
The Power of Commuting

with Finite Sets of Words

Michal Kunc ∗

Department of Mathematics, Masaryk University,

Janáčkovo nám. 2a, 602 00 Brno, Czech Republic
kunc@math.muni.cz, http://www.math.muni.cz/~kunc/

March 10, 2006

Abstract

We construct a finite language L such that the largest language

commuting with L is not recursively enumerable. This gives a negative

answer to the question raised by Conway in 1971 and also strongly dis-

proves Conway’s conjecture on context-freeness of maximal solutions

of systems of semi-linear inequalities.

1 Introduction

In this paper we address the question whether the largest solution of any
language equation of the form XL = LX is regular provided L is a finite
or regular language. It is known that in several algebraic structures related
to algebras of formal languages, two elements commute if and only if they
can be generated by the same element. For instance, two words commute if
and only if they are powers of the same word (due to the defect theorem),
and such a characterization was proved valid also for polynomials and formal
series in non-commuting variables over a field (in particular, for multisets

∗Supported by the project MSM0021622409 of the Ministry of Education of the Czech

Republic.

1

of words) by Bergman [3] and Cohn [7], respectively. But in the case of
languages the situation is completely different.

Systems of language equations and inequalities were studied mainly in
connection with context-free languages since these languages can be described
as components of smallest solutions of explicit systems of polynomial equa-
tions, i.e. equations with the operations of union and concatenation. Much
less attention was devoted to systems of implicit equations. An attempt to
initiate development of a unified theory of general language equations has
been recently made by Okhotin; in particular, he proved that recursive (re-
cursively enumerable, co-recursively enumerable) languages are exactly lan-
guages definable as unique (smallest, largest) solutions of systems of implicit
language inequalities using concatenation and all Boolean operations [19] and
that each such language can be encoded even in a single explicit equation
and precisely defined by an explicit system consisting of two equations [20].

Known results on regularity of maximal solutions of systems of implicit
language inequalities are surveyed in [14]. Such issues were first addressed
by Conway [8], who observed that inequalities of the form E ⊆ L, where E
is a regular function of variables and L is a regular language, possess only
finitely many maximal solutions, all of them are regular and computable.

Maximal solutions are also simple in the case of inequalities where vari-
ables are concatenated only from one side. It is well known that regular
languages can be characterized as components of smallest or largest solu-
tions of explicit systems of right-linear equations. Regular solutions of more
general systems were studied for example by Leiss [17]. For systems of im-
plicit right-linear inequalities, i.e. inequalities of the form

K ∪K1X1 ∪ · · · ∪KnXn ⊆ L ∪ L1X1 ∪ · · · ∪ LnXn ,

where K, K1, . . . , Kn and L, L1, . . . , Ln are constant languages, it is known
that their largest solutions are always regular provided all constant languages
on right-hand sides are regular [16]. Moreover, if all constant languages
occurring in the system are regular, then computability of the largest solution
follows from Rabin’s results on MSO logic over infinite trees [21]; actually,
the computation of the solution is an ExpTime-complete problem [1, 5, 2].

The problem of regularity of the largest language commuting with a given
regular language was formulated already by Conway [8, p. 55 and 124]
in 1971. There are actually two variants of the problem depending on whether
we allow the resulting language to contain the empty word or not: The

2

largest solution of the equation XL = LX is denoted C(L) and its largest
solution without the empty word is denoted C+(L). The languages C(L) and
C+(L) are in general different and no direct relation between them (except
for the obvious inclusion C+(L) ⊆ C(L)) has been found yet. The problem
was recently studied in several articles (e.g. [22, 6, 9, 10]), but affirmative
answers were given only for regular codes [10] and at most ternary sets of
words [9]. Moreover, it even remained an open problem whether the largest
language commuting with a given finite set of words is recursive. On the
other hand, the complements of languages C(L) and C+(L) are always re-
cursively enumerable provided the language L is recursive; this is a special
case of a general result about systems of language equations, which is proved
in [19]. A summary of known results concerning commutation of languages
and some examples can be found in the recent survey [12].

In this paper we give the most negative possible answer to Conway’s
problem by showing that there exists a finite language L such that C(L) is
not recursively enumerable. More precisely, we show that the complement of
the language computed by an arbitrary Minsky machine can be encoded into
a solution of a commutation equation. This contrasts with the fact that the
largest solution of the inequality XK ⊆ LX is regular provided the language
L is regular, as demonstrated in [13]. On the other hand, negative results
analogous to those for commutation equations were proved in [15] for systems
consisting of two such inequalities.

We formulate our results for the case of languages C+(L) too, and further
we show that for a regular language L the difference C(L)\C+(L) also does not
have to be recursively enumerable, which answers a question posed in [11].
In addition, our results disprove Conway’s conjecture [8, p. 129] stating that
every maximal solution of a system of so-called semi-linear inequalities is
context-free.

Before dealing with the main result of this paper, we demonstrate the
techniques employed in its proof by proving several weaker results. In Sec-
tion 3 we consider the situation where L is only required to be a star-free
language. First, we give an example of a star-free language L such that C(L)
is non-regular, and then we describe how the construction can be improved
to show that C(L) does not even have to be recursively enumerable. Let us
mention that this is in accord with the results obtained in [13]: complicated
cases arise for star-free languages (or equivalently, languages recognizable by
aperiodic monoids), whereas maximal solutions of such equations with con-
stant languages recognizable by finite simple semigroups (in particular, by

3

finite groups) are always regular. Based on the constructions presented in
this section, we additionally prove that it is undecidable whether two star-
free languages are conjugated via some language containing the empty word.
This result is a step towards dealing with basic problems about conjugacy of
languages formulated in [4].

Section 4 is devoted to the case of finite languages; by encoding the
example from the beginning of Section 3 into finitely many words, we show
that the language C(L) can be non-regular even for a finite language L.
Finally, in Section 5 we combine the techniques of Sections 3 and 4 to obtain
a finite set of words L such that C(L) is not recursively enumerable.

Basic notions employed in our considerations are recalled in the following
section. For a more comprehensive introduction to the theory of formal
languages the reader is referred to [23].

2 Preliminaries

We denote the sets of positive and non-negative integers by N and N0, re-
spectively. Throughout the paper we consider a certain finite alphabet A.
As usual, we write A+ for the set of all non-empty finite words over A, and
A∗ for the set obtained from A+ by adding the empty word ε. For a letter
a ∈ A and a positive integer n ∈ N, we denote the set {ε, a, . . . , an} by a≤n.
A word u ∈ A∗ is called a factor of v ∈ A∗ if v = wuŵ for some words
w, ŵ ∈ A∗; it is called a prefix (suffix) of v if v = uw (v = wu, respectively)
for some w ∈ A∗.

Languages over the alphabet A are arbitrary subsets of A∗, and we say
that a language L ⊆ A∗ is ε-free if ε /∈ L. The reverse of a language L is
defined as

{an · · ·a1 | a1, . . . , an ∈ A, a1 · · ·an ∈ L}

and denoted rev(L). The basic operation on languages is concatenation de-
fined by the rule K · L = {uv | u ∈ K, v ∈ L}, and we use the standard no-
tation L+ =

⋃
m∈N

Lm and L∗ = L+ ∪ {ε}. Regular languages are languages
definable by finite automata, or equivalently, by rational expressions. The
basic tool for proving non-regularity of languages is the well-known pumping
lemma (see e.g. [23]). A language L ⊆ A∗ is called star-free if it can be ob-
tained from finite languages using the operations of union, complementation
and concatenation; in particular, for every B ⊆ A, the languages B+ and B∗

are star-free.

4

For every language L over A we denote by C(L) the largest language
over A which commutes with L and by C+(L) the largest ε-free language
over A which commutes with L. Such languages C(L) and C+(L) certainly
exist for every language L since the union of arbitrarily many languages
commuting with L commutes with L as well. Is is clear that we always
have C+(L) ⊆ C(L), L∗ ⊆ C(L) and L+ ⊆ C+(L). Further, the languages
C(L) and C+(L) are easily seen to be closed under concatenation and so they
form a submonoid and a subsemigroup of the free monoid A∗, respectively.
Another interesting property of the languages C(L) and C+(L) is that they
remain unchanged when we replace L with its closure under concatenation,
i.e. C(L) = C(L+) and C+(L) = C+(L+).

Intuitively, we can view the commutation equation XL = LX as a game
of two players, the attacker and the defender. A position of the game is an
arbitrary word w ∈ A∗. At each step of the game, the attacker adds any
word from L to an arbitrary side of w, and the defender has to respond by
removing some word belonging to L from the opposite side of the resulting
word. The word thus obtained is a new position of the game. The attacker
wins the game if the defender has no move available, and the defender wins
if he manages to continue playing forever. Then it is easy to observe that the
largest solution of the equation XL = LX is exactly the set of all positions
of the game where the defender has a winning strategy.

This intuitive view is also reflected by the structure of proofs in this
paper, which consist of two parts: Proving that a given word w does not
belong to C(L) amounts to finding a winning strategy for the attacker on w.
And conversely, in order to prove that w lies in C(L), we describe a set of
positions containing w such that no matter how the attacker plays in one of
these positions, the defender is always able to return to such a position.

3 Star-Free Languages

The aim of this section is to construct a star-free language L such that the
largest solution of the equation XL = LX is not recursively enumerable.
This is achieved by encoding an arbitrary Minsky machine M into a star-
free language L in such a way that C(L)∩uv∗w = {uvnw | n /∈ L(M)}, where
u, v and w are certain words and L(M) ⊆ N0 is the set computed by the
machine M. Because the construction is rather technical, let us first present
it in a simplified form which shows that the largest language commuting with

5

a given star-free language is not necessarily regular.

Example 1. Let us take the alphabet A = {a, b, c, e, ê, f, f̂ , g, ĝ}. We con-
sider auxiliary languages

M = efga+ba∗ ∪ ga∗ba∗ĝf̂ ∪ a∗ba∗ĝf̂ ê ∪ fga∗ba∗ĝ ,

L0 = (A \ {c})∗b(A \ {c})∗ \ ({efg, fg, g, ε} · a∗ba∗ · {ε, ĝ, ĝf̂ , ĝf̂ ê})

and define a star-free language

L = {c, ef, ga, e, fg, f̂ ê, aĝ, ê, ĝf̂ , fgbaĝ} ∪A∗bA∗bA∗ ∪ L0 ∪ cM ∪Mc .

With the aim of verifying that the language C(L) is not regular, let us
first observe that fgambanĝf̂ /∈ C(L) for every m,n ∈ N0. Indeed, assuming
the converse, we obtain

c2fgambanĝf̂ ∈ L2 · C(L) = C(L) · L2 ,

which is a contradiction because this word has no suffix belonging to L2.
Now we are going to show that efgamban /∈ C(L) for every m,n ∈ N0

satisfying m < n. We proceed by induction on m. If m = 0 then the
converse of this fact implies

cefgban ∈ L · C(L) = C(L) · L ,

which is impossible as no suffix of the word cefgban lies in L. Let m ≥ 1
and suppose we already know that efgam−1ban−1 /∈ C(L) holds. By way of
contradiction, assume efgamban ∈ C(L). Then

efgambanĝf̂ ∈ C(L) · L = L · C(L) .

