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D. BOURN AND J. ROSICKÝ∗

Abstract. We characterize cosieves in locally presentable cate-
gories which are generated by a set of objects or are even principal.
We apply our results to the category of algebraic theories where
they are related to Mal’cev conditions dealt with in universal al-
gebra.

1. Introduction

In 1954, Mal’cev [19] proved a remarkable characterization of vari-
eties V such that the composition of two congruences is always their
join. It says that the algebraic theory of V contains a ternary opera-
tion t(x, y, z) such that t(x, x, y) = y and t(x, y, y) = x for each x, y.
Later on, further similar Mal’cev type characterizations were found.
For instance, Jónsson [14] characterized congruence distributive vari-
eties in 1967 and A. Day [10] described congruence modular ones in
1969. More recently, protomodular varieties V were characterized in
[9] as those varieties whose equational theory contains, for some inte-
ger n, 0-ary terms e1, ..., en, binary terms t1, ..., tn and (n+1)-ary terms
t satisfying the identities t(x, t1(x, y), ..., tn(x, y)) = y and ti(x, x) = ei

for each i = 1, ..., n.
G. Grätzer [11] asked how to recognize when a given class X of vari-

eties has a Mal’cev type characterization. An answer was obtained by
W. Taylor [24] who characterized classes X (M) of varieties given by a
finite set M of terms satisfying a finite number of equations. He speaks
about a strong Mal’cev condition in this case. In the original situation
of Mal’cev, M is given by a ternary operation satisfying the two equa-
tions above. A simpler proof of his result was found in [20]. There is
also a model theoretic proof given in [4] (see also the survey [15]). It
is natural to view Grätzer’s question from the category theoretic point
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of view because a variety V belongs to the class X (M) if and only if
there is a morphism from M to the theory of V . Thus the theories
of varieties from X (M) form the principal cosieve in the category Th

of algebraic theories. Recall that a cosieve in a category K is a full
subcategory L of K such that whenever L → K is a morphism in K
with L in L then K belongs to L too. A cosieve L is principal if there
exists an object M of K such that K belongs to L if and only if there
is a morphism M → K.

Since the category Th is locally finitely presentable, we are lead
to consider cosieves in locally presentable categories. Grätzer’s ques-
tion asks for a characterization of principal cosieves in Th generated by
finitely presentable objects. Taylor [24] introduced a whole hierarchy of
Mal’cev type conditions which ends with cosieves generated by count-
able algebraic theories (see [20] and [4] as well). The latter theories are
precisely ω1-presentable objects in Th. Our first observation is that a
cosieve L in a locally presentable category K is principal if and only
if it is closed under products and λ-pure subobjects for some regular
cardinal λ. Assuming the set-theoretic semiweak Vopěnka’s principle,
the second condition is automatic and thus any cosieve closed under
products is principal. Conversely, semiweak Vopěnka’s priciple follows
from the fact that any cosieve in Th closed under products is principal.
A much more delicate question is to estimate the presentation rank of
an object M making a given cosieve principal. Our optimal result is
that, given a locally finitely presentable category K having (up to iso-
morphism) countably many finitely presentable objects, then a cosieve
L is a principal cosieve determined by an ω1-presentable object M if
and only if L is closed under products and ω-pure subobjects. Since
the category Th of algebraic theories satisfies this assumption, we get a
characterization of principal cosieves in Th determined by a countable
theory M . We also get the Taylor’s characterization of classes of vari-
eties given by a strong Mal’cev condition (as a consequence of 3.4). It
says that the corresponding algebraic theories form a cosieve L in Th

closed under products and such that for each T ∈ L there is a finitely
presented T ′ ∈ L with a morphism T ′ → T . Taylor mentions in his
review of [20] in Mathematical Reviews that there is an unpublished
proof of his result using algebraic theories due to P. D. Bacsich.

