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Abstract. We investigate properties of accessible categories with
directed colimits and their relationship with categories arising from
Shelah’s Abstract Elementary Classes. We also investigate ranks of
objects in accessible categories, and the effect of accessible functors
on ranks.

1. Introduction

M. Makkai and R. Paré [10] introduced accessible categories as cat-
egories sharing two typical properties of categories of structures de-
scribed by infinitary first-order theories – the existence of sufficiently
many directed colimits and the existence of a set of objects gener-
ating all objects by means of distinguished colimits. Their, purely
category-theoretical, definition has since then found applications in var-
ious branches of mathematics. Very often, accessible categories have all
directed colimits. These arise as categories of models and elementary
embeddings of infinitary theories with finitary quantifiers. In model
theory, S. Shelah went in a similar direction and introduced abstract
elementary classes as a formalization of properties of models of general-
ized logics with finitary quantifiers. Our aim is to relate these two ap-
proaches. In Section 5, we introduce a hierarchy of accessible categories
with directed colimits. The main result of that section, Corollary 5.7,
sandwiches Shelah’s Abstract Elementary Classes between two natural
families of accessible categories.

Unlike abstract elementary classes, accessible categories are not equi-
pped with canonical ‘underlying sets’. Nonetheless, there exists a good
substitute for ‘size of the model’, namely, the presentability rank of an
object, that can be expressed purely in the language of category the-
ory, i.e. in terms of objects and morphisms. In this sense, accessible
categories take an extreme ‘signature-free’ and ‘elements-free’ view of
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abstract elementary classes. From this point of view, Shelah’s Cat-
egoricity Conjecture, the driving force of abstract elementary classes
(see [3]), turns on the subtle interaction between ranks of objects and
directed colimits in accessible categories.

The connection between abstract elementary classes and accessible
categories was discovered, independently, by M. Lieberman as well; see
[8] and [9]. Our Corollary 5.7 simplifies Lieberman’s description, [9],
Proposition 4.8 and Claim 4.9.

2. Accessible categories

In order to define accessible categories one just needs the concept of
a λ-directed colimit where λ is a regular cardinal number. This is a col-
imit over a diagram D : D → K where D is a λ-directed poset, consid-
ered as a category. An object K of a category K is called λ-presentable
if its hom-functor hom(K,−) : K → Set preserves λ-directed colimits;
here Set is the category of sets.

A category K is called λ-accessible, where λ is a regular cardinal,
provided that

(1) K has λ-directed colimits,
(2) K has a set A of λ-presentable objects such that every object

of K is a λ-directed colimit of objects from A.

A category is accessible if it is λ-accessible for some regular cardinal λ.
A signature Σ is a set of (infinitary) operation and relation symbols.

These symbols are S-sorted where S is a set of sorts. It is advantageous
to work with many-sorted signatures but it is easy to reduce them to
single-sorted ones. One just replaces sorts by unary relation symbols
and adds axioms saying that there are disjoint and cover the underly-
ing set of a model. Thus the underlying set of an S-sorted structure
A is the disjoint union of underlying sets As over all sorts s ∈ S. |A|
will denote the cardinality of the underlying set of the Σ-structure A.
The category of all Σ-structures and homomorphisms (i.e., mappings
preserving all operations and relations) is denoted by Str(Σ). A ho-
momorphism is called a substructure embedding if it is injective and
reflects all relations. Any inclusion of a substructure is a substructure
embedding. Conversely, if h : A → B is a substructure embedding
then A is isomorphic to the substructure h(A) of B. The category of
all Σ-structures and substructure embeddings is denoted by Emb(Σ).
Both Str(Σ) and Emb(Σ) are accessible categories, cf. [1], 5.30 and
1.70.

A signature Σ is finitary if all relation and function symbols are
finitary. For a finitary signature, the category Str(Σ) is locally finitely
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presentable and Emb(Σ) is finitely accessible. In both cases, there is a
cardinal κ such that, for each regular cardinal κ ≤ µ, a Σ-structure K
is µ-presentable if and only if |K| < µ. This follows from the downward
Löwenheim-Skolem theorem; see [10], 3.3.1.

Let λ be a cardinal and Σ be a λ-ary signature, i.e., all relation and
function symbols have arity smaller than λ. Given a cardinal κ, the
language Lκλ(Σ) allows less than κ-ary conjunctions and disjunctions
and less than λ-ary quantifications. A substructure embedding of Σ-
structures is called Lκλ-elementary if it preserves all Lκλ-formulas. A
theory T is a set of sentences of Lκλ(Σ). Mod(T ) denotes the cat-
egory of T -models and homomorphisms, Emb(T ) the category of T -
models and substructure embeddings while Elem(T ) will denote the
category of T -models and Lκλ-elementary embeddings. The category
Elem(T ) is accessible (see [1], 5.42). For certain theories T , the cate-
gory Mod(T ) does not have µ-directed colimits for any regular cardinal
µ and thus fails to be accessible.

A theory T is called basic if it consists of sentences

(∀x)(ϕ(x) ⇒ ψ(x))

where ϕ and ψ are positive-existential formulas and x is a string of
variables. For a basic theory T , the category Mod(T ) is accessible.
Conversely, every accessible category is equivalent to the category of
models and homomorphisms of a basic theory. All these facts can be
found in [10] or [1].

