of the conformal weight of objects in conformal Riemann-
ian geometries. It seems to be reasonable to normalize the conformal weight of the
representation λ in such a way, that the line bundle modeling the scale bundle S
will be of weight one.
Let us fix the representation λ′ and consider the scalar w as a free parameter. Our

aim is to find all homomorphisms Φ: J1Ew,λ′ → Eµ with irreducible representations
µ = (w̃, µ′) of g0. Of course, Φ must be in particular a homomorphism of g0-
modules. Therefore, Φ is a projection to one irreducible component Eµ in J

1Eλ.
Either λ = µ or Eµ ⊂ gk ⊗Eλ for suitable k (notice that E acts differently for each
k). For all Z ∈ gi, i > 0, and (v0, Y ⊗ v1) ∈ J1Eλ, the formula in 3.9 then yields
the condition

0 = Φ

(

[Z, Y ]⊗ v1 +
∑

α

ηα ⊗ [Z, ξα]g0 .v0

)

.

Inserting v0 = 0 we conclude that Φ factors through the restricted jets J
1
REλ. The

latter formula with Z ∈ g1 and v1 = 0 then reads (with dual basis η
α′

, ξα′ of g±1)

0 = Φ

(

∑

α′

ηα
′

⊗ [Z, ξα′]g0 .v0

)

.

Now, Φ is the projection to an irreducible component in g1 ⊗ Eλ and its argument
can be viewed as the mapping

g1 ⊗ Eλ → g∗−1 ⊗ Eλ, (Z, v) 7→ (X 7→ [Z,X ].v).
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Assume now that Eµ′ appears in g1 ⊗ Eλ′ with multiplicity one. Then the above
mapping is a constant multiple of the identity on this component and the above
condition is a linear equation on w. Thus, for each multiplicity one component
E′
µ ∈ g1 ⊗Eλ′ there is a uniquely defined scalar action w of the grading element E

such that Φ turns out to be a homomorphism J1REw,λ′ → E(w+1),µ′ . In fact, we can
say even more: g1 usually splits into further irreducible components and the action
of the center of g0 distinguishes them. Thus we can apply the above discussion to
the individual components of g1.
Similar considerations appeared first in [Feg] in the very special case of first order

invariant operators on conformal Riemannian manifolds.

3.13. Some more operators. The discussion on higher order jets is much more
difficult in general, but we can treat similarly the morphisms on symmetrizations of
higher order restricted jets. The resulting scalars w can be also expressed explicitly
with the help of finite dimensional representation theory of semisimple Lie algebras.
The case of |1|-graded algebras g has been treated in great detail in [CSS3].
Another interesting source of examples is provided by g-modules. Consider such

a module with its filtration by P -submodules W = W0 + · · ·+Wk. In particular,
the top component Wk decomposes as direct sum of irreducible P -modules Eλ. If
we pick up any of these components, we can take its semiholonomic jets J̄kEλ and
look for components in the individual levels ⊗ip+ ⊗ Eλ which also appear in the
g0-submodules Wk−i. This will often lead to operators similar to the well known
D-operators in conformal Riemannian and similar geometries, see e.g. [Eas]. In
particular, we always obtain interesting operators for the adjoint representation on
W = g.

The dual picture

Instead of seeking for P -module homomorphisms Φ: J̄kEλ → Eµ, we can pass
to their dual morphisms Φ∗ : E∗

µ → (J̄kEλ)
∗. We shall see in a moment why this is

very reasonable.

3.14. Verma modules. It is well known for holonomic jets that the dual modules
JkEλ enjoy the nice algebraic structure of a finite dimensional part of the induced
module

Vp(λ) = U(g)⊗U(p) E∗
λ.

In particular, the dual to the inverse limit J∞Eλ is the whole generalized Verma
module Vp(λ). Thus, instead of looking for homomorphisms defined on the highly
reducible P -modules JkEλ we have only to discuss morphisms defined on the highest
weight modules Vp(λ). These are quite well known in representation theory, see e.g.
[BasE] for further links. Fortunately, our ‘less symmetric’ modules J̄kEλ have quite
similar duals which were first studied in [EasS].
We start with a modification of the definition of U(g). Our algebra Ū(g) is defined

as the quotient of the free tensor algebra T (g) by the ideal I which is generated by
{X⊗Y −Y ⊗X− [X, Y ]; for all X ∈ p, Y ∈ g}. Thus, we force the compatibility of
the commutator with the bracket only for those brackets with at least one element
in p.
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3.15. Definition. The semi-holonomic Verma module induced from the P -
module Eλ is the (g, P )-module

V̄p(λ) = Ū(g)⊗U(p) E∗
λ.

The obvious filtration of Ū(g) gives rise to the filtration of the semi-holonomic
Verma module

Eλ = F0V̄p(λ) ⊂ F1V̄p(λ) ⊂ . . .

by U(p)-modules, with

Fk+1V̄p(λ)/FkV̄p(λ) ≃ ⊗k+1g− ⊗ Eλ

as G0–modules.

3.16. Lemma. The U(p)-modules (J̄kEλ)
∗ dual to the semi-holonomic jet

modules are naturally identified with the U(p)-submodules FkV̄p(λ) in the semi-
holonomic Verma module V̄p(λ).

Proof. The claim is obvious on the level of G0-modules. Consider Z ∈ p+ and let
us show the explicit computation for k = 1. The general case follows analogously
from the full formula in Proposition 3.9.
If X ⊗ v∗ ∈ g− ⊗ E∗

λ ⊂ (J1Eλ)
∗, Y ⊗ v ∈ p+ ⊗ Eλ ⊂ J1Eλ, then

〈X ⊗ v∗, Z.(Y ⊗ v)〉 = 〈X ⊗ v∗, [Z, Y ]⊗ v + Y ⊗ Z.v〉

= 〈X, [Z, Y ]〉〈v∗, v〉 − 〈X, Y 〉〈Z.v∗, v〉

= −〈[Z,X ], Y 〉〈v∗, v〉 − 〈X, Y 〉〈Z.v∗, v〉

If [Z,X ] ∈ g−, then the resulting expression equals to

〈−[Z,X ]⊗ v∗ +X ⊗ Z.v∗, Y ⊗ Z〉.

Otherwise, the first summand disappears and we are left with 〈X ⊗ Z.v∗, Y ⊗ v〉.
The latter computation does not give the full information on Z.(X⊗v∗) though.

We also have to consider its action on the image of the lower components. Given
v ∈ Eλ ⊂ J1Eλ we have

〈X ⊗ v∗, Z.v〉 = 〈X ⊗ v∗, Z.v + ηα ⊗ [Z, ξα]p.v〉

= 〈X, ηα〉〈v∗, [Z, ξα]p.v〉

= −〈[Z,X ]p.v
∗, v〉.

As the result of both computations we obtain the formula saying that Z ∈ p

‘bubbles’ through the elements X leaving always a new term behind, the bracket
[Z,X ]. The same happens then with the new term, until the resulting bracket
element is not in p. Then it remains were it appears. This is exactly the action of
Z in the semi-holonomic induced modules. �
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3.17. Remarks. The most powerful tool in the theory of the generalized Verma
modules is the central (or infinitesimal) character, see 6.12. We do not have a
straightforward analogy for semi-holonomic Verma modules, but we can extend the
translation functors due to Zuckermann and Jantzen. In fact we can show that
once the essential homomorphisms building these functors would exist in the semi-
holonomic setting, then also the whole translation principal worked as well. Special
situations were studied in great detail in [EasS]. Roughly speaking, there are just
two main points: (1) usually there are many homomorphisms of semi-holonomic
Verma modules with a given symbol, (2) we have to find ‘initial data’ to start
the translations with. It is known already from conformal Riemannian geometry,
that there are homomorphisms of (holonomic) Verma modules which do not have
semi-holonomic analogues, see again [EasS].

Thus, we are able to get very general structural results on the existence of the
homomorphisms of semi-holonomic Verma modules. On the other hand, even if we
would find the singular vectors in V̄p(λ) defining those homomorphisms, it is not
evident how to find analytic formulae for the operators in a direct algorithmic way.
A combination of the direct discussion on the jet level with the dual picture seems
to be most promissing.

4. |1|-graded examples

In the next two sections, we shall indicate how to follow the Recipe 2.43 in
concrete examples. We shall discuss the geometries in general dimensions, however
we usually draw the diagrams for some of them only. In fact, the main algebraic
tools from representation theory work with the complex modules, but we may use
all these results for our real objects with the help of the complexification procedure.
In all our examples, this causes no essential problems.