For a general cosieve L, a basic question is whether it is generated by
a set of objects. In a locally presentable category, it is equivalent to L
being closed under λ-pure subobjects for some λ. Now, this condition
is automatic under Vopěnka’s principle and, conversely, this principle
follows from the fact that each cosieve in Th is generated by a set of
theories. Moreover, a cosieve in Th is generated by countable theories
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if and only if it is closed under ω-pure subobjects. It gives a new
characterization of the bottom member of Taylor’s hierarchy and shows
that this class is closed under intersections.

Cosieves in locally presentable categories appear in more contexts
than just in Th. In graph theory, the are called homomorphisms closed
classes. Their complements, which are precisely sieves, apper in col-
oring problems because the principal sieve generated by a graph H

precisely consists of H-colorable graphs (see [21]). Grothendieck [12]
considered cosieves in locally presentable (and even in accessible) cate-
gories and called them closed subcategories. He proved that Vopěnka’s
principle is equivalent with the fact that each such a cosieve is gener-
ated by a set. We have learnt about [12] only when writing the revised
version of our paper and we are grateful to G. Maltsiniotis for sending
us the preliminary redaction of the Grothendieck’s manuscript.

All needed facts about locally presentable and accessible categories
can be found in [2]. We only recall that a morphism h : A → B is called
λ-pure (where λ is a regular cardinal) whenever in each commutative
square

X
f //

u

��

Y

v

��
A

h
// B

with X and Y λ-presentable u factorizes through f , i.e., u = tf for
some t : Y → A. Every λ-pure morphism is a monomorphism and we
say that L ⊂ K is closed under λ-pure subobjects if for each λ-pure
morphism K → L with L in L we have K in L.

2. Cosieves in locally presentable categories

Definition 2.1. A full subcategory L of a category K is called a cosieve
if K is in L for each morphism L → K with L in L. A cosieve is called
a filter provided it is closed under finite products. A cosieve L is called
set generated provided that there is a set X of objects of L such that
K belongs to L if and only if there is a morphism X → K with X in
X . Finally, a cosieve is called principal if it is generated by a single
object.

Theorem 2.2. Let L be a cosieve in a locally presentable category K.
Then the following conditions are equivalent:

(i) L is set generated,
(ii) L is closed under λ-pure subobjects for some regular cardinal λ,
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(iii) L is an accessible category.

Proof. (i) → (ii). Let L be a cosieve in K generated by a set X of
objects. There is a regular cardinal λ such that each X from X is
λ-presentable (this follows from [2] 1.16). Consider a λ-pure morphism
h : K → L with L in L. There is a morphism v : Y → L with Y in X .
Consider the commutative square

O
f //

u

��

Y

v

��
K

h

// L

where O is an initial object in K. Since O is λ-presentable, we get a
morphism Y → K. Thus K is in L.

(ii) → (iii). Conversely, let L be a cosieve in K closed under λ-pure
subobjects. Since L is closed in K under all non-empty colimits, it is
closed under filtered colimits. By [2] 2.36, L is an accessible category.

(iii) → (i). Let L be accessible. Since it is accessibly embedded
subcategory in K, L is cone-reflective in K (by [2] 2.53). This means
that for every object K in K there is a set of morphisms gi : K → Li

with Li ∈ L such that each morphism K → L with L ∈ L factorizes
through some gi. Then the cone-reflection O → Li yields a generating
set of L. �

The just proved theorem is true in any accessible category having
an initial object. Similarly, we could state many further results for
acccessible categories having suitable limits or colimits. But we prefer
to stay in the context of locally presentable categories which are pre-
cisely these accessible categories having all limits and colimits. Our
motivating example Th has this properties.

Corollary 2.3. A cosieve L in a locally presentable category K is prin-
cipal if and only if it is closed under products and λ-pure subobjects for
some regular cardinal λ.

Proof. Let L be a principal cosieve generated by an object M and
consider a set of objects Li, i ∈ I from L. Since there are morphisms
M → Li for each i ∈ I, there is a morphism from M to the product of
Li. Thus L is closed under products.