Locally presentable categories are defined as cocomplete accessible
categories. Following [1], 1.20, each locally λ-presentable category is
locally µ-presentable for each regular cardinal µ > λ. Let λ be an
uncountable regular cardinal. The category Posλ of λ-directed posets
and substructure embeddings is λ-accessible but it is not µ-accessible
for all regular cardinals µ > λ. Following [10] 2.3, let us write λ /
µ whenever Posλ is µ-accessible. There are arbitrarily large regular
cardinals µ such that λ / µ and, at the same time, arbitrarily large
regular cardinals µ such that λ/µ does not hold. Thus the accessibility
spectrum of Posλ has a proper class of gaps. Generally, if λ / µ then
any λ-accessible category K is µ-accessible; see [10], 2.3.10 or [1], 2.11.
By [1], 2.13 (1), one has ω /λ for every uncountable regular cardinal λ.
Thus a finitely accessible category is µ-accessible for all uncountable
regular cardinals µ.

Definition 2.1. We say that a category K is well λ-accessible if it is
µ-accessible for each regular cardinal λ ≤ µ.
K is well accessible if it is well λ-accessible for some regular cardinal

λ.
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We have just seen that any locally presentable category and any
finitely accessible category is well-accessible.

Definition 2.2. Let λ be a regular cardinal. We say that an object
K of a category K has presentability rank (or, for brevity, rank) λ if it
is λ-presentable but not µ-presentable for any regular cardinal µ < λ.
We will write rank(K) = λ.

This concept was introduced by Makkai and Paré under the name of
presentability of an object. See the very last line of p. 29 of [10].

Remark 2.3. (1) We have mentioned that in Emb(Σ), Σ finitary,
there is a cardinal κ such that, for each cardinal κ ≤ µ, a Σ-structure
A is µ-presentable if and only if |A| < µ. Therefore for all large enough
structures, rank(A) = |A|+, i.e., presentability ranks play the role of
cardinalities.

(2) Let T be a basic theory in a language Lκω(Σ). Since Emb(T )
is closed under directed colimits in Emb(Σ), rank(X) ≤ |X|+ for each
T -model X. By the downward Löwenheim-Skolem theorem, cf. [10]
3.3.1, there is a cardinal µ such that, for µ ≤ |X|, we have rank(X) =
|X|+. Moreover, either the presentability ranks of T -models in Emb(T )
form a set or T has models of presentability rank ν+ for all µ ≤ ν.
This means that the presentability spectrum of Emb(T ) does not have
arbitrarily large gaps.

(3) If T is a basic theory in a language Lκω(Σ) then Mod(T ) does
not need to be closed under directed colimits in Str(Σ). But this holds
for basic theories T in a language L∗κω(Σ) allowing only finitary conjuc-
tions. Thus Mod(T ) is an accessible category with directed colimits
in this case. [10] calls categories equivalent to such Mod(T ) ∞, ω-
elementary. Every finitely accessible category is ∞, ω-elementary ; see
[10] 4.3.2. The downward Löwenheim-Skolem theorem applies to ∞, ω-
elementary Mod(T ), and implies, similarly to (2), that rank(X) even-
tually coincides with |X|+ and the presentability spectrum of Mod(T )
does not have arbitrarily large gaps.

Even if T is only a basic theory in a language Lκω(Σ), then Mod(T )
is closed under λ-directed colimits in Str(Σ) for some regular cardinal
λ. Then the downward Löwenheim-Skolem theorem still implies that
rank(X) eventually coincides with |X|+ and the presentability spec-
trum of Mod(T ) does not have arbitrarily large gaps.

(4) Let T be an arbitrary theory in a language Lκω(Σ). We know that
Elem(T ) is an accessible category and, following [1] 5.39, Elem(T ) is
closed under directed colimits in Str(Σ). Thus Elem(T ) is an acces-
sible category with directed colimits. Moreover, rank(X) = |X|+ in
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Elem(T ) for all sufficiently large T -models X and the presentability
spectrum of Elem(T ) does not have arbitrarily large gaps.

Following [10] 3.2.8, there is a basic theory T ′ in another language
L∗κω(Σ′) such that the categories Elem(T ) and Mod(T ′) are equivalent.
Thus Elem(T ) is ∞, ω-elementary.

(5) Assuming GCH, in any accessible category K, rank(K) is a suc-
cessor cardinal for all objects K (with the possible exception of a set
of isomorphism types). Indeed, let K be a κ-accessible category and
rank(K) = λ with κ < λ. λ is a regular cardinal by definition; if λ
was a limit cardinal then (as it is uncountable) it would be a weakly
inaccessible cardinal. Since GCH is assumed, λ is inaccessible. Thus,
given α < κ < λ and β < λ, we have βα < λ. Following [1] 2.13
(4), κ / λ. Following [10], 2.3.11, the object K can be exhibited as a
κ-directed colimit of κ-presentable objects along a diagram of size less
than λ. Let the size of that diagram be ν; then K is ν+-presentable.
That would mean ν+ = λ, contradicting that λ is a limit cardinal.

By ‘category’ we always mean a locally small one, i.e., having a set
of morphisms between any two objects. A category is called small if
it has a set of objects. We say that a category is large if it is not
equivalent to a small category. This means that it has a proper class
of non-isomorphic objects. In Remark 2.3 we saw several families of
large accessible categories that, starting from some cardinal, possess
objects of every possible presentation rank. Since in those examples,
this property followed from the downward Löwenheim-Skolem theorem,
we will call such categories LS-accessible.