This section is devoted to the parabolic geometries with the irreducible tangent
bundles, i.e. the length of the gradings must be ℓ = 1. In the notation of the
Dynkin diagrams with crossed nodes, this means that the sum of the coefficients of
the highest root of g at the simple roots corresponding to the crossed nodes must
be one, see 6.3. Thus, there might be only one cross in the diagram and its position
is further restricted, the full list of the complex forms appears in Table 14.

Since the general theory of Section 2 simplifies heavily for |1|-graded cases, we
start our exposition with brief review.

Review of general properties

4.1. Corollaries. Let g be a |1|-graded algebra, p = g0 ⊕ g1. Consider a Lie
group G with Lie algebra g and let P be the subgroup of elements whose adjoint
representation respects the filtration of g as p-module.

Each parabolic geometry of the type G/P , i.e. a Cartan connection on a principal
P -bundle G → M , is regular. All normal parabolic geometries are uniquely con-
structed from reductions of the linear frame bundles P 1M to the structure groups
G0, except g is a real form of sl(m+ 1,C), cf. [CSS2], [CSch]. The exceptions were
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already discussed in 2.5.
The whole torsion part of the curvature κ of the Cartan connection ω is constant

on the fibers of G.
All the Weyl geometries on M share the same torsion and each choice of a scale

yields also the reduction of TM to the semisimple part of G0. More generally, if the
parabolic geometry is normal, then the torsion is zero whenever the homogeneity
one component of the cohomology H2(g−, g) vanishes. In this case, all the Weyl ge-
ometries share a comon component of the curvature corresponding to non-vanishing
cohomology of homogeneity two. If only homogeneity three is available, then the
local invariant of the geometry in question is built of the first derivatives of the
curvatures.
All identities and formulae simplify heavily too. The main reason is the commu-

tativity of g±1.

4.2. Corollaries. In particular, the Ricci and Bianchi identities from 2.13 get

(∇ω
X ◦ ∇ω

Y −∇ω
Y ◦ ∇ω

X)s = λ(κp(X, Y )) ◦ s−∇ω
κ−(X,Y )

s
∑

cycl

(

[κ(X, Y ), Z]− κ(κ−(X, Y ), Z)−∇ω
Zκ(X, Y )

)

= 0

The formulae in 2.16 and 2.17 for modules with trivial actions of g1 specify always
to

(∇ω
X −∇γσ

X )s(u) = λ([X, τ(u)]) ◦ s(u)

∇γ̂s(X) = ∇γs(X) + λ([X,Υ]) ◦ s

4.3. Corollaries. There is only one choice for the definition of closed (generalized)
Weyl geometries and affine bundles of scales, but the global existence of the bundle
of scales has to be discussed separately for the individual geometries.
The transformations of the Weyl geometries σ and those of the induced connec-

tions γσS on the scale bundles S are given by the same one forms Υ, up to a multiple
(cf. 2.23) and the curvature of γσS is given by the difference of the zE-component of
the curvature κ of the defining Cartan connection and the antisymmetrization of
the deformation tensor P

σ (cf. 2.31).
The transformation rule for P under the change Υ of the (generalized) Weyl

geometry σ follows from 2.18

P̂.X = P.X −∇γ1
XΥ− 1

2 [Υ, [Υ, X ]]

4.4. Proposition. For all torsion-free normal parabolic geometries of type G/P
on M with irreducible tangent bundles, the closed (generalized) Weyl geometries
are exactly those with symmetric Rho tensors.

Proof. Let ω be the normal and torsion-free Cartan connection, κω its curvature.
The Bianchi identity implies (here ei and e

i form dual basis of g±1)

[κωg0(X, Y ), ei] = [κ
ω
g0
(X, ei), Y ] + [κ

ω
g0
(ei, Y ), X ]
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and so the ∂∗-closedness implies

0 = ∂∗κωg0(X)(Y )− ∂∗κωg0(Y )(X)

=
∑

i

([[κωg0(X, ei), Y ], e
i] + [[κωgo

(ei, Y ), X ], e
i]) =

∑

i

[[κωg0(X, Y ), ei], e
i].

Now, the trace part in g0 ⊂ gl(g−1) is given by the evaluation of the Killing form

∑

i

〈[κω(X, Y ), ei], e
i〉 = −

∑

i

〈[[κωg0(X, Y ), ei], e
i], E〉 = 0

Since the trace part is generated by E, its vanishing is equivalent to the vanishing
of the zE-component of κ

ω and the claim follows from the general discussion in
2.31. �

4.5. Let us choose a closed Weyl geometry σ0, any Weyl geometry σ, and let Υ be
the one-form transforming σ into σ0. If the torsion of our structure is zero, then
the change of the curvature on S caused by Υ is (the free arguments from g−1 are
denoted by (−))

Alt(〈−∇γσ

(−)Υ, (−)〉−
1
2〈[Υ, [Υ, (−)]], (−)〉) = −dΥ− 12 Alt〈[Υ, (−)], [Υ, (−)]〉 = −dΥ

In particular, a choice of Υ does not change the curvature κσS if and only if dΥ = 0.
This is nicely compatible with the fact that the scales are parametrized by functions
and the difference between the two connection forms on S is given by Υ, up to a
multiple.
Now, since p+ is abelian, the consecutive change from σ1 to σ2 and σ3, achieved

by means of Υ and Υ′, equals to the change determined by Υ + Υ′. Thus, for
each fixed σ, there is a class of one-forms [Υ]σ transforming σ into a closed Weyl
geometry. They all differ by closed forms. In the presence of Hodge theory on dif-
ferential forms, the latter observation picks up locally a distinguished scale for each
(generalized) Weyl geometry. This is exactly the case in the conformal Riemannian
geometries, see e.g. [Gau].
In the presence of the torsion, the antisymmetrization of the covariant derivative

does not equal to the exterior derivative and the formulae get more messy.
In the rest of this section, we shall illustrate the theory on several quite well

known geometries.

Conformal Riemannian geometries

The basic features of conformal Riemannian geometries were reviewed in the
introductory Section 1. Now we shall follow the steps in Recipe 2.43 in order to
recover them again and we shall comment the necessary arguments and computa-

tions. In the Dynkin diagram notation, the pair (g, p) is encoded by × • · · · •�
•

�
•

in even dimensions and × • · · · • > • in odd dimensions.
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0
•

1
•

0
•�

• 0

�
• 0
=

−2
×

1
•

0
•�

• 0

�
• 0
+

−1
×

0
•

1
•�

• 0

�
• 0

⊕
0
×

0
•

0
•�

• 0

�
• 0

+
0
×

1
•

0
•�

• 0

�
• 0

1
•

0
•

1
• =

1
•

−2
×

1
•+

2
•

−1
×

0
•

⊕
0
•

−1
×

2
•

⊕
0
•

0
×

0
•

+
1
•

0
×

1
•

Table 1

Step 1. In the even dimensional case, the filtration of so(2n + 1, 1,R) is easily

found by looking at the orbit of the highest root
0
×

1
× · · ·

0
×�

× 0

�
× 0

. The zero weight

has to be added to g0, this is the one-dimensional center zE . The result is displayed
in Table 1.

As discussed in 6.7, the action of the grading element E on a highest weight
vector is expressed by the scalar product of the coefficients over the nodes in the
Dynkin diagram with the first column in the inverse Cartan matrix. Thus we obtain

the vector (1 1 . . . 1
1/2
1/2
) in the even dimensional cases and (1 . . . 1 12 ) in odd

dimensions.

The computations for odd dimensional geometries are slightly different, since
there always are the zero weights in the defining representations which do not
belong to the orbit of the highest weight. Fortunately, the highest weights of

g−1, the semisimple part of g0, and g1 are still in the orbit of
0
×

1
× · · ·

0
× >

0
× ,

except the case g = so(5,C). In the latter case, the orbit does not touch g0, but

we can locate it easily in the tensor product of g1 = 〈
0
× >

2
× ,

2
× >

−2
× ,

1
× >

0
×〉 and

g−1 = 〈
−2
× >

2
×,
0
× >

−2
× ,

−1
× >

2
×〉. The results are displayed in Table 2.