Since there are just two prefixes of efgambanĝf̂ which belong to L, we have
either fgambanĝf̂ ∈ C(L) or gambanĝf̂ ∈ C(L). Due to our initial observa-
tion, the former case is false. From the latter one we deduce

gambanĝf̂ ê ∈ C(L) · L = L · C(L) .

This immediately gives am−1banĝf̂ ê ∈ C(L) and therefore

fgam−1banĝf̂ ê ∈ L · C(L) = C(L) · L .

6

The word fgam−1banĝf̂ ê has exactly two suffixes from L, and repeating the
previous argument we get fgam−1banĝ ∈ C(L). Consequently

efgam−1banĝ ∈ L · C(L) = C(L) · L ,

and since we have n ≥ 2, this finally leads to efgam−1ban−1 ∈ C(L), contra-
dicting our assumption.

On the other hand, the language

K = L∗ ∪ {efganban, ganbanĝf̂ , an−1banĝf̂ ê, fgan−1banĝ | n ∈ N}

commutes with L because one can easily calculate that both products KL
and LK are equal to the language

L+ ∪ {efganbanĝf̂ , ganbanĝf̂ ê, fgan−1banĝf̂ ê, efgan−1banĝ | n ∈ N} ;

notice that this holds due to the fact efgbaĝ ∈ L2. Therefore the word
efganban belongs to C(L) for all n ∈ N.

Altogether, we have demonstrated both efganban ∈ C(L) for n ∈ N and
efgamban /∈ C(L) for m < n, hence the language C(L) cannot be regular due
to the pumping lemma.

Observe that in the previous example we have in fact encoded into the
language L two counters (as powers of a) and the operation of simultaneous
decrementation of both counters together with testing whether both counters
are equal to zero. The following construction of a language L such that C(L)
is not recursively enumerable is based essentially on the same idea.

Theorem 1. There exists a star-free language L such that

1. the largest language commuting with L is not recursively enumerable.

2. the difference between the largest language commuting with L and the

largest ε-free language commuting with L is not recursively enumerable.

Proof. Let M be a Minsky machine (see [18]) which computes a non-recursive
set of non-negative integers. The machine consists of two counters and a finite
set of states Q, which is a disjoint union

Q = T1 ∪ T2 ∪ I1 ∪ I2 ∪D1 ∪D2 ∪ {1} ,

7

where 1 is the terminal state. We assume that the initial state 0 of M belongs
to I1. A configuration of the machine is a triple (i,m, n), where i ∈ Q and
m,n ∈ N0 are the values stored in the counters. The step performed by the
machine in a given state is determined by the instruction associated with
this state:

• From the state i ∈ Tk, k ∈ {1, 2}, the machine goes to the state τ0(i)
if counter k is empty and to the state τ1(i) otherwise, where τ0(i) 6= i
and τ1(i) 6= i are distinct states.

• When the machine is in the state i ∈ Ik (or i ∈ Dk), it increments
(decrements, respectively) counter k and goes to the state τ(i) 6= i.

• When the machine reaches the state 1, the computation stops.

Initial configurations of M are configurations of the form (0, 0, n), n ∈ N0.
The machine computes the set L(M) ⊆ N0 of all numbers n such that
the machine stops in the configuration (1, 0, n) starting from some initial
configuration. Since we have chosen M such that L(M) is not recursive,
its complement N0 \ L(M) is not recursively enumerable. In addition, let us
assume that the initial state 0 of M cannot be reached from the other states,
and if for some i, j ∈ Q either τ(i) = j or τ0(i) = j or τ1(i) = j, then neither
τ(j) = i nor τ0(j) = i nor τ1(j) = i, i.e. given the two states involved in one
step of a computation, it is uniquely determined which of these steps is the
original one and which is the resulting one.

Consider the alphabet

A = {a, â, b, c} ∪ {di, d̂i | i ∈ Q} ∪ {ei, fi, gi | i ∈ I1 ∪ I2 ∪D1 ∪D2} .

Every configuration (i,m, n) of the machine will be represented by the word
am+1bân+1d̂2

i . If a configuration is reachable from some initial configuration,
then the corresponding word should not belong to C(L). Since in our encod-
ing using commutation of languages we have no means of directing a com-
putation, the same will hold also for all configurations from which some
configuration reachable from an initial configuration is eventually obtained.

In order to construct the language L, we introduce several auxiliary lan-
guages first. For each state i ∈ Q, we consider a language Mi which can be
used to move occurrences of the letters di and d̂i from one side of a word to
the other and in this way enables us to link steps of a computation modifying

8

different counters: let M ′
0 = a+abâ+d̂2

0 and for i ∈ Q \ {0} let

M ′
i = d2

ia
+bâ+ ∪ dia

+bâ+d̂i ∪ a
+bâ+d̂2

i ;

then define Mi = cM ′
i ∪M

′
ic for every i ∈ Q.

The following languages Ni describe words appearing during manipula-
tions corresponding to performing the instruction associated with the state i;
in the case of i ∈ I1 ∪ I2 ∪ D1 ∪ D2, there are also four short words whose
addition and removal transforms one of these words into another.

For i ∈ T1 ∪ T2 let

N ′
i = diabâ

+d̂τ0(i) ∪ dia
+abâ+d̂τ1(i)

and define

Ni = cN ′
i ∪N

′
ic ∪ A

∗dia
+abâ+d̂τ0(i)A

∗ ∪ A∗diabâ
+d̂τ1(i)A

∗ .

For i ∈ I1 ∪ I2 let

N ′
i = gia

+bâ+d̂i ∪ eifigia
+bâ+ ∪ figia

+bâ+d̂τ(i)

and define

Ni = cN ′
i ∪N

′
ic ∪ {eifi, gia, ei, figi}

∪ figia
+bâ+d̂2

i ∪ gia
+bâ+d̂2

τ(i) ∪ bâ
+d̂2

i .

And dually, for i ∈ D1 ∪D2 let

N ′
i = gia

+bâ+d̂τ(i) ∪ eifigia
+bâ+ ∪ figia

+bâ+d̂i

and define

Ni = cN ′
i ∪N

′
ic ∪ {eifi, gia, ei, figi}

∪ figia
+bâ+d̂2

τ(i) ∪ gia
+bâ+d̂2

i ∪ bâ
+d̂2

τ(i) .

The next language describes possible consecutive states:

L′ =
⋃

{{d2
i , di, ε} · a

∗bâ∗ · {ε, d̂i, d̂
2
i} | i ∈ Q, i 6= 0}

∪
⋃

{{d2
i , di, ε} · a

∗bâ∗ · {ε, d̂τ1(i), d̂
2
τ1(i), d̂τ0(i), d̂

2
τ0(i)

} | i ∈ T1}

∪
⋃

{{d2
τ0(i), dτ0(i), d

2
τ1(i)

, dτ1(i), ε} · a
∗bâ∗ · {ε, d̂i, d̂

2
i } | i ∈ T2}

9

∪
⋃

{{eifigi, figi, gi, ε} · a
∗bâ∗ · {ε, d̂τ(i), d̂

2
τ(i), d̂i, d̂

2
i } | i ∈ I1 ∪D1}

∪
⋃

{{d2
i , di, d

2
τ(i), dτ(i), ε} · a

∗bâ∗ · {ε, gi, gifi, gifiei} | i ∈ I2 ∪D2} .

Finally, we define a star-free language

L = {di, d̂i | i ∈ Q} ∪ {c} ∪A∗bA∗bA∗

∪ (A \ {c})∗b(A \ {c})∗ \ L′

∪
⋃

{Mi | i ∈ Q}

∪
⋃

{Ni | i ∈ T1 ∪ I1 ∪D1}

∪
⋃

{ψ(rev(Ni)) | i ∈ T2 ∪ I2 ∪D2} ,

where ψ : A∗ → A∗ is the homomorphism which interchanges letters a and di,
for i ∈ Q, with letters â and d̂i, respectively.

Let us first briefly sketch out how computations of the Minsky machine
are simulated by manipulations of words from A+. If some word u obtained
during our manipulations is multiplied from some side (say from the left)
by a word v ∈ L, one usually gets a word from L with just few exceptions
corresponding to correct computations of the machine. Such exceptional
products vu then usually have only one suffix v′ belonging to L whose re-
moval does produce a word u′ which can potentially belong to C(L). In this
way we achieve that u lies in C(L) if and only if u′ lies in C(L). Therefore
every computation of the machine M preserves the properties that the word
corresponding to a configuration belongs, or does not belong, to C(L).

For instance, starting from a word u = am+1bân+1d̂2
i corresponding to the

state i ∈ I1, we can multiply this word by gia ∈ L from the left, and then by
removing the word d̂i ∈ L from the right we get the word u′ = gia

m+2bân+1d̂i,
which is in C(L) if and only if u is in C(L). Now the first counter is already
incremented in the word u′ and the occurrence of the letter gi on the left
ensures that the following manipulations of u′ either return us back to u (if
we multiply by d̂i from the right) or continue with simulating the step of M
performed in the state i by adding the word eifi to the left, removing the
remaining occurrence of d̂i on the right, and then multiplying by d̂τ(i) from

the right, eventually reaching the word am+2bân+1d̂2
τ(i).

The language L′ describes which words are allowed to occur during these
manipulations. Each of these words consists of one occurrence of b in the
middle surrounded by several occurrences of a and â and a block of letters

10

corresponding to some state of M on each side; notice that on each side of
a word all letters have the same indices. Those words which do not correspond
to a correct computation of M, but can be obtained from such a word by
concatenating with a word from L, are included in L.

On the other hand, concatenating with the word c ∈ L can be used to
show that the only eligible results of removing a suffix or a prefix belonging
to L are words from the languages M ′

i and N ′
i . In particular, the letter c

serves for proving that all words corresponding to initial configurations do
not belong to C(L), which is consequently true also for all configurations
reachable from initial configurations; this is achieved by not including the
words from the language abâ+d̂2

0 into M ′
0.

Restating the previously described ideas formally, in order to show that
both sets C(L) and C(L) \C+(L) are not recursively enumerable, it is enough
to verify the following claim:

Claim 1. For every non-negative integer n ∈ N0:

n /∈ L(M) ⇐⇒ abân+1d̂2
1 ∈ C(L) ⇐⇒ abân+1d̂2

1 ∈ C(L) \ C+(L) .

First we deal with the second equivalence. Notice that if some word of
the form abân+1d̂2

1 belongs to C+(L), then

abân+1d̂2
1c ∈ C+(L) · L = L · C+(L) ,

which is impossible since abân+1d̂2
1c /∈ LA+. Therefore the second condition

of the claim is equivalent to the third one.
It remains to prove the equivalence of the first two conditions of Claim 1.

