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Free profinite monoids

Equational descriptions of classes of regular languages rely on
the expressive power of the free profinite monoid Â∗.
(Throughout this talk A is a finite alphabet.)

Over the last ten years we have begun to obtain a much
clearer picture of the structure of this object.

My goal here is to touch on the following topics:

Free clopen submonoids;
Ideal structure;
Maximal subgroups;
Finite subsemigroups.
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The profinite completion of the free monoid

For u 6= v ∈ A∗, define s(u, v) to be the minimum size of a
finite monoid separating u from v. Put s(u, u) =∞.

A∗ is residually finite, so s(u, v) is well defined.

The profinite ultrametric on A∗ is defined by

d(u, v) = 2−s(u,v).

The completion is the free profinite monoid Â∗.

It is a compact, totally disconnected (i.e., profinite) monoid.

Elements of Â∗ are called profinite words.
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Stone duality and the free profinite monoid

Reg(A∗) is a boolean ring with the operations of symmetric
difference and intersection as addition and multiplication.

There is a natural comultiplication
∆: Reg(A∗)→ Reg(A∗)⊗F2 Reg(A∗) given by

∆(L) =
∑

ab∈ηL(L)

η−1
L (a)⊗ η−1

L (b)

where ηL : A∗ →ML is the syntactic morphism.

There is a counit λ : Reg(A∗)→ F2 given by

λ(L) =

{
1 ε ∈ L
0 else.

So Reg(A∗) is a bialgebra and hence its Zariski spectrum
Spec(Reg(A∗)) is a profinite monoid by Stone duality.
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Stone duality and the free profinite monoid II

Theorem (Almeida;Rhodes-BS)

Â∗ ∼= Spec(Reg(A∗)).

The isomorphism at the level of topological spaces is due to
Almeida; the algebraic part to us.

As a consequence of Almeida’s part, clopen subsets of Â∗ are
in bijection with regular languages.

L ∈ Reg(A∗) corresponds to L ⊆ Â∗.
Conversely, if K ⊆ Â∗ is clopen, then K ∩A∗ is regular.

In particular, clopen submonoids of Â∗ are in bijection with
regular submonoids of A∗.

In summary, Â∗ is the geometric object corresponding to
Reg(A∗).
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regular submonoids of A∗.
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Stone duality and varieties of languages

Reg is a contravariant functor from the category of free
monoids to the category of (boolean) bialgebras.

A variety of languages is precisely a subfunctor of Reg.

Stone duality says that the Zariski spectrum functor gives a
duality between the categories of boolean bialgebras and
profinite monoids.

If V is a variety of languages (viewed as a functor), then the
composition A∗ 7→ Spec(V (A∗)) produces the free pro-V
monoid on A, where V is the pseudovariety of monoids
corresponding to V .

Duality eases proofs: every finite image of lim←−Ti factors
through a Ti dualizes to the trivial statement every finite
subbialgebra of lim−→Bi factors through a Bi.
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Free clopen submonoids

It is known that clopen subgroups of free profinite groups are
free.

Clopen submonoids of Â∗ need not be free: e.g. {x2, x3}∗.
Almeida asked in his book: does a free profinite monoid on n
generators embed as a closed submonoid of a free profinite
monoid on 2 generators.

Koryakov showed in 1995 the code Cn = {y, xy, . . . , xn−1y}
freely generates a free clopen submonoid of {̂x, y}∗ of rank n.

Theorem (Margolis,Sapir,Weil 98)

Any finite code C ⊆ A∗ freely generates a free clopen profinite
submonoid of Â∗.

Recall: C ⊆ A∗ is a code if C freely generates C∗.
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If one takes an infinite regular code, like x∗y, then it
generates a clopen submonoid of Â∗.
Does it freely generate a free profinite monoid?
No! The free profinite monoid on a discrete set X contains its
Stone-Czech compactification βX.
βX is not metrizable if X is infinite, but Â∗ is metrizable
when A is finite. So Â∗ does not contain a free profinite
monoid on an infinite set.
If X is a topological space, the free profinite monoid X̂∗ on
X is defined via the usual universal property:

X //

  @
@@

@@
@@

@ X̂∗

��
M (profinite)
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This topological obstruction is the only obstacle to
generalizing the result of Margolis, Sapir and Weil.

Theorem (Almeida, BS)

The free clopen submonoids of Â∗ are precisely the closures of
regular free submonoids of A∗. Moreover, if C is a regular code,
then C is the unique closed (and in fact clopen) basis for C∗.

The proof uses unambiguous automata and wreath products.

It is in the same spirit as the case of finite codes, but the
topology makes the proof more technical.
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Free clopen submonoids IV

We use uniformities in the proof.

If C ⊆ A∗ is a rational code, we prove that the uniformity on
C∗ induced from the profinite uniformity on A∗ is the
uniformity induced by the embedding of C∗ into the free
profinite monoid on C.

The key point is to use wreath products to show that any
homomorphism C∗ →M to a finite monoid extending
continuously to C has kernel refined by a finite index
congruence on A∗.