0
•

1
•

0
• >

0
• =

−2
×

1
•

0
• >

0
• +

−1
×

0
•

1
• >

0
•

⊕
0
×

0
•

0
• >

0
•

+
0
×

1
•

0
• >

0
•

0
• >

2
• =

−2
× >

2
•+

−1
× >

2
•

⊕
0
× >

0
•

+
0
× >

2
•

Table 2

As in all |1|-graded cases, a conformal Riemannian structure on a manifold M
is defined by the reduction of TM to the structure group G0, i.e. to the group
CO(m,R). This means exactly the choice of a scalar product on each TxM , up to
multiples.
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Step 2. Konstant’s version of the BBW theorem yields easily the G0-modules
in the cohomology H2(p+, g), which are dual to the cohomologies we need. The
homogeneity is then found by the action of E and because of the extremely simple
structure of g, this yields the complete information about the curvatures. See Table
3 for the results.

pair (g, p) cohomologies homogeneity curvature components

• × •

0
•

0
×

4
•

4
•

0
×

0
•

2

2

g−1 ∧ g−1 →
0
•

−1
×

2
•

g−1 ∧ g−1 →
2
•

−1
×

0
•

× • •�
•

�
•

0
×

0
•

2
•�

• 0

�
• 0

2 g−1 ∧ g−1 → g0

× > •
1
× >

4
• 3 g−1 ∧ g−1 → g1

× • • > •
0
×

0
•

2
• >

0
• 2 g−1 ∧ g−1 → g0

Table 3

These cohomological results can be interpreted easily in the classical terms. The
common ∂∗-closed torsion of all Weyl geometries is zero (because there is no coho-
mology of homogeneity one). If the dimension is greater then four, then there is
the unique local invariant of the structures which is given by the shared component
of the curvature of the Weyl geometries, valued in the bundle described in the sec-
ond column. On four dimensional conformal manifolds, this local invariant further
splits into the self-dual and anti self-dual parts. Finally, there is no shared part of
the curvatures of Weyl geometries in dimension three, but the Cotton-York tensor
yields the local invariant of the structure.

Step 3. By the general theory and the formula for the action of E, the mod-
eling line bundle of the scale bundle S should correspond to the highest weight
1
× · · · . Obviously such a representation of P exists. On the other hand, the
metrics in the distinguished conformal class live in an affine line bundle modeled

over densities with highest weight
2
× · · · . We should like to see, how our scales

(as sections of S) correspond to the metrics.
Recall again that metrics on M are reductions of the linear frame bundle P 1M

to the structure group O(m,R). Thus they are in bijective correspondence with
the sections of the quotient P 1M/O(m,R). Therefore, the metrics from the dis-
tinguished conformal class are in bijection with sections of G0/O(m,R) and the
orthogonal group plays the role of ker νP from 2.22. This correspondence is easily
understood locally: A section of P 1Rm is a GL(m,R)-valued function, say A(x).
Each value A(x) defines the positive definite matrix g(x) = A(x)A(x)T , which has
the property that A(x)T g(x)−1A(x) is the identity matrix Im for all x. In partic-
ular, if A(x) = ef(x)B(x) with B(x) ∈ O(m,R), then g(x) = e2f(x)Im. This yields
the above identification and we see, that our S plays the role of a square root of
the bundle of conformal metrics.

Step 4. Since g is |1|-graded, the interpretation of the Weyl geometries is simple.
By the general theory, the connections γσ are all linear connections belonging to
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the bundle G0, which share the common minimal torsion. In our case, this torsion
must be zero since there is no cohomology in the homogeneity one. Thus we obtain
exactly all torsion free connections belonging to the G0 structure on M .

Now, the application of our general formulae lead to all the well known objects
like the twistor connections, conformal circles, canonical coordinates, etc. See e.g.
[Eas] for much information on interesting objects in conformal Riemannian geome-
tries.

Projective and almost quaternionic geometries

The next two series of examples are special cases of the so called almost Grass-
mannian structures. They correspond to the choices × • · · · • (projective struc-
tures) and • × • · · · • (almost quaternionic structures).

Step 1. First of all we have to discuss which group G with the Lie algebra g

we choose. From the formal point of view, the most natural choice is with G0
being the adjoint group of the g0 module g−1, which does not impose any further
properties on our structures. This does not coincide with the most obvious choices,
e.g. G = SL(p + q,C), p = 1, 2, in the complex case, since then the action of
G0 = S(GL(p,C)×GL(q,C)) on g−1 has a non-trivial (discrete) kernel in general.
Thus, either we have to work modulo this kernel, or our manifolds M will be
oriented (as an additional ingredient of our structure). For the sake of simplicity,
we take the second option in our discussion below.

The projective geometries are one of the exceptional examples of second order
structures which were discussed in 2.5. The almost quaternionic geometries corre-
spond to the choice of the real form sl(1 + q,H) of sl(2 + 2q,C). The dimension
of the manifolds is 4q in this case. Table 4 shows the filtrations of the complex
groups. The low dimensional almost quaternionic case (with q = 1) coincides with
the 4-dimensional conformal geometries (the last line in our table is related to
8-dimensional geometries). The filtrations are computed easily starting with the
highest root of g.

1
•

0
•

0
•

0
•

1
• =

−2
×

1
•

0
•

0
•

0
• +

−1
×

1
•

0
•

0
•

1
•

⊕
0
×

0
•

0
•

0
•

0
•

+
1
×

0
•

0
•

0
•

1
•

1
•

1
• =

−2
×

1
•+

−1
×

2
•

⊕
0
×

0
•

+
1
×

1
•

1
•

0
•

0
•

0
•

1
• =

1
•

−2
×

1
•

0
•

0
• +

2
•

−1
×

0
•

0
•

0
•

⊕
0
•

−1
×

1
•

0
•

1
•

⊕
0
•

0
×

0
•

0
•

0
•

+
1
•

0
×

0
•

0
•

1
•

Table 4
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By the general theory, the action of the grading element E is given by the vector
1

m+1
(m (m − 1) . . . 1) in the m-dimensional projective case, or by the vector

1
2(q+1)(2q 4q 2(2q − 1) . . . 2) in the 4q-dimensional almost quaternionic case.

Step 2. Again, the above data together with Kostant’s version of BBW yield
the cohomologies as displayed in Table 5 (cf. 6.10). The computations for the
projective structures are very similar to the conformal Riemannian cases with an
analogy to Cotton-York tensor in the lowest dimension and the Weyl curvature
in all remaining ones. The computations for the other structures deserve more
comments. In particular, due to the location of the cross, we have exactly two
possibilities for actions with w ∈ W of length two. This is the source for the two
different components. In the lowest dimensions, both of them are of degree two
(see the 4-dimensional conformal case), but they split into a torsion part and a
Weyl part in all higher dimensions. A direct inspection of the weights in the tensor
product g1 ⊗ g1 ⊗ g0 yields also the target of the curvature component (the other
two components could never produce the coefficient 3).

pair (g, p) cohomologies hom. curvature components

× •
4
×

1
• 3 g−1 ∧ g−1 → g1

× • • • •
1
×

1
•

0
•

1
•

1
• 2 g−1 ∧ g−1 → g0

• × • • •

0
•

0
×

1
•

0
•

3
•

3
•

−2
×

1
•

1
•

0
•

2
1

g−1 ∧ g−1 →
0
•

−1
×

1
•

0
•

1
•

g−1 ∧ g−1 → g−1

Table 5

Projective structures – Steps 3 & 4. Let us cosider the affine bundle of volume
forms on a oriented manifold M . The modeling vector bundle is the line bundle of
densities corresponding to the highest weight

m
× · · · . Since M is oriented, we

can choose its mth root, a bundle of densities with the appropriate highest weight
m
× · · · . The choice of a scale leads to the reduction of the linear frame bundle
P 1M = G0 to the group SL(m,R). Such reductions are in correspondence with
sections of P 1M/SL(m,R) and these sections can be again understood locally as
matrix valued functions. The correspondence to volume forms is then given by
their determinants. Thus, our scale bundle S can be considered as the mth root of
the bundle of volume forms. In particular, each global scale determines a volume
form globally.

Since the projective structures are exceptional (i.e. the structure group of G0 is
too big to encode the whole structure), the Weyl geometries cannot be arbitrary
connections on G0 with the minimal available torsion (which is zero again). Their
further restrictions come from the choice of the whole bundle G as a reduction of
the second order frame bundle on M . In fact it is easy to verify their classical
description using our tools: We claim that they all share the (non-parameterized)
geodesics. Indeed, the geodesics are flow lines of auto-parallel vector fields and our

formula for the transformation of the covariant deirvatives says that ∇γσ

X ξ(u) with
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ξ(u) = X varies by [[X,Υ], X ]. Now, in index notation, the iterated bracket is
given by

[[Xa,Υb], Y
c] = (XaΥb +X

cΥcδ
a
b )Y

b

which is a scalar multiple of Xa if Y a = Xa. Thus we can always rescale the
original vector field in order to obtain an auto-parallel vector field again.