Let us first deal with the converse implication. We are going to prove
am+1bân+1d̂2

i /∈ C(L) for every configuration (i,m, n) reachable from some
initial configuration; then if we take i = 1, m = 0 and n ∈ L(M), we
obtain the desired fact abân+1d̂2

1 /∈ C(L). The proof proceeds by induction
with respect to the length of a run of M reaching (i,m, n) from an initial
configuration.

First, let (0, 0, n) be an arbitrary initial configuration. Assuming that
u = abân+1d̂2

0 ∈ C(L), we easily obtain a contradiction by considering the
word uc ∈ C(L) · L since uc has no prefix belonging to L and therefore
uc /∈ L · C(L).

Before we proceed to consider the inductive step, let us prove that for all
i ∈ Q \ {0}, m,n ∈ N0:

am+1bân+1d̂2
i ∈ C(L) ⇐⇒ d2

ia
m+1bân+1 ∈ C(L) . (1)

11

Starting from am+1bân+1d̂2
i ∈ C(L), we have

d2
ia

m+1bân+1d̂2
i ∈ L2 · C(L) = C(L) · L2 .

As this word has only one suffix belonging to L2, namely d̂2
i , we conclude

d2
ia

m+1bân+1 ∈ C(L). The converse implication holds by the same argument.
Let us first consider the step of M from a configuration (i, 0, n), where

i ∈ T1. We prove that abân+1d̂2
i /∈ C(L) implies abân+1d̂2

τ0(i) /∈ C(L) by

contradiction. If abân+1d̂2
τ0(i)

∈ C(L) then

d2
iabâ

n+1d̂2
τ0(i)

∈ L2 · C(L) = C(L) · L2 .

Therefore d2
iabâ

n+1 ∈ C(L) because d̂2
τ0(i)

is the only suffix of d2
iabâ

n+1d̂2
τ0(i)

belonging to L2. Hence abân+1d̂2
i ∈ C(L) by (1) since i 6= 0.

Analogously, one can deal with every configuration (i,m, n), where i ∈ T1

and m ≥ 1.
For a configuration (i,m, n), where i ∈ T2 and n ≥ 1, from the fact

am+1bân+1d̂2
τ1(i)

∈ C(L) we deduce d2
τ1(i)

am+1bân+1 ∈ C(L) by (1). Then

d2
τ1(i)a

m+1bân+1d̂2
i ∈ C(L) · L2 = L2 · C(L)

and consequently am+1bân+1d̂2
i ∈ C(L) as the word d2

τ1(i)
is the only prefix of

d2
τ1(i)

am+1bân+1d̂2
i from L2.

The case of a configuration (i,m, 0), where i ∈ T2, is again similar.
Now let (i,m, n) be an arbitrary configuration of M such that i ∈ I1.

Assume am+2bân+1d̂2
τ(i) ∈ C(L), which corresponds to the next configuration

(τ(i), m+ 1, n), and let us prove am+1bân+1d̂2
i ∈ C(L). As figi ∈ Ni, we can

see that
figia

m+2bân+1d̂2
τ(i) ∈ L · C(L) = C(L) · L .

There can be at most three suffixes of figia
m+2bân+1d̂2

τ(i) which belong to L,

namely gia
m+2bân+1d̂2

τ(i), bâ
n+1d̂2

τ(i) and d̂τ(i). Therefore either fi ∈ C(L)

or figia
m+2 ∈ C(L) or figia

m+2bân+1d̂τ(i) ∈ C(L). In the first case, we get
cfi ∈ L · C(L) = C(L) ·L, which is impossible. In the second case, we deduce
cfigia

m+2 ∈ L · C(L) = C(L) · L, contradicting the fact that no suffix of this
word lies in L. Thus figia

m+2bân+1d̂τ(i) ∈ C(L) and so

eifigia
m+2bân+1d̂τ(i) ∈ L · C(L) = C(L) · L .

12

Now d̂τ(i) is the only suffix of this word belonging to L and we immediately
obtain eifigia

m+2bân+1 ∈ C(L). Let us remark that the previous arguments
cannot be performed as one step since eifi·gia

m+2bân+1d̂2
τ(i) ∈ L2. Continuing

with the proof by multiplying the current word by d̂i, we obtain

eifigia
m+2bân+1d̂i ∈ C(L) · L = L · C(L)

and therefore

figia
m+2bân+1d̂i ∈ C(L) or gia

m+2bân+1d̂i ∈ C(L) .

In the former case

figia
m+2bân+1d̂ic

2 ∈ C(L) · L2 = L2 · C(L) ,

which is impossible because this word has no prefix belonging to L2. Hence
the latter situation arises. Then

gia
m+2bân+1d̂2

i ∈ C(L) · L = L · C(L)

and by examining prefixes of this word we easily conclude that am+1bân+1d̂2
i

belongs to C(L).
In order to deal with a state i ∈ D1, consider a configuration (i,m+1, n),

where m,n ∈ N0. This time we have to prove am+2bân+1d̂2
i ∈ C(L) from

the assumption am+1bân+1d̂2
τ(i) ∈ C(L) corresponding to the configuration

(τ(i), m, n). Using the word gia ∈ Ni we obtain

gia
m+2bân+1d̂2

τ(i) ∈ L · C(L) = C(L) · L ,

which means that either gia
m+2 ∈ C(L) or gia

m+2bân+1d̂τ(i) ∈ C(L). The
former leads directly to a contradiction since the word cgia

m+2 ∈ L · C(L) =
C(L) · L has no suffix belonging to L. In the latter situation we multiply by
the word eifi ∈ Ni, which produces

eifigia
m+2bân+1d̂τ(i) ∈ L · C(L) = C(L) · L .

Then it is easy to verify eifigia
m+2bân+1 ∈ C(L). Therefore

eifigia
m+2bân+1d̂i ∈ C(L) · L = L · C(L) ,

13

and as exactly two prefixes of this word lie in L, we have

gia
m+2bân+1d̂i ∈ C(L) or figia

m+2bân+1d̂i ∈ C(L) .

The former case is impossible because then the word

gia
m+2bân+1d̂ic

2 ∈ C(L) · L2 = L2 · C(L)

has in fact no prefix from L2. In the latter case we deduce

figia
m+2bân+1d̂2

i ∈ C(L) · L = L · C(L) .

Since figi is the only suffix of this word belonging to L, we reach the desired
conclusion am+2bân+1d̂2

i ∈ C(L).
Finally, the cases of i ∈ I2 and i ∈ D2 can be managed symmetrically due

to (1).
To complete the proof, we have to show that the direct implication of

Claim 1 holds. Let C be the set of all configurations (i,m, n) of M, where
i ∈ Q, m,n ∈ N0, such that there is no computation of M transforming
(i,m, n) to a configuration reachable from some initial configuration. We use
the set C to construct a language K which commutes with L and contains
the word abân+1d̂2

1 for all n /∈ L(M). In the definition of K we employ the
same auxiliary languages as in the definition of L.

For m,n ∈ N0, let us denote

Km,n = (A \ {a})∗am+1bân+1(A \ {â})∗ .

Then define K = L∗ ∪K ′, where

K ′ =
⋃

{M ′
i ∩Km,n | (i,m, n) ∈ C}

∪
⋃

{N ′
i ∩Km,n | i ∈ T1 ∪D1, (i,m, n) ∈ C}

∪
⋃

{N ′
i ∩Km,n | i ∈ I1, (τ(i), m, n) ∈ C}

∪
⋃

{ψ(rev(N ′
i)) ∩Km,n | i ∈ T2 ∪D2, (i,m, n) ∈ C}

∪
⋃

{ψ(rev(N ′
i)) ∩Km,n | i ∈ I2, (τ(i), m, n) ∈ C} .

The rest of the proof is devoted to verifying the equality KL = LK.
Because this equality implies that K ⊆ C(L), and because for all n /∈ L(M)
we have

abân+1d̂2
1 ∈M ′

1 ∩K0,n ⊆ K ,

14

we immediately deduce abân+1d̂2
1 ∈ C(L), which concludes the proof.

In order to calculate the product of K and L, we introduce several aux-
iliary languages similar to the languages M ′

i and N ′
i .

For all i ∈ Q let

M̂ ′
i = d2

ia
+bâ+d̂i ∪ dia

+bâ+d̂2
i ,

for i ∈ T1 ∪ T2 let

N̂ ′
i = d2

iabâ
+d̂τ0(i) ∪ diabâ

+d̂2
τ0(i) ∪ d

2
i a

+abâ+d̂τ1(i) ∪ dia
+abâ+d̂2

τ1(i) ,

for i ∈ I1 ∪ I2 let

N̂ ′
i = gia

+bâ+d̂2
i ∪ eifigia

+bâ+ · {d̂i, d̂τ(i)} ∪ figia
+bâ+d̂2

τ(i)

and for i ∈ D1 ∪D2 let

N̂ ′
i = gia

+bâ+d̂2
τ(i) ∪ eifigia

+bâ+ · {d̂i, d̂τ(i)} ∪ figia
+bâ+d̂2

i .

Finally define P = L+ ∪ P ′, where

P ′ =
⋃

{M̂ ′
i ∩Km,n | (i,m, n) ∈ C}

∪
⋃

{N̂ ′
i ∩Km,n | i ∈ T1 ∪D1, (i,m, n) ∈ C}

∪
⋃

{N̂ ′
i ∩Km,n | i ∈ I1, (τ(i), m, n) ∈ C}

∪
⋃

{ψ(rev(N̂ ′
i)) ∩Km,n | i ∈ T2 ∪D2, (i,m, n) ∈ C}

∪
⋃

{ψ(rev(N̂ ′
i)) ∩Km,n | i ∈ I2, (τ(i), m, n) ∈ C} .

We claim KL = LK = P . This fact is based on the observation that if
(i,m, n) is a configuration of M and (j,m′, n′) is the configuration obtained
from (i,m, n) by one step of M, then we have (i,m, n) ∈ C if and only
if (j,m′, n′) ∈ C. Since the computation of the product consists mainly in
considering many cases according to the definitions of the languages K, L
and P , let us present here only a few of them to demonstrate the most crucial
arguments employed during the computation. The cases not mentioned below
are either easy to deal with or similar to some of those considered here.

First notice that since both languages K ′ · (A∗bA∗) and (A∗bA∗) ·K ′ are
subsets of A∗bA∗bA∗ ⊆ L ⊆ P , it is enough to show

P ′ ⊆ K ′ · (L \ A∗bA∗) ⊆ P , (2)

P ′ ⊆ (L \ A∗bA∗) ·K ′ ⊆ P , (3)

15

where

L \ A∗bA∗ = {di, d̂i | i ∈ Q} ∪ {c} ∪ {eifi, gia, ei, figi | i ∈ I1 ∪D1}

∪ {gifi, ei, âgi, fiei | i ∈ I2 ∪D2} .
(4)

If we have u ∈ K ′ and v ∈ L \ A∗bA∗, v 6= c, then in fact uv and vu
belong to L ⊆ P provided they do not lie in L′. This covers most of the
cases; the remaining ones have to be considered one by one. In what follows
let us concentrate on the equality LK = P ; the arguments used to verify
KL = P are similar.

