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Marie Forbelská (MU– ÚMS) Exponential Smoothing and Kernel Regression Podleśı, 11.9.–13. 9. 2012 2 / 29



Introduction Characteristics of Time Series

Characteristics of Time Series

Time Series

A time series is a sequence of random variables
{Yt , t = 0,±1,±2, . . .}

Stationarity

We introduce weak stationarity which require that time series exhibit
certain time-invariant behavior.

Dependence

The dependence in the data marks the fundamental difference
between time series analysis and classical statistical analysis.

Different measures are employed to describe the dependence
at different levels to suit various practical needs.
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Introduction Weak Stationarity

Autocovariance and Autocorelation

Autocovariance

Autocovariance CY (t, s) of a random process {Yt , t ∈ Z} is defined
as the covariance of Yt and Ys :

CY (t, s) = E (Yt − EYt)(Ys − EYs)

In particular, when t = s, we have
CY (t, t) = E (Yt − EYt)

2 = DYt

Autocorelation

Autocorrelation coefficient is defined as
RY (t, s) =

CY (t,s)√
DYtDYs
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Introduction Weak Stationarity

Weak Stationarity

Definition

A time series {Yt , t ∈ Z} is (weak) stationary if EYt < ∞ for each t,
and

(i) EYt = µ is a constant, independent of t, and
(ii) CY (t, t + k) is independent of t for each k .

Notation

If {Yt , t ∈ Z} is (weak) stationary denote by
γY (k) = CY (t, t + k)
ρY (k) = RY (t, t + k)

for all t.
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Local Regression Locally Weighted Least Squares

Local Regression

Local regression or loess is used to model a relation between a predictor
variable and response variable. It is an approach to fitting curves and
surfaces to data by smoothing.

Local nature of the method

It is called local since the fit at a generic point x0 is the value of a
parametric function fitted only to those observations that are close to x0.

To keep things simple we will consider the fixed design model. We assume
a model of the form

Yi = m(xi ) + εi , i = 1, . . . , n,

where m(x) is an unknown function and εi an error term, representing
random errors in the observations or variability from sources not included
in the xi . We assume the errors εi are IID with mean 0 and finite variance
Dεi = σ2.
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Local Regression Locally Weighted Least Squares

Local Polynomial Approximation

We make no global assumptions about the function m(x) but assume that
locally it can be well approximated with a member of a simple class
of parametric function, e.g. a constant or straight line.

Taylor’s theorem

says that any continuous function can be approximated with polynomial. If
the (p + 1)th derivative of m(x) at the point x0 exists, we can
approximate m(x) locally by a polynomial of order p:

m(x) = m(x0)︸ ︷︷ ︸
β0(x0)

+m′(x0)︸ ︷︷ ︸
β1(x0)

(x − x0) + . . .+
m(p)(x0)

p!︸ ︷︷ ︸
βp(x0)

(x − x0)
p,

for x in a neighbourhood of x0.
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Local Regression Locally Weighted Least Squares

Local Polynomial Regression

Almost always, we will want to incorporate a weight function, w(x), that
gives greater weight to the xi in the neighbourhood that are close to
generic point x0 and lesser weight to those that are further.
The criterion of estimation depends on the assumption made about the
distribution of the Yi .
For example, if we suppose that the Yi are approximately Gaussian with
constant variance then it makes sense to base estimation on least-squares.

Least-squares criterion

n∑

i=1

w
(
xi−x0

h

)

Yi −

p∑

j=0

βj(x0)(xi − x0)
j



2

where the span or window size h (also called bandwidth) controls the
”smoothness”.
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Local Regression Locally Weighted Least Squares

Local Linear Regression
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Local Regression Locally Weighted Least Squares

Matrix Notation

It is more convenient to write the above least squares problem in matrix
notation.

Denote by Wh(x0) diagonal matrix

Wh(x0) = diag
{
w
(
x1−x0

h

)
, . . . ,w

(
xn−x0

h

)}

Let

Xp(x0) =




1 x1 − x0 · · · (x1 − x0)
p

...
...

. . .
...