Conversely, let L be a cosieve generated by a set of objects Mi,
i ∈ I, which is closed under products. Then the product of Mi clearly
generates L. �
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Let us recall that Vopěnka’s principle says that the large discrete
category (i.e., the category having a proper class of objects and no
other morphisms than the identities) cannot be fully embedded into
any locally presentable category.

Theorem 2.4. The following statements are equivalent:
(i) Vopěnka’s principle;
(ii) every cosieve in a locally presentable category is set generated.

Proof. (i) → (ii) follows from 2.2 and [2] 6.17.
(ii)→ (i). Assuming the negation of Vopěnka’s principle, there is

a locally presentable category K having a proper class of objects Mi,
i ∈ I such that the only morphisms Mi → Mj are the identities. Then
the cosieve generated by Mi, i ∈ I is not set generated. �

Remark 2.5. The just proved result can be found in [12] (see 4.16.7.10).
More precisely, Grothendieck shows that every cosieve in an accessible
category is accessible if and only if, given a proper class of objects
Ai indexed by ordinals in an accessible category, there exists a mor-
phism Ai → Aj for some i < j. But the last statement is known to be
equivalent to Vopěnka’s principle (see [2], 6.3).

Let us recall the statement (∗) from [2] 6.27 which is called semi-
weak Vopěnka’s principle in [3]: a locally presentable category cannot
contain objects Ai indexed by all ordinals i such that hom(Ai, Aj) 6= ∅
if and only if i ≥ j. Vopěnka’s principle implies semiweak Vopěnka’s
principle but the converse implication is an open problem.

Theorem 2.6. The following statements are equivalent:
(i) semiweak Vopěnka’s principle;
(ii) every cosieve closed under products in a locally presentable cat-

egory is principal.

Proof. (i)→ (ii) follows from [2] 6.26 and 6.27 (2) because a generator
of L is given by a weak reflection of an initial object O.

(ii) → (i). Assuming the negation of semiweak Vopěnka’s principle,
there is a locally presentable category K and objects Ai indexed by all
ordinals i such that hom(Ai, Aj) 6= ∅ if and only if i ≥ j. Let L consist
of all objects K admitting a morphism Ai → K for some ordinal i.
Then L is a cosieve closed under products. In fact, having Kj ∈ L,
j ∈ J where J is a set, then there is an ordinal i with a morphism
Ai → Kj for each j ∈ J ; it suffices to take the upper bound of ordinals
ij with Aij → Kj, j ∈ J . Assume that L is generated by M . Then
there is Ak → M and thus Ak → Ai for each ordinal i, which is a
contradiction. �
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Notation 2.7. Given a locally presentable category K and a regular
cardinal λ, there is only a set (up to isomorphism) of λ-presentable
objects. We will denote such a set by presλ K.

For regular cardinals λ ≤ µ, the symbol λ E µ means that for every
set X of cardinality less than µ, the set of subsets of X of cardinality
less λ has a cofinal subset of cardinality less than µ (see [18], 2.3.1).
The successor of a cardinal λ is denoted by λ+.

Proposition 2.8. Let K be a locally λ-presentable category and µ a
regular cardinal such that λ E µ and card presλ K < µ. Let h : K → L

be a morphism in K having K µ-presentable. Then there is a factor-
ization h = h′g where h′ : K ′ → L is λ-pure and K ′ µ-presentable.

Proof. Put K0 = K, h0 = h and consider the set X of all spans

K0

X

u

OO

f
// Y

such that X, Y are λ-presentable and f factorizes through h0u. By
[18], 2.3.11, we have cardX < µ. Take a multiple pushout

K0

g01 // K1

X

u

OO

f

// Y

OO

over all such spans. Then there is a morphism h1 : K1 → L such
that h1g01 = h0 and h1u factorizes through f for each our span. By
[2], 1.16, K1 is µ-presentable. We proceed with this construction over
all ordinals i ≤ λ. It means that we construct Ki+1 by a multiple
pushout above with K0 replaced by Ki and get gii+1 : Ki → Ki+1 and
hi+1 : Ki+1 → L. For a limit ordinal i, Ki is a colimit of Kj , j < i. In
this way, we get µ-presentable objects Ki and morphisms gij : Ki → Kj

and hi : Ki → L for i < j < λ such that gjkgij = gik and hjgij = hi for
i < j < k < λ. Then K ′ = Kλ, h′ = h0λ and g = gλ have the desired
properties. �

