
PURITY IN ALGEBRA

F. BORCEUX AND J. ROSICKÝ∗

Abstract. There are considered pure monomorphisms and pure
epimorphisms in varieties of universal algebras with applications to
equationally compact (= pure injective) algebras, pure projective
algebras and perfect varieties.

1. Introduction

Purity plays an important role in module theory but all its basic
concepts can be extended to general universal algebras. One can pro-
ceed model-theoretically (see [19]) but our approach will be algebraic.
For instance, pure monomorphisms can be characterized as directed
colimits of split monomorphisms and this description works well even
in all locally finitely presentable categories (see [2]). This is a class of
categories containing not only varieties but also quasivarieties of many-
sorted universal algebras. Having pure monomorphisms, one can intro-
duce pure injective objects. In module theory, these objects are also
called algebraically compact modules and, in universal algebra, one also
speaks about equationally compact algebras. Equationally compact al-
gebras were intensively studied during the 1970’s; it is well surveyed
in [22]. We will reconsider this subject and bring a new criterion for
having enough pure injectives, which well covers all known occurences
of this property in varieties of unary algebras.

Pure epimorphisms of modules are precisely cokernels of pure mono-
morphisms and they can be characterized as directed colimits of split
epimorphisms. This description again works well in all locally finitely
presentable categories (see [3]); there is also a model-theoretic defini-
tion of pure epimorphisms in [19]. In contrast to pure injectives, pure
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projective objects have an easy characterization as retracts of coprod-
ucts of finitely presentable objects and each locally finitely presentable
category has enough pure projectives. We will call a locally finitely
presentable category pure semisimple if any pure epimorphism splits,
which is the same as that each object is pure projective. This concept is
important in module theory where it corresponds to the fact that each
module is pure injective. We will discuss pure semisimple varieties of
unary algebras.

The opposite extreme to pure semisimplicity is when any strong epi-
morphism (monomorphism) is pure. In module theory, this means that
the underlying ring R is von Neumann regular. For general varieties
of algebras, we studied this situation in [10]. Then pure projectivity
(injectivity) reduces to projectivity (injectivity). Flat objects K can
be defined by the property that every strong epimorphism L → K is
pure (see [19]). In varieties, this is equivalent to the fact that K is a
directed colimit of finitely presentable projective algebras (in this way,
flat algebras were introduced in [17]). Analogously, absolutely pure
objects K are objects such that every strong monomorphism L → K
is pure (see [19]). We will discuss these concepts in general varieties of
algebras. In particular, we will mention perfect varieties, i.e., varieties
where every algebra has a projective cover. This is a classical concept
in modules and, for unary varieties, it was studied by Isbell [13].

2. Pure injectivity

Recall that a monomorphism f : A → B in a locally finitely pre-
sentable category K is pure provided that in each commutative square

X
g //

u

��

Y

v

��
A

f
// B

with X and Y finitely presentable the morphism u factorizes through
g, i.e., there exists d : Y → A with dg = u. Pure monomorphisms in
locally finitely presentable categories have the following properties:

(1) a composition of two pure monomorphisms is a pure monomor-
phism;

(2) if f2f1 is a pure monomorphism then f1 is a pure monomor-
phism;

(3) any pure monomorphism is a regular monomorphism (i.e., an
equalizer of a parallel pair of morphisms);
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(4) any split monomorphism is pure (recall that a monomorphism
f : A → B splits if hf = idA for some h : B → A);

(5) pure monomorphisms are precisely directed colimits of split mo-
nomorphisms in the category K→ of morphisms in K (recall that
objects of this category are morphisms in K and morphisms
from f : A → B to f ′ : A′ → B′ in K→ are pairs (g, h) where
g : A → A′ and h : B → B′ with hf = f ′g);

(6) pure monomorphisms are stable under pushout, i.e., in a pushout

A
f //

g

��

B

ḡ

��
C

f̄

// D

f̄ is a pure monomorphism provided that f is a pure monomor-
phism.

The properties (1)–(5) can be found in [2], (6) is proved in [3].
Let (fij : Ki → Kj)i<j<λ be a smooth chain of morphisms of a

category K. This means that λ is a limit ordinal, fjkfij = fik for
i < j < k and (fij : Ki → Kj)i<j is a colimit cocone for each limit
ordinal j < λ. Then the component f0 : K0 → K of a colimit cocone
(fi : Ki → K)i<λ is called the transfinite composition of (fij)i<j<λ.