The most complicated situations arise for the word

u = am+1bân+1d̂2
i ∈M ′

i ∩Km,n ⊆ K ,

where (i,m, n) ∈ C and i 6= 0.
Taking the word di ∈ L, we can see diu ∈ M̂ ′

i ∩ Km,n ⊆ P ; notice that

in this way we get all words of the form dia
m+1bân+1d̂2

i ∈ M̂ ′
i ∩Km,n, where

(i,m, n) ∈ C, except for i = 0.
For a word dj ∈ L, where j ∈ T1 and i = τ0(j), we distinguish two cases.

If m = 0 then one step of the machine M transforms the configuration
(j,m, n) to the configuration (i,m, n), and therefore (j,m, n) ∈ C, which
implies dju ∈ N̂ ′

j ∩ Km,n ⊆ P . On the other hand, every word of the form

djabâ
n+1d̂2

τ0(j) ∈ N̂ ′
j ∩Km,n, where (j, 0, n) ∈ C, can be obtained in this way

since from (j, 0, n) ∈ C it follows that (τ0(j), 0, n) ∈ C, and τ0(j) 6= 0 is one of
the assumptions on our Minsky machine. If m ≥ 1 then dju ∈ Nj ⊆ L ⊆ P .

For a word dj ∈ L, where j ∈ T1 and i = τ1(j), the arguments are
analogous to the case i = τ0(j) with the conditions m = 0 and m ≥ 0
interchanged.

Considering the situation i ∈ T2, for the word dτ0(i) ∈ L, again two cases

have to be distinguished. If n = 0 then dτ0(i)u ∈ ψ(rev(N̂ ′
i)) ∩ Km,n ⊆ P ;

notice that all words of the form dτ0(i)a
m+1bâd̂2

i ∈ ψ(rev(N̂ ′
i)) ∩ Km,n are

obtained in this way because 0 /∈ T2. If n ≥ 1 then dτ0(i)u ∈ ψ(rev(Ni)) ⊆
L ⊆ P . For the word dτ1(i) ∈ L everything is analogous.

For any word dj ∈ L, where j ∈ Q satisfies none of the conditions con-
sidered above, we have dju ∈ L ⊆ P .

For the word c ∈ L, trivially cu ∈ Mi ⊆ L ⊆ P .
Taking the word v = figi ∈ L, we have vu ∈ Ni ⊆ L ⊆ P if i ∈ I1 and

vu ∈ N̂ ′
i ∩Km,n ⊆ P if i ∈ D1.

16

Similarly, for v = fjgj ∈ L such that i = τ(j), we have vu ∈ Nj ⊆ L ⊆ P

if j ∈ D1 and vu ∈ N̂ ′
j ∩Km,n ⊆ P if j ∈ I1.

Now consider the word gia ∈ L and assume first that i ∈ I1. Then
giau ∈ N̂ ′

i ∩Km+1,n ⊆ P because the configuration (τ(i), m + 1, n) belongs
to C since it is obtained from (i,m, n) ∈ C by one step of the machine M.
Conversely, all words of the form gia

m+1bân+1d̂2
i ∈ N̂ ′

i ∩ Km,n, where i ∈
I1 \ {0} and (τ(i), m, n) ∈ C, belong to LK because for m = 0 we have
gia · bâ

n+1d̂2
i ∈ N2

i ⊆ L2.
In the case i ∈ D1, we get giau ∈ Ni ⊆ L ⊆ P .
For a word gja ∈ L, where j ∈ I1 and i = τ(j), clearly gjau ∈ Nj ⊆ L ⊆ P

holds.
And for a word gja ∈ L, where j ∈ D1 and i = τ(j), we have gjau ∈

N̂ ′
j ∩ Km+1,n ⊆ P because from the configuration (j,m + 1, n) the machine

M goes to the configuration (i,m, n) ∈ C and therefore (j,m+ 1, n) ∈ C.
For the remaining words v ∈ L \ A∗bA∗, it is clear that vu ∈ L ⊆ P .
The verification for the word u = am+1bân+1d̂2

0 ∈ K, where (0, m, n) ∈ C,
is even simpler than in the case of i 6= 0; in order to see that all words in P
of the form g0a

m+1bân+1d̂2
0, where (τ(0), m, n) ∈ C, are in LK, notice that

m 6= 1 since the configuration (τ(0), 1, n), which is obtained in one step from
the initial configuration (0, 0, n), does not lie in C.

Finally, another interesting case is that of the word

u = am+1bân+1gifiei ∈ ψ(rev(N ′
i)) ∩Km,n ⊆ K ,

where i ∈ D2 and (i,m, n) ∈ C. Then both words diu and dτ(i)u lie in the

set ψ(rev(N̂ ′
i)) ∩ Km,n ⊆ P , and for all words v ∈ L \ A∗bA∗ other than di

and dτ(i) we have vu ∈ L ⊆ P .

The following lemma establishes a connection between largest solutions
and largest ε-free solutions of commutation equations. Namely, we construct
for each language L a language L̂ such that the largest language commuting
with L can be easily reconstructed from the largest ε-free language commut-
ing with L̂.

Lemma 1. Let L be an arbitrary ε-free language over an alphabet A and let

/∈ A be a new letter. Consider the alphabet Â = A ∪ {#} and injective

homomorphisms λ, ρ : A∗ → Â∗ defined by the rules λ(a) = #a and ρ(a) =
a# for every a ∈ A. Then the language

L̂ = λ(L) ∪ ρ(L) ∪ {#} ∪ Â∗ · #2 · Â∗

17

over Â satisfies

C+(L̂) = λ(C(L)) · # ∪ L̂+ .

In particular, since L̂+ ∩ λ(A∗) · # = λ(L∗) · #, this implies

C+(L̂) ∩ λ(A∗) · # = λ(C(L)) · # .

Proof. Let us denote K = λ(C(L)) · # ∪ L̂+. We have to prove C+(L̂) = K.
One can easily verify that

(L̂ \ λ(L)) · λ(C(L)) ⊆ Â∗ · #2 · Â∗ ∪ (L̂ \ λ(L)) · ε ⊆ L̂

and dually ρ(C(L)) · (L̂ \ ρ(L)) ⊆ L̂, which immediately implies

L̂K = KL̂ = L̂ · L̂+ ∪ λ(L · C(L)) · # .

Therefore K commutes with L̂, and so it remains to verify C+(L̂) ⊆ K.
First we prove the inclusion

C+(L̂) ⊆ λ(A∗) · # ∪ L̂+ . (5)

Observe that any non-empty word u not belonging to the set λ(A∗) ·#∪ L̂+

is of one of the forms u1abu2, u1a and bu2, where a, b ∈ A and u1, u2 ∈ Â∗.
Let us assume that a word u of the form u1abu2 or u1a belongs to C+(L̂), and
take any v ∈ L. Then for every n ∈ N the word uρ(vn) belongs to L̂nC+(L̂).
Since there is no factor #2 in uρ(vn), we actually have

uρ(vn) ∈ (λ(L) ∪ ρ(L) ∪ {#})n · C+(L̂) .

As no two consecutive occurrences of letters from A can be found in words
from λ(L) ∪ ρ(L) ∪ {#}, taking n sufficiently large, we obtain u1a ∈ L̂+.
Because the fact bu2 ∈ L̂+ can be proved analogously, we conclude u ∈ L̂+

in all three cases, which contradicts the choice of u.
Let us now verify that the language M = πA(C+(L̂) ∩ λ(A∗) · #) com-

mutes with L, where πA : Â∗ → A∗ denotes the projection homomorphism.
Due to the symmetry, it is enough to verify only one inclusion, say ML ⊆
LM . In order to do this, let u ∈ M and v ∈ L. Then λ(u)# ∈ C+(L̂) and
ρ(v) ∈ L̂, hence λ(uv)# ∈ C+(L̂) · L̂ = L̂ · C+(L̂). Now two possibilities may
arise: either the prefix of λ(uv)# belonging to L̂ is just # and ρ(uv) ∈ C+(L̂),
or there exist words u′ ∈ L and v′ ∈ A∗ such that λ(v′)# ∈ C+(L̂) and
λ(uv)# = λ(u′)λ(v′)#. In the former case, we have ρ(uv) ∈ L̂+ due to (5),

18

consequently uv ∈ L+, and we deduce uv ∈ LM since L∗ ⊆ C(L) ⊆ M ,
which holds because λ(C(L)) ·# ⊆ K ⊆ C+(L̂). The latter case immediately
implies uv = u′v′ ∈ LM .

The language M considered in the previous paragraph commutes with L,
therefore M ⊆ C(L), and so C+(L̂) ∩ λ(A∗) · # ⊆ λ(C(L)) · #. Together
with (5) this shows C+(L̂) ⊆ K, as required.

Now we apply this lemma to the language L constructed in Theorem 1
in order to obtain a star-free language L̂ such that C+(L̂) is not recursively
enumerable. In fact, we will get a stronger result in Section 5 as a by-product
of encoding the language L into finitely many words, without using Lemma 1.

Theorem 2. There exists a star-free language L̂ such that the largest ε-free
language commuting with L̂ is not recursively enumerable.

Proof. Theorem 1 provides us with a star-free language L such that C(L)
is not recursively enumerable. Let L̂ be the language obtained from L by
means of Lemma 1. Then a word u ∈ A∗ belongs to C(L) if and only if
the word λ(u)# belongs to C+(L̂). This implies that the language C+(L̂) is
not recursively enumerable. And since the images of any star-free language
under the homomorphisms λ and ρ are star-free, it is clear that L̂ is star-free,
as required.

Recall that two words u and v are conjugated via a word w if uw = wv.
It is well known that u and v are conjugated if and only if there exist words
u1 and u2 such that u = u1u2 and v = u2u1. The same notion of conjugacy
has been considered also for languages, but it appears to be much more
complicated than in the case of words, and only little is known about it [4].
Now we are going to apply the construction used to prove Theorem 1 to
show that it is undecidable whether two star-free languages are conjugated
via a language containing the empty word.

Theorem 3. One cannot algorithmically decide whether for given two star-

free languages U and V there exists a language S which contains the empty

word and satisfies US = SV .

Proof. In this proof, we use the notation of the proof of Theorem 1.
Let us consider a new extended alphabet Ã = A∪ {h}. For every n ∈ N0

we define languages U = L ∪H ∪ {h}, where

H = Ã∗hÃ∗ \ Pref(habân+1d̂2
1) ,

19

and V = U ∪ {habân+1d̂2
1} (Pref(w) stands for the set of all prefixes of w).

We claim that there exists such a language S if and only if n /∈ L(M).
If S satisfies the requirements, then S ∩A∗ commutes with L because

L · (S ∩ A∗) = US ∩ A∗ = SV ∩ A∗ = (S ∩ A∗) · L .