Definition 2.4. An accessible category K will be called λ-LS-accessible
if K has an object of presentability rank µ+ for each cardinal µ ≥ λ.
K is LS-accessible if it is λ-LS-accessible for some cardinal λ.

We will deal with this concept later. However, we have not been able
to find any large accessible category which is not LS-accessible.

3. Accessible functors

A functor F : K → L is called λ-accessible if K and L are λ-accessible
categories and F preserves λ-directed colimits. F is called accessible
if it is λ-accessible for some regular cardinal λ. By the Uniformization
theorem (see [10], 2.5.1 or [1], 2.19), for each accessible functor F there
is a regular cardinal λ such that F is λ-accessible and preserves λ-
presentable objects ; it means that if K is λ-presentable then F (K) is
λ-presentable. The same is then true for each µ . λ.
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Definition 3.1. A functor F : K → L will be called well λ-accessible
if K and L are well λ-accessible categories and F preserves µ-directed
colimits and µ-presentable objects for each λ ≤ µ. F is called well
accessible if it is well λ-accessible for some regular cardinal λ.

Remark 3.2. (1) Of course, whenever F preserves λ-directed colimits
then it preserves µ-directed ones for µ ≥ λ.

(2) Every colimit preserving functor between locally λ-presentable
categories is well λ-accessible. This immediately follows from the fact
that, for regular cardinals λ ≤ µ, an object of a locally λ-presentable
category is µ-presentable if and only if it is a µ-small colimit of λ-
presentable objects. Recall that a category is µ-small if it has less
than µ morphisms.

(3) Every finitely accessible functor is well finitely accessible. This
follows from [1], 2.13 (1) and the fact that, for regular cardinals λ / µ,
an object of a λ-presentable category is µ-presentable if and only if it is
a λ-directed µ-small colimit of λ-presentable objects (see [10], 2.3.11).

(4) Let I be an infinite set and consider the functor Set → Set
that sends X to XI . This functor is accessible but not well accessible
since there are arbitrarily large |X| SUCH that |XI | > |X|, hence the
functor does not preserve µ-presentable objects for all arbitrarily large
enough µ. On the other hand, for I finite, the functor is well accessible
since it is finitely accessible.

A well accessible functor, by definition, will take µ-presentable ob-
jects to µ-presentable ones for all large enough µ; however, it can lower
presentability ranks.

Example 3.3. Let F : Gr → Ab be the abelianization functor, i.e.,
the reflector from groups to abelian groups. Since F is a left adjoint,
it is well finitely accessible by 3.2 (2). There exist simple groups G of
arbitrarily large infinite cardinalities. Since F (G) = 0 for such a G, 0
is finitely presentable in Ab and rank(G) = |G|+, the functor F can
lower presentability ranks from κ+ to ω for arbitrarily large κ.

We say that a functor F : K → L reflects λ-presentable objects if
F (K) λ-presentable implies that K is λ-presentable.

Recall that a morphism g : B → A is a split epimorphism if there
exists f : A→ B with gf = idA. Since, in this case, g is a coequalizer
of fg and idB, A is λ-presentable whenever B is λ-presentable (see [1],
1.16).

Definition 3.4. We say that a functor F : K → L reflects split epi-
morphisms if f is a split epimorphism whenever F (f) is a split epimor-
phism.
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Remark 3.5. Any functor F : K → L reflecting split epimorphisms is
conservative, i.e., it reflects isomorphisms. If all morphisms of K are
monomorphisms then F reflects split epimorphisms if and only if it is
conservative.

Lemma 3.6. Let F : K → L be a λ-accessible functor which reflects
split epimorphisms. Then F reflects λ-presentable objects.

Proof. Let F (K) be λ-presentable in L. Since K is λ-accessible, K is a
λ-directed colimit (ki : Ki → K)i∈I of λ-presentable objects. Since F
preserves λ-directed colimits and F (K) is λ-presentable, there is i ∈ I
and f : F (K) → F (Ki) such that F (ki)f = idF (K). Since F reflects
split epimorphisms, this ki : Ki → K is a split epimorphism. Thus K
is λ-presentable. �

Proposition 3.7. Let F : K → L be a well λ-accessible functor which
reflects split epimorphisms. Then F preserves presentability ranks µ
for λ < µ.

Proof. Let rank(K) = µ, λ < µ. Then F (K) is µ-presentable. Assume
that F (K) is ν-presentable for some ν < µ. Without loss of generality,
we can assume that λ ≤ ν. Following Lemma 3.6, K is ν-presentable,
which is a contradiction. Thus rank(F (K)) = µ. �

4. Accessible categories with directed colimits

An important class of accessible categories consists of accessible cat-
egories having directed colimits. It includes both ∞, ω-elementary cat-
egories and locally presentable ones. On the other hand, the basic
Lω1ω1 theory T of well-ordered sets has both Mod(T ) and Emb(T )
ω1-accessible without having directed colimits.

Proposition 4.1. Any accessible category with directed colimits is well
accessible.