Lemma 2.1. Pure monomorphisms in a locally finitely presentable cat-
egory K are closed under transfinite composition.

Proof. Consider a smooth chain (fij : Ki → Kj)i<j<λ of pure monomor-
phisms, its transfinite composition f : K0 → K and a commutative
square

X
g //

u

��

Y

v

��
K0

f
// K

with X and Y finitely presentable. There is i < λ and v′ : Y → Ki such
that v′g = f0iu. Since f0i is pure, there is d : Y → K0 with dg = u.
We have proved the factorization property from the definition of a pure
monomorphism. This property implies that f is a monomorphism, thus
a pure monomorphism (see [2], 2.29). �
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The following definition mimics the concept of an effective union of
subobjects due to [5] which is satisfied by both abelian categories and
toposes.

Definition 2.2. Let K be a locally finitely presentable category. We
say that pure subobjects have effective unions in K if whenever a dia-
gram

A
f //

f ′

  @
@@

@@
@@

C

E
h

??~~~~~~~

D

ḡ

OO

f̄

// B

g′
``@@@@@@@

g

OO

is given where f and g are pure monomorphisms, the outer square is
a pullback and the inner tetragon (consisting of f ′, ḡ, g′ and f̄) is a
pushout then the uniquely defined morphism h is a pure monomor-
phism.

Definition 2.3. Let K be a locally finitely presentable category. An
object K is called pure injective if for any pure monomorphism f : A →
B and any morphism g : A → K there is a morphism h : B → K with
hf = g.

We say that K has enough pure injectives if each object A of K has
a pure monomorphism A → K into a pure injective object K.

Theorem 2.4. Let K be a locally finitely presentable category having
effective unions of pure subobjects. Then K has enough pure injectives.

Proof. There is a regular cardinal µ such that each monomorphism
A → B with B finitely presentable has A µ-presentable. Then, for
every regular cardinal λ ≥ µ, each monomorphism h : A → B with
B λ-presentable has A λ-presentable. In fact, we express B as a fil-
tered colimit (bi : Bi → B)i∈I of finitely presentable objects such that
card I < λ (see [16], 2.3.11) and form pullbacks

A
h // B

Ai

ai

OO

hi

// Bi

bi

OO

Then (ai : Ai → A)i∈I is a filtered colimit (see [2], 1.59) and Ai, i ∈ I,
are µ-presentable objects. Hence A is λ-presentable (see [2], 1.16).
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Let Pure(K) be the subcategory of K consisting of all objects from
K and pure monomorphisms as morphisms. By [2], 2.34 and 2.19,
there is a regular cardinal ν such that ν ≥ µ, Pure(K) is ν-accessible
and the embedding Pure(K) → K preserves ν-filtered colimits and
ν-presentable objects. This implies that each object K of K is a ν-
directed colimit (ki : Ki → K)i∈I such that Ki, i ∈ I, are ν-presentable
in K and ki, i ∈ I, are pure monomorphisms.

Let M be the set of all pure monomorphisms A → B with A and B
ν-presentable. A morphism will be called M-cellular if it is a transfinite
composition of pushouts of morphisms from M. According to (6) and
Lemma 2.1, any M-cellular morphism is a pure monomorphism. We
will prove that, conversely, any pure monomorphism is M-cellular.
Then [1], II.10 will imply that K has enough pure injectives.

Let h : A → B be a pure monomorphism. Since K is well-powered
(i.e., each object has only a set of subobjects, see [2], 0.6), we may
consider the set S of all pure subobjects of B partially ordered by
M-cellular inclusions. Since M-cellular morphisms are closed under
transfinite composition and pure monomorphisms are closed under di-
rected colimits in K→, S is inductive, i.e., A is an M-cellular subobject
of a pure subobject g : C → B which is a maximal element of S. It
suffices to show that C = B, i.e., that g is an isomorphism.