Almost-quaternionic structures – Steps 3 & 4. The almost quaternionic
structures are much more interesting. First of all we notice the presence of a possible
non-zero torsion, which will be shared by all the Weyl geometries. By definition,
the quaternionic structures are then just those where this torsion vanishes. There
still remains the Weyl part of the curvature which is shared by all Weyl geometries
for the quaternionic structures, but gets mixed with the torsion contributions in
general. The meaning of the structure is also clear from the description of g: There
are the ‘defining bundles’ which correspond to the standard representations C2∗

and C2q of GL(2,C) and GL(2q,C) (viewed as G0 representations in the obvious
way). The complexification of the tangent bundle on the oriented manifold M is
identified with the tensor product of these defining bundles. At the same time, the
top degree forms of these bundles have to be identified since the structure group is
further reduced from GL(2,C)×GL(2q,C) to S(GL(2,C)×GL(2q,C)) (notice again

the role played by the chosen orientation of M). The line bundle •
(q+1)/2q

× • · · ·
exists and so does the bundle of affine scales. Again, its relation to the volume
forms on M is easily understood: the sections of S correspond to reductions of the
complexified tangent spaces from S(GL(2,C)× GL(2q,C)) to its semisimple part
SL(2,C)× SL(2q,C), thus they determine the choice of a (complex) volume form
on TM ⊗ C which induces a real volume form on TM .
In the lowest possible dimension, i.e. for q = 1, we recover the spinor approach to

the (complexified) conformal Riemannian geometries. Since we require vanishing
of half of the curvature in the definition of the higher dimensional quaternionic
structures, they behave similarly to the self-dual conformal structures.
Again, we can easily discuss analogies to twistor connections, D-operators, ana-

logues to conformal circles, etc. Many concepts and results discussed in [BaiE],
[BEG], [Sal] can be nicely achieved by our tools.

5. |2|-graded examples

A real version of CR-structures

Step 1. The algebras in question are g = sl(m+2,R). These are the split forms of
the complex algebras sl(m+2,C) and the grading is given by the Dynkin diagram
with the most left and most right nodes crossed. Again, we have to discuss the
chosen Lie group G. The most obvious choice G = SL(m + 2,R) leads to G0 =
S(GL(1,R)×GL(m,R)×GL(1,R)), P = G0⋊exp p+, and the action of this G0 on
g− is not effective. Thus we either have to work modulo the kernel of this action,
or we have to involve a lift of the adjoint group to P into the definition of G and
the Cartan connection.
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Table 6 displays the filtrations of g for m = 1 (which is an exceptional low
dimensional case) and m = 3 (which represents well the general behavior). Since
there are two crossed nodes in the diagram, g±1 consist of two G0-submodules each,
which are pair-wise dual. In fact all our considerations apply to the other real forms
su(p+1, q+1) as well. So the expected behavior of our structures should be similar
to the standard CR-structures. The main advantage of our approach is that we can
involve torsion, i.e. we cover also the so called almost CR-structures (defined e.g.
on hypersurfaces in almost complex manifolds).
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Table 6

The definition of the corresponding geometries is by far not so simple as in
the |1|-graded cases. Of course, our most general approach would say just ‘the
structure is defined by a choice of the principal P -bundle G equipped with the
Cartan connection ω’. However, we prefer to show explicitly what is the structure
on the manifoldM which can be used to construct G and the normal regular Cartan
connection ω on G uniquely, in the sence of Remark 2.6 and Theorem 2.4.
We first have to understand the g0-module g− equipped with the G0-equivariant

Lie bracket. Obviously, the dimensions of the manifolds must be 2m + 1. In the
block matrix form, we can describe the grading of g as follows





∗ gL1 g2
gL−1 ∗ gR1
g−2 gR−1 ∗





where the stars indicate the g0 entries. Let us call g
L
−1 and gR−1 the ‘left’ and ‘right’

submodules, respectively. Analogously we refer to the g0-submodules in g1.
The grading element E acts on the coefficients over the nodes in Dynkin diagrams

by the vector (1 1 . . . 1), the sum of the first and last columns in the inverse Cartan
matrix, cf. 6.7. Another element E′ in the center acts by the difference of the same
columns, i.e. by the vector 1

m+2 (m (m − 2) . . . − (m − 2) −m). They are given

by block matrices (E′ is found easily by its action on the simple root vectors)

E =





1 0 0
0 0 0
0 0 −1



 , E′ =
m

m+ 2





1 0 0
0 − 2

m
Im 0

0 0 1



 .
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Obviously, E′ is orthogonal toE. The homogeneity degrees (d1, d2) of the individual
modules in the filtration (with respect to actions of E and E′ respectively) are
indicated in the following scheme

(0, 0)
(−1, 1) (1,−1)

(−2, 0) (0, 0) (2, 0)
(−1,−1) (1, 1)

(0, 0)

In particular, E′ acts trivially on g±2 and g0 and it distinguishes the left and right
submodules in g±1. We also see that the submodules gR±1 are the upper ones in

the filtration above. Clearly (gL−1)
∗ = gL1 as g0-module and similarly for gR±1. The

bracket restricted to gL−1×gR−1 is non-degenerate, while it vanishes on gL−1∧gL−1 and

gR−1 ∧ gR−1. The adjoint group G0 acting effectively on g− is obtained by choosing
G as the quotient of the group of all A ∈ GL(m + 2,R) with | detA| = 1 by its
center. For odd m this is exactly the special linear group, but we obtain a non
trivial center for even m and G0 will have two components in that case.
Now we can define a regular normal parabolic geometry of the type in ques-

tion: A real almost CR-structure on a manifold M is given by a filtration TM =
T−2M ⊃ T−1M with dimT−1

x M = 2m for all x ∈ M together with a reduction of
the associated graded vector bundle to the structure group G0, subject to the struc-
ture equation. The structure equation is specified as follows. The grading and the
Lie bracket defines the Levi form

L : TLM × TRM → TM/T−1M.

The existence of the G0-structure on GrTM defines another tensorial form TLM×
TRM → TM/T−1M which is non-degenerate, and two G0-invariant complemen-
tary subbundles TLM , TRM ⊂ T−1M . The structure equation then requires that
the latter tensorial form coincides with the Levi form L. This has further conse-
quences. Since [gL−1, g

L
−1] = 0, the restriction of the Levi form to T

LM ∧ TLM

vanishes and analogously L restricted to TRM ∧ TRM is zero. Thus there are two
additional tensorial forms on T−1M defined by means of the Lie bracket

LL : TLM ∧ TLM → TRM (the left Levi form)

LR : TRM ∧ TRM → TLM (the right Levi form)

In particular, the Lie bracket of vector fields maps both C∞(TLM)×C∞(TLM)
and C∞(TRM)×C∞(TRM) into T−1M = TLM⊕TRM and the Levi form defines
a conformal symplectic structure on T−1M with two distinguished complementary
Lagrangian subbundles. Thus we also call these structures Lagrangian contact
structures. Special cases of such structures were also studied in [Tak].
Equivalently these structures are described just by the (local) contact structure

together with two distinguished complementary Lagrangian subbundles. The struc-
ture is called integrable if the distinguished Lagrangian subbundles are integrable,
i.e. if the left and right Levi forms vanish identically.
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pair (g, p) cohomologies actions of E, E′ curvature components

× ×
5
×
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×

−1
×

5
×
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4, −2

gL−1 × g−2 → gL1
gR−1 × g−2 → gR1

× • • ×
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×

1
•

1
•
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×
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×

1
•

1
•

2
×

−1
×

2
•

2
•

−1
×

1, 3
1, −3
2, 0

gL−1 × gL−1 → gR−1
gR−1 × gR−1 → gL−1

gL−1 × gR−1 →
−1
×

1
•

1
•

−1
×

Table 7

Step 2. The Kostant’s BBW yields the necessary cohomologies. The knowledge
of the homogeneities of the components in g and some inspection of the weights in
their tensor products yield further explicit information, see Table 7.
As a consequence of these data we obtain

Proposition. The whole torsion component κ− of the curvature of the canonical
Cartan connection vanishes if and only if the corresponding defining subbundles
TLM and TRM are integrable. The 3-dimensional Lagrangian contact structures
are always integrable.