Proof. Let K be a λ-accessible category with directed colimits and con-
sider a regular cardinal λ < µ. Given an object K of K, there is a
λ-directed colimit (ai : Ai → K)i∈I of λ-presentable objects Ai. Let Î
be the poset of all directed subsets of I of cardinalities less than µ (or-

dered by inclusion). Clearly, Î is µ-directed. For each M ∈ Î, let BM

be a colimit of a subdiagram indexed by M . Then BM is µ-presentable.
Since every subset of I having less than µ elements is contained in a
directed subset of I having less than µ elements (cf. [1], 2.11), K is a

µ-directed colimit of BM , M ∈ Î. Thus K is µ-accessible. �
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Lemma 4.2. Let K be a λ-accessible category with directed colimits
and K an object of K which is not λ-presentable. Then rank(K) is a
successor cardinal.

Proof. Let λ < µ = rank(K). Following the proof of 4.1, K is a µ-
directed colimit of objects Ki which are directed colimits of size νi < µ
of λ-presentable objects. Since K is µ-presentable, it is a retract of
some Ki. If νi < λ then Ki is λ-presentable and thus K is λ-presentable
as well. Let λ ≤ νi. Then Ki is ν+

i -presentable and thus K is ν+
i -

presentable too. Hence µ = ν+
i . �

Proposition 4.3. Let K and L be accessible categories with directed
colimits and F : K → L a functor preserving directed colimits. Then
F is well accessible.

Proof. There is a regular cardinal λ such that both K and L are λ-
accessible and F preserves λ-presentable objects (see [1] 2.19). Con-
sider a regular cardinal λ < µ and let K be a µ-presentable object
of K. Following the proof of 4.1, K is a µ-directed colimit of objects
BM where each BM is a directed colimit of less than µ λ-presentable
objects. Since K is µ-presentable, it is a retract of some BM . Since
F (BM) is a directed colimit of less than µ λ-presentable objects, F (BM)
is µ-presentable in L. Thus F (K) is µ-presentable in L as a retract of
F (BM). We have proved that F is well λ-accessible. �

Remark 4.4. Let Lin be the category of linearly ordered sets and
order preserving injective mappings (they coincide with substructure
embeddings). It is a finitely accessible category which is a “mini-
mal” ∞, ω-elementary category in the sense that for every large ∞, ω-
elementary category K there is a faithful functor E : Lin → K pre-
serving directed colimits; see [10], 3.4.1. Its construction is based on
Ehrenfeucht-Mostowski models. Following 4.1 and 4.3, E is well acces-
sible. Since it is faithful, it reflects epimorphisms. Epimorphisms in
Lin are isomorphisms and thus E reflects split epimorphisms. Follow-
ing 3.7, E preserves presentability ranks µ starting from some cardinal
λ.

Recall that a full subcategory K of a category L is called accessibly
embedded if there is a regular cardinal λ such that K is closed under
λ-directed colimits in L.

Theorem 4.5. Accessible categories with directed colimits are precisely
reflective and accessibly embedded subcategories of finitely accessible
categories.
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Proof. Every reflective and accessibly embedded subcategory of a fini-
tely accessible category L is accessible (see [1], 2.53) and has directed
colimits calculated as reflections of directed colimits in L. Conversely,
let K be a λ-accessible category with directed colimits. Then K is
equivalent to a full subcategory Indλ(C) of SetC

op

consisting of all λ-
directed colimits of hom-functors (see [1], 2.26); C is a small category.
Let Ind(C) be the full subcategory of SetC

op

consisting of all directed
colimits of hom-functors. Then Indλ(C) is closed in Ind(C) under λ-
directed colimits. Given an object X in Ind(C), we express it as a
directed colimit of hom-functors and take their colimit F (X) in Indλ(C)
(recall that K has directed colimits). Clearly, F (X) is a reflection of
X in Indλ(C). Thus Indλ(C) is a reflective subcategory of Ind(C). �

Theorem 4.6. Each large locally presentable category is LS-accessible.

Proof. Let K be a locally presentable category. Then K is locally λ-
presentable for some regular cardinal λ and, following [1] 5.30, K is
equivalent to Mod(T ) for a limit theory of Lλλ(Σ) where Σ is an
S-sorted signature. Thus it suffices to prove that Mod(T ) is LS-
accessible.

Let SetS denote the category of S-sorted sets. The category SetS

is locally finitely presentable and, given an S-sorted set X = (Xs)s∈S,
rank(X) = |X|+ where |X| is defined as the cardinality of the disjoint
union of Xs, s ∈ S. Let U : K → SetS denote the forgetful functor.
Since K is large, there is t ∈ S such that the sets U(K)t are arbitrarily
large. Let V : K → Set be the composition of U with the functor
SetS → Set sending (Xs) to Xt. The functor V preserves limits and
λ-directed colimits (see the proof of [1] 5.9). By [1] 1.66, V has a left
adjoint F which preserves µ-presentable objects for each µ ≥ λ, cf. [1]
Ex. 1.s(1). Thus rank(FX) ≤ rank(X) for each X with λ ≤ rank(X).