From ε ∈ S we obtain habân+1d̂2
1 ∈ SV = US, and therefore abân+1d̂2

1 ∈ S
since h is the only prefix of habân+1d̂2

1 belonging to U . Putting these facts
together, we have abân+1d̂2

1 ∈ S ⊆ C(L), and by Claim 1 this means that
n /∈ L(M).

Conversely, if n /∈ L(M) then we prove that US = SV holds for the
language S = K ∪H . We have

US = (L ∪H ∪ {h})(K ∪H) = LK ∪H ∪ hK

because Ã∗HÃ∗ ⊆ H and ε ∈ K. In addition, the language hK satisfies

h, habân+1d̂2
1 ∈ hK = hL∗ ∪ hK ′ ⊆ H ∪ {h, habân+1d̂2

1} (6)

since none of the words in L or K ′ is a proper prefix of abân+1d̂2
1.

Similarly we get

SV = (K ∪H)(L ∪H ∪ {h, habân+1d̂2
1}) = KL ∪H ∪ {h, habân+1d̂2

1}

due to the facts Ã∗HÃ∗ ⊆ H and Ã+hÃ∗ ⊆ H . Consequently, since the
languageK commutes with L, the languages US and SV are equal by (6).

It is still an open question whether a similar result can be proved also
for conjugacy via an arbitrary language or in the case of finite languages.
But Theorem 3 already allows us to conclude that existence of solutions
is undecidable for very simple systems of language equations with regular
constants.

Corollary 1. It is not algorithmically decidable whether a given system of

language equations with only star-free constants and operation of concatena-

tion is solvable.

Proof. It is sufficient to note that languages U and V over A are conjugated
via a language containing the empty word if and only if the system consisting
of equations UX = XV and XA∗ = A∗ possesses a solution.

20

4 Finite Languages

In this section we show how the construction described in Example 1 can be
improved to obtain a finite set of words L such that both languages C(L) and
C+(L) are non-regular.

Theorem 4. There exists a finite language L such that neither the largest

language commuting with L nor the largest ε-free language commuting with L
is regular.

Proof. The basic idea of the proof is to encode the language L defined
in Example 1 into a finite set of words. We achieve this by introduc-
ing a new letter s to be used for encoding states of a finite automaton
recognizing the language cM ∪ Mc of Example 1. With this aim, take
A = {a, â, b, c, e, ê, f, f̂ , g, ĝ} and let us consider the alphabet Ã = A ∪ {s}.
Further, let ϕ : A∗ → Ã∗ be the homomorphism defined by the formula
ϕ(x) = sxs17 for all x ∈ A.

First we define an auxiliary language

L′
9 = {ef, fg, ga, aa, ab, bâ, ââ, âĝ, ĝf̂ , f̂ ê} ,

which describes pairs of neighbouring letters in the language

{efg, fg, g, ε} · a+bâ+ · {ε, ĝ, ĝf̂ , ĝf̂ ê}

similar to the one used in Example 1. Let L̂ = s≤18 ·A ·s≤18∪s≤18 and let the
language L over Ã be the union of the following languages L0 through L14:

L0 = ϕ({c, ef, ga, e, fg, f̂ ê, âĝ, ê, ĝf̂ , fgabâ2ĝ}) ,

L1 = {scs18es18fs18gs18as18as16, s2as16, s2bs15, s3âs15, s3âs17} ,

L2 = {scs18gs14, s4as14, s4bs13, s5âs13, s5ĝs18f̂ s17} ,

L3 = {scs18as12, s6as12, s6bs11, s7âs11, s7ĝs18f̂ s18ês17} ,

L4 = {scs18fs18gs10, s8as10, s8bs9, s9âs9, s9ĝs17} ,

L5 = {ses18fs18gs18as18as8, s10as8, s10bs7, s11âs7, s11âs18cs17} ,

L6 = {sgs6, s12as6, s12bs5, s13âs5, s13ĝs18f̂s18cs17} ,

L7 = {sas4, s14as4, s14bs3, s15âs3, s15ĝs18f̂s18ês18cs17} ,

L8 = {sfs18gs2, s16as2, s16bs, s17âs, s17ĝs18cs17} ,

21

L9 = L̂ · {xs18y | x, y ∈ A \ {c}, xy /∈ L′
9} · L̂ ,

L10 = L̂ · (A \ {c}) · s18cs18 · (A \ {c}) · L̂ ,

L11 = L̂ · s19 · L̂ ,

L12 = L̂ · A · s≤17 · A · L̂ ,

L13 = (s≤18 · A)2 ∪ (s≤18 · A)3 ,

L14 = (A · s≤18)2 ∪ (A · s≤18)3 .

In essence, instead of the words that we used in Example 1, we work here
with their ϕ-images. The languages L11 through L14 ensure that the language
L+ contains all words which are not a factor of some word from the set ϕ(A+),
i.e. which are not of the form six1s

18x2s
18 · · · s18xks

j, for i, j ∈ {0, . . . , 18},
k ∈ N0 and x1, . . . , xk ∈ A. More precisely, every word which possesses
a factor belonging to one of the languages L11 and L12 lies in L+ because
this factor can be multiplied by appropriate words from the languages L13

from the left and L14 from the right (possibly with some words from L11

inserted in order to build blocks of occurrences of s of length more than 18).
In this way we include in L+ all words containing more than 18 consecutive
occurrences of s and all words with less than 18 occurrences of s between two
letters from A. Similarly we deal with certain sequences of letters from A:
factors corresponding to the pairs described by the set L′

9 are determined by
the language L9, and the language L10 serves for dealing with occurrences
of c between letters from A \ {c}.

Notice that both languages L13 and L14 contain only words with at least
two occurrences of letters from A. This enables us to apply the same ar-
gument that we used in Example 1 where certain words were proved not to
belong to C(L) by concatenating with c ∈ L; the role of this letter is played
by the word ϕ(c) in our encoding, and the argument works well only if we
ensure that multiplication by ϕ(c) on one side of a word u cannot be com-
pensated by removing a word of the same length as ϕ(c) from the other side
of u. This restriction on the languages L13 and L14 is also the reason for
introducing the language L̂ to both sides of the languages L9 through L12;
this language takes care of those words where the factor under consideration
is too close to a margin of the word.

The finite set of words from the definition of the language L in Example 1
is encoded in L0 simply by taking the ϕ-images. And for each part of the
language cM ∪Mc of Example 1, all of its elements are decomposed into
finitely many common segments. Then we ensure that these segments can

22

be put together only in the appropriate order by choosing in the definition
of languages L1 through L8 several different powers of s; if incompatible
segments are concatenated, a block of occurrences of s of length different
from 18 is produced and the resulting word cannot belong to ϕ(A+).

Finally, the reason why the language C+(L) is also non-regular is that
every word u ∈ C(L) \L∗ used in the proof is long enough to guarantee that
the languages L · u and u · L contain no words from L, and so the empty
word is not essential in C(L).

Before starting to verify that the language C(L) is not regular, let us
analyze properties of the language L in a series of claims.

First, notice that for every α ∈ N, α ≥ 38, we have

(s≤18 · A ∪ {ε}) · sα · (A · s≤18 ∪ {ε}) =

= ((s≤18 · A ∪ {ε}) · s19) · (sα−19 · (A · s≤18 ∪ {ε})) ⊆

⊆ L11 · (s
α−19 · (A · s≤18 ∪ {ε})) ,

where α− 19 ≥ 19. Applying this argument inductively, we obtain

(s≤18 · A ∪ {ε}) · s19 · s∗ · (A · s≤18 ∪ {ε}) ⊆ L+
11 . (7)

Now we are going to verify the fact

AÃ∗AÃ∗ ∪ Ã∗AÃ∗A ⊆ (L11 ∪ L13 ∪ L14)
+ . (8)

Let us consider only a word u ∈ AÃ∗AÃ∗; the case of u ∈ Ã∗AÃ∗A is
symmetric. We proceed by induction on the length of the word u. First,
let u = xsαysβ, where x, y ∈ A and α, β ∈ N0. If both α and β are at
most 18, then u ∈ L14. If the numbers α and β are greater than 18, then
u = (xsα) · (ysβ) ∈ L+

11 by (7). In the situation α > 18 and β ≤ 18, one can
use (7) to verify u ∈ L+

11. And in the remaining case of α ≤ 18 and β > 18,
we obtain u = (xsαy) · sβ ∈ L14 · L

+
11 due to (7).

Second, let us consider a word u of the form xsαysβzsγ , where x, y, z ∈ A
and α, β, γ ∈ N0. For α > 18 we have u = (xsα) · (ysβzsγ) ∈ L+

11 · L+

thanks to (7) and the induction hypothesis. The case of γ > 18 can be
handled symmetrically. Assuming γ ≤ 18 and β > 18, we obtain u =
(xsαy) · (sβzsγ) ∈ L+ · L+

11 by the same argument. And if none of α, β and
γ is greater than 18, the word u belongs to L14.

Finally, let u ∈ AÃ∗AÃ∗ contain at least four occurrences of letters
from A. Then u can be written as a product of two words belonging to

23

AÃ∗AÃ∗, and therefore it lies in (L11 ∪L13 ∪L14)
∗ by the induction hypoth-

esis.
Now we proceed to prove

Ã∗ · s19 · Ã∗ ⊆ (L11 ∪ L13 ∪ L14)
+ . (9)

First we verify the inclusion s19Ã∗ ⊆ (L11 ∪ L13 ∪ L14)
+. We distinguish

several cases according to the number of occurrences of letters from A. Due
to (7) we have s19 ·s∗∪s19 ·s∗ ·A ·s≤18 ⊆ L+

11 and (s19 ·s∗ ·A) · (s19 ·s∗) ⊆ L+
11.

And using both (7) and (8) we get

(s19 · s∗) · (AÃ∗AÃ∗) ⊆ L+
11 · (L11 ∪ L13 ∪ L14)

+ .

The verification of the inclusion Ã∗s19 ⊆ (L11 ∪ L13 ∪ L14)
+ is similar. Thus

we obtain (9) as follows:

Ã∗ · s19 · Ã∗ \ (s19 · Ã∗ ∪ Ã∗ · s19) ⊆ (Ã∗AÃ∗A ∪ {ε})·

· ((s≤18 · A ∪ {ε}) · s19 · s∗ · (A · s≤18 ∪ {ε})) · (AÃ∗AÃ∗ ∪ {ε}) ⊆

⊆ (L11 ∪ L13 ∪ L14)
+ ,

where the last inclusion follows from (7) and (8).
As the next step, let us employ (8) to calculate

Ã∗A · s≤17 · AÃ∗ \ Ã∗ · s19 · Ã∗ ⊆

⊆ (Ã∗AÃ∗A ∪ {ε}) · L12 · (AÃ
∗AÃ∗ ∪ {ε}) ⊆

⊆ (L11 ∪ L12 ∪ L13 ∪ L14)
+ .