Assume that g is not an isomorphism. Then there is a pure monomor-
phism b0 : B0 → B with B0 ν-presentable which does not factorize
through g. Form a pullback

C
g // B

C0

c0

OO

g0

// B0

b0

OO

Since g0 is a monomorphism, C0 is ν-presentable. Since C0 is ν-
presentable and C is a ν-directed union of its ν-presentable pure sub-
objects, c0 factorizes through one of them. Since the same argument
applies to b0 : B0 → B, there is a filling

C
g // B

C0

c0

ZZ4444444
g0 // B1

b1

DD








C0

c′0

>>~~~

g0

//

c0

OO

B0

b01``@@@@

b0

OO
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with c0 and b1 pure monomorphism and C0, B1 ν-presentable. Clearly,
g0 is a pure monomorphism. Form a pullback

C
g // B

C1

c1

OO

g1

// B1

b1

OO

and take the induced morphism c′′0 : C0 → C1, i.e., g1c
′′
0 = g0 and

c1c
′′
0 = c0. Then C1 is ν-presentable. Denote c01 = c′′0c

′
0. We have

c1c01 = c0 and g1c01 = b01g0. Thus we have got another filling

C
g // B

C1

c1

ZZ5555555
g1 // B1

b1

DD							

C0

c′′0

>>~~~

g0

//

c0

OO

B1

id``@@@@

b1

OO

By continuing this procedure, we get ν-presentable objects Bn, Cn

monomorphisms gn : Cn → Bn, cn,n+1 : Cn → Cn+1, cn : Cn → C,
c′n : Cn → Cn and pure monomorphisms gn : Cn → Bn+1, bn,n+1 : Bn →
Bn+1, bn : Bn → B, c′′n : Cn → Cn+1, cn : Cn → C such that gcn = bngn,
cn+1cn,n+1 = cn, bn+1bn,n+1 = bn, gn+1c

′′
n = gn, cn,n+1 = c′′nc

′
n, cn = cnc

′
n

and cn = cn+1c
′′
n.

Let (c̃n : Cn → C̃)∞n=0 and (̃bn : Bn → B̃)∞n=0 be colimit cocones. We
get the induced morphisms

C
g // B

C̃

c

OO

eg

// B̃

b

OO

satisfying cc̃n = cn, b̃bn = bn and g̃c̃n = b̃ngn for n = 0, 1, . . . . Moreover,
the square above is a pullback (as a colimit of a chain of pullbacks).
At the same time, g̃ = colim gn where gn : Cn → Bn+1 are pure

monomorphism. Thus g̃ is a pure monomorphism. The objects C̃ and

B̃ are ν-presentable and b = colim bn is a pure monomorphism.
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Form the effective union of g and b:

C
g //

t

  @
@@

@@
@@

B

D
h

>>~~~~~~~

C̃

c

OO

eg

// B̃

b

OO

__????????

Then h is a pure monomorphism and t is M-cellular because g̃ ∈ M.
This contradicts the maximality of C. �

Remark 2.5. In the proof of Theorem 2.4, we have established that
pure injectives form a small injectivity class M-Inj consisting of objects
injective w.r.t. a set M of morphisms. In the literature concerning pure
injective (=equationally compact) universal algebras, this smallness
property corresponds to equational λ-compactness for a cardinal λ.

The property of having effective unions modifies an approach to the
existence of enough injective objects going back to Grothendieck (see
[7]).

In what follows, SetC will denote the category of all functors C → Set

(morphisms are natural transformations).

Corollary 2.6. Let C be a small category such that

(a) whenever f : C → D1 and g : C → D2 are in C then either
f = hg or g = hf for some h;

(b) if there is a monomorphism K → L or an epimorphism L → K
in SetC with L finitely presentable then K is finitely presentable
too.

Then SetC has enough pure injectives.

Proof. Since SetC is locally finitely presentable (see [2]), by Theorem
2.4 it suffices to show that SetC has effective unions of pure subobjects.
Consider pure monomorphisms f : K → L and g : M → L and form
their effective union

K
f //

f ′   A
AA

AA
AA

A L

N

h
>>||||||||

M
g′

``BBBBBBBB

g

OO
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Since SetC has effective unions of subobjects (see [5]), h is a monomor-
phism. Consider a commutative square

X
t //

u

��

Y

v

��
N

h
// L

with X and Y finitely presentable. Without any loss of generality we
can assume that v is a monomorphism and the square is a pullback
(and thus u and t are monomorphism as well). Indeed, take the (epi,
mono)-factorization v = v2v1 of v, the pullback of h and v2 and the
induced morphism u′ such that u′′u′ = u and t′u′ = v1t:

X
t //

u′

��

Y

v1

��
X ′

t′ //

u′′

��

Y ′

v2

��
N

h
// L

According to (b), Y ′ is finitely presentable and, since t′ is a monomor-
phism, X ′ is finitely presentable too. Therefore, having d′ : Y ′ → N
with d′t′ = u′′, we get d = d′v1 satisfying

dt = d′v1t = d′t′u′ = u′′u′ = u .