Assume that Mod(T ) is not LS-accessible. Then there is X with
λ ≤ rank(X) and µ = rank(FX) < rank(X). Since SetS is locally
µ-presentable, X is a µ-directed colimit of µ-presentable objects Xi,
i ∈ I. Let

(ui : Xi → X)i∈I

denote a colimit cocone. Since F preserves colimits,

(Fui : FXi → FX)i∈I

is a colimit cocone. Since FX is µ-presentable, there is j ∈ I and
r : FX → FXj such that F (uj)r = idFX . Hence Fuj is a split epi-
morphism. There is a mapping f : X → X such that fuj = uj and
f 6= idX . Since F (f)UF (uj) = F (uj), we have F (f) = idFX .
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Let η : Id → V F be the adjunction unit. Since ηXf = V F (f)ηX =
ηX , ηX is not a monomorphism. Since the sets V K are arbitrarily large,
there is K in K such that |X| < |V K|. Thus there is a monomorphism
X → V K, which implies that ηX is a monomorphism. We get a con-
tradiction. �

Remark 4.7. (1) We have proved the stronger result that the functor
F : Set → K preserves presentability ranks ≥ λ.

(2) The argument even works for weakly locally presentable cate-
gories, i.e., for accessible categories with products. Such categories are
equivalent to Mod(T ) where T is a regular theory of Lλλ(Σ) (see [1]
Ex. 5.e). The forgetful functor U : K → SetS has a weak left adjoint
F : SetS → K equipped with a natural transformation η : Id → UF .
This follows from the fact that K is a small-injectivity class in a locally
presentable category L (see [1] 4.8) and thus it is naturally weakly
reflective in L (cf. [2]). This suffices for the argument.

(3) Let K be a large accessible category with coproducts. Assume
that K is λ-accessible and take the coproduct K of a (representative)
set of all λ-presentable objects. Then the functor

U = K(K,−) : K → Set

has arbitrarily large values. U has a left adjoint F given by

FX =
∐
X

K

By applying the proof of 4.6 to F , we get that K is LS-accessible.

Example 4.8. Consider a one-sorted signature Σ given by a sort s and
an ω-ary function symbol f : sω → s. Let T be the Lω1ω1(Σ) theory
saying that f is a bijection. Thus T consists of the formula

(∀y)(∃!x)(f(x) = y)

where x is an ω-string of variables, and ∃! denotes unique existence.
By general facts about categories of models of ∃!-sentences (called limit
theories), the category Mod(T ) is locally ω1-presentable; see [1], 5.30.
Hence, in particular, it is accessible and has directed colimits.

If µ has cofinality ω then

µω > µ

cf. [5], Corollary 4 of Theorem 17. Thus T does not have models of
cardinalities of cofinality ω. Since µω = µ whenever the cardinal µ is
of the form νω, Mod(T ) is a large category. Thus there is a proper
class of cardinalities in which T has a model and a proper class of
cardinalities in which T does not have a model. But, following 4.6,
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Mod(T ) is LS-accessible. The point is that presentation ranks and
cardinalities will never start to coincide.

One can change the theory T to an equational Lω1ω1 theory T ′ in the
signature Σ′ consisting of f and ω unary function symbols gi : s → s.
Equations of T ′ state that f : Xω → X and 〈gi〉i∈ω : X → Xω are
inverse maps (thus, bijections). The functor V of the proof of 4.6
is the underlying set functor Mod(T ′) → Set and the functor F is
the free algebra functor Set → Mod(T ′). Following the proof of 4.6,
rank(FX) = |X|+ for any uncountable set X. For free T -algebras FX,
the difference between rank(FX) and the size of the underlying set
|V FX| can become arbitrarily large. This clarifies the last sentence of
the preceding paragraph.

Definition 4.9. A functor H : K → L is full with respect to isomor-
phisms if for any isomorphism f : HA→ HB there is an isomorphism
f : A→ B such that H(f) = f .

Remark 4.10. Any functor H full with respect to isomorphisms is
essentially injective on objects in the sense that HA ∼= HB implies
that A ∼= B. Any faithful functor full with respect to isomorphisms is
conservative, i.e. reflects isomorphisms.

A functor H is called transportable if for an isomorphism f : HA→
B there is a unique isomorphism f : A→ B such that H(f) = f (this
includes HB = B).

Theorem 4.11. Let K be a large accessible category with directed col-
imits admitting a full with respect to isomorphisms and faithful functor
into a finitely accessible category preserving directed colimits. Then K
is LS-accessible.

Proof. Following 2.3 (2), every finitely accessible category admits a
finitely accessible full embedding into Str(Σ) for some finitary signa-
ture Σ. Thus we can assume that there is a full with respect to iso-
morphisms and faithful functor preserving directed colimits H : K →
Str(Σ). Consider the pullback

K H // Str(Σ)

L

G

OO

H

// Emb(Σ)

G

OO

where G is the inclusion. Since G is transportable, the pullback is
equivalent to a pseudopullback (see [10] 5.1.1). Hence L is accessible
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(see [10] 5.1.6) and clearly has directed colimits. The functors H and
G preserve directed colimits, are faithful and full with respect to iso-
morphisms. In fact, for an isomorphism f : GL1 → GL2 in K, there is
an isomorphism f : HL1 → HL2 in Emb(Σ) with G(f) = H(f). Thus
there is an isomorphism g : L1 → L2 with G(g) = f . The argument for
H is the same. Consequently, both H and G are essentially injective
on objects (see Remark 4.10) and G is surjective on objects. Following
4.1 and 4.3, there is a regular cardinal λ such that both G and H are
well λ-accessible. Since G is faithful and full with respect to isomor-
phisms, it is conservative and thus reflects split epimorphisms (see 4.10
and 3.5).