1 xn − x0 · · · (xn − x0)
p




β(x0) = (β0(x0), . . . , βp(x0))
T

ej = (0, . . . , 0, 1︸︷︷︸
jth element

, 0, . . . , 0)T.
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Local Regression Locally Weighted Least Squares

Locally Weighted Least Squares

Then, for the locally weighted least squares problem we can write

LWLS criterion

β̂(x0) = arg min
β(x0)

[Y − Xp(x0)β(x0)]
T
Wh(x0)[Y − Xp(x0)β(x0)]

Weighted least squares theory provides the solution

LWLS estimates

β̂(x0) = [Xp(x0)
TWh(x0)Xp(x0)]

−1
Xp(x0)

TWh(x0)Y

m̂(x0) = eT

1 β̂(x0)

if matrix [Xp(x0)
TWh(x0)Xp(x0)]

−1 is regular.
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Local Regression Locally Weighted Least Squares

Modelling the Data

The use local regression in practice, we must choose

the weight function w(x),

the bandwidth h,

the parametric family of m(x),

and the fitting criterion.

The first three choices depend on assumptions we make about the
behaviour of m(x). The fourth choice depends on the assumptions we
make about other aspects of the distribution of the Yi .
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Local Regression Kernel Regression and Local Least Squares Regression

Kernel Regression and Local Least Squares Regression

Estimator

m̂(x0) = e
T

1 β̂(x0) = e
T

1 [Xp(x0)
T
Wh(x0)Xp(x0)]

−1
Xp(x0)

T
Wh(x0)Y

is just one member of a hierarchical class of local least squares kernel
estimators since one may choose to fit locally polynomials of arbitrary
order.

This class includes the Nadaraya-Watson kernel estimator

m̂(x0) =

∑n
i=1K

(
xi−x0

h

)
Yi∑n

i=1K
(
xi−x0

h

)

which corresponds to local constant fits, i.e p = 0.
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Exponential Smoothing Simple and High Order Exponential Smoothing

Exponential Smoothing – Introduction

The formulation of exponential smoothing forecasting methods arose
in the 1950’s from the original work of Brown (1959, 1962) and Holt
(1960) who were working on creating forecasting models for inventory
control systems.

Exponential smoothing can be viewed as a special type of local
polynomial regression procedure where the fitting at a particular
location uses only data to the left of that location.

In fact the simple exponential smoothing (also called EWMA –
Exponentially Weighted Moving Average) is virtually identical to the
Nadaray-Watson kernel estimator with a kernel function that is zero
in its positive arguments, something which we refer to as a
”half–kernel”.
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Exponential Smoothing Simple and High Order Exponential Smoothing

Fixed design for time series

Let Y = (Y1, . . . ,Yn)
T be a time series observed at equally-spaced time

points t1, . . . , tn. We consider the problem of using these data to forecast
Yn+1 at time tn+1.

-�

∆

t1 t2 · · ·

-�

∆

ti ti+1 · · ·

-�

∆

tn−1 tn

Denote by ∆ = ti+1 − ti . Then ti = t1 + (i − 1)∆
i = ti−t1

∆ + 1

Without loss of generality, we can therefore assume that ti = i .
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Exponential Smoothing Exponential Smoothing and Local Polynomial Regression Weighted

Polynomial approximation for fixed time design

Again assuming Taylor expansion of regression function m(x)

m(x) = m(x0)︸ ︷︷ ︸
a0(x0)

+m′(x0)︸ ︷︷ ︸
a1(x0)

(x − x0) + . . .+
m(p)(x0)

p!︸ ︷︷ ︸
ap (x0)

p!