Form pullbacks

K
f // L

X1

u1

OO

t1

// Y

v

OO M
g // L

X2

u2

OO

t2

// Y

v

OO

Since t1 and t2 are monomorphisms, X1 and X2 are finitely presentable
and, since f and g are pure monomorphisms, we get d1 : Y → K and
d2 : Y → M with d1t1 = u1 and d2t2 = u2. For C ∈ C, let Z(C) be the
set

{y ∈ Y (C)| L(s)(vC(y)) ∈ fDK(D) − gDM(D) for some s : C → D}
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Let dC : Y (C) → N(C) be defined as follows

dC(y) =

{
f ′

Cd1C(y) for y ∈ Z(C)

g′
Cd2C(y) otherwise .

Then dCtC = uC because if uC(x) ∈ f ′
CK(C) − g′

CM(C) then tC(x) ∈
Z(C) (take s = idC) and thus dCtC(x) = uC(x) because

hCdCtC(x) = hf ′

Cd1Ct1C(x) = hf ′

Cu1C(x)

= fCu1C(x) = vCt1C(x) = hCuC(x) .

If uC(x) ∈ g′
CM(C) then tC(x) /∈ Z(C) (because L(s)vCtC(x) =

L(s)hCuC(x) ∈ gDM(D) for each s : C → D) and thus dCtC(x) =
uC(x) because

hCdCtC(x) = hCg′

Cd2Ct2C(x) = gCu2C(x) = vCb2C(x) = hCvC(x) .

We have to prove that d : Y → N is a natural transformation (i.e.,
a morphism in SetC). Consider y ∈ Y (C) and p : C → E. We have
the following possibilities.
(i) y ∈ Z(C). Let s : C → D be from the definition of Z(C).
(i1) Y (p)(y) ∈ Z(E). Then

dEY (p)(y) = f ′

Ed1EY (p)(y) = N(p)f ′

Cd1C(y) = N(p)dC(y) .

(i2) Y (p)(y) /∈ Z(E). Then s does not factorize through p because if
s = qp then

L(q)vCY (p)(y) = L(qp)vC(y) = L(s)vC(y) ∈ fDK(D) − gDM(D)

and thus Y (p)(y) ∈ Z(E) (due to q). By (a), p factorizes through s,
i.e., p = qs. Hence

vEY (p)(y) = L(p)vC(y) = L(qs)vC(y) ∈ fEK(E) .

Since Y (p)(y) /∈ Z(E), we have

vEY (p)(y) ∈ fEK(E) ∩ gEM(E).

Hence Y (p)(y) = tE(x) for some x ∈ X1(E) ∩ X2(E). Therefore

dEY (p)(y) = g′

Ed2EY (p)(y) = g′

Ed2Et2E(x) = g′

Eu2E(x)

= f ′

Eu1E(x) = f ′

Ed1Et1E(x) = f ′

Ed1EY (p)(y)

= dN(p)f ′

Cd1C(y) = N(p)dE(y) .

(ii) y /∈ Z(C). Then Y (p)(y) /∈ Z(E) because s : E → D making
Y (p)(y) ∈ Z(E) would give sp : C → D making y ∈ Z(C). Thus

dEY (p)(y) = g′

Ed2EY (p)(y) = N(p)g′

Ed2C(y) = N(p)dC(y) .

�
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Example 2.7. (1) We will give an example of a small category C such
that SetC does not have enough pure injectives.

Consider the category C having two objects C and D and two non-
identity morphisms f, g : C → D. Then SetC is the category of oriented
multigraphs because C is the object of edges, D the object of vertices
and f (respectively, g) gives the source (respectively, target) vertex of
an edge.