Now, following 3.7, G preserves presentability ranks ν for λ < ν.
Thus it suffices to prove that L is λ-LS-accessible. Consider a cardinal
µ ≥ λ. Since K is large and G is essentially injective on objects, L is
large. Since H is essentially injective on objects, there is an object L
in L such that µ ≤ |HL|. Since L is µ+-accessible, L is a µ+-directed
colimit of µ+-presentable objects Li, i ∈ I. Let (li : Li → L)i∈I

denote a colimit cocone. There is an embedding f : A → HL with
|A| = µ. Since A is µ+-presentable, f = H(lj)g for some g : A→ HLj.
Hence µ ≤ |HLj|. Since H preserves presentability ranks ν for λ < ν
(following 3.7), HLj is µ+-presentable, i.e., |HLj| ≤ µ. Hence |HLj| =
µ, i.e., rank(HLj) = µ+. Therefore rank(Lj) = µ+. We have proved
that L is λ-LS-accessible. �

Using Ehrenfeucht-Mostowski models, we can prove a stronger re-
sult. (Note that any finitely accessible category has a faithful, directed
colimit preserving functor into Set and thus any category K from 4.11
has this property.)

Theorem 4.12. Let K be a large accessible category with directed col-
imits equipped with a faithful functor H : K → Set preserving directed
colimits. Then K is LS-accessible.

Proof. Consider a pullback

K H // Set

L

G

OO

H

// Emb(Set)

G

OO

analogous to that in the proof of 4.11. Again, L is a λ-accessible
category with directed colimits. Following 4.5, L = Indλ C is a full
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reflective subcategory of the finitely accessible category Ind C. Let
F : Ind C → L be a left adjoint to the inclusion L → Ind C. The
composition HGF : Ind C → Set preserves directed colimits and thus
it is uniquely determined by its domain restriction on C. Since F is the
identity functor on its domain restriction on C, the domain restriction
of HGF on C is faithful. We will prove that HGF is faithful. Con-
sider two distinct morphisms f, g : X → Y in Ind C. There are objects
C,D ∈ C and morphisms u : C → X, v : D → Y and f ′, g′ : C → D
such that fu = vf ′ and gu = vg′. Hence f ′ and g′ are distinct and
thus HGF (f ′) and HGF (g′) are distinct. Since HGF (v) = GHF (v)
is a monomorphism, HGF (fu) and HGF (gu) are distinct. Therefore
HGF (f) and HGF (g) are distinct. We have proved that HGF is
faithful and thus GF is faithful.

Since every finitely accessible category is ∞, ω-elementary (see [10]
5.2.6), 4.4 provides a faithful functor E : Lin → Ind C preserving
directed colimits. Thus GFE is faithful and preserves directed colimits.
Following 4.4, this functor preserves presentability ranks starting from
some cardinal. Thus L is LS-accessible. In order to prove that K is
LS-accessible, we have to show that G is conservative – then one uses
3.5, 4.3 and 3.7. Assume that G(f) is an isomorphism. Then HG(f),
and thus H(f) are isomorphisms. Hence f is an isomorphism. �

Remark 4.13. We have proved that each category K from 4.12 admits
a faithful functor E : L → K from a finitely accessible category L which
preserves directed colimits and is surjective on objects. Consequently,
it admits a faithful functor Lin → K preserving directed colimits.
Moreover, if all morphisms in K are monomorphisms, we do not need a
pullback from the proof of 4.12 and the functor E is then even surjective
on morphisms.

We will give an example of an accessible category W with directed
colimits with no faithful functorW → Set preserving directed colimits.
This shows that the two parts of the assumption on the category K in
4.12 are independent. At the same time, this categoryW is an example
of an accessible category with directed colimits that is not ∞, ω ele-
mentary. On the other hand, we do not know whether the assumptions
of 4.12 are necessary for the conclusion. Possibly every accessible cat-
egory with directed colimits is LS-accessible; possibly every accessible
category is LS-accessible.

Example 4.14. Let W be the category of well-ordered sets where
morphisms are either order preserving injective mappings or constant
mappings. Since the category W0 of well-ordered sets and substructure
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embeddings is ω1-accessible, W is ω1-accessible as well. The category
W0 does not have all directed colimits. For example, a countable chain

A0 → A1 → . . . An → . . .

such that each An+1, 0 ≤ n contains an element a smaller than any
x ∈ An, does not have a colimit in W0. In fact, it does not have any
compatible cocone An → A, 0 ≤ n. In W , it does have a colimit: the
one-element chain 1. One can show that W has all directed colimits.

Assume that there exists a faithful functor H : W → Set preserving
directed colimits. Following 4.13, there is a faithful functor Lin →
W . This is impossible because W is automorphism rigid – the only
isomorphisms X → X in W are identities.

5. Abstract elementary classes

Consider the following hierarchy of accessible categories with di-
rected colimits:

(1) finitely accessible categories,
(2) ∞, ω-elementary categories,
(3) accessible categories with directed colimits admitting a faithful

functor preserving directed colimits into a finitely accessible
category,

(4) accessible categories with directed colimits.