(x − x0)
p

Denote by τ = x − x0 = t − t0. In this case, time series model

Yt0+τ =

p∑

k=0

ak(t0)

k!
τk + εt0+τ

and classical exponential smoothing of order p is based on minimization

Locally Weighted Least Squares

∞∑
j=0

(1− α)τ
[
Yt0−τ −

p∑
k=0

ak(t0)
k! (−τ)k

]2
for 0 < α < 1.
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Exponential Smoothing Exponential Smoothing and Local Polynomial Regression Weighted

Simple Exponential Smoothing

It has been shown that if the model is a constant (p = 0)

EWMA (Exponential weighted moving average) model

Yt0+τ = a0(t0) + εt0+τ ,

and the smoothing process is based on minimization of the weighted least
squares

∞∑

τ=0

(1 − α)τ [Yt0−τ − a0(t0)]
2

then fitted value at point t is given by means the recurrence formula

Solution

Ŷt = â0(t) =
∞∑

τ=0

α(1 − α)τYt−τ
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Exponential Smoothing Exponential Smoothing and Local Polynomial Regression Weighted

One Step Ahead Prediction

The attraction of exponential weighting is that estimates can be updated
by a simple recursion, that is

Recursion

Ŷt = αYt + (1− α)Ŷt−1.

Exponential smoothing can also be expressed in terms of the one step
ahead prediction, so Ŷt is replaced by Ŷt+1|t .
Thus the recursion can be written

Recursion by means prediction

Ŷt+1|t = αYt + (1− α)Ŷt|t−1
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Exponential Smoothing Exponential Smoothing and Local Polynomial Regression Weighted

Higher Order Exponential Smoothing

Simple exponential smoothing can be represented by an operator as follows

First Order Operator

St(Y ) = αYt + (1− α)St−1(Y )

For higher degrees of smoothing, we define the pth order operator by

Higher Order Operator

S
p
t (Y ) = S [Sp−1

t (Y )] = αSp−1
t (Y ) + (1− α)Sp

t−1(Y )
with ”no smoothing” as the identity operator

S0
t (Y ) = It(Y ) = Yt

In this case follow

Fundamental Theorem

â0(t) = [I − (I − S)p+1]t(Y ).
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Exponential Smoothing Exponential Smoothing and Local Polynomial Regression Weighted

Examples

Double Exponential Smoothing (p = 1)

Ŷt+τ = â0(t) + â1(t)τ

â0(t) = 2St(Y )− S2
t (Y )

â1(t) = α
1−α [St(Y )− S2

t (Y )]

Triple Exponential Smoothing (p = 2)

Ŷt+τ = â0(t) + â1(t)τ + 1
2 â2(t)τ

2

â0(t) = 3St(Y )− 3S2
t (Y ) + S3

t (Y )

â1(t) = 1
2α(1 − α)2[(6− 5α)St(Y )− 2(5 − 4α)S2

t (Y ) + (4− 3α)S3
t (Y )]

â2(t) = α2

(1−α)2
[St(Y )− 2S2

t (Y ) + S3
t (Y )]
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Exponential Smoothing Exponential Smoothing and Local Polynomial Regression Weighted

Simple Exponential Smoothing and Kernel Regression

If we define

h = − tn−t1
(n−1)log(1−α)

= − ∆
log(1−α)

and
Ke(u) = eu I{u≤0}

−6 −5 −4 −3 −2 −1 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K(u) = eu

then it is easily shown that

Ŷn+1 =

n
∑

k=1
Ke

(

tk−tn+1
h

)

Yn−k

n
∑

k=1
Ke

(

tk−tn+1
h

)
.

This shows that the EWMA is equivalent to a Nadaraya-Watson, or
zero-degree local polynomial, kernel estimate at point tn+1.

Marie Forbelská (MU– ÚMS) Exponential Smoothing and Kernel Regression Podleśı, 11.9.–13. 9. 2012 21 / 29



Exponential Smoothing Exponential Smoothing and Local Polynomial Regression Weighted

Asymptotic theory (introduction)

Let

LWLS (Locally Weighted Least Squares) Estimate of the m(x)

m̂(x) = e
T

1 β̂(x) = e
T

1 [Xp(x)
T
Wh(x)Xp(x)]

−1
Xp(x)

T
Wh(x)Y

for a general kernel K with the properties K (x) = 0, x > 0, and
∫
K = 1.

We shall refer to such a kernel as a half-kernel. Since K is a half-kernel,
the estimate is always based on data to the left of x or at x itself.
Define the half-kernel

Kp(u) =
(
1 0 · · · 0

)




µ0 µ1 · · · µp

µ1 µ2 · · · µp+1
...