Proof. The curvature component corresponding to the lowest homogeneity in the
cohomology is constant along the fibers. Since this component of κ(u)(X, Y ) is
in the torsion part, we can evaluate it on the underlying tangent bundle TxM by
means of the isomorphism u : GrTxM → g−. We obtain

[X, Y ]− u
(

Tp([ω−1(X), ω−1(Y )](u))
)

but this is exactly the sum of the values of the right and left Levi forms expressed
via u. Therefore the vanishing of these forms is equivalent to the vanishing of the
cohomology with the lowest homogeneity. By the general theorem, if this vanishes
then the next possibly non-zero component appears according to the next non-zero
cohomology. This does not belong to the torsion part in our case. �

Let us also notice, that the existence of the complementary Lagrangian subspaces
is dictated by the regularity requirement for the canonical normal connection. Of
course, there can be more general Cartan connections on M without this property.
On the other hand, the complete information on the second cohomology shows that
all normal Cartan connections are automatically regular.

Steps 3 & 4. Since the center of g0 is 2-dimensional, the closed Weyl geometries
are defined by a choice of the complement of E in the center. We shall make the
most natural choice, the orthogonal complement spaned by E′. By the general
theory, the scalar actions of E and E′ on the line bundle modeling the affine line
bundle of scales are then one and zero. Thus we should obtain the line bundle
1/2
×

0
• · · ·

0
•

1/2
× .

The p-submodule g2 ⊂ p gives rise to the invariant subbundle T ∗
2M ⊂ T ∗M , the

anihilator of T−1M . Let us assume now that we have chosen a lift G′
0 of G0 to a

principal bundle with structure group S(GL(1,R)×GL(m)×GL(1,R)). This makes

Version of December 22, 1997



54 5. |2|-GRADED EXAMPLES

no problems locally and the line bundle
1/2
×

0
• · · ·

0
•

1/2
× exists as an assoicated

bundle to G′. Now, the action of (a,B, c) ∈ S(GL(1,R)×GL(m,R)×GL(1,R)) on
g2 is given by the scalar ac ∈ R and the choice of a scale leads to the reduction of G0
to elements of the form (a,B, a). Thus we can understand L locally as the square
root of the affine bundle of non-zero sections of T ∗

2M . Consequently, the choice of
a scale σ yields a contact form θσ annihilating T−1M . In particular, it determines
a vector field transversal to T−1M and hence a splitting TM = TLM ⊕TRM ⊕R.
We also obtain the symplectic structure on T−1M defined by the Levi form. The
linear connection γσ is then just the connection which preserves θσ (thus also the
two Lagrangian subspaces), belongs to the induced G0-structure on TM , and has
the minimal torsion. Let us notice, that even if the bundles TLM and TRM are
integrable, there still can appear some torsion, which comes from the contribution
of the mapping (X, Y ) 7→ [P.X, Y ], X ∈ g−1, Y ∈ g−2.
The defining representation on Rm+2 gives rise to analogues of twistor bundles

equipped with a canonical connection, etc. We shall not go into details here, but
let us mention at least the horizontal flows αu,X in directions transversal to T−1M .
The transversality means that the tangent vector ξ(x) = {u,X} ∈ G ×P g− at the

origin of the flow has a non-zero component of X in g−2. A horizontal flow α
u.g,X̃

has the same tangent direction at x if and only if Adg−
g.X̃ = X . In view of the

assumption on X this means g = expZ, Z ∈ g2, and a computation similar to that
in 2.35 shows that the flows will coincide up to parametrizations. These transversal
horizontal flows are the analogues to the well known chains of Chern and Moser in
CR-geometry.
Let us also illustrate the idea of the general correspondence spaces on this exam-

ple. Following the general theory, there is a canonical fibration over each projective
manifold M , which is equipped with the Lagrangian contact structure. The latter
fibration is defined as the quotient M ′ = G/P of the canonical bundle G over M by
our subgroup P (which is a subgroup in the structure group P ′ of G → M). Over
2-dimensional projective structures, we obtain integrable 3-dimensional Lagrangian
contact structures and the Cotton-York part of the curvature of the projective struc-
ture gives rise to the non-trivial component gL−1 × g−2 → gL1 , while the other one
vanishes. In all higher dimensions, one of the torsions of the structure on M ′ van- Check!

ishes while the other one vanishes if and only if the original projective structure is
flat (and in that case also the third non-trivial component vanishes automatically).
The geometric construction ofM ′ goes as follows: LetM be a projective manifold

of dimensionm+1 and defineM ′ = P(T ∗M). This is a manifold of dimension 2m+1
with fibration p : M ′ →M and there is the exact sequence

0→ VM ′ → TM ′ → p∗(TM)→ 0

Next, notice that each element x′ ∈M ′ defines a nowhere vanishing linear form on
M , up to a multiple. Hence there are distinguished subspaces of rank m in p∗(TM)
corresponding to the kernels. Now, each linear connection on M defines a splitting
p∗(TM)→ TM ′ since M ′ is the associated bundle P 1M ×G0 P(R(m+1)∗). Thus we
obtain the subspaces TLM ′ in TM ′ complementary to TRM = VM ′ which play
the role of the two defining subbundles. A direct check shows that a change of the
connection within the given projective class does not effect the subspaces TLM ′.

See notes from
18/10/97 for details

Of course, the vertical bundle is involutive.
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These correspondence spaces for projective manifolds have been already dis-
cussed in [Tak]. However, only the evident result that the structure on M ′ is
locally flat if and only if the projective structure on M is locally flat was deduced
there.

The case × × • · · · •

In the last two examples, we shall only briefly indicate what kinds of difficulties
we have to face. More detailed exposition of basic features of these very interesting
geometries will appear elsewhere. The filtration of g = sl(k + 1,R) is described in
Table 8

−1
×

−1
×

1
•

0
• +

1
×

−2
×

1
•

0
•

⊕
−2
×

1
×

0
•

0
•

+

0
×

−1
×

1
•

1
•

⊕
0
×

0
×

0
•

0
•

⊕
0
×

0
×

0
•

0
•

+

−1
×

1
×

0
•

1
•

⊕
2
×

−1
×

0
•

0
•

+
1
×

0
×

0
•

1
•

Table 8

The grading element E is the block diagonal matrix of sizes (1, 1, k − 1) with
blocks 1

k+1
(2k − 1, k − 2,−3Ik−1) and it acts on the coefficients over the nodes

by the vector 1
k+1 ((2k − 1) (3k − 3) (3k − 6) . . .6 3). Let us take the comple-

mentary element E′ which is the block diagonal matrix 1
k+1 (1,−k, Ik−1). This

elements acts, similarly to the previous example, by the difference of the elements
in the appropriate columns in the inverse Cartan matrix. So it acts by the vector
1

k+1 (1 (1−k) (2−k) · · ·−2 −1). Let us write gR−1 and gL−1 for the upper and lower

module in g−1, respectively. Then E acts by −1 on both, while E′ acts by 1 on
gR−1 and by −1 on gL−1. The lowest dimensional example × × has been already

discussed, the only difference for k = 3 is the module
0
×

−1
×

2
• ⊂ g0.

Now, the cohomologies are computed in Table 9.

pair (g, p) cohomologies action of E, E′ curvature components

1
×

0
×

1
•

−4
×

4
×

0
•

4
×

−3
×

2
•

0
×

0
×

4
•

1,−3
2, 2
3,−1

gR−1 ∧ gR−1 → gL−1
g−2 ∧ gL−1 → gR−1
g−2 ∧ gR−1 → g0

1
×

0
×

0
•

1
•

−3
×

1
×

2
•

0
•

4
×

−3
×

1
•

1
•

0
×

0
×

1
•

3
•

0,−2
2, 2
3,−1

gR−1 ∧ gR−1 → g−2
g−2 ∧ gL−1 → gR−1
g−2 ∧ gR−1 → g0

Table 9

The most interesting part is the existence of the cohomology of degree zero.
This implies that there might be a normal parabolic geometry which is not regular.

Version of December 22, 1997



56 5. |2|-GRADED EXAMPLES

Notice that then this part of the curvature will be constant along the fibers of
G → G0 and the component will obstruct the equality of the two algebraic brackets
TR∧TR → TM/T−1M defined by the Lie bracket and the G0-structure on GrTM .
Also the next component of homogeneity two is extremely interesting. Our intuition
tells that this part of the curvature should be related to the possibly non-zero
algebraic bracket TRM ∧ TRM → TLM (an analogue to the rigth Levi form on
the real almost-CR structures), however this one would correspond to homogeneity
three.
Als the choice of the representation νP : P → Gl+(R) needed for the defini-

tion of the affine bundle of scales is much more subtle. In fact, the most natural
choice of the orthogonal complement to E in the center of g0 leads to the weight
a
×

a
×

0
• · · · , a = m+2

5m+1
which does not seem to make much sense. On the

other hand, we can fix the complement in such a way that the line bundle G0×P gL1
turns out to be the modeling line bundle. The block matrix form of the correspond-
ing E′ is (m,m,−2Im) and E

′ acts on weights by the vector (m 2m 2m− 2 . . . 2).
Thus the affine scale bundle Sν exists for this choice and a global scale yields also
a global non-zero section ξ of TLM , and so the explicit splitting of TM .