Theorem 2.9. Let K be a locally λ-presentable category and λ E µ

regular cardinals such that card presλ K < µ. Then every cosieve L in
K closed under λ-pure subobjects is generated by µ-presentable objects.
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Proof. Since K is locally µ-presentable (see [2], Remark 1.20), every
object of K is a µ-directed colimit of µ-presentable objects. The result
follows by 2.8. �

Theorem 2.10. Let K be a locally λ-presentable category such that
card presλ K = λ. Then a cosieve L in K is closed under λ-pure sub-
objects if and only if it is generated by λ+-presentable objects.

Proof. Sufficiency follows from 2.9. Let L be a cosieve generated by
λ+-presentable objects. Consider L in L and a λ-pure morphism h :
K → L. There is a λ+-presentable object M in L with a morphism
v : M → L. By [22], Lemma 1, M is a colimit mi : Mi → M of a
smooth chain (mij : Mi → Mj)i<j<λ consisting of λ-presentable objects.
Recall that the chain (mij) is smooth if (mij : Mi → Mj)i<j is a colimit
for a limit ordinal j. We can assume that M0 = O and denote by
u0 : O → K a unique morphism from the initial object O. Since
vm1m01 = hu0 and h is λ-pure, there is a morphism u1 : M1 → K with
u1m01 = u0. We proceed by a transfinite induction and get morphisms
ui : Mi → K with ujmij = ui for i < j < λ. Here, ui+1 is obtained from
ui in the same way as in the first step. Since the chain (mij) is smooth,
(mij : Mi → Mj)i<j is a colimit for a limit ordinal j, which yields uj in
this case. At the end, we get a morphism u : M → K, which implies
that K ∈ L. Hence L is closed under λ-pure subobjects. �

Corollary 2.11. Let K be a locally finitely presentable category such
that card presω K = ω. Then a cosieve L in K is closed under ω-pure
subobjects if and only if it is generated by ω1-presentable objects.

Corollary 2.12. Let λ < µ regular cardinals and K be a locally λ-
presentable category such that card presλ K < µ. Then every cosieve L
in K closed under products and λ-pure subobjects is a principal cosieve
generated by a µ-presentable object.

Proof. Let L be a cosieve closed under products and λ-pure subobjects.
By 2.9, L is generated by µ-presentable objects. Moreover, L is princi-
pal (by 2.3). Since its generator M admits a morphism M ′ → M from
a µ-presentable object M ′ ∈ L, L is generated by M ′. �

Remark 2.13. (1) A cosieve L in a locally λ-presentable category K
generated by λ-presentable objects is a λ-accessible category. This fol-
lows from the fact that any morphism h : K → L with K λ-presentable
and L in L factorizes through an object L′ in L which is λ-presentable
in K. It suffices to take morphism L1 → L with L1 in L and λ-
presentable in K and consider a coproduct L′ of K and L1. Then L′ is
λ-presentable, belongs to L and h factorizes through it.
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(2) Full subcategories of locally λ-presentable categories closed under
products, λ-filtered colimits and λ-pure subobjects are precisely classes
determined by injectivity with respect to morphisms N → M where
both N and M are λ-presentable (see [23]). These classes are called
λ-injectivity classes. In the case when N = O, injectivity with respect
to N → M precisely means the existence of a morphism from M .