Each class is contained in the next. The original definition of class (2),
∞, ω-elementary categories, is model-theoretic, as categories equiva-
lent to the category of models and homomorphisms of theories in L∗∞,ω.
There exist categorical descriptions too: these are the categories equiv-
alent to the category of points of some Grothendieck topos; and, by [10]
5.2.6, exactly the 2-categorical limits of finitely accessible categories
and finitely accessible functors. Since any finitely accessible category
is equipped with a faithful functor into Set preserving directed colimits,
class (3) coincides with the categories from Theorem 4.12. Following
4.14, the inclusion of (3) in (4) is proper. The inclusion of (1) in (2) is
also proper. We are not aware of any example of a category belonging
to (3) but not to (2). We do know that any category from (2) admits
a full embedding preserving directed colimits into a finitely accessible
category.

We will show that the categories of models-and-strong-embeddings
coming from Shelah’s abstract elementary classes are between (2) and
(4). We will also introduce a class of abstract elementary categories
as “abstract elementary classes” without any assumption about mor-
phisms being embeddings.
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Definition 5.1. A functor H : K → L will be called nearly full if for
each commutative triangle

HA
H(h)

//

f
""EE

EE
EE

EE
EE

EE
HC

HB

H(g)

<<yyyyyyyyyyyy

there is f : A→ B in K such that H(f) = f .
A subcategory K of a category L will be called nearly full if the

embedding K → L is nearly full.

Remark 5.2. (1) Every full functor is nearly full. If H is faithful and
nearly full, we also have gf = h in the definition above. Thus every
faithful and nearly full functor reflects split epimorphisms.

(2) [6] calls nearly full subcategories coherent.
(3) Any subcategoryK of a finitely accessible category L closed under

directed colimits is replete and full with respect to isomorphisms. In
fact, being closed under directed colimits means that each directed
colimit in L of objects from K belongs to K. And, directed colimits
are determined up to an isomorphism. Recall that replete means to be
closed under isomorphic objects.

If K is a subcategory of an accessible category L and the embedding
of K to L preserves directed colimits then the replete closure K of K is
closed under directed colimits in L. Moreover the categories K and K
are equivalent.

Definition 5.3. An accessible categories with directed colimits will be
called an abstract elementary category if it admits a full with respect to
isomorphisms and nearly full embedding preserving directed colimits
into a finitely accessible category.

Abstract elementary categories are closely related to Shelah’s Ab-
stract Elementary Classes; they differ from those introduced in [6]. We
recall the definition of an abstract elementary class using the language
of category theory.

Definition 5.4. Let Σ be a finitary signature. A nearly full subcate-
gory K of Emb(Σ) is called an abstract elementary class if it is closed
in Emb(Σ) under directed colimits and there is a cardinal λ such that
if f : A→ B is a substructure with B ∈ K then there is h : A′ → B in
K such that f factorizes through h and |A′| ≤ |A|+ λ.

The standard formulation (see [3]) uses colimits of continuous chains
instead of directed colimits. But it is well known that this does not
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change anything (see [3], or [1] 1.7; continuous chains are called smooth
there). The standard formulation also includes thatK is replete and full
with respect to isomorphisms but 5.2 (3) shows that our formulation is
the same. We allow many-sorted signatures in 5.4. Since each many-
sorted signature can be made single-sorted, this does not change the
concept of an abstract elementary class.

Theorem 5.5. Let Σ be a finitary signature. A nearly full subcategory
K of Emb(Σ) is an abstract elementary class if and only if it is an
accessible category closed under directed colimits in Emb(Σ).

Proof. Let K be an abstract elementary class in Emb(Σ). We know
that Emb(Σ) is finitely accessible and there is a regular cardinal λ < κ
such that, for each regular cardinal κ ≤ µ, µ-presentable objects in
Emb(Σ) are precisely Σ-structuresA such that |A| < µ. Since Emb(Σ)
is κ-accessible, Definition 5.4 yields that each object of K is a κ-directed
colimit of κ-presentable objects in K. Thus K is κ-accessible.

Conversely, let K be an accessible nearly full subcategory of Emb(Σ)
closed under directed colimits. Then the embedding K → Emb(Σ) is
well λ-accessible for some regular cardinal λ greater than κ above.
Let f : A → B be a substructure embedding with B ∈ K and put
µ = |A| + λ. Since K is µ+-accessible, B is a µ+-directed colimit of
µ+-presentable objects Bi, i ∈ I in K. Since the embedding K →
Emb(Σ) preserves µ+-directed colimits and µ+-presentable objects,
B is a µ+-directed colimit of objects Bi which are µ+-presentable in
Emb(Σ). SinceA is µ+-presentable (because κ < µ+), the substructure
embedding f : A→ B factorizes through some Bj, j ∈ I. It suffices to
put A′ = Bj. �

This result is an improvement of [8] 5.9 and 5.10 (see [9] 4.1 and 4.9,
as well; there is a related work [6]). Lieberman assumes that K is well
accessible while we use 4.1 to prove this from the existence of directed
colimits. Otherwise, our proof is the same as that of Lieberman.

Remark 5.6. (1) Categories Elem(T ) where T is an Lκω theory and
Emb(T ) where T is a basic Lκω theory are abstract elementary classes.

(2) Each large abstract elementary class is an LS-accessible category.
This follows from 4.11 but also directly from the proof of 5.5. Following
this proof, we have rank(A) = |A|+ for each A in K with |A| ≥ λ.

We can write our characterization of abstract elementary classes in
the language of category theory, i.e., without using Σ-structures.