SetC satisfies the condition (b) from 2.6 but not (a). It neither has
effective unions of pure monomorphisms nor enough pure injectives. In
fact, in the graph

�
b
•

  @
@@

@@
@@

•

� •
a

>>~~~~~~~~

both {a} and {b} are pure (because split) subobjects but {a, b} is not.
Let K be a complete oriented graph without loops having countably

many vertices. Then a monomorphism K → L is pure iff L does not
have loops. Thus there is no pure monomorphism f : K → L with L
pure injective (f should be injective w.r.t. g : K → M where M is
a complete oriented graph without loops having more vertices than L,
which implies that L has a loop). Hence SetC does not have enough
pure injectives.

(2) Let (N, +) be the monoid of natural numbers considered as a
category with a single object. Then SetN is the variety of algebras
with one unary operation. By 2.6, SetN has enough pure injectives.
This result was proved by Wenzel [21]; see also [20].

Corollary 2.8. Let C be a small category such that each morphism of
C is an isomorphism. Then SetC has enough pure injectives.

Proof. Again, we will prove that SetC has effective unions of pure sub-
objects. Consider pure monomorphism f : K → L and g : M → L,
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form their effective union

K
f //

f ′   A
AA

AA
AA

A L

N

h
>>||||||||

M

g

OO

g′

``BBBBBBBB

and consider a commutative square

X
t //

u

��

t1   B
BB

BB
BB

B Y

v

��

X1

t2

>>}}}}}}}}

u′

~~||
||

||
||

N
h

// L

with X and Y finitely presentable. Inside, we have the (epi, mono)-
factorization t = t2t1 and the induced morphism u′ (recall from the
proof of 2.6 that h is a monomorphism).

At first, we will prove that any monomorphism m : U → V in SetC

is a coproduct injection. Consider s : C → D in C and x ∈ V (C) such
that V (s)(x) ∈ mDU(D). Then V (s)(x) = mD(y) for some y ∈ U(D)
and thus

x = V (s−1s)(x) = V (s−1)mD(y) = mCU(s−1)(y) ∈ mCU(C) .

We have proved that m(U) is a connected component of V , i.e., m is a
coproduct injection.

Thus, we can assume that Y = X1

∐
Y1 and it suffices to find u′′ :

Y1 → N ; then (u′, u′′) : Y → N satisfies (u′, u′′)t1 = u. Consider

K
f ′

// N
h // L

X2

u

OO

f

// X1

u′

OO

t2

// Y

v

OO

where the left square is a pullback. Since f is a monomorphism, it
is a coproduct injection and we can assume that X1 = X2

∐
X3, i.e.,

Y = X2

∐
X3

∐
Y1. It is easy to see that X2 is finitely presentable and,

since f = hf ′ is a pure monomorphism, there is X3

∐
Y1 → K. This

yields Y1 → N . �
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Corollary 2.9 (Banaschewski [4]). Let G be a group. Then the cate-
gory G-Set of left G-sets has enough pure injectives.

Proof. G can be considered as a category with a single object whose
set of endomorphisms is G. Hence the result follows from 2.8. �

Let K be a locally finitely presentable category and C be the set of all
representatives of finitely presentable objects in K. Then K is (equiv-
alent to) a full reflective subcategory of SetC

op

closed under directed
colimits. So, we can apply the following result.

Proposition 2.10. Let K be a full reflective subcategory of a locally
finitely presentable category L closed under directed colimits. If L has
effective unions of pure subobjects then K has effective unions of pure
subobjects.

Proof. Let U : K → L be the inclusion, F : L → K its left adjoint and
consider pure monomorphisms f : K → L and g : M → L in K and
their effective unions in K and L

K
f //

Ff ′

!!D
DD

DD
DD

D L

FN
Fh

<<zzzzzzzzz

X
g

//

f

OO

M
Fg′

bbDDDDDDDD

g

OO

UK
Uf //

f ′

!!D
DD

DD
DD

D UL

N
h

<<zzzzzzzz

UX
Ug

//

Uf

OO

UM
g′

bbDDDDDDDD

Ug

OO

We have used the fact that U preserves pullbacks and V preserves
pushouts. Since h is a pure monomorphism, it is a directed colimit
of split monomorphisms and thus Fh is a directed colimit of split
monomorphisms. Since K is locally finitely presentable (see [2], Coro-
lalry 2.48), Fh is a pure monomorphism. �

3. Pure semisimplicity

Recall that a morphism h : A → B in a locally finitely presentable
category K is a pure epimorphism if any morphism f : C → B with
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C finitely presentable factorizes through h, i.e., f = hg for some g :
C → A (see [3]). Any split epimorphism f : A → B is pure; recall
that being split means the existence of s : B → A with fs = idB.
By [3], pure epimorphisms in a locally finitely presentable category are
precisely directed colimits of split epimorphisms in K→. This explains
why the concept of a pure epimorphism is not dual to that of a pure
monomorphism.

