Smooth Estimates of Distribution Functions with Application in Environmental Studies

IVANA HOROVÁ	JAN KOLÁČEK	JIŘÍ ZELINKA	ABDEL EL-SHAARAWI
Masaryk University	Masaryk University	Masaryk University	National Water Research Inst.
Dept. of Math. and Statist.	Dept. of Math. and Statist.	Dept. of Math. and Statist	. 867 Lakeshore Road
Janáčkovo nám. 2a	Janáčkovo nám. 2a	Janáčkovo nám. 2a	P.O. Box 5050
602 00 Brno	602 00 Brno	602 00 Brno	Burlington, ON L7R 4A6
Czech Republic	Czech Republic	Czech Republic	Canada
horova@math.muni.cz	kolacek@math.muni.cz	zelinka@math.muni.cz	Abdel.El-Shaarawi@ec.gc.ca

Abstract: The most commonly used nonparametric estimate of a cumulative distribution function F is an empirical distribution function F_n . But F_n is a step function even in case that F is continuous. The present paper aims to provide a smooth estimate of F. Kernel methods seem to be adequate for this purpose. There exist several methods on how to choose a bandwidth, e.g. [1], [2], [3]. We propose a method of bandwidth selection based on a suitable estimate of Mean Integrated Square Error. We also focus on an estimate of a cumulative distribution function in case that random variables X_1, \ldots, X_n are nonnegative. The aforementioned methods are not reliable near the point x = 0. In order to avoid this problem we propose a reflection method [5]. A simulation study is conducted to compare methods with and without suppressing boundary effects. The theoretical results are applied to study the distributional characteristics in bioaccumulation of a toxic substance in fish population from Lake Ontario.

Key-Words: kernel distribution, boundary effects, iterative method

Acknowledgements: The research was supported by The Jaroslav Hájek center for theoretical and applied statistics (grant No. LC 06024).

References:

- [1] Altman N., Léger Ch. (1995) *Bandwidth selection for kernel distribution function estimation*. Journal of Stat. Planning and Inference, 46, p. 195 214.
- [2] Azzalini, A. (1981) A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika, 68, No 1, p. 326 328.
- [3] Bowman, A., Hall, P., Prvan, T. (1998) *Bandwidth selection for the smoothing of distribution functions*. Biometrika, 85, No 4, p. 799 808.
- [4] Horová, I., Zelinka, J. (2007) *Contribution to the bandwidth choice for kernel density estimates*. Computational Statistics, 22, No 1, 31 47.
- [5] Koláček, J. (2006) *Boundary effects for densities and distribution functions*. Summer School DATASTAT'06 Proceedings.