The case × • · · · • < •

The last example deals with a case where we have crossed only one node in the
Dynkin diagram, but the coefficient at that particular simple root in the expression
for the highest root of g is two. Thus we obtain a |2|-graded algebra with irreducible
g−1.
As already discussed, these are the other examples of the exceptional geometries

from 2.5.
It is more tricky now to compute the filtration, since there are more non-trivial

orbits of the Weyl group in this case. The result is in the Table 10.

−2
×

0
•

0
• <

0
• +

−2
×

1
•

0
• <

0
• +

−2
×

2
•

0
• <

0
•

⊕
0
×

0
•

0
• <

0
•

+
0
×

1
•

0
• <

0
• +

2
×

0
•

0
• <

0
•

Table 10

In particular, we deal again with contact structures. The dimension of the man-
ifolds is (2k − 2) + 1, where k is the number of the nodes. The center of G0 is this
time one-dimensional and the grading element E acts by the vector (1 1 . . . 1 1).
The low dimensional case × < • enjoys the same filtration. The cohomologies are
listed in Table 11
The results are quite similar to projective geometries, there is a sort of Weyl

curvature in higher dimensions while a Cotton-York tensor appears in dimension
three. Since the center of g0 is one-dimensional, there is only one choice for the
bundle of scales which will be modeled over the square root of G ×P g2.
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pair (g, p) cohomologies action of E curvature components

2
× <

0
•

0
× <

3
• 3 g−1 ∧ g−1 → g1

2
×

0
•

0
• <

0
•

−1
×

2
•

1
• <

0
• 2 g−1 ∧ g−1 → g0

Table 11

6. Appendix: Some facts from Representation Theory

Here we add brief explanation of some concepts and results well known in repre-
sentation theory of semisimple Lie algebras and Lie groups. They are all available,
but rather scattered in the literature. Moreover, the notation and terminology do
not always coincide. The aim of this appendix is just to help a bit a differential
geometer, who knows some basic facts about representations of semisimple Lie alge-
bras and groups but who is not familiar with all this stuff. Much more information
is available from [BasE] or some standard monograph, see e.g. [Hum], [Nay], [Sam].
The symbol K will always mean R or C.

|k|-graded Lie algebras

6.1. Complex simple algebras. The complete classification list consists of four
series of classical algebras Aℓ, Bℓ, Cℓ, Dℓ (labeled by their ranks) and four excep-
tional algebras E6, E7, E8, F4, G2. We shall be mainly interested in the classical
algebras. There are several simple objects encoding nicely all the information about
the algebras. We should like to know the Dynkin diagram (with the labeling of the
simple roots by its nodes), the highest root (expressed via simple roots αi), the
highest weight of the adjoint representation (expressed as linear combination of
fundamental weights, i.e. through coefficients over the corresponding nodes), and
the inverse of the Cartan matrix (since the fundamental weights are related to the
simple roots by this matrix). Recall that the Cartan matrix (aij) is defined by

aij =
2〈αi,αj〉
〈αj ,αj〉

and this is read easily of the Dynking diagram (aij = 0 whenever

the ith and jth nod are not adjacent, aii = 2, aij = −1 for a simple link, −2 for
double link oriented from αi to αj, etc.). These four items are listed for all classical
algebras in Table 12 and Table 13.

6.2. Simple Lie algebras with gradings. A finite grading on a Lie algebra is
its decomposition (as a vector space)

g = g−p ⊕ g−p+1 ⊕ · · · ⊕ g0 ⊕ g1 ⊕ · · · ⊕ gq

such that the Lie bracket satisfies [gi, gj] ⊂ gi+j . If p = q = k, we say that g is
|k|-graded. Let us collect some useful information (see e.g. [CSch] for the proofs).

Proposition. Let g be a semisimple Lie algebra with finite grading. Then

(1) g is |k|-graded for some k ≥ 0.
(2) There is the unique grading element E ∈ g such that adE is the multiplica-
tion by j on each gj . Moreover E ∈ g0.
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sl(ℓ+ 1,C) (type Aℓ) so(2ℓ+ 1,C) (type Bℓ)

α1

•
α2

• · · ·
αℓ−1

•
αℓ

•
α1

•
α2

• · · ·
αℓ−1

• >
αℓ

•

α1 + · · ·+ αℓ α1 + 2α2 + · · ·+ 2αℓ
1
•

0
• · · ·

0
•

1
•

0
•

1
• · · ·

0
• >

0
•

1
ℓ+1









ℓ ℓ − 1 . . . 2 1

ℓ − 1 2(ℓ − 1) . . . 4 2
.
.
.

.

.

. i(ℓ − i+ 1)
.
.
.

.

.

.
1 2 . . . ℓ − 1 ℓ



















1 1 1 . . . 1 1

1 2 2 . . . 2 2
.
.
.
.
.
.
.
.
.
. . .

.

.

.
.
.
.

1 2 3 . . . ℓ − 1 ℓ − 1
1
2
1 3

2
. . . ℓ−1

2
ℓ
2











Table 12

sp(2ℓ,C) (type Cℓ) so(2ℓ,C) (type Dℓ)

α1

•
α2

• · · ·
αℓ−1

• <
αℓ

•
α1

•
α2

• · · · • αℓ−2
�
• αℓ−1

�
• αℓ

2α1 + 2α2 · · ·+ 2αℓ−1 + αℓ α1 + 2α2 + · · ·+ 2αℓ−2 + αℓ−1 + αℓ
2
•

0
• · · ·

0
• <

0
•

0
•

1
• · · ·

0
•�

• 0

�
• 0













1 1 1 . . . 1 1
2

1 2 2 . . . 2 2
2

.

.

.
.
.
.
. . .

.

.

.
.
.
.

1 2 3 . . . ℓ − 1 ℓ−1
2

1 2 3 . . . ℓ − 1 ℓ
2





























1 1 1 . . . 1 1
2

1
2

1 2 2 . . . 2 2
2

2
2

.

..
.
..
. . .

.

..
.
..

.

..

1 2 3 . . . ℓ − 2 ℓ−2
2

ℓ−2
2

1
2

2
2

3
2

. . . ℓ−2
2

ℓ
4

ℓ−2
4

1
2

2
2

3
2

. . . ℓ−2
2

ℓ−2
4

ℓ
4

















Table 13

(3) The Killing form 〈 , 〉 induces the isomorphisms gi ≃ g∗−i, while 〈gi, gj〉 = 0
whenever j + i 6= 0.

(4) [gi+1, g−1] = gi for all i < 0; if no simple factor of g is contained in g0, then
the same holds with i = 0.

(5) If Z ∈ gi, i > 0 is an element with [Z,X ] = 0 for all X ∈ g−1, then Z = 0.
The same holds with i = 0 if no simple factor of g is contained in g0.

6.3. Standard parabolic subalgebras. Consider a simple complex Lie algebra g

with fixed Cartan subalgebra h and simple positive roots ∆+0 . If we choose a subset
Σ ⊂ ∆+0 , then there is the subalgebra pΣ generated by the Cartan algebra h and all
root spaces corresponding to those roots whose expressions as linear combinations
of the simple roots have positive coefficients at elements in Σ, i.e.

pΣ =



h ⊕
∑

α∈〈−(∆+0 \Σ)〉

gα



⊕
∑

α∈∆+

gα = l ⊕ u+

Obviously, pΣ contains the whole Borel subalgebra and so is parabolic. The subal-
gebras pΣ are called the standard parabolic subalgebras and the latter decomposition
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provides also their Levi decompositions. All parabolic subalgebras are conjugate to
one of these.
The Σ-height of a root α is defined as the sum of its coefficients at the simle roots

from Σ. Clearly, the decomposition according to the Σ-height yields a |k|-grading,
where k is the Σ-height of the highest root. In particular, g0 = l and g1 is generated
by the rootspaces corresponding to the simple roots in ∆+0 \ Σ, as g0-module.
Conversely, given a |k|-graded simple complex algebra g, there is a Cartan algebra

h in g and a choice of positive roots such that p = g0 ⊕ . . . gk corresponds to a
choice of simple roots Σ as above. We shall always write p+ = g1 ⊕ · · · ⊕ gk and
g− = g−k ⊕ . . . . . . g−1. Thus, g

∗
− ≃ p+ and g = g− ⊕ g0 ⊕ p+.