An object K of K is called pure projective if for any pure epimorphism
h : A → B and for any morphism f : K → B there is g : K → A with
hg = f . Therefore any finitely presentable object is pure projective.

Lemma 3.1. Let K be a locally finitely presentable category. Then an
object K is pure projective iff it is a retract of a coproduct of finitely
presentable objects.

Proof. The sufficiency is evident because pure projective objects are
clearly closed under coproducts and retracts. Under a retract of K we
mean an object L having a split monomorphism L → K. Conversely,
let K be pure projective and express it as a directed colimit

(ki : Ki → K)i∈I

of finitely presentable objects Ki. Consider the coproduct

(ui : Ki →
∐

i∈I

Ki)i∈I

and the induced morphism t :
∐
i∈I

Ki → K satisfying tui = ki for each

i ∈ I. Then t is a pure epimorphism because each f : C → K with
C finitely presentable factorizes through some ki and thus through t.
Since K is pure projective, t splits, i.e., ts = id for some s and thus K
is a retract of

∐
i∈I

Ki. �

Remark 3.2. In the proof (which goes back to Warfield), we have
shown that every locally finitely presentable category has enough pure
projectives, i.e., that each object K admits a pure epimorphism t :
L → K with a pure projective domain (L =

∐
i∈I

Ki in the proof).

Definition 3.3. A locally finitely presentable category K will be called
pure semisimple if each pure epimorphism in K splits, i.e., if every
object is pure projective.

Proposition 3.4. A locally finitely presentable category K is pure
semisimple iff every object is a retract of a coproduct of finitely pre-
sentable objects.
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Proof. By Lemma 3.1, it suffices to show that K is pure semisimple iff
each its object is pure projective. Since each pure epimorphism with a
pure projective codomain splits, K is pure semisimple provided that it
has all objects pure projective. The converse follows from Remark 3.2
and Lemma 3.1. �

An object K of a locally finitely presentable category K is called
abstractly finite (see [15]) if any morphism f : K →

∐
i∈I

Ki factorizes

through a finite subcoproduct, i.e., there are i1, . . . , in ∈ I with f = gu

where g : K →
n∐

j=1

Kij and u :
n∐

j=1

Kij →
∐
i∈I

Ki is the induced morphism.

Each indecomposable object K, i.e., an object such that hom(K,−) :
K → Set preserves coproducts, is abstractly finite.

Proposition 3.5. Let K be a pure semisimple locally finitely pre-
sentable category. Then an object of K is finitely presentable iff it
is abstractly finite.

Proof. Every finitely presentable object is abstractly finite. Let K be
an abstractly finite object and, by 3.4, we express it as a retract of a
coproduct of finitely presentable objects

∐
i∈I

Ki

K
f // ∐
r

oo Ki

rf = idK . Since f factorizes through a finite subcoproduct
n∐

j=1

Kij , K

is a retract of
n∐

j=1

Kij and thus it is finitely presentable. �

Coproducts are universal in a category K (see [8]) if, given a coprod-
uct (ui : Li →

∐
i∈I

Li)i∈I and a morphism f : K →
∐
i∈I

Li, the pullbacks

Ki

vi //

fi

��

K

f

��
Li ui

//
∐

Li

make K a coproduct (vi : Ki → K)i∈I . Coproducts are universal in
each category SetC. In varieties which are not unary, coproducts are
rarely universal.
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Proposition 3.6. Let K be a locally finitely presentable category with
universal coproducts. Then K is pure semisimple iff each of its objects
is a coproduct of finitely presentable objects.