...
. . .

...
µp µp+1 · · · µ2p




−1


1
u
...
up


K (u)

with µj =
∫
ujK (u)du.
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Exponential Smoothing Exponential Smoothing and Local Polynomial Regression Weighted

Assumptions

(a) m(p+1) is continuous and square integrable on (0, 1).

(b) K is square integrable and has compact support on the interval [−τ, 0]
or τ > 0 such that K (0) > 0. Also, K is p + 1 times differentiable on
its support and K (p+1) is Lipschity continuous.

(c) Data are available in the interval [−hτ, 0] and are used in the

construction of m̂(x). This condition insures that here are no
left-hand boundary effects.

(d) The errors εt are obtained by application of a causal linear filter to
independent and identically distributed random variables with mean 0
and all moments finite.

(e) The autocovariance function γ of εt satisfies 0 <
∞∑

k=−∞
|γ(k)| < ∞.

(f) The minimizer of
n∑

t=1
(Yt − Ŷt)

2 is searched on the interval

Hn = [an−1/(2p+3), bn−1/(2p+3)] for each n, for some b > a > 0.
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Exponential Smoothing Exponential Smoothing and Local Polynomial Regression Weighted

Bias and variance of the m̂(x)

Under assumptions given above, and assuming that

h = hn → 0 and nh → ∞ as n → ∞,

for all
x ∈ [0, 1]

Bias

E
{
m̂(x)−m(x)

}
=

∫
up+1Kp(u)du

(p + 1)!
m(p+1)(x)hp+1 + o

(
hp+1

)

Variance

var
{
m̂(x)

}
=

∫
Kp(u)

2du

{ ∞∑

k=−∞
γ(k)

}
(nh)−1 + o

{
(nh)−1

}
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Exponential Smoothing Exponential Smoothing and Local Polynomial Regression Weighted

Measures of the global error

Average of the Squared Residual

ASR(h) =
1

n

n∑

t=1

{
m̂(xt)− Yt

}2

Average Squared Error

ASE (h) =
1

n

n∑

t=1

{
m̂(xt)−m(xt)

}2

In nonparametric regression it is convenient to work with

MASE (h) = E {ASE (h)}
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Exponential Smoothing Exponential Smoothing and Local Polynomial Regression Weighted

The optimal bandwidths

The optimal bandwidths (under the respective measures) are

ĥMASE =

{
Vp

(2p + 2)B2
p

}1/(2p+3)

n−1/(2p+3)

ĥASR =





Vp − 2Kp(0)
∞∑
k=1

γ(k)

(2p + 2)B2
p





1/(2p+3)

n−1/(2p+3)

where

VP =
∫
Kp(u)

2du

{
∞∑

k=−∞
γ(k)

}

B2
p =

{∫
up+1Kp(u)du/(p + 1)!

}2 ∫
m(p+1)(x)2dx
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Exponential Smoothing Exponential Smoothing and Local Polynomial Regression Weighted

ASR and Crossvalidation

For p=0 note that, because K is a half-kernel,

Ŷτ = Ŷτ |τ−1 =

τ−1∑
k=1

Ke

(
tk−tτ

h

)
Yτ

τ−1∑
k=1

Ke

(
tk−tτ

h

) =

∑
k 6=τ

Ke

(
tk−tτ

h

)
Yτ

∑
k 6=τ

Ke

(
tk−tτ

h

)

so ĥASR minimizes
n∑

t=1
{Yt − m̂−t(xt)}

2 where m̂−t(x) is the same as

m̂(x), but based on the data with (xt ,Yt) omitted.

The same result can be easily shown to hold for general p.

Therefore, ĥASR is the same as cross-validation with a half-kernel.
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Exponential Smoothing Exponential Smoothing and Local Polynomial Regression Weighted

Estimating the Correlation Function

Usually the correlation function is unknown and must be estimated
from the data.

A simple approach:

compute the low-order sample autocorrelations of the residuals
and fit an autoregressive–moving average (ARMA) model.
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