6.4. We adopt the convention to indicate the simple roots in Σ by crossing out
the corresponding nodes in the Dynkin diagram. The list of all |1|-graded classical
complex simple algebras in Table 14 (up to isomorphisms) is obtained just by
looking at the highest weights in Tables 12, 13. The are only two more among the
exceptional algebras.

Aℓ (
ℓ
2
or ℓ+1

2
possibilities)

× • · · · • •

...

• · · · • × • · · · •

Bℓ (one possibility) × • · · · • > •

Cℓ (one possibility) • • · · · • < ×

Dℓ (two possibilities)
× • · · · •�

•

�
•

• • · · · •�
×

�
•

Table 14

6.5. Notation. Recall that the fundamental weights of a simple complex Lie
algebra correspond to the nodes of the Dynkin diagram for g. Since all weights of
g-modules can be written as linear combinations of the fundamental weights, we
denote them by labeling the correpsonding nodes by the coefficients. In particular,
the fundamental weights have the coefficient 1 over one node while all other nodes
are labled by zero. The weight is dominant for g if and only if all the coefficients
are non-negative integers.
If there is a fixed parabolic subalgebra p ⊂ g, we use the same notation as above

but the Dynkin diagram has some nodes crossed. Notice that each weight denoted
in such a way can be understood as a weight for the reductive Levi part g0.

6.6. The Weyl group. As well known, all elements of the Weyl group W ⊂
GL(h∗

0) of a simple complex Lie algebra are compositions of simple reflections, i.e.
reflections with respect to hyperplanes orthogonal to simple roots.
For each root α ∈ ∆, the reflection Sα acts on the weight λ ∈ h∗

0 by Sα(λ) =
λ − 〈λ,Hα〉α where Hα is the coroot corresponding to α. Hence the coefficients
over the nodes are given by 〈Sα(λ), Hi〉 = 〈λ,Hi〉 − 〈λ,Hα〉〈α,Hi〉 where Hi are
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the simple coroots. If α is a simple root, then 〈α,Hi〉 is the Cartan integer which
is encoded directly in the Dynkin diagram. This yields the formula for the new
coefficients over the nodes after the action of a simple reflection:
Let a be the coefficient over the i-th node in the expression of λ. In order to

get the coefficients over the nodes corresponding to Sαi
(λ), add a to the adjacent

coefficients, with the multiplicity if there is a multiple edge directed towards the
adjacent node, and replace a by −a.

For example, if λ is
a
•

b
•

c
• and we act by the middle simple reflection, we get

the weight
a+b
•

−b
•

b+c
• . Similarly

a
• >

b
• transforms under the action of the first

simple reflection into
−a
• >
2a+b
• , while the second simple reflection yields

a+b
• >

−b
• .

The affine action of the Weyl group is defined by

w.λ = w(λ+ ρ)− ρ

i.e. we have to apply the standard action to the weight shifted by the lowest form
ρ = 1

2

∑

α∈∆+ α and then shift the result back by −ρ. In terms of Dynkin diagrams
this means to add one over each node, then act with w and finally subtract one
over each node.
For each w ∈W , the number of positive roots α ∈ ∆+ which are transformed to

w.α ∈ ∆− is called the length of w, we write |w|. Equivalently, the length of w is
the minimal number of simple reflections in any expression for w in terms of simple
reflections. We define the sign of w as sgnw = (−1)|w|.
Let p ⊂ g be the parabolic subalgebra corresponding to Σ ⊂ ∆+0 . Then we define

W p ⊂ W as the subset of all elements which map the weights dominant for g into
weights dominant for p.

6.7. p-modules. By the general theory, each irreducible p-module is a irreducible
g0-module equipped with the trivial action of p+. Each such module is defined by
the highest weight of the restriction of the representation to the semisimple part
of g0 and by the action of the center z of g0. It is very handy to encode such a
representation by a weight of the whole g which is allowed to have non-positive
and non-integral weights over the crossed nodes. For each element in z we are able
to compute its action from these coefficients. In particular, E acts by the scalar
product of the vector of the coefficients with the vector computed as the sum of
those columns in the inverse Cartan algebra which correspond to the crossed nodes
(the reason is that E acts by zero on αi ∈ ∆

+
0 \Σ and it acts by one on αj ∈ Σ; the

fundamental weights are obtained for αi by multiplication by the inverse Cartan
matrix).
Most of the p modules V are not irreducible, but they are indecomposable. Still,

they enjoy a filtration by p-submodules

V = V1 + V2 + · · ·+ Vr

such that the ‘right hand ends’ Vi + · · · + Vr are submodules for 1 ≤ i ≤ r and
all quotients Vi/Vi+1, 1 ≤ i ≤ r (here Vi+1 = {0}) are direct sums of irreducible
p-modules. Of course, the ‘left ends’ are then quotients of V .
We can encode each such filtration by columns of the labled Dynkin diagrams

encoding the highest weights of the irreducible components in Vi (as g0-modules).
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For example, a simple computation of the action of Weyl group on the highest
weight of the adjoint representations we obtain easily the filtrations of p-modules
for sl(2,C) with the standard Borel subalgebra p, and sl(3,C) with the first node
crossed:

2
• =

−2
× +

0
× +

2
×

1
•

1
• =

−2
×

1
•+

−1
×

2
•

⊕
0
×

0
•

+
1
×

1
•

Cohomologies of Lie algebras

6.8. Consider for a moment an arbitrary Lie algebra g and a g-module A. The
cochains of degree q with coefficients in A are defined as the space Cq(g;A) of
all (continuous) skew-symmetric q-linear A-valued forms on g. By the definition,
Cq(g, A) = Hom(Λqg;A) carries a natural g-module structure. We define the dif-
ferential ∂ : Cq(g;A)→ Cq+1(g;A) by the formula

∂c(X0, . . . , Xq) =
∑

0≤i≤q

(−1)iXi.c(X0, . . .
î . . .Xq)

+
∑

0≤i<j≤q

(−1)i+jc([Xi, Xj], X0, . . .
î . . . ĵ . . . , Xq)

One verifies easily ∂2 = 0 and we obtain a complex by setting Cq(g;A) = 0 and
∂(Cq(g;A)) = 0 if q < 0. This complex is denoted by C∗(g;A) and the correspond-
ing cohomologies are denoted by Hq(g;A) and called the cohomologies of g with
coefficients in A.
We need a special case only. Our |k|-graded algebras are g = g− ⊕ g0 ⊕ p+

and g is a g−-module via the restriction of the adjoint action. What we need is
the Lie algebra cohomology H∗(g−; g). Now, the grading of g induces a natural
grading on the cochains, C∗(g−; g) =

∑

p,q C
p
q (g−1; g) where C

p
q (g−; g) ⊂ Cp(g−; g)

is the g0-submodule of homogeneous homomorphisms of degree q, i.e. those with
c(gi1 ∧· · ·∧gip) ⊂ gi1+···+ip+q. Obviously, ∂ respects the homogeneity, i.e. ∂ : C

p
q →

Cp+1q . In the case of |1|-graded Lie algebras, g−1 is abelian, only the first term in
∂ remains, and we get the so called Spencer bigraded cohomology Hp,q(g−1; g).
The action of g0 on the homogeneous components induces an action on the

cochains which intertwines the differential and so there is a distinguished g0-module
structure on H∗

∗ (g−; g).

6.9. The Hodge structure. Consider any g-module V , for example V = g.
Due to the duality g− ≃ p∗+, the spaces C

q(g−, V ) = Λ
qg∗− ⊗ V are identified

with (Λqp∗+ ⊗ V ∗)∗. Thus the dual mapping to ∂ : Cq−1(p+, V
∗) → Cq(p+, V

∗) is
understood as ∂∗ : Cq(g−, V )→ Cq−1(g−, V ). Oviously, ∂

∗ ◦ ∂∗ = 0.
Our aim is to understand the structure of the cohomology H∗

∗ (g−, g). The main
technical point is the existence of inner products on all Cpq (g−, g) such that ∂ and
∂∗ are adjoint with respect to these products. Thus, we obtain the usual Hodge
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structure on C∗
∗ (g−, g) and each C

p
q (g−, g) decomposes as the direct sum of the

image of ∂, image of ∂∗ and kernel of � = ∂ ◦ ∂∗ + ∂∗ ◦ ∂. In particular, each
cohomology class contains a unique harmonic representative, i.e. a closed and co-
closed cochain. There also is the (real) linear isomorphism

Hp
q (g−, g) ≃ Hp

−q(p+, g).