Proof. By 3.4, it suffices to show that coproducts of finitely presentable
objects are closed under retracts. Let

K
f // ∐
r

oo Ai

where rf = idK and Ai, i ∈ I, are finitely presentable. Forming pull-
backs along coproduct injections

Ki

vi //

fi

��

K

f

��
Ai ui

//
∐

Ai

we get that K =
∐
i∈I

Ki. Since we have pullbacks

Ai

ui //

ri

��

∐
Ai

r

��
Ki vi

//
∐

Ki

we have rifi = idKi
and thus Ki, i ∈ I, are finitely presentable as

retracts of Ai, i ∈ I. �

Proposition 3.7. Let C be a small category. Then SetC is pure semisim-
ple iff each indecomposable object is finitely presentable.

Proof. Necessity follows from 3.6. Since every object in SetC is a co-
product of indecomposable objects (see, e.g., [9], 6.1.5 and the forth
example after it), we get the sufficiency. �

Remark 3.8. Hence SetC is pure semisimple iff every object is a co-
product of indecomposable finitely presentable objects. The same is
true (but much harder to prove) in any category R-Mod of left R-
modules over a ring R (cf. [11]).

Corollary 3.9. If SetC is pure semisimple then monomorphisms split
in SetC.

Proof. By 3.7, every morphism f in SetC is of the form
∐
i∈I

fi :
∐
i∈I

Ai →
∐
i∈I

Bi where fi : Ai → Bi and Ai, Bi, i ∈ I are indecomposable finitely
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presentable. If f is pure, we have di with difi = ui for each i ∈ I.

∐
Ai

f //
∐

Bi

Ai
fi

//

ui

OO

Bi

vi

OO
di

eeKKKKKKKKKKK

This induces the morphism d :
∐

Bi →
∐

Ai satisfying dvi = di, i ∈ I.
We have dfui = dvifi = difi = ui and thus df = id. �

Theorem 3.10. Let G be a group. Then the category G-Set of left
G-sets is pure semisimple iff every subgroup of G is finitely generated.

Proof. Let G be a group such that G-Set is pure semisimple. Let H
be a subgroup of G. Recall that ̺ is a left congruence on G if

s̺t ⇒ (us)̺(ut)

for every s, t, u ∈ G. By [12] (see also [14], 4.39), the left congruence
̺H on G generated by H × H satisfies

H = {x|(x, 1) ∈ ̺H}.

Since G/̺H is a cyclic, i.e., indecomposable G-set, it is finitely pre-
sentable (see 3.7). Consequently, ̺ is finitely generated (cf. [14], I.5.30)
and thus H is finitely generated.

Conversely, let subgroup of G is finitely generated. Then every left
congruence on G be finitely generated and thus every cyclic G-set is
finitely presentable. Consider a G-set A and a, b ∈ A. If the 1-
generated sub-G-sets Aa and Ab intersect then Aa = Ab. Indeed, if
c ∈ Aa ∩ Ab then c = xa = yb and thus a = x−1xa = x′yb ∈ Ab.
Hence Aa ⊆ Ab and, conversely Ab ⊆ Aa. Therefore A is a coproduct
of cyclic G-sets and, by 3.6, G-Set is pure semisimple. �

Corollary 3.11. Let G be a commutative group. Then G-Set is pure
semisimple iff G is finitely generated.

Remarks 3.12. (1) A ring R has finite representation type if it is pure
semisimple (i.e., every left R-module is a coproduct of indecompos-
able finitely presentable left R-modules) and there are, up to isomor-
phism, finitely many indecomposable left R-modules. The famous pure
semisimplicity conjecture asks whether every pure semisimple ring has
finite representation type. This is true for commutative rings (see [11]).

Since any subgroup of (Z, +) is cyclic, Z-Set is pure semisimple
(using 3.11). But Z is not of “finite representation type” because the
quotient left Z-sets Zn, n ∈ Z yield infinitely many non-isomorphic
indecomposable left Z-sets.
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(2) By [4], pure monomorphisms split in G-Set for a group G iff all
subgroups of G are finitely generated. Hence G-Set is pure semisimple
iff all its objects are pure injective. The same property has the category
R-Mod of left modules over a ring R because pure epimorphisms are
precisely cokernels of pure monomorphisms.

(3) The category Set→ is not pure semisimple although all of its
objects are pure injective. An example of a pure epimorphism in Set→

which does not split is (p, p′) : f → g (cf. (5) before 2.1) where
p = f :

∐
n∈N

n → N is induced by the inclusions n → N on each summand

(n = {0, 1, . . . , n − 1}), g : N → 1.
(4) If K be a full reflective subcategory of a locally finitely presentable

category L closed under directed colimits and L is pure semisimple then
K is pure semisimple as well.