The converse result relies on the fact that A∗ is discrete in Â∗

and is a coideal.

From this it follows any generating set of a free clopen
monoid is contained in A∗.
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The ideal structure of free profinite monoids

Henckell, Rhodes and I — and independently Almeida and
Costa — observed that overlap lemmas for free monoids also
work to a large extent for free profinite monoids.

This led me to the Prime Ideal Theorem.

An ideal I in a semigroup is called prime if ab ∈ I implies
a ∈ I or b ∈ I.

An ideal I in a semigroup is idempotent if I2 = I.

For example, an element x generates an idempotent ideal if
and only if x is regular.

The minimal ideal of a profinite semigroup is an idempotent
ideal.

Benjamin Steinberg Recent progress on free profinite monoids



Free profinite monoids
Free clopen submonoids

The ideal structure
Maximal subgroups

The ideal structure of free profinite monoids II

Theorem (Prime Ideal Theorem, BS)

Every idempotent ideal of Â∗ is prime.

The case of the minimal ideal had been obtained earlier by
Almeida and Volkov using symbolic dynamics and entropy.

This theorem admits a number of important consequences.

Corollary

Suppose x ∈ Â∗ and xn is a group element for some n ≥ 1. Then
x is a group element. In particular, all elements of finite order in
Â∗ are group elements.

The case of finite order was obtained earlier by me and
Rhodes.
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The ideal structure of free profinite monoids III

Corollary

If B ⊆ Â∗ is a band, then the principal ideals of B form a chain.

Proof.

Let e, f ∈ B. Then ef ∈ B and so idempotent.

Hence ef generates a prime ideal so e J ef or f J ef .

Then e R ef or f L ef .

Since these are idempotents, this holds in B.

Thus e, f are comparable in the J -order on B.
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Free and projective profinite groups

The free profinite group on a topological space is defined in
the same way as for monoids.

A profinite group G is called projective if:

G

β
����

λ

xx
A

α // // B

It is enough to consider the case A,B are finite.

Theorem

The projective profinite groups are precisely the closed subgroups
of free profinite groups.
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Maximal subgroups of Â∗

If e ∈ Â∗ is an idempotent, Ge denotes the maximal subgroup
at e.

Let F̂A be a free profinite group on A.

There is a natural surjective map ϕ : Â∗ → F̂A.

If e is an idempotent of the minimal ideal I, then
ϕ(Ge) = F̂A.

So ϕ splits and hence all projective profinite groups can
embed in a free profinite monoid (observation of Almeida and
Volkov).

Margolis and I observed that the maximal subgroup of the
minimal ideal maps onto any metrizable profinite group.
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A question of Margolis

Question (Margolis 97)

1 Is every maximal subgroup of Â∗ a free profinite group, or at
least projective?

2 Is the maximal subgroup of the minimal ideal of Â∗ a free
profinite group?

Free profinite groups (and hence projective profinite groups)
are torsion-free.
Is Â∗ torsion-free? That is, are all elements of finite order in
Â∗ idempotent?
We saw earlier that all finite order elements of Â∗ are group
elements.
So if every maximal subgroup of Â∗ is projective, then all
elements of finite order must be idempotents.
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Symbolic dynamics
Subgroup theorems

A question of Margolis

Question (Margolis 97)

1 Is every maximal subgroup of Â∗ a free profinite group, or at
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elements.
So if every maximal subgroup of Â∗ is projective, then all
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Symbolic dynamics

Almeida and his co-workers were the first to make progress on
these questions. Their approach used symbolic dynamics.

The shift map σ : Aω → Aω is given by

σ(a0a1 · · · ) = a1a2 · · · .

A subshift is a closed subspace of Aω closed under the shift.

A minimal subshift must be the closure of the orbit of an
infinite word under the shift.

A word w ∈ Aω generates a minimal subshift if and only if w
is uniformly recurrent.

This means that if v is a finite factor of w, then there exists
N > 0 so that each factor of w of length N contains v as a
factor: the “bounded gaps property.”
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Uniform recurrence and substitutions

The famous Morse-Thue cube-free word is uniformly
recurrent. It is the fixed point obtained by iterating the
substitution a 7→ ab, b 7→ ba starting from a.

A substitution f : A∗ → A∗ is called primitive if there exists
N > 0 so that each letter of A appears in fN (a), all a ∈ A.

If f is a primitive substitution with a the first letter of f(a),
then lim fn(a) is a uniformly recurrent word.

Set ∂Â∗ = Â∗ \A∗.
There is a natural continuous surjection π : ∂Â∗ → Aω since
regular languages can “remember” prefixes.
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Minimal subshifts and maximal principal ideals

Almeida defined a profinite word w to be uniformly recurrent
if given a finite factor v of w, there exists N > 0 so that every
factor of w of length N contains v.

Theorem (Almeida)

1 w ∈ Â∗ is uniformly recurrent iff Â∗wÂ∗ is a maximal
principal ideal of ∂Â∗.

2 π : ∂Â∗ → Aω sends uniformly recurrent profinite words onto
uniformly recurrent infinite words.