See [CSch] for a detailed exposition of all these properties.

A bit of effort leads to explicit formulae, e.g. for all c ∈ C2(g−, g), X ∈ g−, and
dual basis ξα, η

α of g− and p+

∂∗c(X) =
∑

α

[ηα, c(X, ξα)]−
1

2

∑

α

c([ηα, X ]g−
, ξα)

see [CSch] for more details.

6.10. Kostant’s BBW-theorem. If A is a finite dimensional irreducible g-
module of highest weight λ, then the irreducible finite dimensional representations
of g0 with highest weight µ occur in H

∗(p+;A) if and only if there is an element
w ∈W p ⊂W such that µ = w.λ = w(λ+δ)−δ and in that case it occurs in degree
|w| with multiplicity one.

See e.g. [Vog, p. 123] for the proof. The original Kostant’s formulation involves
also an explicite description of the unique harmonic representative in terms of w,
see [Kos] or [CSch].

In our situation, λ is the maximal root of g and the affine action of W p is
described in 6.6, and Hp

q (g−, g) ≃ Hp
−q(p, g)

∗ as (real) g0-modules.

In particular, if we want to compute H∗
1 (g−; g), we have to evaluate the affine

action of those elements of length one which transform g-dominant weights into p-
dominant weights. Obviously, only the simple reflections given by the crossed nodes
can do that. For example, we obtain (the duals are easily computed by evaluating
the action of E)

H1∗ (
2
×) = (

−4
×)∗ =

4
× ∈ H12 (g−, g)

H1∗(
1
×

0
•

1
• ) = (

−3
×

2
•

1
• )∗ =

0
×

1
•

2
• ∈ H11 (g−, g)

Similarly, we can compute the second cohomologies. Now we have two simple
reflections at disposal. Thus, we can either use two crossed nodes (if there so many),
or we might start at a adjacent node to a cross. For example,

H1∗(
1
×

1
• ) = (

−5
×

1
•)∗ =

4
×

1
• ∈ H13 (g−, g)

H1∗(
1
×

0
•

1
• ) = (

−4
×

1
•

2
• )∗ =

1
×

2
•

1
• ∈ H12 (g−, g)

The cohomologies of the complexified real algebras are the complexifications of
the real cohomologies.
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6.11. The enveloping algebra.

Theuniversal enveloping algebra U(g) of a finite dimensional Lie algebra g over K

is defined as the quotient T (g)/I of the (real or complex) tensor algebra generated
by the elements of g, with respect to the two-sided ideal I in T (g), I = 〈x⊗y−y⊗
x − [x, y]; x, y ∈ g〉. There is the induced increasing filtration Uk(g) from that on
T (g) and the inclusion i : g → U(g). We have i([x, y]) = i(x)i(y)− i(y)i(x) for all x,
y ∈ g and U(g) has the following universal property: For each associative algebra
A over K with identity and each linear mapping ϕ : g → A satisfying ϕ([x, y]) =
ϕ(x)ϕ(y) − ϕ(y)ϕ(x) for all x, y ∈ g, there is a unique algebra homomorphism
ϕ̄ : U(g)→ A such that ϕ̄ ◦ i = ϕ and ϕ̄(1) = 1.

According to the Birkhoff-Witt theorem, the canonical inclusion i extends to

vector space isomorphisms
∑k
0 S

k(g) = Uk(g). These isomorphisms build an algebra
isomorphism S(g) =

∑

k S
k(g) = U(g) if and only if g is abelian.

As a consequence of the Birkhoff-Witt theorem we get some canonical identifi-
cations. Given a vector space basis xi of g, the vector space Uk(g) is generated by
the expressions xi1 . . . xil , i1 ≤ i2 ≤ · · · ≤ il, l ≤ k. If g = a ⊕ b is a direct sum of
vector spaces, then U(g) = U(a)U(b) = U(a)⊗ U(b) where U(a) means the linear
span of the elements x1 . . . xl with xi ∈ a and similarly for U(b).

The real universal enveloping algebra U(g) of a Lie algebra of a connected Lie
group G is isomorphic to the algebra of left invariant vector fields (or right invariant
vector fields) on G, i.e. to the enveloping algebra of left-invariant (or right-invariant)
differential operators on the smooth functions on G.

The adjoint representation adx : g → g, x ∈ g extends into a derivation on U(g).
If g is semisimple, then this representation is completely reducible. The subset
Z(g) ⊂ U(g) of elements y with adx(y) = 0 for all x ∈ g is called the center of U(g).
This is equivalent to the usual requirement that y commutes with all elements in
U(g).

6.12. U(g)-modules. Given a representation of a complex Lie algebra g, i.e. an
algebra homomorphism ϕ : g → EndV for some complex vector space V , there is
the unique algebra homomorphism ϕ̄ : U(g) → EndV . If the representation is irre-
ducible, then the actions of the elements from the center Z(g) ⊂ U(g) of the complex
algebra must be multiplications by scalars. This can be viewed as an algebra ho-
momorphism ξ : Z(g) → C, the so called central character of the representation ϕ
(also called infinitesimal character).

Suppose now, we have two irreducible representation Vλ, Vρ corresponding to
two dominant weights λ and ρ for a semisimple complex Lie algebra g and an
intertwining linear mapping D : Vλ → Vρ, i.e. a U(g)-module homomorphism. Let
us write ξλ and ξρ for the infinitesimal characters of Vλ and Vρ. For every v ∈ Vλ,
z ∈ Z(g) we have zD(v) = D(zv) = D(ξλ(z)v) = ξλ(z)D(v) and so either ξλ = ξρ
or D = 0. The same conclusion is true if both representations are generated by a
single highest weight vector.

6.13. Verma modules. Let us consider first an arbitrary complex Lie algebra
g and its subalgebra p. Given a representation of p in a finite dimensional vector
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space V , we define the induced representation

Ind(g, V ) = U(g)⊗U(p) V.

The representation space V is canonically embedded into the induced representation
Ind(g, V ) via V 7→ 1⊗C V ≃ U(p)⊗U(p) V .
In particular, if g is semisimple, p is a Borel subalgebra and if we consider the one-

dimensional characters λ of the Borel subalgebra p, then the induced representations
are called the Verma modules and denoted by Vλ (sometimes a shift in the weight
(by the lowest form) is used in the notation for symmetry reasons. Starting with a
highest weight λ, the whole induced module is also a highest weight module.
In general, it is difficult to work with the induced representations since the

structure of U(g) is complicated. However, if g is semisimple and p parabolic, the
whole situation is much more similar to the theory of Verma modules. Let us
recall g = g− ⊕ p as a vector space direct sum of Lie subalgebras. Thus, given a
finite dimensional representation of p in E, we have U(g)⊗U(p) E ≃ U(g−)⊗C E (as
vector spaces) by virtue of the Birkhoff-Witt theorem. We shall denote this call
such modules generalized Verma modules and we use the notation Vp(E). If the
representation is irreducible and corresponds to a dominant weight λ for p, then
the U(g)-module Vp(Eλ) is generated by the highest weight vector 1⊗ v where v is
the highest weight vector in Eλ.
In particular, if the subalgebra g− is abelian, then U(g−) = S(g−), the symmetric

algebra and the latter is equal to the algebra S((g−)
∗) of polynomials on g−.

6.14. Homomorphisms of Verma modules. Consider dominant weights λ and
ρ for complex parabolic p ⊂ g and a homomorphism D : Vp(Eλ)→ Vp(Eρ) of U(g)-
modules. The whole modules are generated by the highest weight vectors 1 ⊗ vλ
and 1⊗vρ. Each element z ∈ Z(g) from the center must preserve the highest weight
vectors and acts by scalar multiplication by ξλ(z) and ξρ(z), the central characters
of the representations. Hence a non-zero morphism can exist only if the infinitesimal
characters coincide. A classical theorem by Harish-Chandra states that ξλ = ξρ if
and only if λ+ δ and ρ+ δ are conjugate under the action of the Weyl group W of
g, here δ is the lowest form (half the sum of all positive roots). This means that
both weights have to be in the same orbit of the affine action.
In particular, if λ is dominant for g, then all weights ρ dominant for p with the

same infinitesimal character ξλ = ξρ are given by {w.λ ; w ∈W p}.
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[CSch] Čap, A.; Schichl, H., Parabolic geometries and canonical Cartan connections, Preprint

ESI 450, electronically available at www.esi.ac.at.
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Čap, A.; Slovák, J., On local flatness of manifolds with AHS–structures, Proceedings of the Winter
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