Indeed, K is locally finitely presentable ([2], 2.41) and the inclusion
preserves pure epimorphisms.

4. Perfectness

An object K of a locally finitely presentable category K will be called
projective if for every strong epimorphism (cf. [8], 4.3.5) h : A → B
and every morphism f : K → B there is a morphism g : K → A with
hg = f . If K is a variety then we get usual projective algebras. Since
every pure epimorphism in a locally finitely presentable category K is
regular (see [3], Proposition 4) and thus strong, every projective object
is pure projective.

An object K of a locally finitely presentable category K will be called
flat if every strong epimorphism L → K is pure (see [19]). We will show
that, in varieties, this definition coincides with that from [17].

Lemma 4.1. An object of a variety is flat iff it is a directed colimit of
(finitely presentable) projective objects.

Proof. Let (ki : Pi → K)i∈I be a directed colimit of projectives and
consider a strong epimorphism h : L → K. Let f : X → K be a homo-
morphism with X finitely presentable. There is i ∈ I and f ′ : X → Pi

such that kif
′ = f . Moreover, we have f ′′ : Pi → L with hf ′′ = ki.

Hence h(f ′′f ′) = f , which proves that h is a pure epimorphism.
Conversely, let K be flat. Since every variety has enough projectives,

there is a strong epimorphism p : P → K with P projective. Since K
is flat, p is a pure epimorphism. Consider f : X → K where X is
finitely presentable. Then f = pg for some g : X → P and, since every
projective object is a directed colimit of finitely presentable projectives,
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there is a factorization

P
p // K

Q

h

OO

Xu
oo

f

OO

where Q is a finitely presentable projective. Consequently, K is a
directed colimit of finitely presentable projectives. �

Definition 4.2. A locally finitely presentable category will be called
perfect if every object K has a projective cover, i.e., a strong epimor-
phism p : P → K with P projective such that each monomorphism
f : P → P with pf = p is an isomorphism.

Remark 4.3. Our definition is equivalent to the standard one saying
that each object K admits a strong epimorphism p : P → K with P
projective such that no restriction of p to a proper subobject of P is a
strong epimorphism.

In fact, let p : P → K be a projective cover and consider a monomor-
phism u : Q → P such that pu is a strong epimorphism. Since P is
projective, there is v : P → Q such that puv = p. Thus uv is an
isomorphism and hence u is an isomorphism.

Conversely, consider a strong epimorphism p : P → K with P pro-
jective such that the restriction of p to any proper subobject is not a
strong epimorphism. Let f : P → P satisfy pf = p. By [2], 1.61,
there is a factorization f = hg where g is a strong epimorphism and h
a monomorphism. Since phg = pf = p is a strong epimorphism, h is
an isomorphism. Since P is projective, g splits, i.e., gt = id for some
t. Since phgt = ph is a strong epimorphism, t is an isomorphism and
thus g is an isomorphism. We have proved that f is an isomorphism.

Proposition 4.4. Let K be a locally finitely presentable category having
enough projectives and such that each flat object is projective. Then K
is perfect.

Proof. It follows from [18], 2.5. �

Remark 4.5. For a ring R the following conditions are equivalent (see
[6]):

(i) R-Mod is perfect;
(ii) every flat left R-module is projective;
(iii) R satisfies the descending chain condition on principal right

ideals.



PURITY IN ALGEBRA 19

Isbell [13] proved that, for any small category C, SetC is perfect iff
every flat object is projective. We do not know any example of a
perfect locally finitely presentable category where flat objects are not
projective.

Proposition 4.6. In a pure semisimple variety, every flat object is
projective.

Proof. Let K be flat and (ki : Ki → K)i∈I be a corresponding di-
rected colimit of finitely presentable projectives (see 4.1). Analogously
as in the proof of 3.1, the induced morphism t :

∐
i∈I

Ki → K is a pure

epimorphism. Since K is pure semisimple, t splits and thus K is pro-
jective. �

Remark 4.7. In fact, we have proved that, in any variety, an object
which is flat and pure projective is projective.
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Cat. XLII (2002), 83–106.
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