Together with (9) this implies

Ã∗A · s≤17 ·AÃ∗ ⊆ (L11 ∪ L12 ∪ L13 ∪ L14)
+ . (10)

Let us now consider any letters x, y ∈ A \ {c} such that xy /∈ L′
9. Then

Ã∗xs18yÃ∗ \ (Ã∗ · s19 · Ã∗ ∪ Ã∗A · s≤17 · AÃ∗) ⊆

⊆ (Ã∗AÃ∗A ∪ {ε}) · L9 · (AÃ
∗AÃ∗ ∪ {ε}) ⊆

⊆ (L9 ∪ L11 ∪ L12 ∪ L13 ∪ L14)
+

by (8), and using (9) and (10) we conclude

Ã∗xs18yÃ∗ ⊆ (L9 ∪ L11 ∪ L12 ∪ L13 ∪ L14)
+ . (11)

24

In the same way one can prove also the inclusion

Ã∗ · (A \ {c}) · s18cs18 · (A \ {c}) · Ã∗ ⊆ (L10 ∪L11 ∪L12 ∪L13 ∪L14)
+ . (12)

Now consider the ε-free language

K = L+ ∪ ϕ({efganbân, ganbânĝf̂ , an−1bânĝf̂ ê, fgan−1bânĝ | n ≥ 2}) .

Since most of the products of words from K and words from L are in L+ due
to (8)–(12) and every word in the languages (K \ L+) · L and L · (K \ L+)
has more occurrences of letters from A than any word from L, it is easy to
verify that both products KL and LK are equal to the language

L · L+ ∪ ϕ({efganbânĝf̂ , ganbânĝf̂ ê, fgan−1bânĝf̂ ê, efgan−1bânĝ | n ≥ 2}) ,

and so the language K commutes with L. Therefore the word ϕ(efganbân)
belongs to C+(L) for every n ∈ N, n ≥ 2.

The rest of the proof is devoted to showing that certain words do not
belong to C(L). First observe that this is the case for the words s and s17; for
instance, s /∈ C(L) is true because from s ∈ C(L) we would obtain scs17 · s ∈
L0·C(L) ⊆ C(L)·L, which is impossible as no suffix of this word lies in L. Now
we employ the same idea in a more general situation to prove the following
fact:

C(L)∩((s ·AÃ∗ ·s18∪s18 ·Ã∗A ·s17)\Ã∗ ·(L9∪L10∪L11∪L12) ·Ã
∗) = ∅ . (13)

In order to do this, let u ∈ s ·AÃ∗ · s18 and assume it has no factor belonging
to the language L9∪L10∪L11∪L12 (the case of u ∈ s18 ·Ã∗A ·s17 can be dealt
with symmetrically). Let k be the number of occurrences of letters from A
in u. If u ∈ C(L) holds then we can consider the word

v = (scs17)k+1 · u ∈ Lk+1
0 · C(L) ⊆ C(L) · Lk+1 . (14)

Then v also does not possess a factor belonging to L9 ∪ L10 ∪ L11 ∪ L12;
in particular, every s-block in v except for the first one is of length 18.
Therefore every suffix of v which belongs to L∗ must be in fact composed
solely of words from the language L14. And since every word in L14 contains
at least two occurrences of letters from A, no suffix of v can belong to Lk+1.
This contradicts (14) and hence u /∈ C(L).

25

The aim of the following considerations is to show ϕ(efgambân) /∈ C(L)
for any m,n ∈ N satisfying m < n. We proceed by induction on m. Let us
first consider the case of m = 1 and assume ϕ(efgabân) ∈ C(L). Then

ϕ(cn+3efgabân) = (scs17)n+3 · ϕ(efgabân) ∈ Ln+3
0 · C(L) ⊆ C(L) · Ln+3 .

First observe that no factor of the word ϕ(cn+3efgabân) belongs to the lan-
guage L9 ∪L10 ∪L11 ∪L12. Let words u0 ∈ C(L) and u1, . . . , un+3 ∈ L satisfy
ϕ(cn+3efgabân) = u0u1 · · ·un+3. If uk ∈ L14 for some k ∈ {1, . . . , n+ 3},
then in fact u1, . . . , uk ∈ L14 holds because the length of every s-block in
ϕ(cn+3efgabân) (except for the first one) is 18. But this means that either
u0 = s or u0 ∈ s · AÃ∗ · s18, which contradicts (13). Therefore we have
u1, . . . , un+3 ∈ L \ L14, which is impossible since the only maximal product
of words from the language L \ L14 which is a suffix of ϕ(cn+3efgabân) is

s2as16 · s2bs15 · (s3âs15)n−1 · s3âs17 ,

consisting of only n+ 2 words. This shows ϕ(efgabân) /∈ C(L).
Let m ≥ 2 and suppose we already know that ϕ(efgam−1bân−1) /∈ C(L).

By way of contradiction, assume ϕ(efgambân) ∈ C(L) holds. Then

ϕ(efgambânĝf̂) ∈ C(L) · L0 ⊆ L · C(L) .

If ϕ(efgambânĝf̂) = u · v, where v ∈ C(L), then u /∈ L13 due to (13). Since
there are just three prefixes of ϕ(efgambânĝf̂) belonging to L \L13, we have
either ϕ(fgambânĝf̂) ∈ C(L) or ϕ(gambânĝf̂) ∈ C(L) or s9 · ϕ(am−2bânĝf̂) ∈
C(L). In the first case, we obtain

ϕ(fgambânĝf̂ cm+n+3) ∈ C(L) · Lm+n+3
0 ⊆ Lm+n+3 · C(L) .

By the same argument as in the previous paragraph, we can show that it is
enough to consider only prefixes of this word which are products of elements
of L \ L13. There are two such maximal products, namely

ϕ(fg) · sas4 · (s14as4)m−1 · s14bs3 · (s15âs3)n ,

sfs18gs2 · (s16as2)m · s16bs · (s17âs)n ,

both consisting of m + n + 2 words, which is a contradiction. Similarly we
can disprove the third possibility: this time we have to consider the word

s9 · ϕ(am−2bânĝf̂ cm+n) ∈ C(L) · Lm+n
0 ⊆ Lm+n · C(L) ,

26

possessing only one maximal product of words from L \ L13 as its prefix,
which is of length m+ n− 1:

(s10as8)m−2 · s10bs7 · (s11âs7)n .

Therefore we have ϕ(gambânĝf̂) ∈ C(L).
We continue in a similar manner. Multiplying the word ϕ(gambânĝf̂) by

ϕ(ê), we obtain

ϕ(gambânĝf̂ ê) ∈ C(L) · L0 ⊆ L · C(L) .

Again, it suffices to deal only with prefixes belonging to the set L \ L13.
This time, there are two such prefixes, corresponding to the possibilities
s11 · ϕ(ambânĝf̂ ê) ∈ C(L) and ϕ(am−1bânĝf̂ ê) ∈ C(L). The former one can
be proved impossible by considering the word

s11 · ϕ(ambânĝf̂ êcm+n+2) ∈ C(L) · Lm+n+2
0 ⊆ Lm+n+2 · C(L) ,

because the product

(s12as6)m · s12bs5 · (s13âs5)n

is the only maximal product of elements of L \ L13 which is a prefix of the
word s11 · ϕ(ambânĝf̂ êcm+n+2). Consequently ϕ(am−1bânĝf̂ ê) ∈ C(L) holds.

Now we can repeat all of the previous arguments symmetrically, first
showing that ϕ(fgam−1bânĝ) ∈ C(L), and then ϕ(efgam−1bân−1) ∈ C(L).
This contradicts our initial assumption, and the induction step is proved.

Altogether, we have verified both ϕ(efganbân) ∈ C+(L) ⊆ C(L) for n ≥ 2
and ϕ(efgambân) /∈ C(L) for m < n, hence the languages C(L) and C+(L)
cannot be regular due to the pumping lemma.

5 The Main Result

Theorems 1 and 4 state that there exist a star-free language L such that
C(L) is not recursively enumerable and a finite language L such that C(L)
is not regular, respectively. In this section we combine the constructions of
Theorems 1 and 4 in order to prove that even for a finite language L none of
the languages C(L) and C+(L) has to be recursively enumerable.

27

Theorem 5. There exists a finite language L such that neither the largest

language commuting with L nor the largest ε-free language commuting with L
is recursively enumerable.

Proof. In this proof we will use all of the notation and all languages which
were introduced in the proof of Theorem 1. In addition, let us assume that the
Minsky machine M has q states, which are numbered by integers, i.e. Q =
{0, . . . , q − 1}. The idea of the proof is similar to the one used to prove
Theorem 4; but this time we encode into a finite language L̃ the language L
defined in the proof of Theorem 1. We consider the alphabet Ã = A ∪ {s}
and the homomorphism ϕ : A∗ → Ã∗ defined by the formula ϕ(x) = s18qxs18q

for all x ∈ A. Again, we start by introducing several auxiliary languages M̃i

and Ñi, corresponding to the languages Mi and Ni, respectively, used in the
proof of Theorem 1.

For i ∈ Q \ {0} let

M̃i =
36i+6⋃

k=36i+1

sk · {a, â, b} · s36q−k

∪ {s18qcs36qdis
36qdis

36qas36(q−i)−1, s36i+1âs18q}

∪ {s18qcs36qdis
36qas36(q−i)−2, s36i+2âs36qd̂is

18q}

∪ {s18qcs36qas36(q−i)−3, s36i+3âs36qd̂is
36qd̂is

18q}

∪ {s18qdis
36qdis

36qas36(q−i)−4, s36i+4âs36qcs18q}

∪ {s18qdis
36qas36(q−i)−5, s36i+5âs36qd̂is

36qcs18q}

∪ {s18qas36(q−i)−6, s36i+6âs36qd̂is
36qd̂is

36qcs18q} ,

and for the initial state let

M̃0 =
2⋃

k=1

sk · {a, â, as36qbs36qâ} · s36q−k

∪ {s18qcs36qas36q−1, sd̂0s
36qd̂0s

18q}

∪ {s18qas36q−2, s2d̂0s
36qd̂0s

36qcs18q} .

Similarly to the construction in the proof of Theorem 4, in the following
we will use the language L̂ = s≤36q · A · s≤36q ∪ s≤36q.

28

For i ∈ T1 ∪ T2 we first define a language describing words corresponding
to incorrect test steps of M:

Ñ ′
i = s36i+11 · {a, â, as36qas36qbs36qâ} · s36(q−i)−11

∪ L̂ · dis
36(q−i)−11 ∪ s36i+11d̂τ0(i) · L̂

∪ {s36i+12âs36(q−i)−12}

∪ L̂ · dis
36qas36qbs36qâs36(q−i)−12 ∪ s36i+12d̂τ1(i) · L̂ .

Then we consider the language

Ñi = Ñ ′
i ∪

36i+10⋃

k=36i+9

sk · {a, â, as36qas36qbs36qâ} · s36q−k

∪ {s36i+7âs36(q−i)−7, s36i+8âs36(q−i)−8}

∪ {s18qcs36qdis
36qas36qbs36(q−i)−7, s36i+7âs36qd̂τ0(i)s

18q}

∪ {s18qdis
36qas36qbs36(q−i)−8, s36i+8âs36qd̂τ0(i)s

36qcs18q}

∪ {s18qcs36qdis
36(q−i)−9, s36i+9d̂τ1(i)s

18q}

∪ {s18qdis
36(q−i)−10, s36i+10d̂τ1(i)s

36qcs18q} .