3. Mal’cev conditions

Recall that a (single-sorted) algebraic theory is a category T whose
objects are integers 0, 1, 2, . . . and such that n is a product of n copies
of 1 for each n = 0, 1, . . . (see [17]). This means that T has finite
products and, in particular, a terminal object 0. An algebraic theory
T determines a variety Alg(T ) which is the full subcategory of SetT

consisting of all functors T → Set preserving finite products. Set

denotes the category of sets. Each variety Alg(T ) is a concrete category
with the underlying functor UT : Alg(T ) → Set given by the evaluation
at 1, i.e., UT (A) = A(1). Morphisms of algebraic theories are functors
F : T → T ′ preserving finite products and such that F (1) = 1. This
implies that F (n) = n for each n = 0, 1, . . . . Let Th denote the
resulting category of algebraic theories. Each morphism F : T → T ′

determines a concrete functor Alg(F ) : Alg(T ′) → Alg(T ) given by
precompositions with F , i.e., Alg(F )(A) = AF for each A in Alg(T ′).
Conversely, every concrete functor H : Alg(T ′) → Alg(T ), i.e., every
functor H with UT H = UT ′ , is determined by a unique morphism of
theories (see [5]). Hence the dual of Th is the category Var whose
objects are varieties and morphisms are concrete functors.

Proposition 3.1. Th is a locally finitely presentable category.

Proof. The category Cat of small categories is locally finitely pre-
sentable (see, e.g., [5], 5.2.2.f). Let Catfp be its (non-full) subcategory
consisting of categories with finite products and finite product preserv-
ing functors. Catfp is a reflective subcategory of Cat which is closed
under filtered colimits. A reflection of a small category C in Catfp is
given by a free completion of C under finite products. For instance, this
completion is given as the full subcategory of (SetC)op consisting of fi-
nite products of hom-functors. Since the embedding of Catfp → Cat

preserves filtered colimits, the reflector Cat → Catfp preserves finitely
presentable objects. Consequently, every object in Catfp is a filtered
colimit of finitely presentable objects, which means that Catfp is locally
finitely presentable. Since Th is the comma category

Finop ↓ Catfp
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where Fin is the category of finite sets, it is locally finitely presentable
(see [2], 1.57). �

Remark 3.2. (1) Th is closed under connected limits in Cat but
products in Th are different – morphisms t : n → m in the product of
Ti, i ∈ I, are I-tuples (ti) : n → m of morphisms ti in Ti (cf. [5]).

(2) An algebraic theory is finitely presentable in Th if and only if it
is generated by finitely many morphisms and finitely many equations
between their compositions. As a consequence we get that

card presω Th = ω.

More generally, an algebraic theory T is λ-presentable in Th if and
only if it is generated by less than λ morphisms and less than λ equa-
tions. For an uncountable regular cardinal λ, it is the same as having
less than λ morphisms. In particular, T is ω1-presentable if and only
if it is countable.

We can thus apply to Th all results about cosieves from the previous
section.

Theorem 3.3. A cosieve in Th is generated by countable algebraic
theories if and only if it is closed under ω-pure subobjects.

Theorem 3.4. Let L be a cosieve in Th. Then L is a principal cosieve
generated by a countable theory if and only if it is closed under products
and ω-pure subobjects.

Proof. If L is closed under products and ω-pure subobjects then it
is principal (by 2.3) and generated by a countable theory (by 3.3).
Conversely, if L is a principal cosieve generated by a countable theory
then it is closed under products and ω-pure subobjects (see 2.3 and
3.3). �

Remark 3.5. (1) Analogously, we get that a cosieve L in Th is a filter
generated by a countable theories if and only if it is closed under finite
products and ω-pure subobjects.

(2) Algebraic theories correspond to usual equational theories con-
sidered in universal algebra. Such an equational theory is given by a
set Σ of (finitary) operation and by a set E of equations. The corre-
sponding algebraic theory T has as morphisms 1 → n n-ary algebraic
operations which are obtained from Σ and E by means of substitutions.
Morphisms m → n are then m-tuples of n-ary algebraic operations. In
other words, T is the dual of the category of finitely generated free
(Σ, E)-algebras. Any algebraic theory can be obtained in this way and
varieties in our sense are categories equivalent to those resulting from
varieties in universal algebra.
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(3) We have mentioned in the introduction how our results are related
to the top and the bottom members of Taylor’s hierarchy. Let us
add that, in between them, he considers filters generated by finitely
presented algebraic theories. Since there is countably many finitely
presentable algebraic theories, finitely presentable generators can be
organized into a chain

· · · → Mn → · · · → M1 → M0

Taylor speaks about a Mal’cev condition in this case. We can deduce
Taylor’s result from our 3.3 like in the strong Mal’cev case. Add that
ω-injectivity classes in Th were considered in [27].