3 π induces a bijection between minimal subshifts and maximal
principal ideals of ∂Â∗.

So there is a principal ideal associated to each minimal
subshift.
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The profinite group associated to a minimal subshift

The ideal associated to a minimal subshift can be generated
by an idempotent.

Thus there is a unique (up to isomorphism) maximal subgroup
generating this ideal.

In other words, there is a profinite group associated to each
minimal subshift.

Almeida showed that this group is a conjugacy invariant of
the subshift.

What can be said about these maximal subgroups of Â∗?
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Symbolic dynamics
Subgroup theorems

The profinite group associated to a minimal subshift II

Almeida showed that the groups corresponding to minimal
subshifts arising from certain primitive substitutions are free
profinite.

For instance the groups associated to Sturmian and
Arnoux-Rauzy subshifts are free profinite groups.

Almeida showed if f is the substitution a 7→ a3b, b 7→ ab, then
the group associated to lim fn(a) is projective but not free.

Almeida presented this work at the Fields workshop on
profinite groups organized by me and Ribes in 2005.

Lubotzky asked after Almeida’s talk whether these groups
must always be projective.

Recently, Almeida and Costa showed that the profinite group
associated to the Morse-Thue infinite word is not free
profinite.
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The projectivity theorem

Theorem (Rhodes, BS)

The closed subgroups of Â∗ are precisely the projective profinite
groups. Hence Â∗ is torsion-free.

The proof uses wreath products and the Schützenberger
representation in order to extend maps from a maximal
subgroup to the whole free profinite monoid.

Ribes later pointed out to us a similar proof scheme used by
Cossey, Kegel and Kovács for the case of free profinite groups.

Ribes and I have used the same ideas to give simple algebraic
proofs of the Nielsen-Schreier and Kurosh Theorems via
wreath products (in both the abstract and profinite settings).
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Finite subsemigroups of Â∗

It follows that every finite subsemigroup B of Â∗ is a band
which is a J -chain.

If B has a zero, then it is a chain of idempotents.

If the minimal ideal of B is a left (right) zero semigroup, then
it is an L -chain (R-chain).

Rectangular bands of arbitrary size embed in Â∗.

Is it decidable which bands embed in Â∗?
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Free profinite groups on a set converging to 1

A subset Y of a profinite group G is a set of generators
converging to 1 if:

〈Y 〉 = G;
Each neighborhood of 1 contains all but finitely many elements
of Y .

One can define a free profinite group F̂Y on a set Y of
generators converging to 1. The cardinality of Y is called the
rank of F̂Y .

A free profinite group on a topological space X is also free on
a set of generators converging to 1 of the same cardinality as
the boolean algebra of clopen subsets of X.
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The maximal subgroup of the minimal ideal is free

Theorem (BS)

The maximal subgroup of the minimal ideal of Â∗ is a free
profinite group of countable rank.

The proof uses Iwasawa’s criterion: a metrizable profinite
group G is free profinite on a countable set of generators
converging to 1 if and only if given a diagram

G

β
����

λ

xxxx
A

α // // B

of epimorphisms (A and B are finite), there exists an
epimorphism λ : G � A so that the diagram commutes.
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The maximal subgroup of the minimal ideal is free II

Again wreath products play a role: this time iterated wreath
products.

The idea is based on Bernhard Neumann’s proof that every
countable semigroup embeds in a 2-generated semigroup, and
variations on this theme.

The most relevant variant for us embeds any countable group
as the maximal subgroup of the minimal ideal of a
2-generated monoid with cyclic group of units.

Ideas from Krohn-Rhodes Theory and the Synthesis Theorem
also play a role.
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More on the minimal ideal

If I is the minimal ideal of Â∗ and E(I) is its set of
idempotents, then E(I) is a profinite space.

There is a continuous retraction π : I → E(I) so that each
fiber of π is the maximal subgroup G of I.

That is to say, I is a principal G-bundle with base space E(I).

So our results go a long way towards understanding the
structure of I.
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Another free profinite subgroup

Recall that we have a canonical projection ϕ : Â∗ � F̂A where
F̂A is the free profinite group generated by A.

Moreover, ϕ restricts to an epimorphism ϕ : G � F̂A where G
is the maximal subgroup of the minimal ideal I.

Let K = kerϕ.

Theorem (BS)

The subgroup K is a free profinite group of countable rank.

The proof uses Melnikov’s characterization of free normal
subgroups of a free profinite group.

One just needs to show that every finite group is an image of
K.
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Open questions

Which projective profinite groups can be maximal subgroups
of a free profinite monoid (Zalesskii)?

Can a free pro-p group be a maximal subgroup of Â∗?

Let I be the minimal ideal of Â∗ and let S = 〈E(I)〉 be the
closed subsemigroup generated by its idempotents.

Is the maximal subgroup H of S a free profinite group of
countable rank?
The subgroup K is the normal closure of H.
H maps onto every countably based profinite group.
We think that our proof should show that H is free.

Classify projective profinite monoids.

Do the finite projective monoids form a recursive class?
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