Corollary 5.7. A category is equivalent to an abstract elementary class
if and only if it is an accessible category with directed colimits whose
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morphisms are monomorphisms and which admits a full with respect
to isomorphisms and nearly full embedding into a finitely accessible
category preserving directed colimits and monomorphisms.

Proof. Necessity is evident because Emb(Σ) is finitely accessible. Con-
sider a category K satisfying the conditions above. Let H : K → L be
the corresponding functor into a finitely accessible category. Consider
the canonical functor

E : L → SetA
op

.

(see [1], 1.25). E preserves directed colimits (see [1], 1.26). Since
objects of SetA

op

can be viewed as many-sorted unary algebras, SetA
op

is a full subcategory of Str(Σ) for a finitary signature Σ containing
operation symbols only. Thus embeddings in Str(Σ) coincide with
monomorphisms. Hence the codomain restriction of the composition
EH is a full with respect to isomorphisms and nearly full embedding

K → Emb(Σ)

preserving directed colimits. Following 5.2 (3) and 5.5, K is equivalent
to an abstract elementary class. �

Remark 5.8. (1) Our definition of abstract elementary category is
motivated by Corollary 5.7; it results from dropping the hypotheses
on monomorphisms. Any finitely accessible category whose morphisms
are not monomorphisms, like posets and isotone mappings, is example
of an abstract elementary category that is not an abstract elementary
class.

(2) Any abstract elementary class is an abstract elementary cate-
gory. On the other hand, let K be an abstract elementary category
with a functor H into a finitely accessible category from 5.3. Without
any loss of generality, we can assume that H : K → Str(Σ) where
Σ is a finitary signature. Consider the pullback from the proof of
4.11. Then L is an accessible category with directed colimits whose
morphisms are monomorphisms and H is a full with respect to iso-
morphisms and nearly full embedding preserving directed colimits and
monomorphisms. Thus L is equivalent to an abstract elementary class.
Moreover, the functor G is onto on objects and preserves presentability
ranks starting from some regular cardinal.

(3) We are not aware of any abstract elementary category which
is not ∞, ω-elementary. A simple example of an abstract elementary
class K in Σ which is not closed under L∞,ω-elementary equivalence
(thus not axiomatizable in any Lκω(Σ)) is given in [7], 2.10. There,
Σ is a single-sorted signature containing just a unary relation symbol
P . Objects of K are Σ-structures K such that PK is countable and
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the complement of PK is infinite. Morphisms of K are substructure
embeddings which are identities on P . But, K is isomorphic to the
category of infinite sets and monomorphisms. The latter category is
axiomatizable by a basic Lωω theory in the empty signature. Thus it
is ∞, ω-elementary.

Proposition 5.9. Let K be an abstract elementary category. Then
there is an ∞, ω-elementary category L and a faithful functor E : L →
K which preserves directed colimits and is surjective on objects.

Proof. LetG : L → K be the embedding of an abstract elementary class
L from 5.8 (2). Shelah’s Presentation Theorem (see [3] 4.15) yields a
finitary signature Σ ⊆ Σ′, an Lωω-theory T ′ and a set Γ of quantifier
free types in Σ′ such that L consists of Σ-reducts of T ′-models omitting
types from Γ. Omitting a type can be expressed as an L∞ω-sentence.
By adding these sentences for types from Γ to T ′, we get an L∞ω-theory
T ′′. Since Elem(T ′′) is∞, ω-elementary (see 2.3 (5), the reduct functor
R : Elem(T ′′) → L has the desired properties for L. Thus GR has
these properties for K. �

6. Categoricity

Definition 6.1. Let λ be an infinite cardinal. A category K is called
λ-categorical it it has, up to isomorphism, precisely one object of the
presentability rank λ+.

Remark 6.2. Following 5.6 (2), the definition 6.1 (suggested in [12]) is
in accordance with its model theoretic meaning in abstract elementary
classes for sufficiently large cardinals λ.

Shelah’s Categoricity Conjecture claims that for every abstract ele-
mentary class K there is a cardinal κ such that K is either λ-categorical
for all cardinals κ ≤ λ or K is not λ-categorical for any cardinal κ ≤ λ.
Following 6.2, this is a statement about K as a category, i.e., it does
not depend on the signature in which the abstract elementary class is
presented.

By Remark 5.8 (2), Shelah’s Categoricity Conjecture is equivalent
to the Categoricity Conjecture for abstract elementary categories. It
is natural to ask about the status of the Categoricity Conjecture for
accessible categories belonging to other levels of our hierarchy. At
present, we can offer little information other than this easy observation.

Example 6.3. Suppose K is an accessible category which is not LS-
accessible. Let L = KtSet be the disjoint union of K and the category
of sets. Then L is an accessible category and there is a proper class of
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cardinals λ such that L is λ-categorical and, at the same time, a proper
class of cardinals λ such that L is not λ-categorical.

If this K has directed colimits then the categoricity conjecture fails
for the class (4). By 4.12, however, this simple trick does not help for
categories in class (3) of our hierarchy.

Remark 6.4. Shelah’s conjecture seems to be unknown even for finitely
accessible categories, lying at level (1) of the hierarchy. It would be
interesting to understand whether the exquisite Galois-theoretic ma-
chinery of [3] can be brought to bear implications in this setting.
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[11] J. Rosický, More on directed colimits of models, Appl. Cat. Struct. 2

(1994), 71-76.
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