For i ∈ I1 ∪ I2 let

Ñi = ϕ({eifi, gia, ei, figi}) ∪
36i+14⋃

k=36i+7

sk · {a, â, b} · s36q−k

∪ {s18qcs36qgis
36qas36(q−i)−7, s36i+7âs36qd̂is

18q}

∪ {s18qcs36qeis
36qfis

36qgis
36qas36(q−i)−8, s36i+8âs18q}

∪ {s18qcs36qfis
36qgis

36qas36(q−i)−9, s36i+9âs36qd̂τ(i)s
18q}

∪ {s18qgis
36qas36(q−i)−10, s36i+10âs36qd̂is

36qcs18q}

∪ {s18qeis
36qfis

36qgis
36qas36(q−i)−11, s36i+11âs36qcs18q}

∪ {s18qfis
36qgis

36qas36(q−i)−12, s36i+12âs36qd̂τ(i)s
36qcs18q}

∪ {s18qfis
36qgis

36qas36(q−i)−13, s36i+13âs36qd̂is
36qd̂is

18q}

∪ {s18qgis
36qas36(q−i)−14, s36i+14âs36qd̂τ(i)s

36qd̂τ(i)s
18q}

∪ {s18qbs36(q−i)−15, s36i+15âs36(q−i)−15, s36i+15âs36qd̂is
36qd̂is

18q} .

29

And dually, for i ∈ D1 ∪D2 let

Ñi = ϕ({eifi, gia, ei, figi}) ∪
36i+14⋃

k=36i+7

sk · {a, â, b} · s36q−k

∪ {s18qcs36qgis
36qas36(q−i)−7, s36i+7âs36qd̂τ(i)s

18q}

∪ {s18qcs36qeis
36qfis

36qgis
36qas36(q−i)−8, s36i+8âs18q}

∪ {s18qcs36qfis
36qgis

36qas36(q−i)−9, s36i+9âs36qd̂is
18q}

∪ {s18qgis
36qas36(q−i)−10, s36i+10âs36qd̂τ(i)s

36qcs18q}

∪ {s18qeis
36qfis

36qgis
36qas36(q−i)−11, s36i+11âs36qcs18q}

∪ {s18qfis
36qgis

36qas36(q−i)−12, s36i+12âs36qd̂is
36qcs18q}

∪ {s18qfis
36qgis

36qas36(q−i)−13, s36i+13âs36qd̂τ(i)s
36qd̂τ(i)s

18q}

∪ {s18qgis
36qas36(q−i)−14, s36i+14âs36qd̂is

36qd̂is
18q}

∪ {s18qbs36(q−i)−15, s36i+15âs36(q−i)−15, s36i+15âs36qd̂τ(i)s
36qd̂τ(i)s

18q} .

Now we give the list of pairs of neighbouring letters from A in words
corresponding to configurations of M:

L′
1 = {aa, ab, bâ, ââ} ∪ {didi, dia, âd̂i, d̂id̂i | i ∈ Q}

∪ {eifi, figi, gia | i ∈ I1 ∪D1}

∪ {âgi, gifi, fiei | i ∈ I2 ∪D2} .

These pairs are encoded into the language L̃ by means of the sublanguage

L1 = L̂ · {xs36qy | x, y ∈ A \ {c}, xy /∈ L′
1} · L̂

∪ L̂ · {dis
36qdis

36qdi, d̂is
36qd̂is

36qd̂i | i ∈ Q} · L̂ .

Notice that the language L1 contains also words expressing that there should
be no three consecutive occurrences of di or d̂i in words representing config-
urations.

In a similar manner we can include in L̃ all impossible combinations of
states of M. First we list all pairs corresponding to available instructions:

L′
2 = {did̂i | i ∈ Q, i 6= 0}

∪ {did̂τ1(i), did̂τ0(i) | i ∈ T1}

∪ {dτ0(i)d̂i, dτ1(i)d̂i | i ∈ T2}

30

∪ {gid̂τ(i), gid̂i | i ∈ I1 ∪D1}

∪ {digi, dτ(i)gi | i ∈ I2 ∪D2} .

Then we put the other combinations of di, d̂i and gi into L̃; notice that we
have to add also some words containing letters a, â and b in order to deal
with letters between di and d̂i (or gi):

L2 =
⋃

i∈Q

s36i+16 · {a, â, b} · s36(q−i)−16

∪ L̂ · {dis
36(q−i)−16 | i ∈ Q}

∪ {s36i+16d̂j | i, j ∈ Q, did̂j /∈ L′
2} · L̂

∪ {s36i+16gj | i ∈ Q, j ∈ I2 ∪D2, digj /∈ L′
2} · L̂

∪
⋃

i∈I1∪D1

s36i+17 · {a, â, b} · s36(q−i)−17

∪ L̂ · {gis
36(q−i)−17 | i ∈ I1 ∪D1}

∪ {s36i+17d̂j | i ∈ I1 ∪D1, j ∈ Q, gid̂j /∈ L′
2} · L̂

∪ {s36i+17gj | i ∈ I1 ∪D1, j ∈ I2 ∪D2} · L̂ .

The following languages are exact analogues of the languages L10 through
L14 from the proof of Theorem 4:

L3 = L̂ · (A \ {c}) · s36qcs36q · (A \ {c}) · L̂ ,

L4 = L̂ · s36q+1 · L̂ ,

L5 = L̂ · A · s≤36q−1 · A · L̂ ,

L6 = (s≤36q · A)2 ∪ (s≤36q · A)3 ,

L7 = (A · s≤36q)2 ∪ (A · s≤36q)3 .

Finally we define

L̃ = {ϕ(di), ϕ(d̂i) | i ∈ Q} ∪ {ϕ(c)} ∪
7⋃

k=1

Lk

∪
⋃

{M̃i | i ∈ Q}

∪
⋃

{Ñi | i ∈ T1 ∪ I1 ∪D1}

∪
⋃

{ψ(rev(Ñi)) | i ∈ T2 ∪ I2 ∪D2} ,

31

where ψ : Ã∗ → Ã∗ is the homomorphism which interchanges letters a and di,
for i ∈ Q, with letters â and d̂i, respectively.

Because the only difference between the languages L3 through L7 and the
languages L10 through L14 from the proof of Theorem 4 is that the number
36q is used instead of 18, the following facts can be proved analogously to
(8) through (12):

AÃ∗AÃ∗ ∪ Ã∗AÃ∗A ⊆ (L4 ∪ L6 ∪ L7)
+ , (15)

Ã∗ · s36q+1 · Ã∗ ⊆ (L4 ∪ L6 ∪ L7)
+ , (16)

Ã∗A · s≤36q−1 ·AÃ∗ ⊆ (L4 ∪ L5 ∪ L6 ∪ L7)
+ , (17)

Ã∗ · (A \ {c}) · s36qcs36q · (A \ {c}) · Ã∗ ⊆ (L3 ∪ L4 ∪ L5 ∪ L6 ∪ L7)
+ , (18)

for i ∈ T1 ∪ T2:

Ã∗dis
18q · ϕ(a+abâ+) · s18qd̂τ0(i)Ã

∗ ⊆ (Ñ ′
i ∪ L4 ∪ L5 ∪ L6 ∪ L7)

+ , (19)

Ã∗dis
18q · ϕ(abâ+) · s18qd̂τ1(i)Ã

∗ ⊆ (Ñ ′
i ∪ L4 ∪ L5 ∪ L6 ∪ L7)

+ , (20)

for all x, y ∈ A \ {c}:

xy /∈ L′
1 =⇒ Ã∗xs36qyÃ∗ ⊆ (L1 ∪ L4 ∪ L5 ∪ L6 ∪ L7)

+ , (21)

for all i ∈ Q:

Ã∗dis
36qdis

36qdiÃ
∗ ⊆ (L1 ∪ L4 ∪ L5 ∪ L6 ∪ L7)

+ , (22)

Ã∗d̂is
36qd̂is

36qd̂iÃ
∗ ⊆ (L1 ∪ L4 ∪ L5 ∪ L6 ∪ L7)

+ , (23)

and finally, for every

x ∈ {di | i ∈ Q} ∪ {gi | i ∈ I1 ∪D1} ,

y ∈ {d̂j | j ∈ Q} ∪ {gj | j ∈ I2 ∪D2}

we have

xy /∈ L′
2 =⇒ Ã∗xs18q ·ϕ(a∗bâ∗) · s18qyÃ∗ ⊆ (L2 ∪L4 ∪L5 ∪L6 ∪L7)

+ . (24)

Let us first observe that the language L̃ is related to the language L used
to prove Theorem 1 via

ϕ(L) ⊆ L̃+ . (25)

32

This can be verified as follows: ϕ(A∗bA∗bA∗) ⊆ L̃+ holds due to (18) and (21);
the inclusion ϕ((A\{c})∗b(A\{c})∗\L′) ⊆ L̃+ follows from (21) through (24);
for every i ∈ Q, we have ϕ(Mi) ⊆ M̃+

i ; for i ∈ I1 ∪ I2 ∪D1 ∪D2, we similarly
obtain ϕ(Ni) ⊆ Ñ+

i ; and for i ∈ T1 ∪T2, we employ in addition (19) and (20)
to get ϕ(Ni) ⊆ (Ñi ∪ L4 ∪ L5 ∪ L6 ∪ L7)

+.
Analogously to the proof of Theorem 1, we show that none of the sets

C(L) and C+(L) is recursively enumerable by verifying the following claim:

Claim 2. For every non-negative integer n ∈ N0:

n /∈ L(M) ⇐⇒ ϕ(abân+1d̂2
1) ∈ C(L̃) ⇐⇒ ϕ(abân+1d̂2

1) ∈ C+(L̃) .

The proof of the implication

ϕ(abân+1d̂2
1) ∈ C(L̃) =⇒ n /∈ L(M) (26)

is almost the same as in the case of Theorem 1; we only have to replace every
word employed during the proof with its ϕ-image. In addition, whenever
some word u ∈ (A \ {c})∗ is concatenated with several copies of c ∈ L in the
proof of Theorem 1 in order to show that it does not belong to C(L), we have
to concatenate the word ϕ(u) with a certain number of copies of ϕ(c) ∈ L̃,
and this number now depends on the length of u, just as in the proof of
Theorem 4. In order to see that this method works properly, we have to
know how suffixes of the resulting word ϕ(cku), which belong to L̃+, look
like (for prefixes of the word ϕ(uck) all arguments are symmetric).