(4) An algebraic theory T is called pointed if it has a unique mor-
phism 0 → 1. Let Th∗ denote the full subcategory of Th consisting
of pointed theories. Since Th∗ is evidently closed under limits and
filtered colimits in Th (in fact, Th∗ is a principal cosieve in Th, cf.
[6]), Th∗ is a locally finitely presentable category (see [2], Corollary
2.48). Thus we can apply our results to pointed algebraic theories
as well. An example of a filter in Th∗ generated by a finitely pre-
sentable algebraic theories is the class consisting of algebraic theories
T having Alg(T ) semi-abelian (see [9]). Semi-abelian varieties are pre-
cisely pointed protomodular ones (see [13] or [6]). Let us mention that
strongly protomodular varieties (see [8]) do not yield a cosieve because
the variety of groups is strongly protomodular while the variety of di-
groups is not (see [8]). Recall that a digroup is a set equipped with two
group structures sharing the same unit, which means that the theory
of groups has a morphism into that of digroups.

(5) There is a characterization of congruence modular varieties in [7]
which uses the following concepts. A punctual span in a pointed (i.e.
when the final object is also initial) category C is a diagram:

X

s //
Z g

//
f

oo Y

too

such that fs = 1X , gt = 1Y , gs = 0 and ft = 0 (where 0 is the zero
arrow). Now a pointed category (resp. pointed variety) C is punctu-
ally congruence hypoextensible when, given any punctual span and any
equivalence relation E on Z such that R[f ] ∧ R[g] ≤ E ≤ R[f ], we
necessarily have E ≤ g−1(t−1(E)). Here, R[f ] denotes the kernel of f .
The pointed subtractive varieties (in the sense of [26]) are punctually
congruence hypoextensible. A pointed category (resp. pointed vari-
ety) is punctually congruence hyperextensible when, given any punctual
span and any equivalence relation E on Z such that R[f ] ∧ R[g] ≤ E,
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we necessarily have R[f ] ∧ g−1(t−1(E)) ≤ E. The pointed Jónsson-
Tarski varieties ([16]) are punctually congruence hyperextensible. In
connection with Day’s result, it is natural to ask whether punctually
congruence hypoextensible (resp. punctually congruence hyperexten-
sible) varieties have a Mal’cev type characterization. By [7], algebraic
theories T having Alg(T ) punctually congruence hypoextensible (resp.
punctually congruence hyperextensible) form a cosieve in Th∗. By 2.4,
these cosieves are set generated under Vopěnka’s principle. We do not
know whether they are closed under (finite) products or under λ-pure
subobjects for some λ.

Let us end with the following observations.

Theorem 3.6. The following statements are equivalent:
(i) Vopěnka’s principle;
(ii) every cosieve in Th is set generated.

Proof. It follows from 2.4 and the fact that, assuming the negation of
Vopěnka’s principle, the large discrete category can be fully embedded
into Th (see [25], (3) after Theorem 1.1). �

Theorem 3.7. The following statements are equivalent:
(i) semiweak Vopěnka’s principle;
(ii) every cosieve in Th closed under products is set generated.

Proof. Like in 3.6, it follows from 2.4 and [25]. �
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[18] M. Makkai and R. Paré, Accessible categories: The foundation of Categorical
Model Theory, Cont. Math. 104, AMS 1989.

[19] A. I. Mal’cev, On the general theory of algebraic systems, Mat. Sb. N.S. 35
(1954), 3-20.

[20] W. Neumann, On Mal’cev conditions, J. Austral. Math. Soc. 17 (1974),
376-384.
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[22] J. Rosický, Accessible categories, saturation and categoricity, J. Symb. Logic
62 (1997), 891-901.
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