First notice that in every suffix of ϕ(cku) each s-block (except for the
initial and terminal one) consists of precisely 36q letters. This means that in
order to get such a suffix, only words from L̃ having compatible terminal and
initial s-blocks (i.e. the sum of their lengths must be 36q) can be concate-
nated. Then observe that none of the words ϕ(cku) constructed during the
proof contains a factor belonging to one of the languages ϕ(Ni \ (cN ′

i ∪N
′
ic)),

for i ∈ T1, ϕ(ψ(rev(Ni \ (cN ′
i ∪N

′
ic)))), for i ∈ T2, ϕ((A\{c})∗b(A\{c})∗\L′),

L1, L3, L4 and L5.
Therefore, if words u1, . . . , ul ∈ L̃ are such that u1 · · ·ul is a suffix of

ϕ(cku) and for some p ∈ {1, . . . , l} we have

up ∈
⋃

i∈T1

Ñ ′
i ∪

⋃

i∈T2

ψ(rev(Ñ ′
i)) ∪ L2 ∪ L7 ,

then we can inductively verify that none of the words u1, . . . , up belongs to one

of the languages starting on L̂ in the definitions of Ñ ′
i , ψ(rev(Ñ ′

i)) and L2, and

33

the length of the terminal s-block in each of the words u1, . . . , up−1 is different
from 18q. In particular, all words u1, . . . , up containing some occurrence of c
lie in L7, and we can apply the same argument that we used to prove (13)
to conclude that ϕ(u) /∈ C(L̃).

Hence, it only makes sense to consider suffixes of ϕ(cku) constructed
from words belonging to the languages {ϕ(di), ϕ(d̂i) | i ∈ Q}, {ϕ(c)}, M̃i, for
i ∈ Q, Ñi \ Ñ

′
i , for i ∈ T1, ψ(rev(Ñi \ Ñ

′
i)), for i ∈ T2, Ñi, for i ∈ I1 ∪ D1,

and ψ(rev(Ñi)), for i ∈ I2 ∪D2. And because the word cku always belongs
to the language R = (A \ {a, â, b})∗a∗ba∗(A \ {a, â, b})∗ and we have

M̃+
i ∩ ϕ(R) = ϕ(M+

i) , for i ∈ Q ,

(Ñi \ Ñ
′
i)

+ ∩ ϕ(R) = ϕ((cN ′
i ∪N

′
ic)

+) , for i ∈ T1 ∪ T2 ,

Ñ+
i ∩ ϕ(R) = ϕ(N+

i) , for i ∈ I1 ∪ I2 ∪D1 ∪D2 ,

the arguments about cku from the proof of Theorem 1 can be directly trans-
lated to the case of the word ϕ(cku) and the language L̃.

Let us now illustrate how the technique works on the proof of the analogue
of equivalence (1), i.e. for all i ∈ Q \ {0} and m,n ∈ N0 we have to prove

ϕ(am+1bân+1d̂2
i) ∈ C(L̃) ⇐⇒ ϕ(d2

ia
m+1bân+1) ∈ C(L̃) .

Assuming ϕ(am+1bân+1d̂2
i) ∈ C(L̃), we obtain

ϕ(d2
ia

m+1bân+1d̂2
i) ∈ L̃2 · C(L̃) = C(L̃) · L̃2 .

Unlike in the proof of Theorem 1, there exist many suffixes of the word
ϕ(d2

ia
m+1bân+1d̂2

i) belonging to L̃2, and all of them have to be dealt with.
So let us show, for instance, that we do not obtain an element of C(L̃) by
removing from ϕ(d2

ia
m+1bân+1d̂2

i) the suffix

s36(q−i)−11d̂is
36(q−j)−16 · s36j+16d̂is

18q ∈ ψ(rev(Ñ ′
i)) · L2 ,

where i ∈ T2 and j ∈ Q satisfy djd̂i /∈ L′
2.

By way of contradiction, assume that

ϕ(d2
ia

m+1bân) · s18qâs36i+11 ∈ C(L̃)

and consider the word

v = ϕ(ckd2
ia

m+1bân) · s18qâs36i+11 ∈ L̃k · C(L̃) = C(L̃) · L̃k , (27)

34

where k > max(2m + 2n,m + 2n + 4). Because τ0(i) 6= i, no word from
the language L̂ · dτ0(i)s

36i+11 ⊆ ψ(rev(Ñ ′
i)) si a factor of v. Therefore for any

suffix of v belonging to L̃+ it can be shown that every decomposition of this
suffix into elements of L̃ is either of the form L∗

7 · (s
36(q−i)−11âs36i+11)∗ or of

the form

L∗
7 · (s

36(q−i)−11as36i+11)∗ · (s36(q−i)−11as36qbs36qâs36qâs36i+11)

· (s36(q−i)−11âs36i+11)∗ .

Then it is easy to see that due to the choice of k no such suffix of v can be
decomposed into k elements of L̃, contradicting (27).

To complete the proof, we have to show that the implication

n /∈ L(M) =⇒ ϕ(abân+1d̂2
1) ∈ C+(L̃) (28)

of Claim 2 holds. Let us consider the language K̃ = L̃+ ∪ϕ(K ′), where K ′ is
the language used in the proof of Theorem 1 for the same purpose. We
are going to verify the equality K̃L̃ = L̃K̃, which shows that K̃ is an
ε-free language commuting with L̃. Since for every n /∈ L(M) we have
ϕ(abân+1d̂2

1) ∈ ϕ(M ′
1 ∩ K0,n) ⊆ K̃, this implies ϕ(abân+1d̂2

1) ∈ C+(L̃), as
required.

We claim K̃L̃ = L̃K̃ = P̃ , where P̃ = L̃L̃+ ∪ ϕ(P ′). Let us verify only
K̃L̃ = P̃ , the other equality L̃K̃ = P̃ can be proved symmetrically. First,
one can use (15) through (23) to show that

K̃ · (L̃ \ ϕ(L \ A∗bA∗)) ⊆ L̃L̃+ ,

where the language L \ A∗bA∗ was already considered in the proof of Theo-
rem 1 and is given by (4). Because ϕ(L \ A∗bA∗) ⊆ L̃, this means that

K̃L̃ = L̃L̃+ ∪ ϕ(K ′) · ϕ(L \ A∗bA∗) .

From (2) we get

ϕ(P ′) ⊆ ϕ(K ′ · (L \ A∗bA∗)) ⊆ ϕ(L+) ∪ ϕ(P ′) ,

which implies the required equality K̃L̃ = L̃L̃+ ∪ϕ(P ′) = P̃ due to (25) and
due to the fact that all words in K̃L̃ ∩ L̃+ clearly belong to L̃L̃+.

Now we can obtain Claim 2 by combining (26) and (28) with the obvious
inclusion C+(L̃) ⊆ C(L̃).

35

Let us conclude by mentioning that all results on commutation proved in
this paper hold also if we consider only languages over a two-letter alphabet.
This is true because any finite alphabet can be encoded into two letters in
such a way that solutions of commutation equations are preserved:

Lemma 2. Let L be an arbitrary ε-free language over an n-letter alphabet

A = {a1, . . . , an}, and let ϕ : A∗ → {a, b}∗ be the homomorphism defined by

the rule ϕ(ai) = aib. Then a language commutes with ϕ(L) if and only if it

is of the form ϕ(K) for some language K over A commuting with L.

Proof. Assume that a language M over {a, b} commutes with ϕ(L). Because
(ϕ(L))n ·M = M · (ϕ(L))n for an arbitrarily large n, every non-empty word
w ∈ M is a prefix of some element of ϕ(L)+. On the other hand, w must
be also a suffix of a word from ϕ(L)+, which in particular means that its
last letter is b. This is possible only if w belongs to ϕ(A+), and therefore
M = ϕ(K) for some language K ⊆ A∗. Now the statement immediately
follows from the fact that ϕ defines an isomorphism between the monoids A∗

and ϕ(A∗).

Acknowledgements.

The idea to use the results on commutation to prove undecidability of con-
jugacy of languages was suggested to me by Alexander Okhotin. I am also
grateful to Ondřej Kĺıma for several useful comments.

References

[1] Aiken, A., Kozen, D., Vardi, M., Wimmers, E.: The complexity of set
constraints. In Proc. CSL ’93, LNCS 832, Springer (1994) 1–17.

[2] Baader, F., Küsters, R.: Unification in a description logic with transitive
closure of roles. In Proc. LPAR 2001, LNCS 2250, Springer (2001) 217–
232.

[3] Bergman, G.M.: Centralizers in free associative algebras. Trans. Amer.

Math. Soc. 137 (1969) 327–344.

[4] Cassaigne, J., Karhumäki, J., Manuch, J.: On conjugacy of languages.
Theor. Inform. Appl. 35(6) (2001) 535–550.

36

[5] Charatonik, W., Podelski, A.: Co-definite set constraints. In Proc. RTA-

98, LNCS 1379, Springer (1998) 211–225.

[6] Choffrut, C., Karhumäki, J., Ollinger, N.: The commutation of finite
sets: A challenging problem. Theoret. Comput. Sci. 273 (2002) 69–79.

[7] Cohn, P.M.: Factorization in non-commutative power series rings. Proc.

Cambridge Philos. Soc. 58 (1962) 452–464.

[8] Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall
(1971).

[9] Karhumäki J., Latteux M., Petre, I.: Commutation with ternary sets of
words. Theory Comput. Syst. 38(2) (2005) 161–169.

[10] Karhumäki J., Latteux M., Petre, I.: Commutation with codes. Theoret.

Comput. Sci. 340(2) (2005) 322–333.

[11] Karhumäki, J., Petre, I.: The branching point approach to Conway’s
problem. In Formal and Natural Computing, LNCS 2300, Springer
(2002) 69–76.

[12] Karhumäki, J., Petre, I.: Two problems on commutation of languages.
In Current Trends in Theoretical Computer Science, The Challenge of

the New Century, vol. 2, World Scientific (2004) 477–494.

[13] Kunc, M.: Regular solutions of language inequalities and well quasi-
orders. Theoret. Comput. Sci. 348(2–3) (2005) 277–293.

[14] Kunc, M.: Simple language equations. Bull. Eur. Assoc. Theor. Comput.

Sci. EATCS 85 (2005) 81–102.

[15] Kunc, M.: On language inequalities XK ⊆ LX. In Proc. DLT 2005,
LNCS 3572, Springer (2005) 327–337.

[16] Kunc, M.: Largest solutions of left-linear language inequalities. In
Proc. AFL 2005, University of Szeged (2005) 178–186. Also available
at http://www.math.muni.cz/~kunc/

[17] Leiss, E.L.: Language Equations. Springer (1999).

37

[18] Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-
Hall (1967).

[19] Okhotin, A.: Decision problems for language equations. Submitted for
publication, available at http://www.cs.queensu.ca/home/okhotin/.
Preliminary version in Proc. ICALP 2003, LNCS 2719, Springer (2003)
239–251.

[20] Okhotin, A.: On computational universality in language equations. In
Proc. MCU 2004, LNCS 3354, Springer (2005) 292–303.

[21] Rabin, M.O.: Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Math. Soc. 141 (1969) 1–35.

[22] Ratoandromanana, B.: Codes et motifs. RAIRO Inform. Théor. Appl.

23 (1989) 425–444.

[23] Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages.
Springer (1997).

38

